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DROPLET FOOTPRINT CONTROL∗

ANTOINE LAURAIN† AND SHAWN W. WALKER‡

Abstract. Controlling droplet shape via surface tension has numerous technological appli-
cations, such as droplet lenses and lab-on-a-chip. This motivates a partial differential equation-
constrained shape optimization approach for controlling the shape of droplets on flat substrates by
controlling the surface tension of the substrate. We use shape differential calculus to derive an L2

gradient flow approach to compute equilibrium shapes for sessile droplets on substrates. We then
develop a gradient-based optimization method to find the substrate surface tension coefficient yield-
ing an equilibrium droplet shape with a desired footprint (i.e., the liquid-solid interface has a desired
shape). Moreover, we prove a sensitivity result with respect to the substrate surface tensions for
the free boundary problem associated with the footprint. Numerical results are also presented to
showcase the method.
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1. Introduction. The development of engineered substrates has progressed to
a very advanced level [4, 45, 52, 58, 41, 59], which allows for control of the shape
of sessile droplets on these substrates. Controlling local droplet shape via substrate
surface tensions may be useful for directing the growth of bio-films and cell cultures as
it can affect the distribution of nutrients as well as the gross shape of the film [8, 20,
21, 44, 55, 78]. In addition, depositing a film of material onto a substrate [28, 39, 46]
in a particular pattern could be affected by the droplet shape. Also, droplets can
act as lenses, with focal properties controlled by locally modifying substrate tensions
[9, 54, 34].

The problem of finding the shape of the droplet is a free boundary problem, i.e.,
the boundary of the droplet is determined by the solution of a partial differential
equation involving geometric quantities defining the geometry such as the total cur-
vature (i.e., sum of principle curvatures) and the contact angle with the substrate.
Usually an analytical solution of the free boundary problem is not available and an
optimization approach can be used to find an approximation of the free boundary.
The free boundary also depends on certain physical parameters that can be used to
control its shape. In this paper, we actually propose an optimal control for the shape
of droplets on substrates. Specifically, we wish to direct the shape of the droplet-
substrate interface (i.e., the liquid-solid interface) by controlling the substrate surface
tension. We refer to this as droplet footprint control.
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This control problem can be modeled as a bilevel shape optimization problem,
where the free boundary problem constitutes the lower-level optimization problem and
the upper-level consists in minimization with respect to substrate surface tension.
Control of free boundaries has seldom been considered in shape optimization due
to the inherent complexity. In [60, section 4.3.2] shape controllability of the free
boundary of an obstacle problem is studied; see also [31, 32]. In [63, 64], shape and
topology optimization of Bernoulli free boundary problems are considered. Shape
optimization problems in fluid dynamics governed by free surface flows are considered
in [37], where a sensitivity analysis of the free surface problem with the Navier–Stokes
equations as constraints is formally studied. See also [38] for a rigorous mathematical
analysis for bilevel Bernoulli problems. In the present work, we carry out the shape
sensitivity analysis of the free boundary with respect to the substrate surface tension
in the infinite-dimensional setting using the tools of shape calculus [16, 60]. For this
purpose we introduce two cost functionals to drive the free boundary as close as
possible to a given desired set.

Concerning the numerical realization of the bilevel optimization problem, a pos-
sible approach consists in replacing the free boundary constraint by a penalization of
the cost functional on the upper-level problem, which allows us to bypass the solution
of the free boundary problem. Unfortunately, as noted in [63], this approach leads
to serious convergence problems and a locally optimal solution might not represent a
physical solution to the free boundary problem. In our approach, we solve the lower-
level (forward) problem to steady state (using a gradient flow) to obtain the droplet
shape for a given surface tension. The upper-level optimization problem is solved by
a gradient descent scheme posed in function space. See [71, 75] for related descent
schemes.

The outline of the paper is the following. We start in section 2 with a reminder
of the notion of shape derivative and give useful formulae of integration by parts on
surfaces and for the shape derivative of typical shape functionals. In section 3 the
equilibrium equations determining the shape of the droplet are derived. In section 4
the bilevel optimization problem is introduced, and the sensitivity of the free boundary
with respect to the surface tension is performed. Finally, the shape derivative of the
two functionals used to drive the free boundary toward a desired footprint shape are
computed with the previous results. In section 5 an iterative algorithm to compute
the free boundary and to solve the upper-level problem is described and numerical
results are given.

2. Shape sensitivity.

2.1. Perturbation of identity. In this paper concepts of shape differential
calculus, described in detail in [16, 30, 51, 60], are utilized. The inherent difficulty in
dealing with shape functionals lies in the fact that sets of shapes are not vector spaces
and the notion of differentiation cannot be used directly. Instead, one may consider
perturbations of a reference shape by means of transformations in an appropriate
function space which allows differentiation of the functional. These transformations
can be constructed, for instance, by perturbation of the identity [16] or by the flow
of a velocity field [16, 60]. We will use the perturbation of identity method in what
follows.

To this end let Ckb (Rn,Rn) be the space of k-times continuously differentiable
vector-valued functions V with DβV bounded whenever 0 ≤ |β| ≤ k, where β is

a multi-index, and equipped with the standard Ck-norm. We write Ck,αb (Rn,Rn),
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k ≥ 2, 0 < α ≤ 1, for the space of functions V ∈ Ckb (Rn,Rn) such that DβV is Hölder

continuous with exponent α whenever |β| = k. The space Ck,αb (Rn,Rn), equipped
with the norm

‖V‖k,α :=
∑
|β|≤k

sup |DβV|+
∑
|β|=k

sup
x,y,x �=y

|DβV(x) −DβV(y)|
|x− y|α ,

is a Banach space.
We consider perturbations of identity I +V where V is in a neighborhood of 0

in Ck,αb (Rn,Rn) so that I +V is a bi-Lipschitz homeomorphism. In what follows we
will denote by

SV := (I +V)(S)

the transformation of a generic domain S ⊂ R
n by I +V. Let K(Ω) be a real-valued

functional associated with Ω ⊂ R
n. The functional K(Ω) is Fréchet-differentiable at

Ω if there exists a bounded linear operator ∇K(Ω) from Ck,αb (Rn,Rn) to R called
shape gradient such that

K(ΩV) = K(Ω) +∇K(Ω) ·V + r(V),

where |r(V)|/‖V‖k,α → 0 as ‖V‖k,α → 0. In this case one defines the shape derivative
as

(2.1) δK(Ω;V) := ∇K(Ω) ·V.

Sometimes the notation δΩK(Ω;V) will also be used for the shape derivative, typically
when K takes several arguments. According to the structure theorem of Hadamard
and Zolésio [16],

(2.2) Ck,αb (Rn,Rn) 	 V 
→ δK(Ω;V)

is a distribution on R
n with support on ∂Ω.

A similar definition can be used for the shape derivative of functionals taking
their values in a Banach space. In particular, an interesting case is to define the
shape derivative of the solution of a partial differential equation. Let f(ΩV), also
denoted fV, be such a function depending on the perturbed domain ΩV. Since fV
lives in a function space which depends on the moving domain ΩV, it is not clear
how to compute the shape derivative directly. Instead one takes the derivative of
fV ◦ (I +V), which is defined on Ω, with respect to V in a direction V̂; the latter is

called material derivative and written DΩf(V; V̂) or DΩf(Ω; V̂) if V ≡ 0. Then one
defines the shape derivative by

(2.3) δΩf(V; V̂) := DΩf(V; V̂)−∇f · V̂.

Since one usually considers δΩf(0; V̂), the notation δΩf(Ω, V̂) := δΩf(0; V̂) or δΩf

(V̂) := δΩf(0; V̂) is also used for readability when no confusion is possible.

2.2. Integration by parts relations. In the rest of the paper we take n = 3.
We use a subscript on ∇ to denote the domain on which the gradient is computed.
For instance, if Γ is a surface in R

3, then ∇Γ is the gradient operator on Γ, i.e., ∇Γ

is the surface gradient [16, 60]. Furthermore, we have the “surface Laplacian” (or
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Laplace–Beltrami) operator ΔΓ = ∇Γ · ∇Γ. We note the following essential calculus
results from [16, 60, 67, 68]. (See Figure 1 for an illustration of various geometric
terms.)

Proposition 2.1. Let Γ be a two-dimensional surface of class Ck,α embedded in
R

3 with unit normal vector ν. If Γ is a surface with boundary (also called an open
surface), we assume its boundary ∂Γ is of class Ck,α. Let κ be the total curvature of
Γ (sum of the principal curvatures) such that κν := −ΔΓidΓ, where idΓ : Γ → Γ is
the identity map on Γ. If Γ is closed, assume ν points outward; this implies that κ
is positive when Γ is strictly convex. If Γ is open, then let τ be the positively oriented
tangent vector of ∂Γ (with respect to ν) and define b : ∂Γ→ R

3 as

(2.4) b = τ × ν,

where b points out of the surface Γ. Then we have

(2.5)

∫
Γ

[∇Γω]
T =

∫
Γ

ωκν +

∫
∂Γ

ωb

for all scalar ω ∈ H1(Γ,R).
Proposition 2.2. Under the same assumptions as in Proposition 2.1, we have

the relations ∫
Γ

∇Γϕ =

∫
Γ

ϕ⊗ ν κ+

∫
∂Γ

ϕ⊗ b,(2.6) ∫
Γ

∇Γ · ϕ =

∫
Γ

ϕ · νκ+

∫
∂Γ

ϕ · b(2.7)

for all vector functions ϕ ∈ H1(Γ,R3).

