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Abstract. We develop a novel finite element method for a phase field model of nematic
liquid crystal droplets. The continuous model considers a free energy comprised of
three components: the Ericksen’s energy for liquid crystals, the Cahn-Hilliard energy
representing the interfacial energy of the droplet, and an anisotropic weak anchoring
energy that enforces a condition such that the director field is aligned perpendicular
to the interface of the droplet. Applications of the model are for finding minimizers
of the free energy and exploring gradient flow dynamics. We present a finite element
method that utilizes a special discretization of the liquid crystal elastic energy, as well
as mass-lumping to discretize the coupling terms for the anisotropic surface tension
part. Next, we present a discrete gradient flow method and show that it is monotone
energy decreasing. Furthermore, we show that global discrete energy minimizers I'-
converge to global minimizers of the continuous energy. We conclude with numerical
experiments illustrating different gradient flow dynamics, including droplet coales-
cence and break-up.
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1 Introduction

The purpose of this paper is to couple Ericksen’s model for nematic liquid crystals to
an interfacial energy (modeled via the Cahn-Hilliard equation) in order to model liquid
crystal droplets. Interest in developing numerical methods for modeling liquid crystals
or complex fluids involving liquid crystals has grown in recent years, [2, 5, 20, 28, 34, 35,
40,41,54]. One driver for this development is the large host of technological applications
of liquid crystals [1,4, 8, 9,29, 36, 38, 42,45, 49, 55]. Popular models representing liquid
crystal substances include the Q-tensor model, the Oseen-Frank model, and Ericksen’s
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model with a variable degree of orientation. A common issue in any of these methods
is capturing defects. For instance, in [5], Barrett et al. presents a fully discrete finite el-
ement method for the evolution of uniaxial nematic liquid crystals with variable degree
of orientation. An advantage of their method is that they are able to provide conver-
gence results. However, in order to avoid the degeneracy introduced by the degree of
orientation variable s, they use a regularization of Ericksen’s model.

The use of diffuse interface theory to describe the mixing of complex fluids has
likewise grown in popularity and the research group which includes J. Zhao, X. Yang,
Q. Wang, J. Shen (among others) has released several papers on this subject [57-62]. Their
models may be described as energy minimizing models whereby their energy functionals
are composed of a kinetic energy and a free energy. The kinetic energy is based on fluid
velocity coming from a fluid model, such as Stoke’s flow. The free energy is then broken
down into three parts: the mixing energy, the bulk free energy for liquid crystals, and
an anchoring energy. For instance, in [62], Zhao et. al. develop an energy-stable scheme
for a binary hydrodynamic phase field model of mixtures of nematic liquid crystals and
viscous fluids where they use the Cahn-Hilliard energy to describe the mixing energy
and the Oseen-Frank energy to describe the bulk free energy for liquid crystals. Defects
are effectively regularized by penalizing the unit length constraint.

The work presented herein is unique in the following sense: the Cahn-Hilliard en-
ergy is combined directly with Ericksen’s energy in order to develop a phase field model
for nematic liquid crystal droplets in a pure liquid crystal substance. In this way, the
model we present herein should be considered as a first approximation to modeling de-
formable colloids in liquid crystalline substances. We therefore make the assumption that
the liquid crystal properties are congruent across the interface of the droplet. The model
considers a free energy which is comprised of three components: the Ericksen’s energy
for liquid crystals, the Cahn-Hilliard energy representing the interfacial energy of the
droplet, and an anisotropic weak anchoring energy that enforces a condition such that
the director field is aligned perpendicular to the interface of the droplet. The goal is to
find minimizers of this free energy. To this end, we present a finite element discretization
of the energy and apply a modified time-discrete gradient flow method to compute min-
imizers. The numerical scheme considered herein combines the finite element approxi-
mation of the Ericksen model of nematic liquid crystals in [40], which captures point and
line defects and requires no regularization, and the technique considered in [24] which
follows a convex splitting gradient flow strategy for modeling the Cahn-Hilliard equa-
tion.

An outline of the paper is as follows. Section 2 describes the continuous energy model
for the liquid crystal/surface tension system. In Section 3, we present a discretization of
the total energy (2.12) followed by the development of a discrete gradient flow strategy
in Section 4. In Section 5, we present a fully discrete finite element scheme based on
the gradient flow strategy and prove its stability. In Section 6, we demonstrate that the
discrete energy converges to the continuous energy using the tools of I'-convergence.
We conclude with several numerical experiments in Section 7, and some discussion in
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Section 8.

2 Continuous energy models

2.1 Ericksen energy

We consider the one-constant model for liquid crystals with variable degree of orien-
tation [22, 25, 52] (Ericksen’s model) on a Lipschitz domain () C R? with d =2,3. The
liquid crystal state is modeled by a director field n(x) and a scalar function s(x), the
so-called degree-of-orientation. Equilibrium is attained when (s,n) minimizes the non-
dimensional energy

](S,I‘l) :Eerk(sln)+Edw(s)/ 2.1)

where Eq (s,n) and Eqy(s) are defined by
Eenc(s,m) ::/Q [k|Vs|* 4% Vn|*] dx, (2.2)
Equ(s):= /Q F(s(x))dx, (2.3)

with x>0 and where the double well potential f is a C? function defined on —1/2<s<1
that satisfies the following conditions [3,25,33]:

1. limgy1 f(s) =limg_, 1,5 f(s) =00,
2. f(0)> f(s*) =minge[_1/91] f(s) for some s* € (0,1),
3. f/(0)=0.

The existence of minimizers (s*,n*) of (2.1) was shown in [3,33], along with regularity
properties. Minimizers may exhibit non-trivial defects (depending on boundary condi-
tions) [7, 10, 15,32, 33,43]. Some analytical solutions can be found in [52]. The presence
of s in (2.2) gives a degenerate Euler-Lagrange equation for n. This allows for line and
plane defects (singularities of n) when s vanishes in dimension d =3. The size of defects
and regularity properties of minimizers were studied in [33]. This lead to the study of
dynamics [18] and corresponding numerics [5]. However, in both cases, they regularize
the model to avoid the degeneracy induced by the order parameter s vanishing. In [40],
they present a numerical method, without requiring any regularization, for computing
minimizers of (2.1) that exhibit non-trivial defect structures.

The theoretical framework follows [3,33]. We introduce an auxiliary variable u:=sn,
and rewrite Ericksen’s energy (2.1) as

Eer(s,n) =Eenc(s,u) := /Q ((K— 1)| Vs[> + !Vu|2) dx, (2.4)
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which follows from differentiating the identity |n|> =1. This suggests the following ad-
missible class for (s,u):

A= {(s,u) € [H'(Q)]"": there exists n such that (2.6) holds}, (2.5)

where
u=sn, —-1/2<s<lae.in(), and n €5 lae. in Q, (2.6)

is called the structural condition of A... Note: we use an abuse of notation and define
(s,n) in Ay to mean (s,u) in Ay with u=sn.

Moreover, to enforce boundary conditions on (s,u), possibly on different parts of the
boundary, let (I';,I'y ) be open subsets of Q) where we set Dirichlet boundary conditions
for (s,u). Then the restricted admissible class is defined by

Aerk(g/r) = { (s,u) € Aerk: S|F5 =98, u’I’u :1‘}, (2.7)
for some given functions (g,r) €[WZ (Q)]?*! that satisfy (2.6) on 9Q. If we further assume
g>60 ond(), forsome éy>0, (2.8)

then n is H' in a neighborhood of Q) and satisfies n =g~ 'r€S?~! on 9Q.

In the case where s is a non-zero constant, (2.2) effectively reduces to the Oseen-Frank
energy [, |Vn|2. If s is variable, it may vanish in order to relax the energy of defects. In
this case, discontinuities of n (i.e. defects) may occur in the singular set

S:={xeO:s(x)=0}, (2.9)

with finite energy: Eq(s,n) < oo. The parameter « in (2.2) can influence the appearance
of defects; see [39,40] for examples of this effect.

