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Abstract
We consider the one-constant Landau-de Gennes model for nematic liquid crystals.
The order parameter is a traceless tensor field Q, which is constrained to be uniaxial:
Q = s(n ⊗ n − d−1I) where n is a director field, s ∈ R is the degree of orientation,
and d ≥ 2 is the dimension. Building on similarities with the one-constant Ericksen
energy,we propose a structure-preserving finite elementmethod for the computation of
equilibrium configurations. We prove stability and consistency of the method without
regularization, and �-convergence of the discrete energies towards the continuous
one as the mesh size goes to zero. We design an alternating direction gradient flow
algorithm for the solution of the discrete problems, and we show that such a scheme
decreases the energy monotonically. Finally, we illustrate the method’s capabilities
by presenting some numerical simulations in two and three dimensions including
non-orientable line fields.

Keywords Liquid crystals · Finite Element Method · Gamma-convergence ·
Landau-de Gennes · Defects

Mathematics Subject Classification 65N30 · 65K10 · 35J70

1 Introduction

The liquid crystal state of matter is observed in certain materials as a mesophase
between the crystalline and the isotropic liquid phases. Such a state may be obtained
as a function of temperature between the two latter phases; in this case, these are
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called thermotropic liquid crystals. Other classes include lyotropic and metallotropic
liquid crystals, in which concentration of the liquid-crystal molecules in a solvent or
the ratio between organic and inorganic molecules determine the phase transitions,
respectively. In this paper, we consider thermotropic liquid crystals [23].

The physical state of a material can be described in terms of the translational
and rotational motion of its constituent molecules. In a crystalline solid, molecules
exhibit both long-range ordering of the positions of the centers and orientation of the
molecules. As the substance is heated, the molecules gain kinetic energy and large
molecular vibrations usually make these two ordering types disappear at the same
temperature. This results in a fluid phase. However, in some materials, that typically
consist of either rod-like or disc-like molecules, the long-range orientational ordering
survives until a higher temperature than the long-range positional ordering. Such a state
of matter is called liquid crystalline. Moreover, when long-range positional ordering
is completely absent, the liquid crystal is regarded as nematic.

On average, nematic liquid crystal molecules are aligned with their long axes paral-
lel to each other. At themacroscopic level, thismeans that there is a preferred direction;
often, such a direction is a rotational symmetry axis. In such a case, the nematic liquid
crystal phase is uniaxial. If, in contrast, there is no such rotational symmetry, then the
material is in a biaxial state.

Depending on the choice of order parameter (cf. Sect. 2.1), several models for
nematic liquid crystals have been proposed. Because the vast majority of thermotropic
liquid crystals exhibit uniaxial behavior, this is often built into the modeling. If one
takes as order parameter the orientation of the molecules n(x) ∈ S

d−1, for x ∈
� ⊂ R

d , then n is a harmonic mapping in the domain �; numerical methods for
this model have been proposed, for example, in [1,3,11,19,30,41]. We refer also to
[20,33,42,63] for discretizations of liquid crystal flows. It is often the case that liquid
crystal configurations display defects, that is, that the molecular orientation is not
continuous in some regions of the material. Harmonic map models do not allow for
point defects if d = 2 or line defects if d = 3, because the energy is singular.

However, if besides the liquid crystal molecule orientation n one considers a scalar
variable s(x) that represents the degree of alignment that molecules have with respect
to n, then the equilibrium configuration minimizes the Ericksen energy [23,24,61].
Minimizers of such an energy can exhibit nontrivial defects, as the parameter s can
relax a large contribution from |∇n|, and wherever the degree of alignment s vanishes,
the resulting Euler-Lagrange equation for n is degenerate. Finite element methods for
the Ericksen model have been used to approximate both equilibrium configurations
[46–48] and dynamics [10] of the molecular orientation.

If one considers the probability distribution of the liquid crystal molecules orien-
tation and chooses to use its second moments to define an order parameter, then this
leads to the Landau-de Gennes model. In such a model, the order parameter is a tensor
fieldQ(x) that measures the discrepancy between the probability distribution at x ∈ �

and a uniform distribution on S
d−1. Numerical methods for the Landau-de Gennes

energy are considered in [6,12,22,29,35,53].
In this work, we shall be concerned with uniaxial nematic liquid crystals in Rd for

d ≥ 2; we present numerical experiments for d = 2, 3. Our goal is to design a finite
elementmethod for a uniaxially-constrainedQ-tensormodel, and to prove stability and
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convergence properties. More precisely, we prove that if the corresponding meshes
are weakly acute, then our discrete energy �-converges to the continuous one as
the mesh size goes to zero. Our method can handle the degeneracy introduced by a
vanishing degree of orientation without any regularization. Moreover, because theQ-
tensor approach incorporates a head-to-tail symmetry into the modeling, our approach
is able to capture non-orientable equilibrium configurations.

The paper is organized as follows. In Sect. 2,we discussmodeling of the equilibrium
states of liquid crystals. We examine the Landau-de Gennes and Ericksen energies,
and discuss the capabilities of these models to capture defects. Section 3 is devoted
to the formulation of the problem we study in this paper. Such a section includes a
discussion on previous work for the Ericksen model [47], which is instrumental for
our numerical method.We introduce the discrete setting for the uniaxially-constrained
Landau-de Gennes energy and prove key energy inequalities in Sect. 4. Afterwards,
in Sect. 5, we prove the �-convergence of the discrete energies. For the computation
of discrete minimizers, in Sect. 6 we propose a gradient flow and prove a strictly
monotone energy decreasing property. Finally, Sect. 7 presents numerical experiments
for d = 2, 3 illustrating the capabilities of our method.

2 Modeling of nematic liquid crystals

We discuss some elementary properties of the so-called Q-tensors and review three
models for the equilibrium states of nematic liquid crystals, which derive from mini-
mizing an energy (see [23,45,61] for more details on the modeling of liquid crystals).

2.1 Order parameters

For a particular material, the transition between phases of different symmetry can be
described in terms of an order parameter. Such a parameter represents the extent to
which the configuration of the more symmetric phase differs from that of the less
symmetric phase.

For the sake of clarity, we fix the dimension to be d = 3 in the following discus-
sion. To avoid modeling individual liquid crystal molecules, that is very expensive
computationally, we pursue a macroscopic description of liquid crystals. Namely, let
us describe the orientation of the nematic molecules by a probability distribution in
the unit sphere; this gives raise to a tensor field Q : � → R

3×3, which is required to
be symmetric and traceless a.e. [23,45,61].

We can further characterize Q by its eigenframe and is often written in the form:

Q = s1(n1 ⊗ n1) + s2(n2 ⊗ n2) − 1

3
(s1 + s2)I,

where n1, n2 are orthonormal eigenvectors of Q, with eigenvalues given by

λ1 = 2s1 − s2
3

, λ2 = 2s2 − s1
3

, λ3 = − s1 + s2
3

, (1)
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where λ3 corresponds to the eigenvector n3 ⊥ n1,n2. The eigenvalues of Q are
constrained by

− 1

3
≤ λi ≤ 2

3
, i = 1, 2, 3. (2)

When all eigenvalues are equal, sinceQ is traceless, we must have λ1 = λ2 = λ3 = 0
and s1 = s2 = 0, i.e. the distribution of liquid crystal molecules is isotropic. If two
eigenvalues are equal, i.e.

λ1 = λ2 ⇔ s1 = s2,

λ1 = λ3 ⇔ s1 = 0,

λ2 = λ3 ⇔ s2 = 0,

then we encounter a uniaxial state, in which either molecules prefer to orient in align-
ment with the simple eigenspace (in case it corresponds to a positive eigenvalue)
or perpendicular to it (in case it corresponds to a negative eigenvalue). If all three
eigenvalues are distinct, then the state is called biaxial.

Remark 1 (biaxial nematics) In this work, we regard liquid crystal molecules as elon-
gated rods. Naturally, most liquid crystal molecules do not possess such an axial
symmetry. If the molecules resemble a lath more than a rod, it is expected that the
energy interaction can be minimized if the molecules are fully aligned; this necessar-
ily involves a certain degree of biaxiality. Roughly, this was the rationale behind the
prediction of the biaxial nematic phase by Freiser [27].

Since that seminal work, empirical evidence of biaxial states in certain lyotropic
liquid crystals has been well documented (see [65], for example). Nevertheless, for
thermotropic liquid crystals the nematic biaxial phase remained elusive for a long
period, and was first reported long after Freiser’s original prediction [43,51]. As
pointed out by Sonnet and Virga [56, Section 4.1],

The vast majority of nematic liquid crystals do not, at least in homogeneous
equilibrium states, show any sign of biaxiality.

We refer to [14] for further quantitative discussion via computations. In light of
Remark 1, in Sect. 3 we shall consider a uniaxially-constrainedmodel. More precisely,
we assume that Q takes the uniaxial state

Q = s

(
n ⊗ n − 1

3
I
)

, (3)

where n is the main eigenvector with eigenvalue λ = 2s/3; the other two eigenvalues
equal −s/3. The scalar field s is called the degree of orientation of the liquid crystal
molecules. Taking into account identities (1) and the restrictions (2), it follows that
the physically meaningful range is s ∈ (−1/2, 1). In case s = 1, the molecular long
axes are in perfect alignment with the direction of n, whereas s = −1/2 represents
the state in which all molecules are perpendicular to n.
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An advantage of the uniaxially constrained model we consider in this work over the
standard one-constant Landau-de Gennes model is that the bulk potential acts directly
on the parameter s instead of over theQ-tensor. Because s can be directly related to the
eigenvalues ofQ, this allows one guarantee that the eigenvalues ofQ lie in a physically
meaningful range. In contrast, in the low-temperature regime, the Landau-de Gennes
model can lead to Q having physically unrealistic eigenvalues [44].

Remark 2 (problems in 2d) The discussion above simplifies considerablywhen d = 2.
Indeed, since Q is symmetric and traceless, it must be uniaxial, and writing it as
Q = s

(
n ⊗ n − 1

2 I
)
, we deduce that its eigenvalues are λ1 = s/2, with eigenvector

n, and λ2 = −λ1, with eigenvector n⊥. Because eigenvalues are constrained to satisfy
λi ∈ (−1/2, 1/2), we deduce that the physically meaningful range is s ∈ (−1, 1).
Actually, one can further simplify to s ∈ [0, 1) by noting that a state with director n
and degree of orientation s < 0 is equivalent to a state with directorm ⊥ n and degree
of orientation −s.