2.3. Shape derivative formulae. Let Ω be a domain in R
3 of class Ck,α and

define a functional

J1(Ω) :=

∫
Ω

f(Ω)(x)dx,

where f(Ω) ∈ H1(Ω,R) is a function defined on Ω that may also depend on the shape

of Ω. For V ∈ Ck,αb (R3,R3), the shape derivative of J1 is given by [16, 60]

δJ1(Ω;V) =

∫
Ω

δΩf(Ω;V) +

∫
∂Ω

f(Ω)V · ν.(2.8)

Next, consider an open surface Γ ⊂ R
3 of class Ck,α with boundary Σ ≡ ∂Γ ⊂ P

also of class Ck,α, where P is the plane R
2 × {z = 0} (see Figure 1); note that Σ is a

closed curve in P . Define the functionals

Q0(Γ) :=

∫
Γ

f(Ω), Q1(Γ) :=

∫
Γ

g(Γ), Q2(Γ) :=

∫
Σ

g(Γ),

where f(Ω) ∈ H1(Ω,R) and g(Γ) ∈ H1(Γ,R) is a function defined on Γ that also
depends on the shape of Γ. The shape derivative of Q0 can be derived from [16, 60]

δQ0(Γ;V) =

∫
Γ

δΩf(Ω;V) + (V · ∇)f + f(∇Γ ·V)

=

∫
Γ

δΩf(Ω;V) + [(ν · ∇)f + fκ](V · ν) +
∫
Σ

f b ·V.
(2.9)
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Functionals Q1(Γ) and Q2(Γ) are integrals on lower-dimensional subsets of the
ambient space R3, i.e., integrals over a surface or a curve. The integrand g(Γ) needs to
be extended to a neighborhood of Γ in order to compute the shape derivatives ofQ1(Γ)
and Q2(Γ). Obviously, the shape derivatives of Q1(Γ) and Q2(Γ) and the material
derivative of g(Γ) defined in section 2.1 are both independent of this extension.

However, one observes from the definition (2.3) that the shape derivative of g(Γ)
depends on this extension due to the presence of ∇g. This particularity is often
hidden in shape optimization since one conveniently considers a unitary extension
along the normal, so that the term ∇g · V̂ in (2.3) vanishes when V̂ is normal to the
submanifold. This corresponds to the derivative of Q1(Γ); see (2.10).

Nevertheless, we are facing an unusual situation when computing the shape deriva-
tive of Q2(Γ). Indeed, in our paper the curve Σ is constrained to stay in the plane P
and is consequently not perturbed in the direction normal to the surface Γ. In this
particular case, it is preferable to use a unitary extension along the normal vector bs

to Σ inside the plane P .
Thus we use two different extensions which lead to two different notions of shape

derivatives for functions taking their values in a Banach space. In order to distinguish
them, we use the notation δΩg(Γ;V) for the so-called space shape derivative of g(Γ)
when using a unitary extension along the normal vector ν to Γ and the notation
δPΩg(Γ;V) for the so-called P-shape derivative when using a unitary extension along
bs in the plane P . This distinction is not important for the final result which should
be independent of the extensions, but it is important for the calculations and proofs
leading to the final result.

The shape derivative of Q1 using a constant extension of g(Γ) along the normal
ν follows from [16, 60]:

δQ1(Γ;V) =

∫
Γ

δΩg(Γ;V) + (V · ∇Γ)g + g(∇Γ ·V) =

∫
Γ

δΩg(Γ;V) +∇Γ · (gV)

=

∫
Γ

δΩg(Γ;V) + gκ(V · ν) +
∫
Σ

g b ·V,

(2.10)

with respect to a general flow velocity V, where κ is the signed total curvature of Γ.

As for Q2, we adopt a unitary extension of g(Γ) along the normal bs to Σ inside
the plane P , and this yields the formula

δQ2(Γ;V) =

∫
Σ

δPΩg(Γ;V) + (V · ∇P)g + g(∇Σ ·V)

for all flow velocities V restricted to the plane P . If the contact angle of Γ with
respect to P is bounded away from 0 and π, then we have

δQ2(Γ;V) =

∫
Σ

δPΩg(Γ;V) + (V · ∇Σ)g + g(∇Σ ·V)

=

∫
Σ

δPΩg(Γ;V) + g κΣ(V · bs)

(2.11)

for all flow velocities V restricted to the plane P , where κΣ is the signed curvature of
Σ. Since Σ is a curve, one can show that ∇Σ ≡ τ ∂s, where ∂s is the derivative with
respect to arc-length on Σ and τ is the unit tangent vector of Σ.



776 ANTOINE LAURAIN AND SHAWN W. WALKER

Γs

Γ
Γ

b

b
bs

bs

νν

Σ τΣ

θclex

ex

ey

ez
ez

Γs,g

Fig. 1. Illustration of a droplet on a flat solid substrate. The volume region of the droplet is
denoted Ω, and the boundary decomposes as ∂Ω = Γ ∪ Γs, where Γ is the liquid-gas interface and
Γs is the liquid-solid interface (shaded). The solid-gas interface is labeled Γs,g. The plane of the
substrate is the x, y plane R

2 and is denoted P ≡ Γs∪Γs,g. The contact line is denoted Σ, is defined
by Σ = Γ ∩ Γs, and is oriented with unit tangent vector τΣ. The unit outer normal to Ω is denoted
ν on Γ, νs ≡ −ez on Γs, and νs,g ≡ −ez on Γs,g. The open surface Γ has outward unit boundary
vector b defined only on Σ ≡ ∂Γ; likewise, Γs has boundary vector bs which points in the P plane.
The contact angle at Σ is denoted θcl, where cos θcl = b · bs.

3. Equilibrium droplets attached to surfaces. We wish to optimize the
shape of droplets that are in equilibrium with respect to surface tension forces and,
possibly, other physical effects such as gravity. This section describes the so-called
forward (or lower-level) problem in our optimization.

3.1. Constrained droplet. Let Ω be a three-dimensional droplet sitting on a
flat substrate, as shown in Figure 1. The entire plane of the substrate is denoted
P := R

2 × {z = 0}. Consider the equilibrium configuration of the droplet Ω. The
relevant free energy for this problem is

A(Ω) =
∫
Γs

γs +

∫
Γ

γ +

∫
Γs,g

γs,g − ρg ·
∫
Ω

(x − x0),(3.1)

where g is the vector acceleration due to gravity and γs ∈ Ck+1,α
b (P), γs,g ∈ Ck+1,α

b (P)
and γ ∈ R are surface tension coefficients for the different interfaces. We assume Ω
and the interfaces Γs,Γ,Γs,g are of class Ck+1,α.

Note that the “dry” part of P is denoted by Γs,g, and the “wet” part of P is
Γs. Most material surfaces have a surface tension coefficient which depends on the
adjoining material [14, 15], i.e., the surface tension in the solid-gas region, γs,g, is
different from the surface tension in the liquid-solid region, γs. Note that γs,g and γs
are defined in the entire plane but are active only in Γs,g and Γs, respectively. These
two coefficients, which may be spatially varying, could be used as control functions to
direct the shape of the droplet. In other words, changing γs,g and γs induces a change
in the equilibrium shape of Ω (see the boundary condition in (3.9)).

To facilitate deriving the equilibrium equations for the shape of the droplet, we
introduce the Lagrangian

L(Ω, p0) = A(Ω)− p0
(∫

Ω

1 dx− Cp

)
,(3.2)

which includes the volume constraint |Ω| = Cp via the Lagrange multiplier p0 ∈ R.

3.2. Equilibrium conditions. Let V ∈ Ck,αb (R3,R3) be a vector field that van-
ishes at a large distance from Ω. We will perturb the domain Ω with V. Furthermore,
we restrict V such that V ·ez = −V ·νs = 0 on the rigid substrate P . In other words,
we consider vector fields in the space
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V ∈ V := {W ∈ Ck,αb (R3,R3),W · ez = 0 on P}.