2.2 Phase field energy
The Cahn-Hilliard (CH) energy is given by [16,17]

1
Ea@)= [ 3:@*=1)"+5 [ V0P dx=Eaan(9) +Enpl9),  @10)

where >0 is a small constant representing the interfacial width between the liquid crys-
tal droplet and surrounding liquid crystal substance and ¢ represents a concentration
field. The natural admissible class for ¢ is H!(Q)). The CH energy (2.10) typically prefers
the pure phase values ¢ = £1 and may be described as representing a competition be-
tween two different energy density terms: the double well density + (¢*— 1)2 which is
minimized by the pure phase values of ¢ and the gradient energy density 5 [, |V¢|?
which penalizes any derivatives of ¢. Energy minimizers of (2.10) are such that the pure
phases indicated by ¢ = £1 are separated by diffuse interfaces of thickness ~ ¢, such that
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the indicator function is essentially a hyperbolic tangent in the direction perpendicular to
the interface. For example, in the one dimensional case and following the procedure pre-

sented in [27], it can be shown that minimizers of (2.10) are given as ¢(x)==+tanh (kae ).

In short, the CH energy is used as a model for motion by mean curvature.

The interfacial energy associated with the condition that the director field is aligned
perpendicular to the interface of the droplet is given by the following anisotropic “dif-
fuse” weak anchoring energy [22,52]:

Ea,n(s,n,(p):%/os2 [|n|2]V(p|2—(n.V(p)2} dx,

Eax(s9) =35 [ VP (s(x) —s")dx,

where we note that (2.11) can be derived from [37, eqn. (66)] (the details of which can
be found Appendix (8)) and where ¢ is included to ensure that E, ,, scales the same as
Ecpp- The total anchoring energy is then considered to be E;nen(s,1n,¢) := Ean(s,n,¢)+
E.s(s,¢). Note that E, »(n,¢) tries to force homeotropic anchoring of n on the interface
of the droplet, i.e. when (2.11) is minimized, the director field n wants to be aligned with
V¢ which is parallel to the normal vector of the interface. The condition that the director
field n is perpendicular to V¢ (i.e. n is tangent to the interface), is referred to as planar
anchoring, and is an obvious modification of the method presented here.
Combining the three components produces the total energy

E (s,n,gb) = werkEerk (S,I‘l) +wdwEdw (S) +wchdchhdw ((P)
+wchpEchp ((P) +wa,nEa,n (S,I‘l,(])) +wa,sEa,s (S/(P)/ (2-12)

where Werk, Wdw,Wehdw,Wehp,Wan,Wa,s > 0 are constants denoting various “weights”. The
total energy is then described as consisting of a liquid crystal energy (using the Ericksen
model), an interfacial energy (using the Cahn-Hilliard model), and an energetic coupling
term that connects the two.

2.11)

Remark 2.1 (Relaxation of unit length constraint). We note that as n is a unit vector, the
‘diffuse” weak anchoring energy (2.11) could be written as

Esn(sm9) = [ [|V¢P—(n- V)] dx.

However, the condition that n be a unit vector will be relaxed in the discretization of the
energy. See Section 3 for more details, such as (3.2). Therefore, we list the form shown in
(2.11) so that the development of the discretized energy may be clearly observed.

Remark 2.2 (Anisotropic surface tension). Let J(s,n,¢):=Ea,(¢)+Ean(s,n,¢), which has
the form:

- 1
Tsmg)=g [ (07-1"+5 [ [VgPaxt 3 [ 2[InfIVP - (n-Ve)*]ax

1
:4_5/0(4’2_1)2+§/QV¢- [1+5?(I-n®n)] Vdx.
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Thus, combining E, with E,, changes the effective surface tension from isotropic to
anisotropic. We note that we have taken the weights equal to 1 for simplicity but that this
property holds for any weights wa n, Wehdw,Wenp >0

Remark 2.3 (The limit as € 0). Considering Remark 2.2, it is natural to consider changes
in the limiting case as ¢ .0 relative to the anisotropic energy J(s,n,¢)+Eas(s,¢). Though
we do not offer a formal analysis here, we expect this energy to model motion by a
weighted mean curvature. This is supported by the work of Taylor and Cahn in [50]
and Torabi et al. in [51].

3 Spatial discretization of the energy

Assume the domain () is partitioned into a conforming simplicial triangulation 7, ={K}.
The set of nodes (vertices) of Ty, is denoted N, with cardinality N. We further assume the
following property on the so-called stiffness matrix entries

kijZ:—LVﬂi'VUjdx, (31)

such that k;; >0 for all i # j and where 7; is the standard “hat” basis function associated
with node x; € \Vj,. This is guaranteed if the mesh is weakly acute [13, 19, 30, 48]. Note:
weak acuteness is guaranteed if all interior angles (dihedral angles in three dimensions)
are bounded by 90°; this corresponds to a non-obtuse mesh.

Next, we introduce the following finite element spaces:

Y,:={¢n€ H! (Q) : ¢y is affine for all K€ Ty, },
Sj:={s, € H'(Q) :5;| is affine for all K€ Ty},
Uy,:={u, € H(Q)?:uy | is affine in each component for all K € Ty}, 3.2)
Ny :={nj, €Uy :|ny(x;)| =1 for all nodes x; € N}, },
Vi :={v, €Uy :v,(x;) -0y, (x;) =0 for all nodes x; €N}, },
where INj, imposes the unit length constraint only at the vertices of the mesh; this implies that

Inj,(x)| <1 for any x € K. The spaces can be modified to incorporate (Dirichlet) boundary
conditions:

Sn(Ts,8n):= {51 €Sn:sulr, = gn}

(3.3)
Uh(ru,l‘h) = {uh celUy, Zuh|ru :rh},

where I's,I'y represent subsets of d() where Dirichlet conditions are enforced and g, =
I,8,1, = Iy1y, are the Lagrange interpolations of (g,r) where g and r are the traces of some
WL (Q) functions as in (2.7). With these definitions, we define a discrete admissible class

Acrin(8ntn) :={(sp,up) €54(Ts,8n) X Up(Ty,1p): there is ny such that (3.5) holds}, (3.4)
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where
uh:Ih(shnh), —1/2<s,<1 inQ), nyeINy, (3.5)
is the discrete structural condition of Ay ;. Again, we abuse notation and define (s;,ny,)
in Aerin to mean (sp,up) in Agpy , with uy, = I (spny,).
The discrete form of the Ericksen energy (2.2) is given by [40]

s (%)% 4sn(x;)?
E"\ (spmp) Z kij (sn(x;) — g Z kij ( Z > I ) g (xi) =i (%) 2,

z ,j=1 z ,j=1
(3.6)
for (sp,uy) € Aern(gn1n) where the second term is a first order approximation of
Jo$*|Vn|?dx. Note that it can be shown that the first term equals « [|Vs,|*dx. The
discrete energy satisfies a coercivity estimate [40, Lemma 3.5] which we now summarize.