Remark 3 (thin films) For simplicity, in this work we consider Q to be a square ten-
sor with the same dimension as the spatial domain. With minor modifications, our
approach carries to the case where these dimensions are different, such as three dimen-
sional tensors on thin films.

2.2 Continuummechanics

Given the order parameterQ, we still need a model to determine its state as a function
of space. For modeling equilibrium states, this amounts to finding minimizers of an
energy functional. A common approach from continuum mechanics [34,58,60] is to
construct the “simplest” functional possible that is quadratic in gradients of the order
parameter while obeying standard laws of physics, such as frame indifference and
material symmetries. We assume all equations have been non-dimensionalized; see
[28] for the case of the Landau-de Gennes model.

2.2.1 Landau-de Gennes model

UsingQ as the order parameter, we obtain the Landau-de Gennes model, in which the
energy is given by [23,56]:

ELdG[Q] :=
ˆ

�

WLdG(Q,∇Q) dx + 1

ηB

ˆ
�

φLdG(Q) dx,

WLdG(Q,∇Q) := 1

2

(
L1|∇Q|2 + L2|∇ · Q|2 + L3(∇Q)T :∇Q

)
.

(4)

Above, {Li }3i=1, ηB are material parameters, φLdG is a bulk (thermotropic) potential
and

|∇Q|2 := (∂k Qi j )(∂k Qi j ), |∇ · Q|2 := (∂ j Qi j )
2, (∇Q)T :∇Q := (∂ j Qik)(∂k Qi j ),
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and we use the convention of summation over repeated indices. This is a relatively
simple form for WLdG; more complicated models can also be considered [23,45,56].

The bulk potential φLdG is a double-well type of function that controls the eigen-
values of Q. The simplest form is given by

φLdG(Q) = K + A

2
tr(Q2) − B

3
tr(Q3) + C

4

(
tr(Q2)

)2
, (5)

where A, B, C are material parameters such that A has no sign, and B, C are positive;
K is a convenient constant. It is typical to let A ≤ 0 since we are interested in uniaxial
states, so throughout this paper we assume that

A ≤ 0, B,C > 0,

which implies that φLdG(Q) ≥ 0 assuming K is suitably chosen.
In two dimensions, tr(Q3) = 0, because Q2 = s2

4 I. Hence, B is irrelevant in 2d,
and it is necessary that A be strictly negative in order to have a stable nematic phase.
This also implies that φLdG is an even function of s if Q is uniaxial (see Remark 2).

As a simplification, one can take L1 = 1, L2 = L3 = 0 in (4) to obtain a one-
constant approximation

ELdG,one[Q] := 1

2

ˆ
�

|∇Q|2 dx + 1

ηB

ˆ
�

φLdG(Q) dx . (6)

2.2.2 Ericksen model

Though the Landau-de Gennes model is quite general, it can be fairly expensive when
d = 3. In such a case, sinceQ ∈ R

3×3 and symmetric, it has five independent variables.
Moreover, the bulk potential φLdG is a non-linear function ofQ, which couples all five
variables together when seeking a minimizer of ELdG.

Assuming that Q is uniaxial (3), we can take s and n as order parameters. In the
same way as (6), we have a one-constant Ericksen model:

Eerk[s,n] := κ

2

ˆ
�

|∇s|2 dx + 1

2

ˆ
�

s2|∇n|2 dx + 1

ηB

ˆ
�

φerk(s) dx, (7)

where κ > 0 is a single material parameter, and φerk is a double-well potential acting
on s, which is taken from the Landau-de Gennes case: φerk(s) = φLdG(Q(s)), where
Q is any matrix having the form (3).

Remark 4 (Oseen–Frank model) In case the degree of orientation is a non-zero con-
stant field, the energy Eerk effectively reduces to the Oseen–Frank energy [61]:
EOF[n] := ´

�
|∇n|2. The Oseen–Frank model has been used extensively in the mod-

eling of liquid crystal-based flat panel displays.Minimizers of the one-constant energy
in such a model are director fields n : � → S

d−1 satisfying 	n− λn = 0, where λ is
a Lagrange multiplier that enforces the unit length constraint.
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In the Oseen–Frank model, point defects in three dimensional domains have finite
energy. However, this model is incapable of capturing higher-dimensional defects,
that is, defects supported either on lines or planes. Since these naturally occur in many
liquid crystal systems, this is a major inherent limitation of the Oseen–Frank model.

We point out that (7) is degenerate, in the sense that s may vanish; this allows for
n to have discontinuities (i.e. defects) with finite energy. Indeed, the hallmark of this
model is to regularize defects using s, but still retain part of the Oseen–Frank model.
Discontinuities in n may still occur in the singular set

S := {x ∈ � : s(x) = 0}. (8)

For problems in R
3, because n ∈ S

2, it is uniquely defined by two parameters.
Thus, in such a case the Ericksen model only has three scalar order parameters, as
opposed to five in the Landau-de Gennes model. Another advantage of the Ericksen
model is that s and n provide a natural way to split the system which is convenient
for numerical purposes. Additionally, the parameter κ in (7) plays a major role in the
occurrence of defects. Assuming that s equals a sufficiently large positive constant on
∂�, if κ is large, then

´
�

κ|∇s|2dx dominates the energy and s stays close to such
a positive constant within the domain �. Thus, defects are less likely to occur. If κ

is small (say κ < 1), then
´
�
s2|∇n|2dx dominates the energy, and s may vanish in

regions of � and induce a defect. This is confirmed by the numerical experiments in
[46,47].

Remark 5 (orientability) Director fieldmodels—eitherOseen–Frank or Ericksen—are
more than adequate in some situations, although in general they introduce a nonphys-
ical orientational bias into the problem. Even though liquid crystal molecules may
be polar, in nematics one always finds that the states with n and −n are equivalent
[31]. At the molecular level, this means that the same number of molecules point “up”
and “down.” Therefore, line-fields are more appropriate for modeling nematic liquid
crystals.

Another issue with the use of the vector field n as an order parameter instead of the
matrixQ is that the only allowable defects in such a case are integer order defects. On
the other hand Q, specifically n ⊗ n in (3), is able to represent line fields having half-
integer defects. These have been largely observed and documented in experiments;
see for example [17,49] and references therein. We point out that, if a line field is
orientable, then a vector field representation is essentially equivalent [8,9].

3 Mathematical formulation

In this work, we will be concerned with the one-constant energy for Q, given by
(6). Enforcing Q to be symmetric and traceless, one can, in principle, directly mini-
mize such an energy. For three-dimensional problems, a standard approach to finding
minimizers [5,36,56,59] is to express Q(x) as
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Q(x) =
⎡
⎣q1 q3 q4
q3 q2 q5
q4 q5 −(q1 + q2)

⎤
⎦ , (9)

i.e. minimize (6) with respect to the order parameters {qi (x)}5i=1. This approach has
two drawbacks.

First, a basic argument shows thatminimizers of
´
�

φLdG have the formof a uniaxial
nematic (3) [56]. This is false for ELdG,one in (6) with general boundary conditions.
Thus, minimizers of the form (9) violate the algebraic form of (3) and exhibit a biaxial
escape [38,50,55]. This is analogous to the escape to the 3rd dimension in liquid
crystal director models [61]. This is not desirable if the underlying nematic liquid
crystal is guaranteed to be uniaxial (recall Remark 1). Secondly, minimizing (6) with
Q of the form (9) leads to a non-linear system with five coupled variables in 3d, so it
is expensive to solve and possibly not robust [39,52,66,67].

These drawbacks motivate us to enforce the uniaxiallity constraint (3) directly in
the Landau-de Gennes one-constant energy (6). The ensuing model has similarities
with the Ericksen model (7), although it has the advantage of allowing minimizers
to exhibit half-integer order defects. Our approach hinges on previous work on the
Ericksen model [46–48], which exploits a hidden structure of (7). We next reveal
such structure for the Landau-de Gennes model with uniaxial constraint and point out
the corresponding counterpart for the Ericksen model when appropriate. Compared
to directly minimizing (6) using (9), our algorithm finds a minimizer by solving a
sequence of linear systems of smaller dimension. However, our approach is equivalent
to directly minimizing the energy (6) for two-dimensional problems (see Remark
2).

Reference [14] offers a detailed numerical study of the effect of imposing the uni-
axial constraint in the Landau-de Gennes model. There it is shown that in the presence
of defects, the pointwise discrepancy between the minimizer from the standard model
and the minimizer with uniaxial constraint becomes significant near such regions.
Moreover, the uniaxial minimizers may present a significantly higher energy than
minimizers of the standard Landau-de Gennes model under the same domain config-
urations.

3.1 The basic structure

We start with the main part (elastic energy) of the one-constant Ericksen model in (7),
namely

Eerk−m[s,n] := 1

2

ˆ
�

(
κ|∇s|2 dx + s2|∇n|2

)
dx . (10)

It is clear that a configuration (s,n) with finite elastic energy implies s ∈ H1(�)

and that the weight s vanishing within the singular set S of (8) allows for director
fields n with infinite Dirichlet energy and thus for the presence of defects. The hidden
structure in (10) becomes apparent upon introducing the auxiliary variable u = sn as
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proposed first in [4,40]: since |n| = 1 we get ∇n n = 0 and the pointwise orthogonal
decomposition ∇u = n⊗ ∇s + s∇n. Consequently, (10) can be equivalently written

Eerk−m[s,n] = Ẽerk−m[s,u] := 1

2

ˆ
�

(
(κ − 1)|∇s|2 + |∇u|2

)
dx, (11)

to discover that u ∈ [H1(�)]d . Moreover, it is apparent from (11) that if κ > 1
the Ericksen energy Ẽerk−m[s,u] is convex with respect to (s,u). The physically
relevant case 0 < κ < 1 in terms of defects is more difficult with regard to proving
�-convergence, because convexity of Ẽerk−m[s,u] is no longer obvious unless we
exploit the relation |s| = |u|. This relation can only be enforced at the nodes of a
finite element approximation of (s,u), whence convexity as well as weak lower semi-
continuity of Ẽerk−m[s,u] become problematic [46–48]; we will refer to this issue
later in Lemma 6.

We now turn to the Landau-de Gennes model with uniaxial constraint (3). To this
end, we introduce the line field � = n ⊗ n, which will be treated as a control
variable in minimizing (6) subject to (3). Since ∇Q is a 3-tensor of the form ∇Q =
∇s ⊗ (� − 1

d I
)+ s∇�, we have

|∇Q|2 = |∇s|2
∣∣∣∣� − 1

d
I

∣∣∣∣
2

+ s2|∇�|2 + 2s

[
∇s ⊗

(
� − 1

d
I
)]

:∇�.