Next, apply (2.8) and the first line of formula (2.10) to compute the shape derivative
of L(Ω):

δΩL(Ω, p0;V) =

∫
Γs

∇Γs · (γsV) +

∫
Γ

∇Γ · (γV) +

∫
Γs,g

∇Γs,g · (γs,gV)(3.3)

− ρg ·
∫
∂Ω

(x− x0)(V · ν)− p0
∫
Γ

V · ν,

where we have used the fact that γs, γ, γs,g, and g are independent of the shape Ω.
Next, after integration by parts, i.e., applying Proposition 2.2, and using V · ez = 0,
(3.3) reduces to

δΩL(Ω, p0;V) =

∫
∂Γs

γsV · bs +

∫
∂Γ

γV · b+

∫
∂Γs,g

γs,gV ·
=−bs︷︸︸︷
bs,g −p0

∫
Γ

V · ν

+

∫
Γs

γsκsνs ·V +

∫
Γ

γκν ·V +

∫
Γs,g

γs,gκs,gνs,g ·V(3.4)

− ρg ·
∫
Γ

(x− x0)(V · ν),

where κj is the total curvature (sum of the principle curvatures) of Γj (j = s or (s, g)),
and κjνj = −ΔΓj idΓj , where idΓj : Γj → Γj is the identity map on Γj [16, 60, 67, 68].
We reserve κ to refer to the total curvature of Γ. The restriction V ∈ V implies
νs,g ·V = νs ·V = 0 on Γs,g and Γs. Accounting for the geometry of the interfaces
and the contact line, we arrive at

δΩL(Ω, p0;V) =

∫
Σ

(γs − γs,g)V · bs +

∫
Σ

γV · b

+

∫
Γ

(γκ− ρg · (x− x0)− p0)V · ν.(3.5)

At equilibrium, we must have δΩL(Ω, p0;V) = 0 for all admissible V ∈ V . Since
we have assumed Γ is of class Ck+1,α, we have ν of class Ck,α. Thus, we can take
V = φν ∈ V , where φ is in Ck,α(Γ,R) with compact support on Γ, and plug into (3.5)
to obtain

δΩL(Ω, p0;V) =

∫
Γ

(γκ− ρg · (x− x0)− p0)φ = 0,(3.6)

and thus

γκ− ρg · (x− x0)− p0 = 0 on Γ,(3.7)

which is a PDE that determines the shape of Γ, and also p0 ∈ R. Note that this
means that γκ− ρg · (x− x0) must be a constant as p0 ∈ R.

Next take V such that V = φbs on Σ, with φ ∈ Ck,α(Σ,R), and note that
cos θcl = b · bs. Then, taking into account the equilibrium condition (3.7), equation
(3.5) reduces to

δΩL(Ω, p0;V) =

∫
Σ

(γ cos θcl + γs − γs,g)φ.(3.8)
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Therefore, at equilibrium, suitable choices of the “test” perturbation V yield

γ cos θcl + γs − γs,g = 0 on Σ,(3.9)

which is the corresponding boundary condition for (3.7).
Remark 3.1. Equation (3.9) is the classic Young–Laplace relation. Finally,

note that the derivative of L(Ω, p0) with respect to p0 provides the volume constraint
|Ω| = Cp for Ω.

3.3. Lower-level problem formulation. In order to render the rest of the pa-
per more readable we make the following assumptions and notational simplifications,
which do not affect the main ideas of the study:

• Set γ = 1 and ρ = 1.
• Set G(x) := g · (x− x0).
• Let u = (γs − γs,g)|Σ be a given fixed function (the control) defined on the
contact line (Σ). In order to be consistent with (3.9), we assume that |u| < 1.
• We assume u ∈ Ck+1,α(Σ,R).

Next, using these simplifications, we rewrite (3.5) for convenience. The problem is to
find Γ and p0 ∈ R such that

δΩL(Ω, p0;V) =

∫
Σ

ubs ·V +

∫
Σ

b ·V+

∫
Γ

κν ·V −
∫
Γ

Gν ·V − p0
∫
Γ

ν ·V = 0,∫
Ω

1 = C,

(3.10)

for all V ∈ V .
Remark 3.2. The well-posedness of (3.10) (equivalently, (3.7) and (3.9)) is non-

trivial. Assuming Σ is given (fixed) and G ≡ 0; then the minimization problem
reduces to a surface of constant mean curvature with fixed open boundary. Existence
of this problem has been studied in [61, 76] (see also [2, 29]). Allowing for Σ to be free,
there is early work on minimal surfaces (zero mean curvature) with a free boundary
having a contact angle of 90◦ [13, 36, 49] and more recently on the volume constrained
(constant mean curvature) case [11, 25, 62, 56].

Capillary surfaces [15, 26] of variable contact angle, e.g., not equal to 90◦, are
an active field of research [1, 12, 48, 57] and many questions are open regarding the
existence of equilibrium shapes for contact angles between 90◦ and 180◦. Moreover,
including G complicates the problem further; see Remark 4.3. In view of the existing
results, it is nevertheless reasonable to conjecture the existence and uniqueness of a
solution to (3.10) required for deriving our shape control results. Therefore we make
the following assumption.

Assumption 3.3. For each admissible u ∈ Ck+1,α(Σ,R), there exists a unique
Ck+1,α surface Γ, with boundary Σ of class Ck+1,α, and p0 in R such that (3.10) is
true for all V ∈ V . Note also that Γ implicitly defines Γs.

4. Optimization of surface droplets. In this section we introduce the bilevel
problem for controlling the free boundary using u. To this aim we analyse two cost
functionals measuring the distance between the free boundary and some desired set.
The distance between two sets can be measured in various ways, and here we consider
two possibilities: the first one is the L2-distance between the characteristic functions
of two sets, and the second one is based on the distance function to the target set.
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In order to compute the derivative of the cost function with respect to u, we need to
study the sensitivity of the free boundary with respect to this control. We show that
a variation of the control corresponds to a perturbation of the free boundary in the
direction of a vector field whose existence is proved in section 4.3. Its derivative, which
is useful to compute the derivative of the cost functional, is also given in (4.26)–(4.27).

4.1. Optimization problem. Let χ : P → {0, 1} denote characteristic func-
tions defined over the solid substrate. Let Γd represent a desired shape for the liquid-
solid interface Γs and χ{Γd} be its indicator function. Consider a cost functional J(Γs)
measuring the distance between Γs and Γd. An example of such a functional is

J(Γs) =
1

2

∫
P
(χ{Γs} − χ{Γd})

2.(4.1)

When Γs is the free boundary solution of (3.7) and (3.9) or equivalently solves the
variational problem (3.10), then it depends on the substrate surface tension control
function u = (γs − γs,g)|Σ, i.e., Γs = Γs(u). We aim at driving the shape Γs(u)
(equivalently Γ(u)) to the desired shape. The main issue is to compute the sensitivity
of J(Γs(u)) with respect to u. The equilibrium equation (3.9) becomes u = − cos θcl;
thus, we must have

−1 ≤ u ≤ 1 on Σ.(4.2)

4.2. Shape derivative of the free boundary PDE. The formulation of the
bilevel shape optimization problem is

minimize J(Γs)

subject to Γs resulting from the solution of (3.10) and u ∈ Ck+1,α(Σ), |u| ≤ 1− �,

(4.3)

where � > 0 is a small parameter, which is introduced to model the fact that it
is usually not possible to drive the contact angle to 0◦ or 180◦. The problem of
minimizing J(Γs) is referred to as the upper-level problem, while the free boundary
problem is referred to as the lower-level problem.

Next, thanks to Assumption 3.3 we may introduce the reduced functional

J (u) := J(Γs(u)).

Therefore it is convenient to reformulate the bilevel problem as

minimize J (u)
subject to u ∈ Ck+1,α(Σ), |u| ≤ 1− �.

(4.4)

In order to derive optimality conditions we need to compute the derivative of J with
respect to Γs and the derivative of Γs(u) with respect to u, in a sense that will be
made clear later.

4.2.1. Sensitivity of geometric quantities. In order to compute the deriva-
tive of J (u) with respect to u, we first need some basic shape sensitivity results. Let
D ⊂ R

3 be a fixed box large enough to contain all admissible domains Ω (droplets).
Consider a parameterized transformation T (W) = I + W associated with a vector

field W ∈ Ck,αb (R3,R3).
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In view of (3.10) we need to compute the shape derivative of a few geometric
quantities such as bs and b. Using the definition b := τ × ν and a unitary extension
of b to a neighborhood of Σ in the plane P , the P-shape derivative of b in the direction
W is given by

(4.5) δPΩb(W) = δPΩτ (W) × ν + τ × δPΩν(W).

According to [30, Chapter 5, formula (5.64)] and choosing a unitary extension of
bs to a neighborhood of Σ in the plane P , we obtain the P-shape derivatives

(4.6) δPΩν(W) = −∇Q(W · ν) and δPΩbs(W) = −∇Q(W · bs) = −∇Σ(W · bs),

where Q is the plane whose normal vector is bs, ∇Q is the tangential gradient on Q,
and ∇Σ is the tangential gradient along Σ. Note that in (4.6) we get the simplification
δPΩbs(W) = −∇Σ(W · bs) since bs lives in the plane P .