Lemma 3.1. For any (sp,ny) € Agx , we have

Eerk(sh,nh)>min{1c,1}max{/ ]Vuh|2dx,/ ]Vsh|2dx}, where uy, = I (spny,).
0 0

The form of (3.6) is able to account for the degeneracy in sy, in the limit as 7—0 without
regularization. Indeed, in [40], they proved a I'-convergence result for (3.6), i.e.
r _}liir(l)EZrk(sh/nh) = Eerk(srn) . 3.7)

The Ericksen double well energy, the Cahn-Hilliard energy, and anchoring energy E, ; are
discretized in the standard way:

Ele(91):= [ f(51(0)dx, 9
1

Ef (@)= [ - (0F—1)"+5 [ [VouPax 39

EL () =5 [ IV (s (x) —s")2ax (310)

Finally, the discrete version of the weak anchoring term E, , is given by
Eon(suy,dp)= Y /T I { ()1 [(V - Vi) I— (Ve @ V) Iy, }, (3.11)

where I, is the Lagrange interpolant. We note that a more detailed definition of the
discretization of E, 5, is given in Section 4.
The (total) discrete energy is then
E" (31,11, 1) = WerlcErtc (Sh,1) + Watne Edyg (51) + el Echtw (91)
+Wanp Elnp (1) +WanE (S50, §1) +asEl s (1,P1). (3.12)

The discretization of time will follow a gradient flow strategy with respect to the total
discrete energy (3.12).
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4 Fully discrete gradient flow strategy

We use the notation (+,-) : L2(Q) x L2(Q)) — R as the standard L? inner product and the
notationa(-,-):H'(Q) x H(Q))—R as the H! inner product such that each may be applied
to both scalar and vector valued functions as follows:

(u,v) :/ uvdx, (n,w) :/ n-wdx, a(u,v) :/ Vu-Vodx, a(n,w) :/ Vn:Vwidx.
Q Q Q Q
Next, we define a multi-linear form representing the discrete Ericksen’s energy E’grk,
as well as its variational derivatives. Specifically, we definee(-,;-,-):5, xS, x U, x U, —R
by

e(sn,zn;np, Wr,)
N X; Xi X X

::.Zlkij<5h( )zn( )ersh( i)z ( ])) (n(xi) — (X)) - (Wi () —wi(x;)), (1)
ij=

which is linear in each argument, and note that

1

h

Eer(snmp) =xa(sp,zn)+ Ee(shzsh;nhznh)-

Furthermore, taking variational derivatives with respect to both s;, and n;, we have

On, Egrk (50,0 Wi] =€ (sp,Spmp, Wh), (4.2)

Js, Elgrk [Sn,p;zn] =2xa(sp,zn) +e(Sp,zpn,ny). 4.3)
Additionally, the variational derivative with respect to s;, of the Ericksen double well
energy is

85, Ely (sn321) = /Qf,(sh)zhdxz (4.4)

and the variational derivative with respect to ¢, of the Cahn-Hilliard energy is given by

O¢, E (fnipn) = /Q %(¢2_¢h)¢hdx+w(¢h/¢h)- (4.5)

Finally, we define a discrete inner product to capture the discrete coupling energy
Ean(s,n,¢) in (2.11), as well as its variational derivatives. Define the multi-linear form
c(050) s Upx Pox Uy, x Py x Sy x S — R, where Py is the space of piecewise constant,
vector-valued functions such that

Cc (Vh,v(l)h/WhIVlPh;sh/Zh)
1 d+1

=), !leﬁxl; {Shzh((V‘Ph'v’#h)(vh'wh)_(Vh‘v¢h)(wh‘v¢h)>

1T,

Tj

(%] )} . (4.6)
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where {x] d+11 are the vertices of the element T; in the mesh 7,; note that we restrict V¢y,,

Vi, to T; before evaluating at x= f(] Eq. (4.6) can also be written as
(Vi Vou, Wi, Vpiisn,zn) =Y / In{(snzn) v (V- Vg )I= (Vg @ Vipy ) [wy }, (4.7)
T;,CTh

where I, is the Lagrange interpolant; this follows because the formula in (4.6) can be
viewed as a quadrature rule that is exact for linear polynomials over each element T;.
The finite element realization of (4.6) is a d X d block matrix, where each block is an N x N
diagonal matrix.

Considering these definitions, the discrete anchoring condition can be written as

3
Eg,n(nh/(,bh/sh) = E c (nh/V(Ph/nhIV(,bh;shlsh) ’ (48)

EL s(sn) = 5 (Vg (5100 =5"), Vu(s(x) —s")) ®9)
with the following variational derivatives

On, L o (sn v, rsw) =ec (1, V oy, Wiy, V ppisp,sn),

85, b (51,0, P521) = £¢ (1, Vb, 1, V i, 20),

S, EX o (s, Pnipn) = c (1, V ppo 0y, VP s),

5shEa (S Pnizn) =e(Vn(sn—s*),Vuzn),

89, Ens (51 Pnipn) =€ (Vpu(sn—5"), Vpu (51, —5")).

both satisfy a projection property with respect to nj,. Specifically, we have the following
lemma.

at all nodes x; in Ny, then

e(sp,Spmy,mny) >e <5h15h}i/i> ’ (4.10)
ny,| " [ny,|
C(nh/V(Ph/nh/V(Ph)Shzsh)2C<’ kG V(Ph/’ kG V¢h,5h,5h> (4.11)

Proof. The proof of (4.10) may be found in [40]. The proof of (4.11) follows from Propo-
sition 4.1 (shown below) and the fact that E!  (sy,ny,,¢),) = my,(ny,ny,) with H(x) = (sy,)?
X[(Vn x V) I= (Vg @Vy)]. O

Proposition 4.1 (Monotone property for lumped mass matrix). Let m;,:IN;, xIN;, = R be
a bilinear form defined by

my (g, wWy) =) / In[ny- H(x)wp]dx,
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where H is a d x d symmetric positive semi-definite matrix, that is piecewise discontinu-
ous across boundaries of mesh elements but smooth inside each element. If |n;(x;)| >1
at all nodes x; in V},, then

n n
my (ny,,ny) >my <—h,—h>

| [ |
Proof. Rewrite my,(ny,wy) as

1 d+1

mwn)i= ¥ Tl X [ma(8)-H&Dw (%)

T;,CTh

1 4+l nh(ﬂi) iR n, n

T]‘C'ﬁ, i=1

Then, clearly,

1 d+l . (,A(J) N nh(ﬁj)
p(npmy) =Y ’T|d+12’ i [ ; -H(%]) ;

T;CTh |nh(§(i>|

The proof is completed. U

5 A fully discrete numerical scheme

To set up the numerical scheme presented below, we utilize an L? gradient flow strategy
with respect to the director field and the orientation parameters and an H ! gradient flow
strategy with respect to the phase field parameter. We note that in order to guarantee
energy stability, the time discretization is not solely based on a backward Euler method.
Specifically, we use two different convex splittings for the two double well potentials and
the anchoring (coupling) terms must be handled appropriately.

5.1 Scheme

Let M be a positive integer and 0=ty <t <--- <ty =T be a uniform partition of [0,T],
with t=t;—t;_1,i=1,---,M. The fully discrete, finite element scheme is as follows: for
any 1<m <M, given s,’f‘l € Sh,n,’f_1 €INj, and ¢;"~ ley,, find si' €Sy} €Ny, ¢ €Y,
and ;' €Y}, such that

o (Vi , W)+ Werke <SZ1 1,5}’? L. ﬁT,wh> (5.1a)

+wanec (A7, V1w, Ve s s ) =0, Yw,e Vi, (Bb)



A.E. Diegel and S. W. Walker / Commun. Comput. Phys., x (2018), pp. 1-34 11

(6281 zn) +Werk [2xa (s}, zy) +e(s), zp;m)',n)')]

+Waw s, ER (s2),) +wase <(sh”1 —s*)V<p,T’l,th<p,’f’l)

+Wanec (n,’z”,V¢Z”_1,H;T,V¢Z”_l;§;1”,zh) =0, Vz, €Sy, (5.1¢)
(0! v) +ea(uy,vy) =0, Vv,€Yy, (5.1d)
Wendw€ ™ (P11 =@ ) +oenpea (@11 ) — (1t )

+wanec(ny, Vér' ng Vs, s
+wase((sp—s*)Veu, (s —s* ) Vi) =0, Yy,eYy, (5.1e)

where Vﬁ :\/hL (n;’f’l), p >0 is a constant, and

1
Sh S _ Pn <P
58] _fh, Sppi=1h Th
s 41 _
=, és,,Ezw<s$;zh>:= [ s —fisp ] zuax,
A" —n"1 n’(x;
vIi=¢a/:=—"——" __  and nl'(x):= Nhi(Z) at the nodes x;,
T |5 (xi)]

such that f;, f, are convex functions for all s (—1/2,1) and f(s) = fc(s) — fe(s). We note
that the order of the method is to first solve (5.1b), normalize to compute n;' and solve
(5.1¢), then solve (5.1d) and (5.1e).