A direct calculation gives
∣∣� − 1

d I
∣∣2 = d−1

d and
[∇s ⊗ (� − 1

d I
)] :∇� = 0

because ∇� : � = ∇� : I = 0. Therefore, we obtain the first relation with the
Ericksen model

|∇Q|2 = d − 1

d
|∇s|2 + s2|∇�|2.

The second one comes from the equalities

s2 = C2 tr(Q2), s3 = C3 tr(Q3), s4 = C4 (tr(Q2))2,

which are valid for suitable constants C2,C3,C4 > 0. Consequently, the double-well
potential φLdG(Q) in (5) becomes a quartic function ψLdG(s) = φLdG(Q) of s that
blows-up at the end points of the interval [− 1

d−1 , 1] and forces s to remain within this
physical range. If we let the main energy be

Euni−m[s,�] := Euni−s[s] + Euni−i[s,�],

where the orientation, interaction and bulk energies are given by

Euni−s[s] := d − 1

2d

ˆ
�

|∇s|2, Euni−i[s,�] := 1

2

ˆ
�

s2|∇�|2 dx,

ELdG,bulk[s] := 1

ηB

ˆ
�

ψLdG(s) dx,
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then the Landau-de Gennes total energy Euni−t[s,�] = ELdG,one[Q] in (6) reads

Euni−t[s,�] = Euni−m[s,�] + ELdG,bulk[s]. (12)

We see that this energy has the same form as the Ericksen energy (7), except that �

replaces n and κ = (d − 1)/d < 1. This motivates a change of variable analogous to
the one in the Ericksen model: we set U := s� and note that ∇U = ∇s ⊗ � + s∇�

is a d-tensor with orthogonal components, whence

|∇U|2 = |∇s|2 + s2|∇�|2

and the main and total energies in terms of (s,U) read

Euni−m[s,�] = Ẽuni−m[s,U] := − 1
2d

´
�

|∇s|2 dx + 1
2

´
�

|∇U|2 dx, (13)

Ẽuni−t[s,U] := Ẽuni−m[s,U] + ELdG,bulk[s]. (14)

Similarly, we could set s̃ := |s| and Ũ := s̃� to arrive at Ẽuni−m [̃s, Ũ] = Ẽuni−m[s,U]
because |∇ s̃| = |∇s| a.e. in �. We are now able to reach similar conclusions as for
the Ericksen model. If ELdG,one[Q] < ∞, then (s,U) ∈ H1(�) × [H1(�)]d×d but
in general � /∈ [H1(�)]d×d because the presence of the weight s2 in Euni−i[s,�]
allows for blow-up of ∇� in the singular set S of (8). We intend to preserve this basic
structure discretely. In fact, this will be crucial later in Sect. 5 to interpret ∇� in the
Lebesgue L2 sense and recover the orthogonality relation |∇U|2 = |∇s|2 + s2|∇�|2
a.e. in � \ S, as well as to derive � convergence.

In order to define the admissible class of functions, we begin with the set of line
fields

L
d−1 := {A ∈ R

d×d : there exists n ∈ S
d−1, A = n ⊗ n}. (15)

We say that a triple (s,�,U) satisfies the structural condition provided

− 1

d − 1
≤ s ≤ 1, U = s�, � ∈ L

d−1 a.e. �. (16)

We next define the admissible class of functions to be

Auni :=
{
(s,�,U) ∈ H1(�) × [L∞(�)]d×d × [H1(�)]d×d : (s,�,U) satisfies (16)

}
.

To enforce boundary conditions, let (�s, ��, �U) with �� = �U be open sub-
sets of ∂� where we impose Dirichlet conditions. Given functions (g,M,R) ∈
W 1∞(Rd) × [L∞(Rd)]d×d × [W 1∞(Rd)]d×d that satisfy the structural condition (16)
in a neighborhood of ∂�, we define the restricted admissible class

Auni(g,R) := {(s,�,U) ∈ Auni : s|�s = g, U|�U = R
}
.
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Moreover, we assume that for some δ0 > 0

− 1

d − 1
+ δ0 ≤ g ≤ 1 − δ0 in �, (17)

and

g ≥ δ0 on ∂�, (18)

so that the function M is of class W 1∞ in a neighborhood of �� and satisfies M =
g−1R ∈ L

d−1 on ��.
Finally, we assume that the coefficients A, B,C in (5) are such that

ψLdG(s) ≥ ψLdG(1 − δ0) for s ≥ 1 − δ0,

ψLdG(s) ≥ ψLdG

(
− 1

d − 1
+ δ0

)
for s ≤ − 1

d − 1
+ δ0.

(19)

This will lead to confinement of s with the interval [− 1
d−1 + δ0, 1 − δ0].

4 Discretization

Let Th = {T } be a conforming shape-regular and quasi-uniform triangulation of �

made of simplices. Let Nh = {xi }Ni=1 be the set of nodes (vertices) xi of Th and N
be its cardinality. Let φi be the standard “hat” basis function associated with the node
xi ∈ Nh . We indicate with ωi = supp φi the patch of a node xi (i.e. the “star” of
elements in Th that contain the vertex xi ). For simplicity we assume that � = �h , so
that there is no geometric error caused by domain approximation. We further assume
that Th is weakly acute, namely

ki j := −
ˆ

�

∇φi · ∇φ j dx ≥ 0 for all i �= j . (20)

Condition (20) ensures the validity of the discrete maximum principle. However, (20)
imposes a severe geometric restriction on Th [18,57], especially in three dimensions.
Circumventing (20) is an open problem.

We consider three continuous piecewise linear Lagrange finite element spaces on
�:

Sh := {sh ∈ H1(�) : sh |T is affine for all T ∈ Th},
Uh := {Uh ∈ [H1(�)]d×d : each entry of Uh |T is afffine for all T ∈ Th},
Th := {�h ∈ Uh : �h(xi ) ∈ L

d−1, for all xi ∈ Nh},
where Th imposes both the rank-one and unit-norm constraints only at the vertices of
the mesh Th . We say that the discrete triple (sh,�h,Uh) ∈ Sh ×Th ×Uh satisfies the
discrete structural condition if
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Uh = Ih(sh�h), − 1

d − 1
≤ sh ≤ 1, (21)

where Ih stands for the Lagrange interpolation operator. All such triples make the
discrete admissible setAh

uni. We let gh := Ihg, Rh := IhR, andMh := IhM be the dis-
crete Dirichlet data, and incorporate Dirichlet boundary conditions within the discrete
spaces:

Sh(gh) := {sh ∈ Sh : sh |�s = gh},
Uh(Rh) := {Uh ∈ Uh : Uh |�U = Rh},
Th(Mh) := {�h ∈ Th : �h |��

= Mh}.

In view of (18), the following compatibility condition must hold:Mh = Ih[g−1
h Rh] on

��. This leads to the following discrete admissible class with boundary conditions:

Ah
uni(gh,Rh) := {(sh, �h,Uh) ∈ Sh(gh) × Th(Mh) × Uh(Rh)) : (sh,Uh, �n) satisfies (21)

}
.

We are now ready to introduce the discrete version of Euni−m[s,�] which mimics
that of the Ericksen model [46–48]. First note that

∑N
j=1 ki j = 0 for all xi ∈ Nh , and

for sh =∑N
i=1 sh(xi )φi ∈ Sh we have

ˆ
�

|∇sh |2dx = −
N∑
i=1

kii sh(xi )
2 −

N∑
i, j=1,i �= j

ki j sh(xi )sh(x j ).

Using kii = −∑ j �=i ki j and the symmetry ki j = k ji , we thus obtain

ˆ
�

|∇sh |2dx = 1

2

N∑
i, j=1

ki j
(
δi j sh

)2
, (22)

where we have introduced the notation

δi j sh := sh(xi ) − sh(x j ), δi j�h := �h(xi ) − �h(x j ).

We next define the main part of the discrete Landau-de Gennes energy to be

Eh
uni−m[sh,�h] := d − 1

4d

N∑
i, j=1

ki j
(
δi j sh

)2

+ 1

4

N∑
i, j=1

ki j

(
sh(xi )2 + sh(x j )2

2

)
|δi j�h |2.

(23)
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We point out that the first term corresponds to

Eh
uni−s[sh] = d − 1

2d

ˆ
�

|∇sh |2dx = d − 1

4d

N∑
i, j=1

ki j
(
δi j sh

)2
,

while the second term is a first order nonstandard approximation of Euni−i[s,�] =
1
2

´
�
s2|∇�|2dx ,

Eh
uni−i[sh,�h] := 1

4

N∑
i, j=1

ki j

(
sh(xi )2 + sh(x j )2

2

)
|δi j�h |2 (24)

introduced in [47]. As we will see below, a key feature of this discretization is that it
makes it possible to handle degenerate parameters sh without regularization. This is
due to Lemma 1, which deals with discrete versions of Ẽuni−m[s,U] defined in (13)
involving the auxiliary variable Uh :

Ẽh
uni−m[sh,Uh] := − 1

2d

ˆ
�

|∇sh |2dx + 1

2

ˆ
�

|∇Uh |2dx . (25)

We finally discretize the nonlinear bulk energy in the usual manner

Eh
LdG,bulk[sh] := 1

ηB

ˆ
�

ψLdG(sh)dx .

With the notation introduced above, the formulation of the discrete problem is as
follows: find (sh,�h) ∈ Sh(gh) × Th(Mh) such that the following discrete total
energy is minimized:

Eh
uni−t[sh,�h] := Eh

uni−m[sh,�h] + Eh
LdG,bulk[sh]. (26)

Because the discrete spaces consist of piecewise linear functions, the structural
condition Uh = sh�h is only satisfied at the mesh nodes (cf. (21)). Therefore, there
is a variational crime that we need to account for. To this end, we now derive energy
inequalities similar to [47, Lemma 2.2]. Although the arguments are the same, we
present the proof for completeness. For our analysis, we introduce the functions

s̃h = Ih(|sh |), Ũh = Ih(|sh |�h), (27)

and remark that (̃sh,�h, Ũh) satisfies (21).

Lemma 1 (energy inequality) Let themeshTh satisfy (20). Then, for all (sh,�h,Uh) ∈
Ah

uni(gh,Rh), the main part of the discrete Landau-de Gennes energy satisfies

Eh
uni−m[sh,�h] − Ẽh

uni−m[sh,Uh] = Eh, (28)
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as well as

Eh
uni−m[sh,�h] − Ẽh

uni−m [̃sh, Ũh] ≥ Ẽh, (29)

where Ẽh
uni−m[sh,Uh] is defined in (25) and

Eh := 1

8

N∑
i, j=1

ki j
(
δi j sh

)2∣∣δi j�h
∣∣2 ≥ 0,

Ẽh := 1

8

N∑
i, j=1

ki j
(
δi j s̃h

)2∣∣δi j�h
∣∣2 ≥ 0.