Next we compute δPΩτ (W). Since τ and bs lie in the plane P , we know that
τ = b⊥

s , where (b1, b2)
⊥ = (−b2, b1) (i.e., a 90◦ rotation in the plane). Thus,

δPΩτ (W) = (δPΩbs)
⊥ = (−∇Σ(W · bs))

⊥

= −τ⊥∂s(W · bs) = bs∂s(W · bs)

= [τ · ∇(W · bs)]bs,

where ∇Σ ≡ τ ∂s and ∂s is the derivative with respect to arc-length on Σ and τ is
the unit tangent vector of Σ. Therefore using (4.5) and (4.6) we deduce the following
formula:

(4.7) δPΩb(W) = [τ · ∇(W · bs)]bs × ν − τ ×∇Q(W · ν).
4.2.2. Perturbed weak formulation. Let η : Σ→ R and define the following

perturbed substrate surface tension (control) on the fixed contact line Σ:

uε = u+ εη : Σ→ R.(4.8)

In accordance with (4.4) we assume that |uε| < 1− � for all ε ∈ (−1, 1).
Remark 4.1. Since Γ = Γ(uε), the perturbation of u induces a displacement

W∗ = W∗(ε) ∈ V which describes the deformation of Γ(u) into Γ(uε), precisely such
that Γs(uε) = T (W∗(ε))(Γs(u)) and Γ(uε) = T (W∗(ε))(Γ(u)), where T (W∗(ε)) :=
I + W∗(ε). By a formal Taylor expansion, we have W∗(ε) = ε(W∗)′(0) + O(ε2).
Thus, T (W∗(ε)) ≈ I + ε(W∗)′(0). From this, we see that (W∗)′(0) is simply the
instantaneous perturbation velocity of Γ.

The existence of such a vector and of a multiplier p0(ε) is assumed for now and
will be proved later in section 4.3. For simplicity we write Γ(uε) = Γ(ε) and similarly
for the other sets. For functions, we write bs(ε) := bs(Γ(ε)) = bs((I +W∗(ε))(Γ)),
etc.

Since the control u is defined on Σ, it should “follow” the free boundary Σ(ε) :=
T (W∗(ε))(Σ). Therefore, we define the function

(4.9) ũε := uε ◦ T (W∗(ε))−1 : Σ(ε)→ R.

We can now consider the following perturbation of the weak formulation (3.10):
find Ω(ε), Γ(ε), and p0(ε) ∈ R such that∫

Σ(ε)

[ũε bs(ε) + b(ε)] ·V +

∫
Γ(ε)

F (ε)ν(ε) ·V = 0,∫
Ω(ε)

1 = C,

(4.10)
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for all smooth V ∈ V where

F (ε) := κ(ε)−G− p0(ε).
In this way we have parameterized the solution Γ(ε) in terms of ε.

Remark 4.2. The strong form solution of (4.10) (at ε = 0) satisfies

F (0) = κ−G− p0 = 0 on Γ such that

∫
Ω

1 = C,(4.11)

cos θcl + u = 0 on Σ.(4.12)

4.2.3. Sensitivity with respect to substrate surface tension. Let (·)′ de-
note the derivative with respect to ε at ε = 0. Assuming W∗(ε) is differentiable with
respect to ε and differentiating the perturbed weak formulation (4.10) with respect
to ε at ε = 0, one obtains an equation for (W∗)′(0), which is in fact a first-order
approximation of W∗(ε) in a neighborhood of ε = 0 since W∗(0) ≡ 0. In the compu-
tation of the derivative of the shape functional J (uε) with respect to ε at ε = 0, one
needs only (W∗)′(0) instead of W∗(ε); therefore computing (W∗)′(0) is enough for
our purposes. Note that W∗(0) = 0 since Γ(0) = Γ.

Since u and η are defined on the fixed contact line Σ and are independent of Ω(ε),
the derivative of u is

(4.13) u′ :=
d

dε
uε

∣∣∣∣∣
ε=0

= η.

On the other hand ũε is defined on the moving contact line Σ(ε), so that its derivative
with respect to ε cannot be computed directly. However, we can interpret it as being a
P-shape derivative in the direction (W∗)′(0), i.e., we use definition (2.3) and formally
apply the chain rule which yields

d

dε
ũε

∣∣∣∣∣
ε=0

: =
d

dε
ũε ◦ T (W∗(ε))

∣∣∣∣∣
ε=0

−∇ũ0,E · (W∗)′(0)

=
d

dε
uε

∣∣∣∣∣
ε=0

−∇u0,E · (W∗)′(0) = η.(4.14)

We justify (4.14) as follows. First, note that u0,E = ũ0,E is a unitary extension of
u0 in direction bs in the plane P . Without loss of generality, we assume that the
tangential component of W∗(ε) along Σ vanishes, i.e., W∗(ε) · τ (0) = 0 on Σ. This
assumption will be justified later in the proof of Theorem 4.5. Differentiating this
formula yields (W∗)′(0) · τ (0) = 0. Therefore, (W∗)′(0) is collinear to bs(0) due to
W∗(ε) ·ez = 0 (on Σ) for all ε > 0. Since u0,E is a unitary extension of u0 in direction
bs in the plane P and (W∗)′(0) is collinear to bs(0), we have ∇u0,E · (W∗)′(0) = 0,
which proves (4.14). We also have V′ = 0, i.e., V is a vector field independent of ε.

Now, let us compute the derivative of (4.10) with respect to ε using formulas
(2.10) and (2.11). Let us introduce the notation for the left-hand side of (4.10):

Iε1 :=

∫
Σ(ε)

[ũε bs(ε) + b(ε)] ·V,(4.15)

Iε2 :=

∫
Γ(ε)

F (ε)ν(ε) ·V.(4.16)
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Note that the derivative of Iε1 requires the P-shape derivative, whereas the derivative
of Iε2 requires the space shape derivative; see section 2.3. Recall that bs(ε) is an
abbreviation for bs(Γ(ε)) = bs((I +W∗(ε))(Γ)); therefore the derivative of bs(ε) in
the derivative of Iε1 can be seen as a P-shape derivative, and using the chain rule we
obtain

b′
s :=

d

dε
bs(ε)

∣∣∣∣∣
ε=0

=
d

dε
bs(I +W∗(ε)(Γ))

∣∣∣∣∣
ε=0

:= δPΩbs((W
∗)′(0)),

b′ :=
d

dε
b(ε)

∣∣∣∣∣
ε=0

=
d

dε
b(I +W∗(ε)(Γ))

∣∣∣∣∣
ε=0

:= δPΩb((W
∗)′(0)).

On the other hand, the derivative of ν(ε) appearing in the derivative of Iε2 can be seen
as a space shape derivative:

ν ′ :=
d

dε
ν(ε)

∣∣∣∣∣
ε=0

=
d

dε
ν(I +W∗(ε)(Γ))

∣∣∣∣∣
ε=0

:= δΩν((W
∗)′(0)).

Essentially, the derivatives of Iε1, I
ε
2 are obtained by applying the chain rule and

accounting for the induced transformation T (W∗(ε)) of Γ and Σ. For simplicity, let

us write Ŵ := (W∗)′(0). Hence, we get

I ′1 + I ′2 = 0,

∫
Γ

Ŵ · ν = 0,

where

I ′1
(2.11)
=

∫
Σ

V · [ub′
s + ηbs + b′] + κΣ(V · [ubs + b])(Ŵ · bs),

I ′2
(2.9)
=

∫
Γ

[Fν ·V]′ + ((ν · ∇)[Fν ·V] + [Fν ·V]κ) (Ŵ · ν) +
∫
Σ

[Fν ·V]b · Ŵ.

Replacing b′
s and b′ in I ′1 by their corresponding expressions associated with (4.6),

(4.7), we get I ′1 = L0 + L1 + L2,

L0 :=

∫
Σ

ηV · bs,

L1 :=

∫
Σ

u[−V · ∇Σ(Ŵ · bs) + κΣ(V · bs)(Ŵ · bs)],

L2 :=

∫
Σ

V · {(τ · ∇(Ŵ · bs))bs × ν − τ ×∇Q(Ŵ · ν)}+ κΣ(V · b)(Ŵ · bs).

4.2.4. Computation of I′
2. In I ′2 we proceed with some simplifications. Due

to (4.11), we have F = 0 on Γ and Σ. Moreover, F ′ = (κ − p0)′ since G′ = 0. So,
using F = 0 and V′ = 0, we get

I ′2 =

∫
Γ

(κ− p0)′ν ·V + (ν · ∇F )(ν ·V)(Ŵ · ν).

Note that unlike G, which is defined in the entire domain Ω, κ is defined only on Γ
and can be extended by a constant along the normal ν, so that, since p0 is a constant,
ν · ∇F = ν · ∇G, which yields

I ′2 =

∫
Γ

(κ− p0)′ν ·V − (ν · ∇G)(ν ·V)(Ŵ · ν).
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Continuing, we need to compute the shape derivative κ′(Ŵ). Considering a
unitary extension of ν constant along ν, the curvature of Γ is given by κ = ∇ · ν; see
[16, 60]. Therefore, the shape derivative in the direction Ŵ is given by

κ′(Ŵ) = ∇ · ν ′(Ŵ) = −∇ · (∇Γ(Ŵ · ν)) = −∇Γ · ∇Γ(Ŵ · ν) = −ΔΓ(Ŵ · ν),

where ΔΓ is the Laplace–Beltrami operator.
Now replacing κ′(Ŵ) in I ′2 we get

I ′2 =

∫
Γ

(−ΔΓ(Ŵ · ν)− p′0)ν ·V − (ν · ∇G)(ν ·V)(Ŵ · ν).(4.17)

Gathering the previous results, we obtain

(4.18)∫
Σ

η V · bs +

∫
Σ

u[−V · ∇Σ(Ŵ · bs) + κΣ(V · bs)(Ŵ · bs)]

+

∫
Σ

[V · {(τ · ∇(Ŵ · bs))bs × ν − τ ×∇Q(Ŵ · ν)}+ κΣ(V · b)(Ŵ · bs)]

+

∫
Γ

(−ΔΓ(Ŵ · ν)− p̂0)ν ·V − (ν · ∇G)(ν ·V)(Ŵ · ν) = 0

for all V ∈ V and
∫
Γ
Ŵ · ν = 0, where p̂0 := p′0 is the Lagrange multiplier for the

constant volume constraint.