Due to the fact that Egs. (5.1b)-(5.1c) are essentially uncoupled from Egs. (5.1d)-(5.1e),
then following similar arguments to what are given in [40] and [24], we have the follow-
ing theorem, which we state without proof:

Theorem 5.1. For any 1<m <M, the fully discrete scheme (5.1b)-(5.1e) is uniquely solvable
and mass conservative, i.e., (¢ —¢°,1) =0

The fully-discrete scheme (5.1b)-(5.1e) obeys the energy law stated below.

Theorem 5.2. Let (¢)', ! nj,s]') € Y, x Xy, x Ny, x Sy, be the unique solution of (5.1b)-(5.1e),
forall 1 <m < M. Then the following energy law holds for any h,T > 0:

¢
Wl o o0\ Werk 1 m—T1.am =m 1 m—1.
E (sh,nh,(ph>+ 5 E (e(s;z” /Sy n,’q”,nh>—e<5;’l1 /Sy ,n,’f,n,’f))
m=1

/
+w§’n Z (ec(nh,ngm 1ﬁ,’Z”,V<,bm 1. sy 15}’: 1)

m=1

—sc(nZi,V%’f g hsmt g 1))
T2 { )
+7 2 (el Vhy 2+ plloemy 32+ 165y 1) +wenp - 3 ellVocgi I

m=1
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(| 1 1
+waany 1 (o @R+ Lok orgf I+ voR

2 (

T

oy ) Z (zKHv(sTsh ]|L2+e( *1;5Tnzf,(srnzf) +e(5rs,’?,5rs;’f;n;’f,n;’?)>
T2 J4

—l—waln? <sc ny' Vo ny N ocprtsi s )

+sC< ony! VgL ey, Vi si s 1))

T2 l i}
twass 3 (ell (s =) Vorgi 1 +elldesi Vor 72 )
m=1

<E"(sh,m),¢7), (5.2)

forall 1 <4 <M and where we note that
e(sZZ 1 Sy 1, ﬁ,’f,ﬁh>—e<sz1 1 Sy 1. ;ny’,ny > >0,
Cﬁmvm1~mvm1mlm1_ mvm lemlml>0
A LAY Sh c(ny, Ve my, Ve Sp ) =0
Moreover, the energy is monotonically decreasing, i.e.

E" (sﬁ,nﬁx])ﬁ) <E" (si’l,ni’l,gbﬁ’l) , forall 1</<M.

Proof. Setting w=v}'=06.n]'=(f]"' — n;’f_l) /Tin (5.1b), z;,=6zs;! in (5.1¢), v, =p}" in (5.1d),
and ¢, =4.¢;" in (5.1e), gives

ol16eny! 172+ wence (s L5 L den!)

+Wanec <nh AV -1 Oy V'™ 1,5,T 1,5,’1” 1) =0, (5.3)
16285y 172 +wenc [2Ka(s],0xsiy) e (i Oxsiy iy )]
+ Wawbs, EN (S156051") +Wa s ((s;’f I\ R v )
+wynec (n,’{‘,ngZ‘ nj ,quh ;5),015)) > 0, (5.4)
(0i ) e Vi |12 =0, (5.5)

Wehdw m— m

D ((4)° = g 009l ) +wenpen (B, 0x9i) — (it Se i)
+wanec(ny, Vo' ng' ,No sy, sp)
+wase((s)—s*)Vey', (sp' —s*)Vpy')=0. (5.6)
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We note that since (-,-) and a(+,-) are bilinear forms and since ¢(-,-,-,-;-,-) and e(-,-;-,-)
are multi-linear forms, we obtain the following identities:

A 5:i0) = 5 (6 V0T I VoI, 57)
(tom =g~ oeat) = goc o1, 3 [I5=Com? 1
+z|\¢zf<sf¢;fHiz+z||5f¢zf||iz}, 58)

1

c(nf!, Vi, Vougilisit i) = 5= (c(nfl, Vil mil, Vilisitsit)
ACATAREATARTED)
ey, oy it Vogsisy), (59)

(nh,v('bzn Lo, Vit s si 1)‘21 ( (nhrvﬁbm Lay Vst s 1)

—c(n Lyl nm1, ygmgm—l gn- 1))
—|—2C< Sy, V' l‘STnhqubm s s 1>’
(5.10)

c (g Vot mir Vs aelt) = 5 (e (W Vg n vt )
—c(n;Z”,ngZ” ) Vst g 1)), (5.11)

(551 ")V s =) Voedl) = o 551 —")- Vol
e | [CAR 2

T m * m
+§|l<s —s")- Vi 12 (5.12)
2
((S;T_S*),V(P]Tfl,érszi_v(l);ffl)__H m 1 .
H vor!||,
+§ |62y -V gl (5.13)

1
1 m—1.5 1 m—1.m =
e (sz” S nZ‘,(STnZ‘> = 5= (e (sz” S n,T,nZ‘)
m—1 .m—1 -1 _ m—1
—e <sh Sy my Ny ))

+ 26 (sZZ 1 s]’q”_l;érn;?,érn;?) , (5.14)
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1
e(sy,0cs) )’ ) = 7z (e(sy', sy my nyt)

m—1 .m—1...m m
—e (Sh ’Sh ny,ny >)

+§e(5rszf,5rsgf;ngf,nzi). (5.15)

Additionally, following the procedures supplied in [40,46,47,56], we have

/Qf(s']frl)dx—/Qf(sﬁ)dxSéshng(s’];+1;s’,§+1—sﬁ), (5.16)

k+1
h

for any s’,; and s; " in Sy, Therefore, combining (5.3)-(5.6), using the identities above, and

applying the operator 7Y}, _; results in (5.2). O

6 I'-convergence of the fully discrete scheme

In this section, we show that the total discrete energy (3.12) converges to the total con-
tinuous energy (2.12) in the I'-convergence sense; this is a slightly more general result
than [40, Thm 3.7] which only shows that global minimizers I'-converge. We require the
use of the following proposition whose proof may be found in [40].

Proposition 6.1. Let I's =T, =90, (s,u) € A (g,r), and let g satisfy (2.8). Then, given
6> 0, there exists a pair (s5,u5) € Aeric(g,1) N [WE(Q)] "1 such that

| (s,u) —(ss,u5) HHl(Q) <é.

Moreover, define n;:=u;/s; if s; 70, and any unit vector if s; =0. Then, n; is Lipschitz
on O\ {|ss| >¢&}, for any ¢ >0, where the Lipschitz constant depends on ¢ and ¢.

Furthermore, in order to prove the full I'-convergence result in Theorem 6.1, we also
need the following lemma.

Lemma 6.1 (Recovery Sequence for Ericksen). Let (s,u)€ Ak (g,t) where u=sn with |n|=1
a.e. Then there exists a sequence (sy,uy) € Aericn(Sh, 1) converging to (s,u) in H'(QY), as well
as ny, €Ny, converging to n in L2(Q\S), such that

Eerk(s,m) = llqig(‘)EZrk(Sh/nh)-

Proof. First, note that we can assume E.y (s,n) <co (otherwise, the result is trivial). Recall

from (2.4) that Eey(s,n) = Eepic(s,u) when (s,u) € A By Proposition 6.1, there exists

(s5,u5) € Aer(g,1)N [Wolo(ﬂ)]dﬂ, such that ||(s,u) —(ss,us)|| 1 (q) — 0, as 6 — 0. Ergo,
with k>0 being a given integer, one can choose ¢ > 0 sufficiently small so that

[[(s,w) = (85, u5) || 1 0y <K Eerk(S5,,15,) — Eerk(s,u) | < Cok ™!,
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where the constant Cy > 0 depends on x and ||(s,u)|| 1 () in fact, the last inequality
follows from the first.