(30)

Proof Expanding

sh(xi )�h(xi ) − sh(x j )�h(x j ) = sh(xi ) + sh(x j )

2
δi j�h + �h(xi ) + �h(x j )

2
δi j sh

and using the orthogonality relation (δi j�h) : (�h(xi ) + �h(x j )
) = 0, we can write

1

2

ˆ
�

|∇Uh |2 = 1

4

N∑
i, j=1

ki j

(
sh(xi ) + sh(x j )

2

)2

|δi j�h |2 + 1

4

N∑
i, j=1

ki j (δi j sh)
2
∣∣∣∣�h(xi ) + �h(x j )

2

∣∣∣∣
2

.

Next, we utilize the identities
(
sh(xi ) + sh(x j )

)2 = 2
(
sh(xi )2 + sh(x j )2

)− (sh(xi ) −
sh(x j )

)2 and ∣∣�h(xi ) + �h(x j )
∣∣2 = 4 − |δi j�h |2, to obtain

1

2

ˆ
�

|∇Uh |2dx = 1

4

N∑
i, j=1

ki j

(
sh(xi )2 + sh(x j )2

2

)
|δi j�h |2 + 1

4

N∑
i, j=1

ki j (δi j sh)
2 − Eh .

Identity (28) follows immediately.
On the other hand, repeating the argument above with (̃sh, Ũh) instead of (sh,Uh)

gives

1

2

ˆ
�

|∇Ũh |2dx = 1

4

N∑
i, j=1

ki j

(
s̃h(xi )2 + s̃h(x j )2

2

)
|δi j�h |2 + 1

4

N∑
i, j=1

ki j (δi j s̃h)
2 − Ẽh .

This yields

Ẽh
uni−m [̃sh, Ũh] = Eh

uni−m [̃sh,�h] − Ẽh .

The propertiesEh ≥ 0 and Ẽh ≥ 0 are a consequence of themesh acuteness assumption
(20). Moreover, since |δi j s̃h | ≤ |δi j sh | and s̃h(xi )2 = sh(xi )2 for all i, j = 1, . . . , N ,
we have
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‖∇ s̃h‖L2(�) = 1

2

N∑
i, j=1

ki j (δi j s̃h)
2 ≤ 1

2

N∑
i, j=1

ki j (δi j sh)
2 = ‖∇sh‖L2(�).

Therefore, Eh
uni−m [̃sh,�h] ≤ Eh

uni−m[sh,�h] and inequality (29) follows. ��

5 0-convergence of the discrete energies

This section shows that the discrete problems (26) �-converge to the continuous prob-
lem (12). We set the continuous and discrete spaces

X := L2(�) × [L2(�)]d×d × [L2(�)]d×d , Xh := Sh × Th × Uh,

and define Euni−t[s,�] as in (12) if (s,�) ∈ Auni(g,R) and Euni−t[s,�] = ∞ if
(s,�) ∈ X \ Auni(g,R). In a similar fashion, we define Eh

uni−t[sh,�h] as in (26) if
(sh,�h) ∈ Ah

uni(gh,Rh) and Eh
uni−t[sh,�h] = ∞ if (sh,�h) ∈ Xh \ Auni(gh,Rh).

5.1 Lim-sup property: existence of a recovery sequence

Our goal is to show the following property: given (s,�,U) ∈ X, there exists a
sequence (sh,�h,Uh) ∈ Ah

uni(gh,Mh) such that

‖(s,U) − (sh,Uh)‖H1(�) → 0, ‖� − �h‖L2(�\S) → 0, (31)

as h → 0 and

lim sup
h→0

Eh
uni−t[sh,�h] ≤ Euni−t[s,�], (32)

where Euni−t[s,�] is defined in (12).

Truncation Naturally, the interesting case to consider is when (s,�) ∈ Auni(g,M);
otherwise the property above is trivially true.As shown in [47, Lemma3.1], hypotheses
(17) and (19) make it possible to assume that the degree of orientation s is sufficiently
far from the boundary of the physically meaningful range [− 1

d−1 , 1]. We state this
precisely next.

Lemma 2 (truncation) Given (s,�,U) ∈ Auni(g,R), let (ŝ, Û) be the truncations

ŝ(x) := min

{
1 − δ0,max

{
− 1

d − 1
+ δ0, s(x)

}}
, Û := ŝ�.

Then, (ŝ,�, Û) ∈ Auni(g,R) and

Euni−m[ŝ,�] ≤ Euni−m[s,�], ELdG,bulk[ŝ,�] ≤ ELdG,bulk[s,�].
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Moreover, given (sh,�h,Uh) ∈ Ah
uni(gh,Rh) and the truncations (Ih ŝh, IhÛh), then

the same assertion holds for the discrete energies.

Proof We first observe that (17) implies (ŝ,�, Û) ∈ Auni(g,R) whereas (19) yields
ψLdG(ŝ,�) ≤ ψLdG(ŝ,�). Moreover, making use of |ŝ| ≤ |s| and |∇ ŝ| ≤ |∇s| a.e.
in �, the inequality Euni−m[ŝ,�] ≤ Euni−m[s,�] follows immediately. ��
Remark 6 (range of s) For problems in 3d, the admissibility condition s ∈ [−1/2, 1]
is asymmetric with respect to the origin. Since part of our argument below is based
on regularizing |s| and afterwards recovering its sign, we need to account for such an
asymmetry. A simple way to do so is to consider

š = s+ − 2s−. (33)

Clearly, the first condition in (16) is equivalent to

−1 ≤ š ≤ 1.

In the next result, we consider the regularization using this modified degree of orien-
tation; for simplicity of notation, we drop the “check” in s.

Rank-one constraint Our regularization method entails smoothing by convolution.
This breaks the uniaxial constraint (3), that needs to be rebuilt into the smoothed
tensor field; hence, we extract the leading eigenspace. We thus need to account for the
dependence of eigenvalues with respect to matrix perturbations. Let Sym(d) denote
the set of symmetric d × d matrices. Given A ∈ Sym(d), let λ1 ≥ . . . ≥ λd be the
eigenvalues of A including multiplicities and λm(1) > · · · > λm(n) be the 1 ≤ n ≤ d
distinct eigenvalues. Let {Pk}nk=1 be the orthogonal projections onto the eigenspaces
associated with {λm(k)}nk=1 and let r(k) ≥ 1 be the rank of Pk ; hence r(k) is the
multiplicity of λm(k) for 1 ≤ k ≤ n. The spectral decomposition of A reads A =∑n

k=1 λm(k)Pk We now consider the set S1,0(d) of non-negative symmetric tensors of
rank at most one,

S1,0(d) =
{
A ∈ Sym(d) : A = u ⊗ u for some u ∈ R

d
}

,

and follow [7] to construct the projection operator � : Sym(d) → S1,0(d) defined by

�(A) = (λ1 − λ2)P1. (34)

The map � is Lipschitz continuous. This is proven in [7, Lemma 3.4] with an explicit

Lipschitz constant 3 + 21+
1
p (in the 
p-norm). We give an elementary proof below

which relies on the following basic result.

Lemma 3 (C1 property of �) The map Sym(d) → R
d , given by A �→

(λ1(A), . . . , λd(A)), is continuous. Moreover, in the set of symmetric matrices whose
first eigenspace has dimension 1

Sym1(d) := {A ∈ Sym(d) : λ1(A) > λ2(A)},
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or equivalently the rank of P1 is 1, the map � is of class C1.

Proof The eigenvalues {λi (A)}di=1 are the roots of the characteristic polynomial of A
and depend continuously on the coefficients and so on the entries of A. To show the
C1 property around A0 ∈ Sym1(d), let A ∈ Sym(d) and x1 = x1(A) be a normalized
eigenvector corresponding to the first eigenvalue λ1 = λ1(A). The equation that
defines (x1, λ1) and its derivative with respect to (x1, λ1) read

F(x1, λ1,A) =
[
Ax1 − λ1x1

‖x1‖22

]
=
[
0
1

]
, Dx1,λ1F(x1, λ1,A) =

[
A − λ1I −x1
2xT1 0

]
.

Since λ1(A0) is single, the matrix Dx1,λ1F(x1(A0), λ1(A0),A0) is invertible for
otherwise if (y, α)T ∈ R

d+1 is in the kernel it must necessarily vanish. There-
fore, the Implicit Function Theorem (IFT) applies thereby giving the existence of
(x1(A), λ1(A)) and its C1 dependence on A; we refer to [25, Chapter 11.1, Theorem
2] for a different argument. To prove that λ2(A) is also C1 we proceed similarly but
note that this eigenvalue might have multiplicity r(2) > 1. We thus form the equation
for P2 = P2(A) ∈ R

d×d being a matrix with rank r(2) and λ2 = λ2(A)

F(P2, λ2,A) =
[
AP2 − λ2P2

‖P2‖22

]
=
[
0
1

]
, DP2,λ2F(P2, λ2,A) =

[
A − λ2I −P2

2PT
2 0

]
.

and show that the kernel of this matrix is trivial. The IFT gives the asserted C1 conti-
nuity of λ2(A). ��
Lemma 4 (Lipschitz property of �) The map � : Sym(d) → S1,0(d) is uniformly
Lipschitz continuous and is invariant on S1,0(d), i.e. �(A) = A for all A ∈ S1,0(d).

Proof The invariance of � over S1,0(d) is clear from its definition. Given A,B =
A + δA ∈ Sym(d), write

�(B) − �(A) = [(λ1(B) − λ1(A)
)− (λ2(B) − λ2(A)

)]
P1(B)

+ (λ1(A) − λ2(A)
)(
P1(B) − P1(A)

)
.

We examine the two terms on the right hand side separately. We split the proof into
three steps.

Step 1: Lipschitz property of the first term. We resort to Weyl’s inequality for eigen-
values of symmetric matrices [13, Section III.2]

∣∣λk(B) − λk(A)
∣∣ ≤ ‖B − A‖2 ∀1 ≤ k ≤ d.

Since ‖P1(B)‖2 = 1 because P1(B) is an orthogonal projection, this proves the Lips-
chitz property for the first term with constant 2. If λ1(A) is a multiple eigenvalue, then
λ1(A) = λ2(A), the second term vanishes, and the proof is over. We thus assume that
λ1(A) is simple from now on.