4.2.5. Strong form PDE for Ŵ·ν. We will now derive a closed set of equations
that determine the normal component of Ŵ choosing appropriate test functions in
(4.18).

Let V be such that V = ψν on Γ, where ψ : Γ → R is a compact function of
class Ck,α on Γ, and plug into (4.18). Then all integrals on Σ in (4.18) vanish and
this yields ∫

Γ

(−ΔΓ(Ŵ · ν)− p̂0 − (ν · ∇G)(Ŵ · ν))ψ = 0.(4.19)

This yields the following partial differential equation for Ŵ · ν:

(4.20) −ΔΓ(Ŵ · ν)− (ν · ∇G)(Ŵ · ν)− p̂0 = 0 on Γ and

∫
Γ

Ŵ · ν = 0.

Next, choose V such that V = ψbs on Σ with ψ of class Ck,α. Note that cos θcl =
b · bs = ν · ez and sin θcl = ν · bs. Then (4.18) reduces to∫

Σ

η ψ +

∫
Σ

u[−bs · ∇Σ(Ŵ · bs) + κΣ(Ŵ · bs)]ψ

+

∫
Σ

[
bs · {(τ · ∇(Ŵ · bs))bs × ν − τ ×∇Q(Ŵ · ν)}(4.21)

+ κΣ cos θcl(Ŵ · bs)
]
ψ = 0,

where we have used (4.20) to eliminate the last integral in (4.18). Noting that bs ·
∇Σ(Ŵ · bs) = 0 and bs · (bs × ν) = ν · (bs × bs) = 0 we get

(4.22)∫
Σ

ηψ +

∫
Σ

uκΣ(Ŵ · bs)ψ +

∫
Σ

[−bs · [τ ×∇Q(Ŵ · ν)] + κΣ cos θcl(Ŵ · bs)]ψ = 0.
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Expanding the surface gradient as ∇Q(Ŵ · ν) = τ (τ · ∇)(Ŵ · ν) + ez(ez · ∇)(Ŵ · ν)
we get

bs · [τ ×∇Q(Ŵ · ν)] = bs · [τ × ez(ez · ∇)(Ŵ · ν)](4.23)

= (bs · bs)(ez · ∇)(Ŵ · ν)
= (ez · ∇)(Ŵ · ν)

and

(4.24) Ŵ · ν = (bs · ν)(Ŵ · bs) + (τ · ν)(Ŵ · τ ) + (ez · ν)(Ŵ · ez) = sin θclŴ · bs,

due to Ŵ · ez = 0 on Σ and τ · ν = 0. Plugging (4.24)–(4.24) into (4.22) yields∫
Σ

[η − (ez · ∇)(Ŵ · ν)]ψ +

∫
Σ

κΣ
(u+ cos θcl)

sin θcl
(Ŵ · ν)ψ = 0.(4.25)

The vector ez can be written as

ez = (b · ez)b+ (ν · ez)ν = − sin θclb+ cos θclν

Also, in view of (4.12), we have cos θcl + u = 0, which gives, plugging in (4.25),∫
Σ

[η + sin θcl(b · ∇)(Ŵ · ν)− cos θcl(ν · ∇)(Ŵ · ν)]ψ = 0 for all smooth ψ.

Finally, assuming W∗(ε) is constant along the normal ν (see Theorem 4.5) we get

cos θcl(ν · ∇)(Ŵ · ν) = 0. This leads to∫
Σ

[η + sin θcl(b · ∇)(Ŵ · ν)]ψ = 0 for all smooth ψ,

which is a Neumann boundary condition. Note that b · ∇ = b · ∇Γ since b is tangent
to Γ.

Let us summarize the results. Define Ŵν := Ŵ ·ν; then Ŵν satisfies the following
surface PDE:

−ΔΓŴν − (ν · ∇G)Ŵν − p̂0 = 0 on Γ such that

∫
Γ

Ŵν = 0,(4.26)

b · ∇ΓŴν = − η

sin θcl
on Σ.(4.27)

Remark 4.3. The well-posedness of (4.26)–(4.27) is crucial for our shape optimiza-
tion approach. If G ≡ 0 and p̂0 ≡ 0, then it is an elliptic problem with a standard
compatibility condition on the Neumann data with the mean value of Ŵν set to zero.
Indeed, Γ is a known fixed smooth surface, so one can map (4.26)–(4.27) to a flat
reference domain. This yields a standard elliptic problem with Ck,α coefficients, for
which we know there is a solution [22], [27, Theorem 9.15], [3, Lemma 2.6]; see [19, 47]
for more on weak solutions of variable coefficient elliptic problems.

If we include the gravity term G, then one cannot arbitrarily set the mean value
of Ŵν on Γ. Ergo, we need to enforce

∫
Γ Ŵν = 0 with the Lagrange multiplier p̂0.

Moreover, the sign of −(ν ·∇G) is indefinite in general. Therefore, one must invoke the
“Fredholm alternative” [22, 27, 42] when studying solutions of (4.26)–(4.27). Note
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that if the gravity vector g points along −ez and Γ is convex with θcl ≤ 90◦ (a
common situation), then −(ν · ∇G) ≥ 0, so existence and uniqueness follow by the
Lax–Milgram lemma [22].

Therefore, in order to make sense of the derivative of the objective functional
(see section 4.4), and in view of the previous comments, it is reasonable to make the
following assumption.

Assumption 4.4. Suppose Γ is a Ck+1,α surface with boundary Σ of class Ck+1,α.
The operator T defined by

T : R× Ck,α(Γ,R) → Ck−2,α(Γ,R)× Ck−1,α(Σ,R)× R,(4.28)

(p̂0, Ŵν) 
→ (f1, f2, f3),(4.29)

where

−ΔΓŴν − (ν · ∇G)Ŵν − p̂0 = f1 on Γ such that

∫
Γ

Ŵν = f3,(4.30)

sin θclb · ∇ΓŴν = f2 on Σ(4.31)

is an isomorphism.
Let us introduce the solution operator A corresponding to (4.26)–(4.27):

A : Ck−1,α(Σ,R) → R× Ck,α(Γ,R),

η 
→
(
p̂0(η), Ŵν(η)

)
.

In the above, Ŵν is defined only on Γ.

4.3. Sensitivity of the free boundary with respect to the substrate sur-
face tension. In the previous section, we have assumed the existence of a flow veloc-
ity W∗(ε) ∈ V induced by the perturbation uε of u which describes the deformation
of Γ(u) into Γ(uε), i.e., such that Γ(uε) = T (W∗(ε))(Γ(u)). In this section we prove
the existence and differentiability of W∗(ε) and p0(ε) for ε in a neighborhood of 0 and
compute (W∗)′(0).

For a given vector W ∈ V , we define ΩW := T (W)(Ω), ΓW := T (W)(Γ), ΣW :=
T (W)(Σ). We denote by κ(W) the curvature of ΓW and in a similar way we write
b(W), bs(W), cos θcl(W) = b(W) · bs(W) and similarly for the other functions.

Theorem 4.5. Let Assumptions 3.3 and 4.4 be satisfied for some given u ∈
Ck+1,α(Σ,R), i.e., we have Γ, Σ are of class Ck+1,α. Then there exists an open
neighborhood E of 0 in R and a function

E 	 ε 
→ (p∗0(ε),W
∗(ε)) ∈ R× V

of class C∞ such that

κ(W∗(ε)) − G− p∗0(ε) = 0 on ΓW∗(ε) and

∫
ΩW∗(ε)

1 = C,

cos θcl(W
∗(ε)) + ũε = 0 on ΣW∗(ε),

and W∗(0) = 0.
Proof. The main tool is to use the implicit function theorem. For ε ∈ R and

η ∈ Ck+1,α(Σ,R) define uε := u + εη on Σ and ũε := uε ◦ T (W)−1 on ΣW. For an
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arbitrary W ∈ V define the operator F (p0,W) as the left-hand side of the strong
formulation (3.7) on the domain ΓW,

F (p0,W) := κ(W)−G− p0 on ΓW,

and for the left-hand side of (3.9) define

B(ε,W) := ũε + cos θcl(W) on ΣW.