Next, introduce the Lagrange interpolants sy := I (ss, ), wy, := I;(us,) for some h to be
chosen; moreover, define

S S

any unit vector, otherwise,

for each x; € Nj,. So, (sp,ny;) € Aeri i (gn,thn)- By [40, Lemma 3.3], it was shown that
lim EZrk(Ih (SA)/ Iy (ﬁ) ) = Eerk(érﬁ)/
h—0

for all (5,0) € Aeric(g,1)N[WL(Q)] 1 where fi is defined as in Proposition 6.1.
Therefore, we can choose hy < J; sufficiently small so that

Eerc(S5,,M5,) — Ely (s, mp, ) | <KL

H (Sék’uék) - (Shk/uhk) HHI(Q) < k_1,

Combining the above, we obtain |Elgrk(shk,nhk)—Eerk(s,n)‘ < C1k~ 1, for some constant
Ci that only depends on x and |[(s,u)|[ (). Thus, there exists a sequence (s, u;) €
A (gn,11,) converging to (s,u) in H'(Q), as well as nj, € N}, converging to n in L?(Q\
S), such that limy,_,q Egrk(sh,nh) = Eek(s,n). d

We are now in position to prove the main convergence result. Since the droplets are
assumed to have a fixed mass, we introduce the following constrained spaces:

H@)={pet@): [ p=c}, Vo= {peW: [ gu=c]. ©1)

The discrete energy E" (sp,ny,¢p) is defined on W),:=S5;, xINj, XY}, ., but convergence can-
not be insured for a sequence (s, ny,¢;) € Wy, because n;, will not (in general) converge
on the singular set S. However, we can guarantee convergence for (s;,u;,¢p) € X, :=
Sy x Uy x Yy, ie. uy is well-behaved. Thus, Theorem 6.1 does not follow the standard
definition of I'-convergence [11,21] but is similar; indeed, one level of indirection is used in
stating the convergence.

To this end, we define the continuous space to be X:=L2(Q) x [L2(Q)]¢ x L2(Q}), and
note that X;, C X and W), C X. Furthermore, we define A := Ay (g,r) x H (Q)) and Aj,:=
A n(8n,1n) X Yy . Next, the continuous energy E: X — R is defined as follows: E(s,n,¢)
by (2.12) if (s,n,$) €A, and set E(s,n,$)=c0if (s,n,¢p) X\ A. Likewise, define the discrete
energy E"(s;,ny;,¢y) by (3.12) if (sp,,my,¢5,) € Ay, and set E"(s,n,¢) =0 if (s,n,¢) € X\ Ay,

Theorem 6.1 (I'-convergence). Given (s,n,¢) € X, where |n|=1 a.e., define the corresponding
element (s,u,¢) €X, where u:=sn. In addition, given (sy,ny,¢y) €W, define the corresponding
element (sp,up,,¢p) € Xy, where uy,:= Iy (syny). Let {T,} be a sequence of weakly acute meshes
and let 7yo > 0 be some arbitrary fixed constant. Then the following properties hold for any triple
(s,n,¢p) in X, where In|=1a.e.and —1/2+y)<s<1—7yga.e.
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o Lim-inf inequality. For every sequence (sy,ny,,¢p) € Wy, CX, such that the corresponding
sequence (sp,uy,¢p) € Xy, C X converges strongly to the corresponding triple (s,u,¢), we
have

E(sn,¢) <HminfE" (sy, mp,n); (6.2)

e Lim-sup inequality. There exists a sequence (sy,ny,¢p) € Wy, CX such that the correspond-
ing sequence (sp,up,¢p) € Xy, C X converges strongly to the corresponding triple (s,u,¢),
and

E(s,n,¢) > limsuth(sh,nh,gbh). (6.3)
h—0

Proof. The proof is split into two parts.

Part 1: Lim-inf inequality.

Let (sy,ny,¢,) € W), be any sequence such that its corresponding sequence (sy,, uy, ¢y,)
€ X, converges strongly to (s,u,¢) € X. Ergo, by hypothesis, we have

sp—sinL2(Q), w,—uinL*(Q), ¢,—¢in L3(Q),
sp—sae. in(), uw,—uae in(), ¢,—¢Pae. in(.

Without loss of generality, we can assume that E(s,n,¢) < oo; note: this implies that
(s,n) € Aek(g,¥). Moreover, we can assume there exists a constant A >0 such that

1i£r3(r)1f15’1 (Sp, 1y, Pp) zli{gig\f (werkE’;rk(sh,nh) +wawEr . (s1) + Wenaw o (01)
+Wenp Elip (¢1) +Wan Eg (5100, P1) + Va5 El o (Sh,sbh)) <A; (64

otherwise, the inequality (6.2) is trivial. Assumption (6.4) also implies that (s,,nj) €
A (gn,1y) for h sufficiently small. Combining (6.4) with Lemma 3.1 (coercivity) gives
the following weakly convergent subsequences (not relabeled):

sp—sin H(Q), w,—uin H(Q), ¢,—¢in H(Q).

Note: if E(s,n,$) = oo, then either (s,n) & Acu(g,1) or ¢ € H'(Q). In the later case,
clearly liminfy,_,oE"(s;,n;,¢,) = oo, which contradicts (6.4). For the former, either s ¢
H'(Q) oru¢ [H'(Q)]?. Again, this implies liminf,_,o E"(s;,ny,¢;,) =oo, which contradicts
(6.4). Therefore, if E(s,n,¢) = co, then the inequality (6.2) is trivial.

Using Fatou’s lemma, one can show that E gy, (s) <liminf;_,, Eﬁw(sh). In [40], the fol-
lowing technical result was proved: Eey(s,n) <liminf;,_,, EZrk(sh,nh) ; so we do not re-
peat the argument here. We now consider the remaining terms. By weak lower semi-
continuity, we have

€ .. & ..
Earp(#)=5 [ [V9P <limint5 | [V =liminfEl, (4.
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Additionally, using the compact Sobolev embedding H'(Q) — L*(Q)), for d =2,3, there
exists a subsequence {¢;, } (not relabeled) such that ¢,—¢ in L*(Q)). The lim-inf inequality
relating to Eqnqw (¢) then follows from Fatou’s Lemma:

1

1 - .
Echaw () = - /Q (¢*—1)* <liminf /Q(<P;3—1)2=hggglfb"?hdw(¢h)-

For the anchoring energy EZ,S (sn,¢n), we split the integral into two parts by adding
and subtracting appropriate terms as follows:

EL(sn) =5 [ 1V P(s—s")?
:%/{)’V¢h|2(5_5*)2+%/0’V¢h|2[(Sh—s*)2_(s_s*)z]'

By Egorov’s theorem, given 6 >0, there exists a subset A;C Q) such that (s, —s*)?— (s—s*)?
uniformly on A; and |Q\ As| <6. Hence,

[ IVeuP llsn=s? = (s=s)7

lim
h—0

sm!\(sh—s*)z—(s—s*)ZHL%)/AJ|V¢h|2

. %12 *\2 2
<tim | (s51=5" V2= (=5 i [ 900
. *\2 *\2
SCA}g%H(sh—s )? = (5=5")*| oo )
=0.

Thus,

.. 2 _ a*)2
liminf /Q [Vou|*(sn—s")

_hirggf/A&!V%! (sn—s")

S F 2 *\2 I 2 *\2 *\2

—hmmf/ V|~ (s—s*) —I—hmmf/ IV |* [(sn—5")*— (s—s*)?]
h—0 JAs h—0 JA;

> liminf 2(s—s*)?