Step 2: Bound on ‖DAx1(A; δA)‖2. In view of Lemma 3 (C1 property of �), we
differentiate the equation F(x1(A), λ1(A),A) = [0, 1]T with respect to A in the
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direction δA to obtain Dx1F DAx1 + Dλ1F DAλ1 + DAF : δA = 0 where DAx1 =
DAx1(A; δA) and DAλ1 = DAλ1(A; δA). Making use of Lemma 3 again, we thus
deduce the equation in R

d+1

[
A − λ1I
2xT1

]
DAx1 +

[−x1
0

]
DAλ1 = −

[
δAx1
0

]
.

The last row yields xT1 DAx1 = 0, whence DAx1 is perpendicular to x1 and DAx1 =∑d
k=2 αkxk can be expressed in terms of the orthonormal eigenvectors {xk}dk=1 of A

without component along x1. Moreover, if δAx1 = ∑d
k=1 βkxk , then the first d rows

of the preceding equation give

d∑
k=2

[
αk(λk − λ1) + βk

]
xk = (DAλ1 − β1

)
x1.

This obviously implies DAλ1 = β1 and

αk = βk

λ1 − λk
∀ 2 ≤ k ≤ d.

Let α = (αk)
d
k=1 with α1 = 0 and β = (βk)

d
k=1. Since ‖β‖2 ≤ ‖δA‖2, we see that

‖DAx1(A; δA)‖2 = ‖α‖2 ≤ ‖δA‖2
λ1(A) − λ2(A)

,

because 0 < λ1(A) − λ2(A) ≤ λ1(A) − λk(A) for all 2 ≤ k ≤ d.

Step 3: Lipschitz property of the second term. Exploiting that P1(A) = x1(A)⊗x1(A),
we readily get

DAP1(A; δA) = DAx1(A; δA) ⊗ x1(A) + x1(A) ⊗ DAx1(A; δA).

Since x1(A) and DAx1(A; δA) are perpendicular, we infer that

‖DAP1(A; δA)‖2 ≤ ‖DAx1(A; δA)‖2. (35)

Indeed, if u, v ∈ R
d are orthonormal and w ∈ R

d , then (u ⊗ v + v ⊗ u)w =
(v · w)u + (u · w)v, and thus, by Bessel’s inequality,

‖(u ⊗ v + v ⊗ u)w‖2 ≤ ‖w‖2;

estimate (35) then follows by scaling. Combining this with Step 2 gives

∣∣λ1(A) − λ2(A)
∣∣ ‖P1(A + δA) − P1(A)‖2

≤ ‖δA‖2 + ∣∣λ1(A) − λ2(A)
∣∣ o(‖δA‖2) = (1 + o(1)

)‖δA‖2,
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which shows that the desired Lipschitz constant is 1. Altogether the uniform Lipschitz
constant of � (with respect to the 
2-norm) is 3. This concludes the proof. ��
RegularizationWe now have all the tools we need to prove that Lipschitz continuous
functions are dense in the Landau - de Gennes restricted admissible classAuni(g,R).

Proposition 7 (regularization) Let (18), (19) and (33) hold. Given ε > 0 and
(s,�,U) ∈ Auni(g,R) with

− 1 + δ0 ≤ s ≤ 1 − δ0 a.e. � (36)

there exists a sequence (sε,�ε,Uε) ∈ Auni(g,R) such that (sε,Uε) ∈ W 1,∞(�) ×
[W 1,∞(�)]d×d , and

‖(s,U) − (sε,Uε)‖H1(�) < ε, ‖� − �ε‖L2(�\S) < ε,

−1 + δ0 ≤ sε ≤ 1 − δ0.
(37)

Proof We proceed in several steps.

Step 1: Regularization with boundary condition. Consider a zero-extension of s− g ∈
H1
0 (�) over Rd \ �. Given δ > 0, we set

ωδ := {x ∈ � : d(x, ∂�) ≤ δ},

and define dδ(x) = χ�(x)min
{ 1

δ
d(x, ∂�), 1

}
, which is a Lipschitz continuous func-

tion, with supp(∇dδ) ⊂ ωδ and |∇dδ| = δ−1χωδ . Let ηδ be a smooth, nonnegative
mollifier supported in Bδ(0), and define

sδ := dδ(s ∗ ηδ) + (1 − dδ)g,

Ũδ := dδ

(
Ũ ∗ ηδ

)+ (1 − dδ)R,

where Ũ := sgn(s)U = |s|� ∈ [H1(�)]d×d coincides with R on ∂� (because of
(18)). We thus have (sδ, Ũδ) = (s,R) on ∂� and arguing as in [47, Proposition 3.2,
Step 1] it follows that

sδ → s, Ũδ → Ũ a.e. and in H1(�).

The choice to regularize the field Ũ instead of U is motivated by the next step. Since
convolution breaks the uniaxial structure of tensor fields, we cannot preserve the trace
condition s = tr[U]. However, convolution does preserve positive-semidefiniteness,
which is a property that Ũ satisfies. Additionally, we shall recover the rank-one
constraint by means of the map � defined in (34). Because Ũ ∈ S1,0(d), we have
�(Ũ) = Ũ; in contrast, if s < 0, we have�(U) = 0when d > 2 and�(U) = −s�⊥
when d = 2, where �⊥ is the line field orthogonal to � a.e. in �.

Step 2: Preserve structural conditions. We now rebuild these conditions into the reg-
ularized pair (sδ, Ũδ) by introducing a coarser scale. Our assumption (36) implies
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Fig. 1 Regularized sign function

that the extension of s satisfies the same bound on R
d \ �. Therefore, we also have

−1 + δ0 ≤ sδ(x) ≤ 1 − δ0 on R
d . Moreover, we have λ1(Ũδ) ≤ 1 − δ0 since, given

any vector v ∈ R
d , with |v| = 1, there holds for δ sufficiently small that

|Ũδv · v| ≤ dδ|sgn(s)Uv · v ∗ ηδ| + (1 − dδ)|Rv · v| ≤ 1 − δ0,

because |λ1(U)| ≤ 1 − δ0 a.e. in � and |λ1(R)| ≤ 1 − δ0 in a neighborhood of ∂�.
We introduce a parameter σ > δ and the following regularization of the sign

function (see Fig. 1):

ρσ (t) =

⎧⎪⎨
⎪⎩
sgn(t) if σ < |t |,
2 sgn(t)

σ
(|t | − σ/2) if σ/2 < |t | ≤ σ,

0 if |t | ≤ σ/2.

An elementary verification gives

ρσ (sδ) → ρσ (s) as δ → 0, a.e. and in H1(�).

Next, we use the operator � given by (34) to define

sσ,δ := ρσ (sδ) tr[�(Ũδ)] = ρσ (sδ)|�(Ũδ)|,
Uσ,δ := ρσ (sδ)�(Ũδ).

Since tr[�(Ũδ)] = λ1(�(Ũδ)) ∈ [0, 1 − δ0] and −1 ≤ ρσ ≤ 1, we deduce that
−1 + δ0 ≤ sσ,δ ≤ 1 − δ0; thus, we have Uσ,δ = sσ,δ�σ,δ for some �σ,δ ∈ L

d−1 and
(sσ,δ,�σ,δ, Ũσ,δ) satisfies the structural condition (16).

Under assumption (18), it follows that if σ < δ0 then sδ = g > σ on ∂�, so that
ρσ (sδ) = 1 on ∂�. Thus,

sσ,δ = tr[�(Ũδ)] = tr(R) = g on ∂�,

Uσ,δ = �(Ũδ) = R on ∂�.
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Therefore, (sσ,δ,�σ,δ,Uσ,δ) ∈ Auni(g,R,M). We still need to choose σ and δ such
that (sσ,δ,Uσ,δ) is sufficiently close to (s,U) in [H1(�)]1+d×d .

Step 3: Convergence as δ → 0. Since � is Lipschitz in view of Lemma 4, it is
immediate to see that

{
sσ,δ → sσ := ρσ (s)tr[�(Ũ)] = ρσ (s)tr[Ũ]
Uσ,δ → Uσ := ρσ (s)�(Ũ) = ρσ (s)Ũ

a.e. and in L2(�),

as δ → 0. Consider now the set �σ := {|s| > σ
2 } to deal with �σ,δ . The fact that

sδ → s, Ũδ → Ũ a.e. yields ρσ (sδ(x)) �= 0, tr[�(Ũδ(x))] �= 0 for a.e. x ∈ �σ

provided δ is sufficiently small depending on x . Hence

�σ,δ = Uσ,δ

sσ,δ

= �(Ũδ)

tr[�(Ũδ)]
→ Ũ

tr[Ũ] = Ũ
|s| = � a.e. in �σ and in L2(�σ ), as δ → 0.

We next prove convergence in H1(�). For i, j = 1, . . . , d, we have

{∇[(Uσ,δ)i j ] = ρ′
σ (sδ)∇sδ�(Ũδ)i j + ρσ (sδ)∇[�(Ũδ)i j ],

∇[(Uσ )i j ] = ρ′
σ (s)∇s�(Ũ)i j + ρσ (s)∇[�(Ũ)i j ].

(38)

It suffices to check convergence term by term in the right hand sides in (38). For the
first one, we write

ρ′
σ (sδ)∇sδ�(Ũδ)i j − ρ′

σ (s)∇s�(Ũ)i j = ∇(sδ − s)ρ′
σ (sδ)�(Ũδ)i j

+ ∇s
[
ρ′

σ (sδ)�(Ũδ)i j − ρ′
σ (s)�(Ũ)i j

]
.

Since ∇(sδ − s) → 0 in L2(�) and |ρ′
σ (sδ)�(Ũδ)i j | is bounded, we deduce that

ˆ
�

|∇(sδ − s)|2∣∣ρ′
σ (sδ)�(Ũδ)i j

∣∣2dx → 0.

As for the remaining term, we write

ρ′
σ (sδ)�(Ũδ)i j − ρ′

σ (s)�(Ũ)i j = [ρ′
σ (sδ) − ρ′

σ (s)]�(Ũδ)i j + ρ′
σ (s)[�(Ũδ)i j − P(Ũ)i j ]

and notice that

ρ′
σ (sδ) − ρ′

σ (s) → 0 in L2(�),

�(Ũδ)i j remains bounded,

|�(Ũδ)i j − �(Ũ)i j | ≤ |�(Ũδ) − �(Ũ)| ≤ C |Ũδ − Ũ| → 0 in L2(�),

according to Lemma 4. This shows convergence of the first terms in the right hand
sides in (38):
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ρ′
σ (sδ)∇sδ�(Ũδ) → ρ′

σ (s)∇s�(Ũ) in L2(�).