Transporting back F and B on the initial sets Γ and Σ using the change of variable
y = T (W)(x) = (I +W)(x) yields

F (p0,W) ◦ T (W) := [κ(W)−G] ◦ T (W)− p0 on Γ,(4.32)

B(ε,W) ◦ T (W) := uε + [cos θcl(W)] ◦ T (W) on Σ,(4.33)

where we have used the definition ũε := uε ◦ T (W)−1. For the integral we have∫
ΩW

1 =

∫
Ω

Jw with Jw := det(I +DW).

We introduce the function

Λ : R× R× Ck,α(Γ,R) → Ck−2,α(Γ,R)× Ck−1,α(Σ,R)× R

(ε, q0,Wν) 
→
(
F (q0,W) ◦ T (W), B(ε,W) ◦ T (W),

∫
Ω

Je(Wν ) − C
)
,

where Wν is an arbitrary element of Ck,α(Γ,R) and e is a linear and continuous
extension,

e : Ck,α(Γ,R)→ V .

Such an extension exists; indeed the extension from Ck,α(Γ,R) to Ck,αb (R3,R3) is
standard, for instance, by taking W1 = Wνν on Γ and extending it by a constant
along the normal vector. Note that here ν is indeed of class Ck,α(Γ,R3) since we have
assumed Γ of class Ck+1,α. The condition W · ez = 0 on P can be easily obtained
by choosing W = W1 + W2, where W2 is an appropriate vector field satisfying
W2 · ν = 0 on Γ. Note that since e is linear we have

(4.34) DWν e(0; W̃ν) = e(W̃ν),

where W̃ν denotes an arbitrary element of Ck,α(Γ,R3). For simplicity we denote

W̃ := e(W̃ν).
Thanks to Assumption 3.3 and since we have assumed that Γ, Σ are of class

Ck+1,α we get

Λ(0, p0, 0) = (0, 0, 0).

In order to apply the implicit function theorem and obtain W∗(ε), p∗0(ε), we need to
prove that Λ is continuously differentiable and that the Jacobian with respect to the
two last variables is an isomorphism. In view of definitions (4.32)–(4.33), the function
Λ is C∞ with respect to the variable ε and q0. It is also of class C∞ with respect
to W. Indeed the transported geometric quantities κ(W) ◦ T (W), ν(W) ◦ T (W),
b(W) ◦ T (W), bs(W) ◦ T (W), and cos θcl(W) ◦ T (W) are C∞ with respect to W.



DROPLET FOOTPRINT CONTROL 787

We show this property for ν(W) ◦ T (W) as an example. It is known (see [30,
Proposition 5.4.14], for instance) that the vector ν(W) is obtained by the formula

ν(W) =
(DT (W)−Tν) ◦ T (W)−1

‖(DT (W)−Tν)‖ ◦ T (W)−1
on ΓW,

where ‖ · ‖ is the Euclidian norm. Thus we have

ν(W) ◦ T (W) =
DT (W)−Tν

‖(DT (W)−Tν)‖ on Γ.

Next, we have that DT (W) = I + DW is linear in W and writing DT (W)−1 =∑
q≥0(−DW)q we see that DT (W)−1 is of class C∞ with respect to W for small W.

Therefore ν(W) ◦ T (W) is also of class C∞. The determinant JW = det(I + DW)
is polynomial and continuous for the C∞-norm. Since the extension W := Wνν is
linear and continuous, we also get that Λ is of class C∞ with respect to W.

Now let us compute the partial derivatives of Λ with respect to q0 and Wν at the
point (0, p0, 0) and in the direction q̃0, W̃ν . Let Λ1,Λ2 denote the two components of
Λ. In view of the computations in section 4.2.3 and of (4.26)–(4.27) we obtain

Dq0,Wν Λ(0, p0, 0)(q̃0, W̃ν)

=

(
−ΔΓW̃ · ν − (ν · ∇G)W̃ · ν − q̃0, sin θclb · ∇ΓW̃ · ν,

∫
Γ

W̃ · ν
)
.

The expression above is independent of the extension e since W̃ ·ν = e(W̃ν) ·ν = W̃ν

on Γ. We have also used the fact that since e needs to be such that e(W̃ν)·ez = 0 on P ,
W̃ · bs = e(W̃ν) · bs can be expressed in terms of W̃ · ν on Σ thanks to |u| ≤ 1 − ρ
and is therefore independent of the choice of extension e as well.

We observe that Dq0,WνΛ(0, p0, 0) is an isomorphism from R × Ck,α(Γ,R) to
Ck−2,α(Γ,R) × Ck−1,α(Σ,R) × R thanks to Assumption 4.4. Thus we may apply
the implicit function theorem to Λ, i.e., there exists a neighborhood E of 0 in R and
a unique C∞ function

E 	 ε 
→ (p∗0(ε),W
∗
ν (ε)) ∈ R× Ck,α(Γ,R)

such that Λ(ε, p∗0(ε),W
∗
ν (ε)) = (0, 0, 0) for all ε ∈ E with W ∗

ν (0) = 0. The statement
of the theorem is obtained by defining W∗(ε) := e(W ∗

ν (ε)). Obviously, the choice of
e is not unique, so W∗(ε) is not unique either, even if W ∗

ν (ε) is. Since the extension
e is linear and continuous, we get that

E 	 ε 
→ (p∗0(ε),W
∗(ε)) ∈ R× V

is of class C∞ by composition, which concludes the proof of the theorem.
Corollary 4.6. Let Assumptions 3.3 and 4.4 be satisfied for some given u ∈

Ck+1,α(Σ,R). Then the derivative of W ∗
ν (ε) at ε = 0 in direction η ∈ Ck+1,α(Σ,R) is

given by

((p∗0)
′(0), (W ∗

ν )
′(0)) = A(η),

where A is the solution operator corresponding to (4.26)–(4.27). In addition (W∗)′(0) =
e((W ∗

ν )
′(0)), where e is the extension from Theorem 4.5.
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Proof. In view of Theorem 4.5 there exists a neighborhood E of 0 in R and a
unique C∞ function

E 	 ε 
→ (p∗0(ε),W
∗
ν (ε)) ∈ R× Ck,α(Γ,R)

such that Λ(ε, p∗0(ε),W ∗
ν (ε)) = (0, 0, 0) for all ε ∈ E with W ∗

ν (0) = 0. Differentiating
Λ(ε, p∗0(ε),W

∗
ν (ε)) = (0, 0, 0) with respect to ε at ε = 0 in direction η gives

(4.35) DεΛ(0, p0, 0) +Dq0,WνΛ(0, p0, 0)(p̂0, Ŵν) = (0, 0, 0),

where Ŵν := (W ∗
ν )

′(0) and p̂0 := (p∗0)
′(0). Since

DεΛ(0, p0, 0) = (0, η, 0)

we observe that (4.35) corresponds precisely to (4.26)–(4.27); thus we obtain thanks
to Assumption 4.4

(p̂0, Ŵν) = A(η).

Since W∗(ε) = e(W ∗
ν (ε)), we have

(W∗)′(0) = (e(W ∗
ν ))

′(0) = DWν e(0; (W
∗
ν )

′(0)) = e((W ∗
ν )

′(0)),

where we used (4.34). This concludes the proof.

4.4. Derivative of the cost functional. Let Σd be the target contact line,
i.e., the boundary of the target liquid-solid interface Γd. Suppose φ : P → R is a level
set function such that

Σd = {x ∈ P : φ(x) = 0}

and |∇φ| > 0 on Σd. A typical choice for the level set function is the signed distance
to Σd. We consider two functionals to optimize:

J1(Γs) =

∫
P

∣∣χ{Γs} − χ{Γd}
∣∣2 ,(4.36)

J2(Γs) =
1

2

∫
Σ

φ2, where Σ = ∂Γs.(4.37)

The functional J2 is, in a sense, smoother in comparison to J1 since the indicator
functions in J1 have jumps, whereas the function φ is at least continuous. Note the
following reduced functionals as in (4.4):

Ji(u) := Ji(Γs(u)), i = 1, 2.

Note that in Theorems 4.7 and 4.8 the derivatives of J1 and J2 have the same ex-
pressions but the adjoint states have different right-hand sides.

Theorem 4.7 (derivative of J1). Let Assumption 3.3 hold, so that we have a
unique weak solution to (4.11)–(4.12). Moreover, let Assumption 4.4 hold as well.
Then the derivative of J1 at u, in the direction η, is given by

J ′
1(u; η) = −

∫
Σ

η

sin θcl
Zν ,
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where the adjoint states Zν and r0 satisfy

−ΔΓZν − (ν · ∇G)Zν − r0 = 0 on Γ such that

∫
Γ

Zν = 0,(4.38)

b · ∇ΓZν =
ζ

sin θcl
on Σ,(4.39)

where ζ : P → {−1, 1} is defined by

(4.40) ζ(x) :=

{
−1, x ∈ Γd,
1, x ∈ Γc

d.