2limin /AJV(Ph’ (s—s)

> v 2(a__ oF 2,

> [ 199P(s—s")

for all 6 >0, where we have used weak lower semi-continuity [26]. Using Lebesgue’s
dominated convergence theorem and allowing J — 0 gives the desired result.

To show the lim-inf inequality for the weak anchoring energy E, », we begin by noting
that, by using the same notation defined in Section 2 and the auxiliary variable u:=sn,
the weak anchoring energy E, , can be rewritten as:

Ean(sm0) =Esn(u¢)=3 [ [uPIVoP~(u-Vp)2 65)
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Furthermore, we consider the discrete weak anchoring energy in the form of (4.7) and
note the following equivalences:

EZ,n(Sh,nhKPh)i:E Y. /Ih{sinh'[(V¢h'V<Ph)1—(V<Ph®V<Ph)]nh}
2Tcﬁn

= Z /Ih{!th!chhF}—Ih{(wh-uh)z}=:E’;,n<uh,¢h>- (6.6)
TCET

By interpolation theory, we have
12 { un P} = s (] 2 ) < CI VU up ][l 2 ) < ChI Vuy|| ) < CAY2h.
Similarly,
| I {u,®@uy} — uh®uhHL2 <CAY?p,
Therefore, since u;, —u in LZ(Q), we have the following convergence results,

|L{|w,|*}=[u*| =0, in L*(Q), |L{|lw|*}—|ul*|—0, aeinQ,
I{uw,®u;} —u®u|—=0, in L>(Q), |[,{u,®u,}—u®u|—=0, ae. in Q.

Due to the fact that V¢, is constant on each element, the discrete energy EZ,n can be
written as follows:

Ebn(wngn) =5 [ V00 { w2} =V (I {w, o w}) Ve
=5 | 190l = (Vgr-w?+3 [ [V R (1 { w2} ful]

[Vl (wew) —us )V,

By Egorov’s theorem, given & >0, there exists a subset A; C Q) such that I {|uy|*} — |u/?
uniformly on A; and |Q\ As| <6. Hence,

. 2 2 2 . 2 2 2
]lqlg(l)'/AéW¢h| [ { [wn]*} =[] S}fg&”lhﬂuﬂ }—ul HL°°(A(,~)/A(5|V(Ph|

<tim 1 { s P}~ [0 ) [ V0P
<CAlim |1y {fun P}~ 0P
=0.
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Similarly, there exists a subset Ay Q such that I, {u,®u;} - u®u uniformly on Ay and
|\ As| <4. Hence

lim
h—0

: —1 <li ~1I .y 2
/A5v¢h [u@u—I{w, @y} Vey| <lim [u@u—I {w,@uy b (Aé)/Aé’V¢h|

<1 — 1T o ( A / 2
<lim|lu@u—TIi{up@uptllp=(z,) | [Vl
<CAl -1 ©(A
< h13(1)]|u®u n{wn@up (As)
=0.
Let Bs:= A;NAs. Then |Q\ Bs| =|(Q\ As)U(Q\ As)| <25. Hence,

liminf [ I 2|V — ‘uy)?
imin /Q w1l * IV ul* = (Vr-uy)? }
>liminf [ 1 2 2_ ‘uy)?
> limin /Bj i w2 Von | = (Vr-un)*}
T 2 2 112 ss 2 2\ 2
= timinf [V, Pluf (Vo0 limint [ (V91 5 {jug ) ]
—liminf/ Vi [I{u,@uy} —u®u] Ve,
h—0 JB;
zliminf/ Vu 2 [ul2— (Ve -u)?
h—0 JB;
> [ 1V9P[uf~(T¢-u)?
B;

for all 6 >0, where we have used weak lower semi-continuity [26]. Using Lebesgue’s
dominated convergence theorem and allowing J — 0 gives the desired result.

Part 2: Lim-sup inequality.

For the lim-sup inequality, we will construct a sequence that verifies the inequality
(6.3). Indeed, we will actually show equality with a limit.

Invoking Lemma 6.1, there exists sequences (sj,uy) € Aerk 1 (gn,1n) and nj, € N, such
that

[(snun) = (s,0)[| g 2) =0, [l —mll 259 =0

and Egy (s,n) =1limy_,g Elgrk(sh,nh). For the Ericksen double-well, Eqy(s), since —1/2+
Y0<s<1—79, |f(s(x))| <M for a.e. x€ () for some positive constant M (recall Section 2.1).
Thus, by Lebesgue’s dominated convergence theorem, we have limy,_, ng(sh) =Eqw(s).
We shall use the sequence (s;,u;,) below to prove convergence of the weak anchoring
terms.

For the phase variable ¢ € H! (Q)), we let ¢, be the elliptic projection of ¢, i.e. ¢, solves

(Vn, Vi) =(Vo,Vyy,), forall , €Yy, such that /ngh:/ﬂgb,



20 A.E. Diegel and S. W. Walker / Commun. Comput. Phys., x (2018), pp. 1-34

which implies that ¢, € X}, and ||, — || p (o) — 0. Considering

Wehp€

S|V 9P VP,

Ean(9) —Ean(9n)= | =52 [(¢7 1)~ (9f,~1)°] +

we see that Eq,(¢r,) — Ean(¢), where we used the Sobolev embedding H'(Q) — L*(Q)),
for d=2,3.

Next, since (s —s*)? — (s—s*)? a.e. in (), and s is bounded a.e. in ), then |V ¢|? (s, —
§*)2 = |V¢|*(s—s*)? a.e. in Q. So, by Lebesgue’s Dominated Convergence theorem, we
have

llqig(‘)’Ea,S(S/(/’) —Eas(sn,¢n)|
—tim [ {1VgP = [Vl (515 +5 [ [P |(s "~ (515"
sm%/ﬂuvwz—lwhﬁ\(sh—s*>2+,1g%§/0|w!2!(s—s*)2—<sh—s*)2|

Ce
<1i —/ 2|V, 2| +0=0.
<tim 5 [ 199190l +

Similarly, we find that

Ean(w@) — Lo (W, )|

- N
S%%E/QHVQDF_’VQDHH’u’2+]111g(1)§/0|v¢h|2Hu|2_lh{’uh|2}|

lim
h—0

+lim = [ |9+ fusul[Vo— Vs | +lim [ Vg lusu—{w 0w} Vel
=0,
where one can show by interpolation theory (c.f. proof of the liminf) that
[T Tun 2} = [y | e = O (), [ li{wn@up} —wy @y o ) = O(h).
The proof is completed. O

We now obtain the following corollary about convergence of global minimizers [12,
21].

Corollary 6.1 (Convergence of global discrete minimizers). Let {7} be a sequence of weakly
acute meshes. If (sy,n;,¢y) € Ay, is a sequence of global minimizers of E" (s, my,¢y,) in (3.12),
then every cluster point is a global minimizer of the continuous energy E(s,n,¢) in (2.12).

Proof. First note that, because of the form of the energy (both continuous and discrete),
we can always truncate s and s;, with the function

O(f) :=max{—1/2+4yo,min{1—o,f}},
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for some fixed constant y¢ > 0 sufficiently small. Since the boundary condition g (for s) is
bounded away from —1/2 and 1 (recall (2.6) and (2.8)), one can show that

Eerk(G)(s)/n) S Eerk(sfn)/ Edw(®(s)) S Edw(s)/
Ea,n(®(5)rnr¢) <Ean (srnr‘P)r Eas (@(s),gb) <Eags (5147),

where we use the fact that (@(s) —s*)2<(s—s*)2 provided s* is bounded away from —1/2
and 1. The same holds for the discrete energies as well. Thus, without loss of generality,
we assume the discrete minimizers obey —1/2+4 ¢ <s;, <1—1 for 7o sufficiently small.