To prove that ρσ (sδ)∇[�(Ũδ)] → ρσ (s)∇[�(Ũ)] in L2(�), we write

ρσ (sδ)∇[�(Ũδ)] − ρσ (s)∇[�(Ũ)] = (ρσ (sδ) − ρσ (s))∇[�(Ũ)]
+ ρσ (sδ)D�(Ũδ)∇(Ũδ − Ũ) + ρσ (sδ)(D�(Ũδ) − D�(Ũ))∇Ũ.

(39)

The first term in the right hand side above converges to 0 in L2(�) because
∇[�(Ũ)i j ] ∈ L2(�) and |ρσ (sδ) − ρσ (s)| is bounded and converges to 0 a.e. in
�. As for the second term in (39), we use Lemma 4 (Lipschitz property of �) and the
boundedness of ρσ to obtain

ˆ
�

ρ2
σ (sδ)|D�(Ũδ)|2|∇(Ũδ − Ũ)|2 ≤ ‖D�‖2∞

ˆ
�

|∇(Ũδ − Ũ)|2 → 0,

because Ũδ → Ũ in H1(�).
Finally, to prove that the last term in (39) converges to 0 in L2(�), we consider �σ

as above, namely

�σ = {|s| > σ/2}, � \ �σ = {|s| ≤ σ/2}.

In the region � \ �σ , we have ρσ (sδ) → ρσ (s) = 0 a.e.. Using this together with the
boundedness of |ρσ (sδ)| and |D�|, and the fact that ∇Ũ ∈ L2(�), we obtain

ˆ
�\�σ

|ρσ (sδ)|2|D�(Ũδ) − D�(Ũ)|2|∇Ũ|2 → 0.

On the other hand, we have that for a.e. x ∈ �σ , Ũ(x) = |s(x)|�(x) ∈ Sym1(d).

Also, since Ũδ → Ũ and λ1(Ũ(x)) = |s(x)| ≥ σ/2 a.e. x ∈ �σ , there exists a δ′
(depending on x) such that Ũδ(x) ∈ Sym1(d) for all δ ≤ δ′. Using that � is of class
C1 in Sym1(d), according to Lemma 3, we deduce that

D�(Ũδ) → D�(Ũ) a.e. in �σ .

Therefore, applying again the Dominated Convergence Theorem yields

ˆ
�σ

|ρσ (sδ)|2|D�(Ũδ) − D�(Ũ)|2|∇Ũ|2 → 0.

We have thus proved that

{
sσ,δ → sσ := ρσ (s)tr(Ũ)

Uσ,δ → Uσ := ρσ (s)Ũ
in H1(�), as δ → 0.
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Step 4: Convergence as σ → 0. Because Ũ = |s|�, a straightforward calculation
gives

{
sσ = ρσ (s)tr(Ũ) → s
Uσ = ρσ (s)Ũ → U

a.e. and in L2(�), as σ → 0.

To prove convergence in H1(�) we observe that Uσ = ρσ (s)Ũ = ρσ (s) sgn(s)U =
|ρσ (s)|U, whence

∇(Uσ − U) = ∇[(|ρσ (s)| − 1
)
U
] = ∇|ρσ (s)|U + (|ρσ (s)| − 1

)∇U.

We show that these two terms tend to zero separately in L2(�). First note that

∣∣∇|ρσ (s)|∣∣ = ρ′
σ (s)

∣∣∇s
∣∣ = 2

σ
χ{ σ

2 <|s|<σ }
∣∣∇s
∣∣,

whereas |U| = |s| < σ in the set {σ
2 < |s| < σ }. Since χ{ σ

2 <|s|<σ } → 0 a.e. in � as

σ → 0, and
∣∣∇s
∣∣ ∈ L2(�), we infer from the Dominated Convergence Theorem that

ˆ
�

∣∣∇|ρσ (s)|U∣∣2 → 0 as σ → 0.

On the other hand, in view of the definition of ρσ (s), we have

ˆ
�

∣∣(|ρσ (s)| − 1
)∇U

∣∣2 ≤
ˆ

�

χ{|s|≤σ }
∣∣∇U

∣∣2 =
ˆ

�

χ{|U|≤σ }
∣∣∇U

∣∣2 →
ˆ

�

χ{|U|=0}
∣∣∇U

∣∣2 = 0

because ∇v = 0 a.e. in {v = 0} for any v ∈ H1(�) [25, Ch. 5, Exercise 17]. We have
thus proved that ∇(Uσ − U) → 0 in L2(�) as σ → 0.

It remains to deal with sσ − s. We write sσ = ρσ (s) tr(sgn(s)U) = |ρσ (s)| tr(U)

to realize that

∇(sσ − s) = ∇[(|ρσ (s)| − 1
)
tr(U)

] = ∇|ρσ (s)| tr(U) + (|ρσ (s)| − 1
)|∇tr(U)|.

This expression has the same structure as ∇(Uσ − U) except that U is now replaced
by tr(U). Therefore, the same argument as before yields as σ → 0

∇(sσ − s) → 0 in L2(�).

Step 5: Choice of σ and δ. Given ε > 0, we first choose σ > 0 such that

‖Uσ − U‖H1(�) ≤ ε/2, ‖sσ − s‖H1(�) ≤ ε/2, ‖� − �χ{|s|> σ
2 }‖L2(�\S) ≤ ε/2,

because χ{|s|> σ
2 } → χ{|s|>0} a.e. as σ → 0 and�\S = {|s| > 0}. Since χ{0<|s|≤ σ

2 } →
0 a.e. and |�σ,δ| = 1, we can further reduce σ so that

‖�σ,δ‖L2({0<|s|≤ σ
2 }) ≤ ε/4.
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Finally, take δ ≤ σ such that

‖Uσ,δ − Uσ ‖H1(�) ≤ε/2, ‖sσ,δ − sσ ‖H1(�) ≤ε/2, ‖�σ,δ − �‖L2({|s|> σ
2 }) ≤ ε/4.

The proof concludes upon defining (sε,�ε,Uε) := (sσ,δ,�σ,δ,Uσ,δ). ��
With this regularization result at hand, we now address the construction of a recov-

ery sequence. Given ε > 0, let (sε,h,Uε,h) := (Ih(sε,h), Ih(Uε,h)
)
be the Lagrange

interpolants of the regularized pair (sε,Uε) constructed in Proposition 7, that are
well-defined because (sε,Uε) ∈ W 1,∞(�) × [W 1,∞(�)]d×d . We define the line field
�ε,h ∈ Th so that, at the node xi ∈ Nh it satisfies

�ε,h(xi ) =
{

Uε(xi )/sε(xi ) if sε(xi ) �= 0,
any tensor in Ld−1 if sε(xi ) = 0.

This definition guarantees that Uε,h = Ih(sε,h�ε,h), whence the structural condition
(21) is satisfied and thus (sε,h,�ε,h,Uε,h) ∈ Ah

uni(gh,Rh). Because (sε,h,Uε,h) →
(sε,Uε) in H1(�) × [H1(�)]d×d as h → 0, we readily deduce that (31) is satisfied.
Proving (32) is equivalent to showing that Eh → 0, the consistency term in (30), and
can be done using the same arguments as in [47, Lemma 3.3]. We omit the proof.

Lemma 5 (lim-sup inequality) Let (sε,�ε,Uε) ∈ Auni(g,R) be the functions con-
structed in Proposition 7 and (sε,h,�ε,h,Uε,h) ∈ Ah

uni(gh,Rh) be the discrete
functions defined above. Then,

Euni−m[sε,�ε] = lim
h→0

Eh
uni−m[sε,h�ε,h] = lim

h→0
Ẽh
uni−m[sε,hUε,h] = Ẽuni−m[sε,Uε].

5.2 Lim-inf property: weak lower semicontinuity

This property hinges on convexity of the underlying functional. However, this is not
apparent for the main energy in (13)

Ẽuni−m [̃s, Ũ] = − 1

2d

ˆ
�

|∇ s̃|2 dx + 1

2

ˆ
�

|∇Ũ|2 dx,

because of the negative sign. What restores convexity is the structural property (16),
which reads Ũ = s̃� in terms of the triple (̃s,�, Ũ), along with |Ũ| = |̃s| and
equalities

∣∣∇ s̃
∣∣ = ∣∣∇|̃s|∣∣ = ∣∣∇|Ũ|∣∣ = ∣∣∇Ũ

∣∣ a.e. �.

This reveals the fundamental convexity property of Ẽuni−m [̃s, Ũ], namely

Ẽuni−m [̃s, Ũ] = d − 1

2d

ˆ
�

∣∣∇|Ũ|∣∣2dx .
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The discretization poses a severe challenge to convexity because the discrete
variables (̃sh, Ũh) defined in (27) satisfy |̃sh | = |Ũh | only at the mesh nodes and
∇ s̃h �= ∇|sh |. However, upon flattening the matrix Uh into a vector and exploiting
that the Euclidean norm of the gradient of the flattened matrix coincides with the
Fröbenius norm |∇Uh |, we resort to [47, Lemma 3.4] to establish the following result.

Lemma 6 (weak lower semi-continuity) IfWh ∈ Uh convergesweakly in [H1(�)]d×d

toW, then

lim inf
h→0

(
− 1

d

ˆ
�

|∇ Ih |tr(Wh)||2 +
ˆ

�

|∇Wh |2
)

≥ − 1

d

ˆ
�

|∇|tr(W)||2 +
ˆ

�

|∇W|2.

5.3 Equicoercivity and compactness

The last ingredient to prove the convergence of minimum problems is some form
of compactness. This follows by deriving uniform bounds in H1 for the discrete
minimizers (sh,Uh) and (̃sh, Ũh) = (Ih |sh |, Ih(|sh |�h)).

Lemma 7 (coercivity) Given (sh,�h,Uh) ∈ Ah
uni(gh,Rh), we have

Eh
uni−m[sh,�h] ≥ d − 1

2d
max

{
‖∇Uh‖2L2(�)

, ‖∇sh‖2L2(�)

}
,

and

Eh
uni−m[sh,�h] ≥ d − 1

2d
max

{
‖∇Ũh‖2L2(�)

, ‖∇ s̃h‖2L2(�)

}
.

Proof First of all, definition (23) of Eh
uni−m in conjunction with (22) and (20) readily

yields

Eh
uni−m[sh,�h] ≥ d − 1

4d

n∑
i, j=1

ki j (δi j sh)
2 = d − 1

2d
‖∇sh‖2L2(�)

.