Proof. Rewrite J1(Γs) as

J1(Γs) =

∫
Γs∩Γc

d

1 +

∫
Γc
s∩Γd

1 = |Γs ∩ Γc
d|+ |Γc

s ∩ Γd|.(4.41)

Therefore, its shape derivative in a direction V ∈ Ck,αb (R3,R3) is

δΓsJ1(Γs;V) =

∫
Σ∩Γc

d

V · bs −
∫
Σ∩Γd

V · bs =

∫
Σ

ζV · bs.(4.42)

Since J1(uε) = J1((I +W∗(ε))(Γs(u))) we may apply the chain rule thanks to Theo-
rem 4.5. So, by (4.42), the derivative of J1(u) is

J ′
1(u; η) = δΓsJ1(Γs(u), (W

∗)′(0)),

where W∗(ε) is given by Theorem 4.5. Thus, using (4.24) and Ŵν := (W∗)′(0) · ν,
we obtain

J ′
1(u; η) = δΓsJ1(Γs(u), (W

∗)′(0)) =
∫
Σ

ζ (W∗)′(0) · bs =

∫
Σ

ζ

sin θcl
Ŵν .

Standard arguments show that∫
Σ

ζ

sin θcl
Ŵν =

∫
Σ

(b · ∇ΓZν)Ŵν =

∫
Σ

(b · ∇ΓŴν)Zν = −
∫
Σ

η

sin θcl
Zν .

Theorem 4.8 (derivative of J2). Let Assumption 3.3 hold, so that we have a
unique weak solution to (4.11)–(4.12). Moreover, let Assumption 4.4 hold as well.
Then the derivative of J2 at u, in the direction η, is given by

J ′
2(u; η) = −

∫
Σ

η

sin θcl
Zν ,

where the adjoint states Zν and r0 satisfy

−ΔΓZν − (ν · ∇G)Zν − r0 = 0 on Γ such that

∫
Γ

Zν = 0,(4.43)

b · ∇ΓZν =
1

2 sin θcl
[(bs · ∇)φ2 + κΣφ

2] on Σ.(4.44)

Proof. We use similar notation as in the proof of Theorem 4.7. We apply a
standard shape derivative formula to J2:

δJ2(Γs;V) =
1

2

∫
Σ

[(bs · ∇)φ2 + κΣφ
2](V · bs),(4.45)
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which, with (4.24), yields

J ′
2(u; η) = δΓsJ2(Γs(u), (W

∗)′(0)) =
∫
Σ

1

2 sin θcl
[(bs · ∇)φ2 + κΣφ

2]Ŵν .

Using the adjoint equations, we obtain∫
Σ

1

2 sin θcl
[(bs · ∇)φ2 + κΣφ

2]Ŵν =

∫
Σ

(b · ∇ΓZν)Ŵν

=

∫
Σ

(b · ∇ΓŴν)Zν = −
∫
Σ

η

sin θcl
Zν ,

which gives the assertion.

5. Numerical results. We describe our shape optimization algorithm and present
numerical results. First, we explain our handling of the control function u where we
only consider its restriction to Σ (not on the whole substrate). Then we describe
the different steps of the numerical algorithm. For the lower-level problem (the free
boundary problem), an L2 gradient flow and a semi-implicit approach for the dis-
cretization are used. For the upper-level problem (the control problem), we use a
gradient descent method where the descent direction is found using an appropriate
regularization on Σ.

5.1. Optimization algorithm.

5.1.1. Interpretation and handling of the control. Recall that the control
corresponds to a difference of substrate surface tensions on the contact line, i.e.,
u = (γs−γs,g)|Σ. Moreover, the cost functional sensitivities (at the current equilibrium
contact line Σ) only depend on u and η defined on Σ (see Theorems 4.7 and 4.8), so
any gradient-based optimization method can only make local updates to u on Σ.
Thus, given an equilibrium shape Σ with associated control u, we compute a descent
perturbation η̂ : Σ→ R which is only defined on Σ.

Keeping Σ fixed, it is clear how to update u on Σ, say, for performing a line search.
However, one must then solve the “forward” problem, i.e., find a new equilibrium
solution of (3.10) for the new control. This will certainly require the contact line to
change position, which is problematic since the new control is only defined on the
previously known Σ. Therefore, the new control is defined in a Lagrangian way when
computing the corresponding solution of (3.10). See Remark 5.2 in section 5.3.

Of course, this is not practical for a real system. In fact, because there is a
bijective map between u and θcl (i.e., u = − cos(θcl) with 0 ≤ θcl ≤ π), we are really
controlling the local contact angle of the droplet. Effectively, this means that θcl
is set to a fixed value at each material point of Σ when computing the equilibrium
solution of (3.10). There is some justification for this in the context of electrowetting
[12, 23, 40, 72, 73, 74, 77]. In this case, it is well known that one can control the
local contact angle by applying an electric field to the droplet [50]. Of course, the
“resolution” of the control is limited by the electrode grid size.

5.1.2. Descent directions. In section 4.4, we computed the derivatives J ′
i (u; η),

i = 1, 2. We would like to obtain a smooth descent direction η̂, i.e., such that

J ′
i (u; η̂) < 0.

To find it, we can look for a solution η̂ ∈ BΣ such that

bΣ(η̂, v) = −J ′
i (u; v) for all v ∈ BΣ,(5.1)
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where BΣ is an appropriate function space and bΣ : BΣ × BΣ → R is a symmetric
positive definite bilinear form. The solution η̂ is indeed a descent direction since

J ′
i (u; η̂) = −bΣ(η̂, η̂) < 0.

Examples are

BΣ = L2(Σ) and bΣ(w, v) =

∫
Σ

w v,(5.2)

BΣ = H1(Σ) and bΣ(w, v) =

∫
Σ

w v +

∫
Σ

∇Σw · ∇Σv.

Examples of this approach can be found in [10, 17, 43, 71, 75].
In our results, we use the second line of (5.2). Furthermore, Σ is discretized by

a piecewise linear polygonal curve Σh (see section 5.2.3), and we replace BΣ by BΣh
,

the space of continuous piecewise linear functions defined on Σh, which conforms to
H1(Σh). Hence, u and η̂ are functions in BΣh

with nodal values defined on the vertices
(corners) of Σh.

5.1.3. Gradient descent. In order to find a descent direction η̂, we must first
have a solution of the geometrically nonlinear system (3.10) (i.e., the free boundary
problem or lower-level problem). This is computed by a gradient flow scheme (see
section 5.2). Then, we must solve the adjoint problem to obtain J ′

i , followed by the
descent direction solve (5.1). Next, we update u using a standard backtracking line
search. The process repeats with the solution of (3.10) again and is iterated until
some convergence criterion is satisfied. We stopped once the difference in the cost
functional, between consecutive iterations of the optimization, was sufficiently small.
Section 5.3 gives further details on the algorithm.

The inequality constraint on u should also be enforced. This is a standard “box
constraint,” for which a simple projection scheme works well [33, 35, 65]. In our
numerical examples in section 5.4, this constraint was never active.

5.2. L2 gradient flow. In order to solve the lower-level problem, i.e., to com-
pute equilibrium droplet shapes with variable substrate surface tension in (3.10), we
use a gradient flow variational method described as follows.

5.2.1. Weak formulation. Rewriting (3.10), we get

δΩL(Ω, p0;V) =

∫
Σ

ubs ·V +

∫
Γ

∇Γ ·V −
∫
Γ

Gν ·V − p0
∫
Γ

ν ·V

=

∫
Σ

ubs ·V +

∫
Γ

∇Γ(X ◦X−1) : ∇ΓV−
∫
Γ

Gν ·V− p0
∫
Γ

ν ·V,(5.3)

where idΓ = X◦X−1 and X(t) :M→ Γ(t) is a parameterization of Γ ≡ Γ(t) in terms
of a reference manifoldM. Applying the L2 gradient flow methodology, we want to
find X(t) in V(M) such that∫

Γ(t)

(∂tX ◦X−1 · ν)(V · ν) = −δΩL(Ω, p0;V) for all V in V(M),∫
Γ(t)

∂tX ◦X−1 · ν = 0,(5.4)

where ∂M is contained in the plane {z = 0} and

V(M) = {V ∈ H1(M) : V · ez = 0, on ∂M}.(5.5)
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5.2.2. Semi-implicit method. We use a semi-implicit approach to discretize
the gradient flow in time. Thus, at each pseudo-time-step, we solve the following
problem. Find Vn+1, Xn+1 (at time tn+1) in V, p0 in R, such that∫

Γ

(Vn+1 · ν)(Y · ν) = −
∫
Σ

ubs ·Y −
∫
Γ

∇ΓX
n+1 : ∇ΓY

+

∫
Γ

Gν ·Y + p0

∫
Γ

Y · ν for all Y in V,(5.6)

Xn+1 = Xn + δtVn+1,

∫
Γ

Vn+1 · ν = 0,

where Γ ≡ Γn is the current (known) domain at time tn, and we have made the
following identifications to simplify notation: Xn+1 ≡ Xn+1◦(Xn)−1, Vn+1 ≡ Vn+1◦
(Xn)−1, Y ≡ Y ◦ (Xn)−1. Combining the update equation for X with the weak
formulation, we obtain a weak formulation for Vn+1 and p0 only, i.e., find Vn+1 in
V, p0 in R, and Xn+1 in V such that

an(Vn+1,Y) + bn(p0,Y) = Fn(Y) for all Y in V,

bn(r,Vn+1) = 0 for all r in R,(5.7)

Xn+1 = Xn + δtVn+1,

where the forms are defined as

an(V,Y) =

∫
Γn

(V · νn)(Y · νn) + δt

∫
Γn

∇ΓnV : ∇ΓnY,

bn(r,Y) = −r
∫
Γn

Y · νn,

Fn(Y) = −
∫
Γn

∇Γn ·Y −
∫
Σn

un bn
s ·Y +

∫
Γn

GY · νn,

(5.8)

and we have noted the explicit dependence on the time-step n. Note that Xn is the
parameterization of Γn and Σn, and Xn+1 is computed after solving for Vn+1. Hence,
starting from an initial shape Γ0 and control u0, we generate sequences {Γn} and {un}
by repeatedly solving (5.7) until we reach an equilibrium solution. In practice, we stop
this iterative procedure once ‖Xn+1 −Xn‖L∞ is sufficiently small.