Next, we take Eh(sh,nh,(ph) < A for all h >0, where 0 < A < o is a fixed constant.
Using [40, Lem 3.6] we obtain convergent subsequences {s; },{u; },{¢n} (not relabeled)
such that

sp—s in H(Q), w,—u in H(Q), ¢, —¢ in H}(Q),
sp—s in L2(Q), w,—u in L*(Q), ¢p—¢ in L*(Q),
sp—s ae.in (), u,—u ae.in O, ¢,—¢ ae.in Q.

Moreover, [40, Lem 3.6] implies there is a subsequence {n;,} (not relabeled), and n€L?(Q})
with |n|=1 a.e., such that N, >n;, —nin L>(Q\S), n,—n a.e. in Q\S, and u=sn a.e. in
Q. Thus, (s,u) € Agk(g ). So the subsequence (sy,uy,¢y) of minimizers converges to a
limit in X.

Therefore, (s,n,¢) and the corresponding (s,u,¢) satisfies the conditions of Theo-
rem 6.1, so we obtain that E(s,n,¢) < liminf, . Eh(sh,nh,gbh). Moreover, there exists a
sequence { (§;,1i;,¢;) }, and corresponding sequence {(3,,i,¢;,) } such that (3, ,¢,) —
(s,u,¢) in X, and

E(s,n,¢) < liminfEh(sh,nh,th) < limsuth(s"h,ﬁh,J)h) <E(s,n,p).
h—0 h—0

Hence, E(s,n,¢) = limy, o Eh(sh,nh,gbh), i.e. the limit of discrete global minimizers is a
global minimizer. O

Note: this convergence result does not yield a rate of convergence, though first order
is expected in most situations (see [41] for an example).

7 Numerical experiments

In this section, we present numerical experiments to demonstrate our method. For the
interpretation of the simulations, we note that one can have a liquid crystal droplet in-
side another liquid crystal droplet [31, 44]. Furthermore, one can have colloids with
homeotropic weak anchoring in physical experiments and the manipulation of these col-
loids through the use of boundary conditions is a topic of interest. Indeed, it is possible to
create soft colloidal particles that contain liquid crystal material. Thus, one can view the
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two-phase simulations presented here with one phase acting as a deformable colloidal
particle with homeotropic anchoring conditions imposed on its interface. We refer the
interested reader to [31,44] and the references therein.

In the experiments to follow, we use a square domain Q= (0,1)?> C R? and take 7},
to be a regular triangulation of () consisting of right isosceles triangles. (We note that
the analysis presented in the previous sections holds for both d =2 and d =3.) To solve
the linear systems in (5.1b)-(5.1c), we used MATLAB's “backslash” command and used
a standard Newton’s method algorithm to solve the system (5.1d)-(5.1e) with a tolerance
of 1071° or a residual tolerance of 1077, whichever is satisfied first. To solve the linear
system within Newton’s method, we again used MATLAB’s “backslash” command. In
each experiment, the double well potential related to the orientation parameter is defined
as f(s) = fc(s) — fe(s) = 63.0s> — (—16.0s* +21.33333333333s> +57.0s%) with s* = 0.750025.
All computations are completed using the FELICITY MATLAB/C++ Toolbox [53] (more
information on FELICITY can be found in a recently submitted paper by the second au-
thor).

7.1 Movement of a liquid crystal droplet

The first numerical experiment demonstrates the movement of a liquid crystal droplet.
The movement of the droplet is enforced by the choice of a degree one boundary condi-
tion imposed on the director field. Specifically, we choose boundary conditions on the
director field such that a defect at (0.85,0.85) will eventually be observed. However, the
initial conditions are such that a defect is observed at the center of the colloid at a posi-
tion of (0.26,0.25). Therefore, the droplet moves in order to place the defect (inside) in a
more optimal location with respect to the elastic energy of the liquid crystal. Note that
the defect stays inside the droplet because it is advantageous with respect to the (diffuse)
weak anchoring condition on the interface. In other words, homeotropic anchoring on
the droplet interface prefers a defect at the droplet center.
The initial conditions are as follows:

(x,y)—(0.26,0.25)

|(x,y)—(0.26,0.25)]

4>°—Ih{ tanh < (x—025)2/0.02+(y—025)° /0.02_1> }
h N - .

Sh:S ’ n?l:

2¢
The following Dirichlet boundary conditions on d() are imposed for s and n:

s=s* n,= (x,y)—(0.85,0.85)
7 T [(vy) - (085,085)[

The relevant parameters are k =1, p =1, Werk =1, Waw =100, Wehdw =1, Wenp =1+
Wan+Was =41, Was =20, wan=20. The space step size is taken to be h =1/64 and the
time step size is taken to be T=0.002 with a final stopping time of T=20.0. The interfacial
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Figure 1: Droplet moving, 0=[0,1] x[0,1], h=1/64, T=0.002 (Section 7.1). The times displayed are t=0, =
4,t=38 (top from left to right) and t=12, t=16, =20 (bottom from left to right).

width parameter is taken to be e=3h. Fig. 1 shows the evolution of the droplet over time.
The top two rows display the evolution of the scalar degree of orientation parameter s.
The bottom two rows show the evolution of the phase field parameter ¢ and the director
field n. This example shows that the droplet position can be manipulated by choosing
appropriate boundary conditions.

Fig. 2 displays the energy decreasing property of the scheme for this experiment. We
point out that the energy decreases dramatically at the beginning of the simulation due
to the droplet adjusting to its equilibrium shape but then levels off.
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Figure 2: Total energy as a function of time for a moving droplet (Section 7.1).

7.2 Cornering effect of a liquid crystal droplet

The second numerical experiment demonstrates the “cornering” effect of a liquid crystal
droplet. The cornering effect on liquid crystal droplets is readily observed in physical
experiments [44] and the references therein. Again, the dynamics of the droplet results
from the choice of boundary conditions on the director field. Specifically, degree zero (no
defect) boundary conditions are chosen for the director field on the outer boundary.

Since the droplet interface has homeotropic anchoring conditions imposed, it is de-
sirable for the droplet interface normal vector and director field to be parallel. This nat-
urally creates a competition between the interface normal and the director field. For the
constants chose in this example, both the droplet shape and director field change to ac-
commodate each other, which leads to an elongated droplet with “corners”.

In contrast, choosing we very large would keep n nearly constant, which would have
forced the droplet to deform significantly so that V¢ is nearly parallel to n. Alternatively,
choosing wchdw, Wenp very large would have favored a droplet with isotropic surface
tension, so it would prefer to remain in a (near) circular shape. If w, 5 is also large (but
Werk small), then n would vary significantly from a constant field to accommodate the
droplet interface shape.

The initial conditions are as follows:

52 =s%, n?l =(1,0),

o f (x—0.5)2/0.02+ (y—0.5)%/0.02—1
¢h—1h{ tanh< e .

The following Dirichlet boundary conditions on d() are imposed for s and n:
s=s", n;=(1,0).

The relevant parameters are k =1, p=1, Werk =1, Waw =100, Wehdw =1, Wenp =1+ wan+
Wa,s =41, was =20, wan=20. The space step size is taken to be h=1/64 and the time step
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Figure 3: Droplet cornering, 3=10,1] x[0,1], h=1/64, T=0.002 (Section 7.2). The times displayed are t=0,
t=0.04, t=0.08 (top from left to right) and t=0.12, t=0.16, t=0.2 (bottom from left to right).

size is taken to be T =0.002 with a final stopping time of T =2.0. The interfacial width
parameter is taken to be e =3h. Fig. 3 shows the evolution of the droplet over time. The
top two rows display the evolution of the scalar degree of orientation parameter s. The
bottom two rows show the evolution of the phase field parameter ¢ and the director field
n. The droplet takes on a “lens” shape with corners at the top and bottom. Note that the
cornering is not sharp due to having finite surface tension, as well as a finite interfacial
width parameter e.