Moreover, because |δi j s̃h | ≤ |δi j sh | for all i, j = 1, . . . , n,we also have‖∇ s̃h‖L2(�) ≤
‖∇sh‖L2(�).

Secondly, combining (25) and (28) with Eh ≥ 0, we obtain

1

2
‖∇Uh‖2L2(�)

= Eh
uni−m[sh,�h] + 1

2d
‖∇sh‖2L2(�)

− Eh ≤ d

d − 1
Eh
uni−m[sh,�h].

Estimate d−1
2d ‖∇Ũh‖2L2(�)

≤ Eh
uni−m[sh,�h] follows similarly from (29). ��

Our next goal is to show that, from sequences of discrete functions (sh,�h,Uh) and
(̃sh,�h, Ũh) with uniformly bounded energies, it is possible to extract subsequences
that converge to admissible functions. For that purpose, we need an elementary aux-
iliary result.
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Lemma 8 (admissible tensors) Let M ∈ Sym(d) be such that tr(Mk) = [tr(M)]k for
all k = 1, . . . , d. Then, at least d − 1 eigenvalues ofM are equal to zero, i.e.,M has
rank less than or equal to 1.

We are now ready to pursue our goal. The key point in the next result is to verify
that the candidate tensor fields satisfy the rank-one constraint.

Lemma 9 (characterization of limits) Let a sequence (sh,�h,Uh) ∈ Ah
uni(gh,Rh)

satisfy

Eh
uni−m[sh,�h] ≤ � ∀h > 0,

for some constant � independent of h, and let s̃h = Ih(|sh |), Ũh = Ih(|sh |�h) as in
(27). Then, there exist subsequences (not relabeled) (sh,Uh) ∈ Xh and (̃sh, Ũh) ∈ Xh,
and functions (s,U), (̃s, Ũ) ∈ H1(�) × [H1(�)]d×d and � ∈ L∞(�;Ld−1) such
that:

• (sh,Uh) → (s,U) in L2(�)×[L2(�)]d×d , a.e in�, (sh,Uh)⇀(s,U) in H1(�)×
[H1(�)]d×d;

• (̃sh, Ũh) → (̃s, Ũ) in L2(�)×[L2(�)]d×d , a.e in�, (̃sh, Ũh)⇀(̃s, Ũ) in H1(�)×
[H1(�)]d×d;

• the limits satisfy s̃ = |s| = tr[Ũ], s = tr[U], a.e. in �;
• �h → � a.e. in � \ S, and in L2(� \ S), and U = s�, Ũ = s̃� a.e. in �;
• � admits Lebesgue gradient ∇� a.e. in � \ S and |∇Ũ|2 = |∇ s̃|2 + s̃2|∇�|2 is
valid a.e. in � \ S;

where Ld−1 is defined in (15) and S in (8).

Proof Because the discrete energy Eh
uni−m[sh,�h] is uniformly bounded, Lemma

7 guarantees that the sequences (sh,Uh) and (̃sh, Ũh) are bounded in H1(�) ×
[H1(�)]d×d . Thus, we can extract subsequences (not relabeled) such that

(sh,Uh) → (s,U) and (̃sh, Ũh) → (̃s, Ũ),

strongly in L2(�)×[L2(�)]d×d , a.e. in�, and weakly in H1(�)×[H1(�)]d×d . The
rest of the proof is about characterizing these limits. We proceed in three steps.

Step 1: Trace constraint. To show that s̃ = |s|, we use a standard approximation
estimate for the Lagrange interpolant and the fact that |∇|sh || = |∇sh | a.e.:

‖̃sh − |sh |‖L2(�) = ‖Ih |sh | − |sh |‖L2(�) ≤ Ch‖∇|sh |‖L2(�) ≤ C�h.

This, together with the triangle inequality and the fact that sh → s, s̃h → s̃ in L2(�),
give

∣∣̃s − |s|∣∣ ≤ ∣∣̃s − s̃hv| + ∣∣̃sh − |sh |
∣∣+ ∣∣|sh | − |s|∣∣→ 0 as h → 0.
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Using a similar argument, we can show that s = tr[U] and s̃ = tr[Ũ]. Indeed, since
sh = Ih(tr[Uh]), we have

‖tr[Uh] − sh‖L2(�) ≤ Ch‖∇(tr[Uh])‖L2(�) ≤ C�h,

and thus

∣∣tr[U] − s
∣∣ ≤ ∣∣tr[U] − tr[Uh]

∣∣+ ∣∣tr[Uh] − sh
∣∣+ ∣∣sh − s

∣∣→ 0 as h → 0.

Step 2: Rank-one constraint. We now show that both U and Ũ have rank at most 1;
this is a new issue relative to [47]. In order to apply Lemma 8, it suffices to check that

sk = tr[Uk], s̃k = tr[Ũk] ∀k = 2, . . . , d.

Since the two identities above follow from the same argument, we just prove the
first one. Let 2 ≤ k ≤ d. The discrete admissibility condition (21) implies that
skh(xi ) = tr[Uh(xi )k] for all xi ∈ Nh , whence Ih(skh) = Ih(tr[Uk

h]). In a similar
fashion as before, we use the triangle inequality to write

∣∣sk − tr[Uk]∣∣≤ ∣∣sk − skh
∣∣+∣∣skh− Ih(s

k
h)
∣∣+ ∣∣Ih(tr[Uk

h]) − tr[Uk
h]
∣∣+ ∣∣tr[Uk

h] − tr[Uk]∣∣.
The first and last terms in the right hand side tend to 0 a.e., because sh → s and
Uh → U. Next, we note that |∇skh | = k|sh |k−1|∇sh | ≤ d|∇sh |, because |sh | ≤ 1,
whence

‖skh − Ih(s
k
h)‖L2(�) ≤ C�h → 0, as h → 0.

The estimate

‖Ih(tr[Uk
h]) − tr[Uk

h]‖L2(�) ≤ C�h → 0, as h → 0,

follows in a similar fashion. This proves that U and Ũ have rank ≤ 1 a.e.

Step 3: Line field �. Because s = tr[U], it follows that rank(U) = 1 if and only if
s �= 0. Therefore, we can define a line field � : � \ S → L

d−1 by � = s−1U, and
extend � to S by any arbitrary tensor in L

d−1.
We next show that �h → � a.e. in � \ S and in L2(� \ S). We note that at every

element T ∈ Th , the second derivatives of sh and �h vanish, because these functions
are piecewise linear. Thus, ‖sh�h − Ih(sh�h)‖L1(T ) ≤ Ch2‖∇sh ⊗∇�h‖L1(T ), and
summing over all elements T ∈ Th , we obtain

‖sh�h− Ih(sh�h)‖L1(�) ≤Ch2‖∇sh ⊗ ∇�h‖L1(�) ≤Ch2‖∇sh‖L2(�)‖∇�h‖L2(�).

Since |�h | ≤ 1, an inverse inequality yields ‖∇�h‖L2(�) ≤ Ch−1 and therefore

‖sh�h − Ih(sh�h)‖L1(�) ≤ C�h → 0 as h → 0. (40)
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Noticing that Ih(sh�h) = Uh → U, we deduce that sh�h → U a.e. in � as h → 0.
Since sh → s a.e., for almost every x ∈ �\S it holds that sh(x) �= 0 if h is sufficiently
small, and we deduce

�h(x) = sh(x)�h(x)

sh(x)
→ U(x)

s(x)
= �(x) as h → 0.

Convergence �h → � in L2(� \ S) now follows by the Dominated Convergence
Theorem, as |�h | ≤ 1. Finally, to prove that Ũ = s̃� a.e. in �, in the same fashion
as (40) we can show that ‖̃sh�h − Ih (̃sh�h)‖L1(�) → 0 as h → 0 which, recalling
that Ũh = Ih (̃sh�h) → Ũ, gives s̃h�h → Ũ. Because s̃h → s̃ and �h → � a.e. in
� \ S, it follows that Ũ = s̃� a.e. in �.

Step 4: Lebesgue gradient and orthogonality. At the Lebesgue points of (̃s, Ũ) and
their weak gradients (∇ s̃,∇Ũ), the first order Taylor expansions exist and define
superlinear approximations of (̃s, Ũ) in the L2 sense [26, Chapter 6.1.2]. This defines
L2-gradients for (̃s.Ũ) which coincide with the weak gradients. At each Lebesgue
point x ∈ � \ S of (̃s,�, Ũ,∇ s̃,∇Ũ) we define the quantity ∇�(x) to be

∇�(x) := ∇Ũ(x) − ∇ s̃(x) ⊗ �(x)

s̃(x)
.

To verify that ∇�(x) is the L2-gradient of � at x , we have to show that the first order
Taylor expansion around y = x gives a superlinear approximation of �(y) in the L2

sense. Therefore, we let Bε(x) denote the ball centered at x of radius ε and observe
that

 
Bε(x)

∣∣∣�(y) − �(x) − ∇�(x)(y − x)
∣∣∣2dy

� 1

s̃(x)2

 
Bε(x)

∣∣∣Ũ(y) − Ũ(x) − ∇Ũ(x)(y − x)
∣∣∣2dy

+ 1

s̃(x)2

 
Bε(x)

∣∣∣̃s(y) − s̃(x) − ∇ s̃(x)(y − x)
∣∣∣2∣∣�(y)

∣∣2dy

+
∣∣∇ s̃(x)

∣∣2
s̃(x)2

 
Bε(x)

∣∣∣�(y) − �(x)
∣∣∣2 |y − x |2dy = o(ε2)

as ε → 0 because the first order Taylor expansions of (̃s, Ũ) converge superlinearly
at x , which is a Lebesgue point of � that belongs to L∞(�), and s̃(x) > 0 and ∇ s̃(x)
are fixed.

We next claim that ∇� : ∇ s̃ ⊗ � = 0 and note that this is true if and only if
∇Ũ : ∇ s̃ ⊗ � = |∇ s̃ ⊗ �|2 at any Lebesgue point x ∈ � \ S as above. To see this,
we compute at x

|∇ s̃ ⊗ �|2 =
d∑

i, j,k=1

(∂i s̃)
2(� j,k)

2
d∑

i=1

(∂i s̃)
2 = |∇ s̃|2,
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and

∇Ũ : ∇ s̃ ⊗ � =
d∑

i, j,k=1

∂i Ũ j,k ∂i s̃ � j,k = 1

s̃

d∑
i=1

∂i s̃
d∑

j,k=1

∂i Ũ j,k s̃� j,k

= 1

s̃

d∑
i=1

∂i s̃
d∑

j,k=1

∂i Ũ j,k Ũ j,k = 1

2̃s

d∑
i=1

∂i s̃ ∂i |Ũ|2

= 1

2̃s

d∑
i=1

∂i s̃ ∂i s̃
2 =

d∑
i=1

(∂i s̃)
2 = |∇ s̃|2.