Running this iterative procedure requires us to transport the control u as Σ evolves
along the pseudo-time of the gradient flow (similar to (4.9)). In other words, given un

on Σn (at the nth time-step), we solve (5.7) to obtain Xn+1 (and Σn+1) and define

(5.9) un+1 = un ◦Xn ◦ (Xn+1)−1 on Σn+1.

5.2.3. Finite elements. In our computations, we represent Γ by an unstruc-
tured mesh. To this end, we replace Γ by a triangulated surface Γh and replace V

by Vh ⊂ V, which is a conforming finite element space of continuous piecewise linear
“hat” functions on Γh. See [5, 6, 7, 18, 24, 69] for examples of this methodology.

The contact line is represented by Σh, i.e., the boundary of Γh, which is a polyg-
onal curve in the plane P . Furthermore, the discrete control, uh, is represented by a
continuous piecewise linear function defined on Σh (recall BΣh

in section 5.1.2). In
this setting, it is easy to implement (5.9). Since the mesh topology does not change



DROPLET FOOTPRINT CONTROL 793

during one time-step, one can simply keep the nodal values of uh fixed during one
time-step. This exactly captures (5.9).

Remark 5.1. This type of numerical method is commonly called a front-tracking
approach, because the interface Γ is explicitly tracked. These methods sometimes
exhibit mesh distortion, which can lead to re-meshing (change of mesh topology) [53].
In this case, uh must be transferred (or interpolated) from one mesh to another.
There are different ways to accomplish this. For the numerical examples we present,
no re-meshing was necessary. For simplicity of notation, we drop the h subscript in
the following sections.

5.3. Algorithm. The previous sections are summarized in Algorithm 1. Note
that in the inner while loop, we must solve the discrete forward problem (5.7) (to
equilibrium) for each test control utest. The adjoint problem is solved by a finite
element method, similar to what is described in section 5.2.3.

Algorithm 1. Droplet control: Solve the bilevel optimization

problem

Input: The target contact line Σd and an initialization of the control u0.
Backtracking coefficient 0 < c < 1; default: c = 1/2. Cost tolerance
tol; default 10−5 ≤ tol ≤ 10−7. Minimum step size: αtol = 10−5.

Output: The optimal control u and the corresponding droplet’s contact line
Σ(u).

1 u← u0;
2 STOP ← false;
3 Determine Σ(u) by solving the lower level problem (i.e., solve the discrete free
boundary problem (5.7) to equilibrium).;

4 while not STOP do
5 Compute the discrete adjoint state Zν , r0 using (4.38)–(4.39) or

(4.43)–(4.44).;
6 Compute the derivative J ′

i (u; η) and find a descent direction η̂ using the
method described in section 5.1.2.;

7 α← 1.0;
8 utest ← u+ αη̂ (Obtain Σ(utest) through (5.7).);
9 while Ji(utest) ≥ Ji(u) and α ≥ αtol do

10 α← α ∗ c;
11 utest ← u+ αη̂ (Obtain Σ(utest) through (5.7).);

12 if |Ji(u)− Ji(utest)| < tol or α < αtol then
13 STOP ← true;

14 u← utest (Note: we also have Σ(u).);

15 return u and Σ(u).;

Remark 5.2. Algorithm 1 generates a sequence of contact lines {Σk} and controls
{uk}. So it seems there should be a Lagrangian update of uk as described in (4.9).
This is automatically accomplished by (5.9) when solving the forward problem (5.7)
to equilibrium.

5.4. Optimization results. Algorithm 1 was implemented in MATLAB using
the FELICITY toolbox [66]. The following sections show some examples of our com-
putational method. Specifically, we consider the following desired footprint shapes:
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Fig. 2. Left: Desired footprint shape Σd (thick black curve) plotted in the plane P. The colored
contours are level sets of φ. Right: the optimal droplet shape Γ after the optimization method
converges.
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Fig. 3. Left: Optimal control function u for the desired footprint Σd in Figure 2. Right: Opti-
mization history for the objective functional (4.37) and directional derivative (recall Theorem 4.8).
The initial value of J2 is 0.1306 and the final value is 7.6× 10−5.

ellipse, square, and four-leaf clover. The results presented here are obtained using the
functional J2.

5.4.1. Ellipse footprint. We take Σd to be an ellipse with associated distance
function φ; recall (4.37). See Figures 2 and 3 for plots of the desired footprint Σd,
optimal droplet shape Γ, optimal control u, and optimization history. In this case, we
can easily obtain the desired footprint.

5.4.2. Square footprint. We take Σd to be a square with associated distance
function φ; recall (4.37). See Figures 4 and 5 for plots of the desired footprint Σd, opti-
mal droplet shape Γ, optimal control u, and optimization history. As the optimization
progresses, the droplet’s contact line Σ asymptotically approaches the corners of the
square.

5.4.3. Four-leaf clover footprint. We take Σd to be a four-leaf clover with
associated distance function φ; recall (4.37). See Figures 6 and 7 for plots of the
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Fig. 4. Left: Desired footprint shape Σd (thick black curve) plotted in the plane P. The colored
contours are level sets of φ. Right: the optimal droplet shape Γ after the optimization method
converges.
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Fig. 5. Left: Optimal control function u for the desired footprint Σd in Figure 4. Right: Opti-
mization history for the objective functional (4.37) and directional derivative (recall Theorem 4.8).
The initial value of J2 is 4.47× 10−2 and the final value is 3.7× 10−4.

desired footprint Σd, optimal droplet shape Γ, optimal control u, and optimization
history. Almost the full range of the control u (between −1 and +1) is utilized here
to obtain the clover shape.

5.5. Summary. In this paper, we have studied the controllability of the foot-
print of a sessile droplet sitting on a surface via substrate surface tension. This
amounts to the control of a free boundary, which can also be seen as a bilevel shape
optimization problem. We have performed the rigorous sensitivity analysis of the free
boundary with respect to the substrate surface tension. We have shown that a small
variation of the substrate surface tension leads to a perturbation of the free boundary
which can be described by a vector field solution of an elliptic PDE on the surface of
the droplet. Thanks to these results, we were able to devise a numerical algorithm to
solve the free boundary problem at the lower level and to control the free boundary
effectively at the upper level of the optimization.

The numerical results show that we can compute the variable substrate surface
tension coefficient that will drive the liquid-solid interface (i.e., the footprint) to a
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Fig. 6. Left: Desired footprint shape Σd (thick black curve) plotted in the plane P. The colored
contours are level sets of φ. Right: the optimal droplet shape Γ after the optimization method
converges.
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Fig. 7. Left: Optimal control function u for the desired footprint Σd in Figure 6. Right:
Optimization history for the objective functional (4.37) and directional derivative (recall the
Theorem 4.8). The initial value of J2 is 8.84× 10−2 and the final value is 2.7× 10−3.

reasonable desired shape. Characterizing the limits on the types of shapes that are
achievable is an interesting, and difficult, area to explore. Another possible extension
is to optimize the full surface tension coefficient in the plane of the substrate, instead
of merely controlling the contact angle (recall the discussion in section 5.1.1). This
is significantly more challenging because the problem becomes time-dependent since
one must track the evolution of the droplet. In this case, the goal would be to design
a static surface tension field for the substrate such that if a droplet is deposited onto
any part of the solid, then it will migrate toward a desired location with a desired
footprint.

We can also modify the problem to be more relevant to applications. For instance,
an electrostatic field may be added which changes the control to be the applied bound-
ary voltage (i.e., electrowetting; see [70, 73, 74]). Here, an additional PDE constraint
comes into play (e.g., Poisson’s equation in three dimensions). One can also add
inequality constraints for the geometry of the contact line Σ.
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by Bernoulli free boundary problems, Comput. Methods Appl. Mech. Engrg., 197 (2008),
pp. 3803–3815.

[64] J. I. Toivanen, J. Haslinger, and R. A. E. Mäkinen, Topology optimization in Bernoulli
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