Fig. 4 displays the energy decreasing property of the scheme for this experiment.
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Figure 4: Total energy as a function of time for a droplet undergoing the cornering effect (Section 7.2).

7.3 Two liquid crystal droplets colliding

The third numerical experiment demonstrates two liquid crystal droplets colliding. The
initial conditions are as follows:

f=+"
n?l: {W;) x<0.5,
Tooy)—(07,05)] » * >0.5,

0_ I { —tanh ( (xfo.s)z/0.02+2(£yfo.5)2/o.0271) } £<05,

o= I, { —tanh ( (x—o.7)2/0.02+2(£y70.5)2 /0.0271) } 05,

The following Dirichlet boundary conditions on d() are imposed for s and n:
s=s", n,=(1,0).

The relevant parameters are k =1, p=1, Werk =1, Waw =100, Wehdw =1, Wenp =1+ wan+
Was =21, wyas =10, wan =10. The space step size is taken to be h =1/64 and the time
step size is taken to be 7= 0.002 with a final stopping time of T =2.0. The interfacial
width parameter is taken to be e=3h. Fig. 5 shows the evolution of the droplet over time.
The top two rows display the evolution of the scalar degree of orientation parameter s.
The bottom two rows show the evolution of the phase field parameter ¢ and the director
field n. Due to the boundary conditions for n, the defects inside the droplets are driven to
annihilate, which is what forces the droplets to merge. At equilibrium, no defects remain,
because the boundary conditions for n are of degree zero, and the droplet takes on a lens
shape.

Fig. 6 displays the energy decreasing property of the scheme for this experiment.

Droplet merging depends on the choice of weighting parameters, boundary condi-
tions, and whether defects are present. In this example, the “sign” of the point defects in
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Figure 5: Droplet cornering, Q=10,1]x[0,1], h=1/64, T=0.002 (Section 7.3). The times displayed are
t=0.2,t=0.4,t=0.42,t=0.44 (top from left to right) and t=0.48,t=0.52,=0.56,t=0.6 (bottom from left to

right).
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Figure 6: Total energy as a function of time for two droplets colliding (Section 7.3).
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each droplet are opposite (i.e. one defect points inside, the other points outside). If both
initial point defects point outward (or inward), then this would induce a region of defect
between the two droplets, i.e. where s~0. This would prevent the droplets from merging,
because the “diffuse” weak anchoring energy penalizes s away from zero (recall E, in
(3.10)). Of course, this is related to the director field approach we use.

7.4 Aliquid crystal droplet splitting

The fourth numerical experiment demonstrates a liquid crystal droplet splitting into two
droplets. The initial conditions are as follows:

=",
(x,y)—(0.35,0.5)
o) Tey—wmsesr  X=05
n,= —(
(

(x,y)—(0.65,0.5))
X,

Y
|(x,y)—(0.65,0.5)]

‘PO_Ih{ tanh<(x_0'5)2/0'03+(y—0-5)2/0.03—1) }
h_ a .

x>0.5,

2¢
The following Dirichlet boundary conditions on d() are imposed for s and n:

(x,y)—(0.3,0.5)

(xy)—=(0.3,0.5)
s=s*, n,= (cy)—(0305)] XS 0.5,
© T ()= (0705)
[(x,y)—(0.7,0.5)| * x>0.5.

The relevant parameters are k=1, p=1, Werk =1, W =100, Wengw =1, Wenp =1+ % (Wan+
Was) =11, wa s =20, wa n=20. The space step size is taken to be h=1/64 and the time step
size is taken to be T =0.002 with a final stopping time of T =2.0. The interfacial width
parameter is taken to be e =3h. Fig. 7 shows the evolution of the droplet over time. The
top two rows display the evolution of the scalar degree of orientation parameter s. The
bottom two rows show the evolution of the phase field parameter ¢ and the director field
n. The boundary conditions for n induce two defects in the domain with no annihilation,
and the liquid crystal elastic energy acts to push the defects further apart.

Fig. 8 displays the energy decreasing property of the scheme for this experiment.

As in Section 7.3, droplet splitting depends on various factors. For instance, the
weighting on the Cahn-Hilliard gradient energy term wey,, is lower than in the previous
experiments, which effectively lowers the surface tension on the droplet. If, for example,
Wehp =1+ (Wan+was) =21 as before, then the droplet would hold together, and the de-
fects would escape outside the two droplets. Since surface tension is relatively weak in
this example, the droplet splits to accommodate the separation of the defects.
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Figure 7: Droplet cornering, Q=10,1]x[0,1], h=1/64, T=0.002 (Section 7.4). The times displayed are
t=0,t=0.04,t=0.08 (top from left to right) and t=0.12,+=0.16,t=0.2 (bottom from left to right).

8 Conclusion

We introduced a phase field model and finite element scheme for nematic liquid crys-
tal droplets in a pure liquid crystal substance. We presented a finite element method
and gradient flow scheme, and used it to explore gradient flow dynamics for finding en-
ergy minimizers. We were able to show that the gradient flow method has a monotone
energy decreasing property. We also demonstrated that the discrete energy of the nu-
merical scheme converges, in the sense of I'-convergence, to the continuous free energy
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Figure 8: Total energy as a function of time for a droplet splitting (Section 7.4).

of the model. Finally, we presented numerical experiments demonstrating four different
aspects of liquid crystal droplets: movement/positioning, cornering, coalescence, and
splitting.

Some extensions of this work are: include more general liquid crystal elastic energies
such as the consideration of an elastic constant « or a double well potential for the orien-
tation parameter f(s) which depends on the phase field parameter ¢ in order to model a
liquid crystal droplet immersed in an isotropic liquid. In particular, one could consider
a high contrast ratio for the constants between the two phases, so that the non-liquid
crystalline material is nearly isotropic.

Other physical effects, such as electro-statics, and coupling to fluid dynamics (e.g.
Stokes flow) are also of interest. Moreover, development of a multi-grid solver for the
Cahn-Hilliard equation [14] would enable computations in three dimensions; indeed,
this would allow for investigating the connection between defect structures and droplet
shapes. Furthermore, our method could be used to model optimal shapes of liquid crys-
tal droplets, e.g. tactoids [23], nematic droplets on fibers [6], and nematic shells [44].
Other applications could be in optimal control of droplets and self-assembly of arrays of
droplets.
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Appendix

In this appendix, we provide support for the formation of Eq. (2.11). We note that the
details shown here are a republication of those developed in [41]. We model boundary
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conditions on the colloid’s surface by imposing a diffuse weak anchoring. We note the
standard form of the weak anchoring energy in the Q-tensor model [37, eqn. (66)] is

K,

5 Q- @l (A1)

J(Q)=

where Q is the desired value of Q on the boundary 00}, and K, is a weighting parameter.
We focus on imposing homeotropic anchoring, i.e. we take Qp to have the form of a
uniaxial nematic:

Qo=s" (v@v—%l), (A.2)

where v is the normal of d(); and s* is the global minimum of the double well potential
f(s). Using the expression Q =s(n®n—3I) for uniaxial nematics, along with the facts
that Q,Qy are symmetric, |Q—Qo|*=tr [(Q—Qp)?], and |n|=|v| =1, a straightforward
calculation gives

Q- Qo?=2s5* [JnP [y~ (n-v)?] 43 (55 o (A3)

We use (A.3) for our “diffuse” weak anchoring in the context of the Ericksen model com-
bined with the Cahn-Hilliard equation. In fact, noting that v = %, simplifying ss* with

s?, and normalizing the constants we obtain the continuous diffuse weak anchoring en-
ergy (2.11):

Eun(sm9) =5 [ 2[InP| V9P~ (n-Vg)?]ax

(A4)
Eas(s,0) = /!V¢| )—s*)2dx.
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