This shows the orthogonality relation |∇Ũ|2 = |∇ s̃|2 + s̃2|∇�|2 at every Lebesgue
point x ∈ � \ S of (̃s,�, Ũ,∇ s̃,∇Ũ), and concludes the proof. ��

5.4 0-convergence

We have collected all the elements needed to prove the main theoretical result of this
work. Using a standard argument [15,16,21], we can prove the convergence of discrete
global minimizers.

Theorem 1 (convergence of discrete global minimizers) Let (sh,�h,Uh) ∈ Ah
uni

(gh,Rh) be a sequence of global minimizers of the discrete total energy Eh
uni−t defined

in (26). Then, every cluster point (s,�,U) belongs toAuni(g,R) and (s,U) is a global
minimizer of the continuous total energy Ẽuni−t given in (14). Moreover, � admits a
Lebesgue gradient a.e. in the set � \ S so that the continuous main energy

Euni−m[s,�] := d − 1

d

ˆ
�\S

|∇s|2 + 1

2

ˆ
�\S

s2|∇�|2

is well defined and satisfies Euni−m[s,�] = Ẽuni−m[s,U].

Proof If limh→0 Eh
uni[sh,�h] = ∞, then Auni(g,R) is empty because otherwise

Lemma 5 (lim-sup inequality) would imply the existence of a triple (sh,�h,Uh) ∈
Ah

uni(gh,Rh) with uniformly bounded discrete total energy Eh
uni[sh,�h]. In this case

there is nothing to prove. We thus assume there is some � > 0 such that

lim sup
h→0

Eh
uni−t[sh,�h] ≤ �.

Applying Lemma 7 (coercivity) and Lemma 9 (characterization of limits), we can
extract subsequences (sh,Uh) → (s,U), (̃sh, Ũh) → (̃s, Ũ), converging a.e. in �,
strongly in L2(�)×[L2(�)]d×d andweakly in H1(�)×[H1(�)]d×d , and such that the
limits satisfy the structural condition (16). By Lemma 6 (weak lower semi-continuity)
and the energy inequality (29), we have
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Ẽuni−m [̃s, Ũ] = − 1

2d

ˆ
�

∣∣∇|tr[Ũ]|∣∣2dx + 1

2

ˆ
�

∣∣∇Ũ
∣∣2dx

≤ lim inf
h→0

(
− 1

2d

ˆ
�

|∇tr[Ũh]|2dx + 1

2

ˆ
�

|∇Ũh |2dx
)

≤ lim inf
h→0

Eh
uni−m[sh,�h].

Moreover, ψLdG(sh) → ψLdG(s) a.e. in � because sh → s a.e., whence applying
Fatou’s Lemma yields

ELdG,bulk[s] = 1

ηB

ˆ
�

ψLdG(s)dx ≤ lim inf
h→0

ˆ
�

1

ηB
ψLdG(sh)dx = lim inf

h→0
Eh
LdG,bulk[sh].

We have thus shown that

Ẽuni−m [̃s, Ũ] + ELdG,bulk[s] ≤ lim inf
h→0

(
Eh
uni−m[sh,�h] + Eh

LdG,bulk[sh]
)

= lim inf
h→0

Eh
uni−t[sh,�h].

(41)

Next, we prove that Ẽuni−m [̃s, Ũ] = Euni−m[s,�]. This follows from the orthog-
onality relation |∇Ũ|2 = |∇ s̃|2 + s̃2|∇�|2 of Lemma 9 (characterization of limits),
valid a.e. in � \ S, as well as |∇Ũ| = |∇ s̃| = 0 a.e. in S [25, Ch. 5, Exercise 17].
Therefore, making use of properties s̃ = |s| (from Lemma 9) and |∇ s̃| = |∇s|, we
infer that

Ẽuni−m [̃s, Ũ] = − 1

2d

ˆ
�\S

|∇ s̃|2 + 1

2

ˆ
�\S

|∇Ũ|2

= d − 1

2d

ˆ
�\S

|∇ s̃|2 + 1

2

ˆ
�\S

s̃2|∇�|2 = Euni−m[s,�].

This, together with (41), shows that the total energy satisfies

Euni−t[s,�] ≤ lim inf
h→0

Eh
uni−t[sh,�h]. (42)

Next, given ε > 0, we consider (t,N,V) ∈ Auni(g,R) such that

Euni−t[t,N] ≤ inf
(t′,N′),∈Auni(g,R)

Euni−t[t ′,N′] + ε/2

and, in view of Proposition 7, we can take (tε,Nε,Vε) ∈ Auni(g,R) with (tε,Vε) ∈
W 1,∞(�) × [W 1,∞(�)]d×d such that

Euni−m[tε,Nε] = Ẽuni−m[tε,Vε] ≤ Ẽuni−m[t,V] + ε/4 = Euni−m[t,N] + ε/4.
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Moreover, because tε → t a.e. in� so doesψLdG(tε) → ψLdG(t). Since (19) and (37)
imply that |ψLdG(tε)| is uniformly bounded, we can apply theDominated Convergence
Theorem to deduce that

ELdG,bulk[t]= 1

ηB

ˆ
�

lim
ε→0

ψLdG(tε) dx = lim
ε→0

1

ηB

ˆ
�

ψLdG(t) dx = lim
ε→0

ELdG,bulk[tε].

Therefore, we can find (tε,Nε,Vε) ∈ Auni(g,R) such that

Euni−t[tε,Nε] ≤ inf
(t′,N′),∈Auni(g,R)

Euni−t[t ′,N′] + ε. (43)

We next consider the Lagrange interpolants tε,h = Ih(tε),Vε,h = Ih(Vε), and set
Nε,h(xi ) = Vε(xi )/tε(xi ) if tε(xi ) �= 0 and Nε,h(xi ) equal to any tensor in L

d−1

otherwise. By the same arguments as before, it follows that

ELdG,bulk[tε] = 1

ηB

ˆ
�

lim
h→0

ψLdG(tε,h)dx = lim
h→0

1

ηB

ˆ
�

ψLdG(tε,h)dx = lim
h→0

Eh
LdG,bulk[tε,h].

Using Lemma 5 (lim-sup inequality) in conjunction with this estimate, we arrive at

Euni−t[tε,Nε] = lim
h→0

Eh
uni−t[tε,h,Nε,h],

and therefore, by (42) and (43), the total energies verify

Euni−t[s,�] ≤ lim inf
h→0

Eh
uni−t[sh,�h] ≤ lim

h→0
Eh
uni−t[tε,h,Nε,h] ≤ inf

(t′,N′),∈Auni(g,R)
Euni−t[t ′,N′] + ε.

Since ε > 0 is arbitrary, this proves that (s,�) is a global minimizer of Euni−t . ��

In case there is a unique global minimizer of the continuous total energy Euni−t ,
Theorem 1 implies that the entire sequence of discrete global energy minimizers
converges to it strongly in L2 and weakly in H1. We also point out that a well-known
result in�-convergence theory [37] guarantees that, for every isolated local minimizer
of Euni−t there is a sequence of local minimizers of Eh

uni−t that converges to it in the
same sense. However, in either case, because of the lack of continuous dependence on
data as well as regularity theory, we cannot derive convergence rates.

6 Computation of discrete minimizers

We next discuss a gradient flow algorithm for the computation of discrete minimizers.
Recall that, according to (26), we write the discrete total energy as

Eh
uni−t[sh,�h] = Eh

uni−m[sh,�h] + Eh
LdG,bulk[sh],
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with main and bulk energies

Eh
uni−m[sh,�h] = d − 1

4d

N∑
i, j=1

ki j
(
δi j sh

)2 + Eh
uni−i[sh,�h],

Eh
LdG,bulk[sh] = 1

ηB

ˆ
�

ψLdG(sh)dx,

where Eh
uni−i[sh,�h] is the interaction energy

Eh
uni−i[sh,�h] = 1

4

N∑
i, j=1

ki j

(
sh(xi )2 + sh(x j )2

2

)
|δi j�h |2.

Tangential variations The algorithm we discuss here is an alternating direction
method that, at each step k ≥ 0, first performs a tangential variation on the current
line field �h = nkh ⊗ nkh , then normalizes the update, and finally performs a gradient
flow step on the current degree of orientation sh . The director field nkh belongs to

Nh = {vh ∈ [Sh]d : vh(xi ) ∈ S
d−1 ∀xi ∈ Nh},

whereas a tangential variation tkh belongs to the space

N
⊥
h (nkh) = {vh ∈ [Sh]d : vh(xi ) · nkh(xi ) = 0 ∀xi ∈ Nh}.

It is easy to see that tangential variations Tk
h of �k

h are of the form

Tk
h = nkh ⊗ tkh + tkh ⊗ nkh

with tkh ∈ N
⊥
h (nkh). However, in our algorithm we shall update the line field �̂

k+1
h by

�̂
k+1
h = (nkh + tkh

)⊗ (nkh + tkh
) = �k

h + Tk
h + tkh ⊗ tkh .

The extra quadratic term can be handled if we have control of tkh in an H1(�)-type
space. This dictates the metric of the gradient flow. Bartels and Raisch first proposed
the metric H1(�) provided skh > 0 is constant [12]. In our case, skh may vary across the
domain and may even vanish to allow for the formation of defects. Near the singular
set, where skh is small, it is critical to allow for relatively large variations tkh in order to
accelerate the algorithm. We achieve this via the weight ω = (skh)

2 and corresponding
weighted H1-norm

‖v‖H1
ω(�) :=

(ˆ
�

|v(x)|2 dx +
ˆ

�

|∇v(x)|2 ω(x) dx

)1/2

. (44)
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Moreover, tkh must vanish on the Dirichlet part �� = �U of the boundary so that

�̂
k+1
h = M on ��. We thus introduce the subspace H1

��
(�) of H1(�) of functions

with vanishing trace on ��.

Discrete gradient flow The algorithm reads as follows. Given (s0h ,�
0
h,U

0
h) ∈

Ah
uni(gh,Rh), with �0

h = n0h ⊗ n0h , and a time step τ > 0, iterate Steps 1–3 for
k ≥ 0:

(1) Weighted tangent flow step for �h : find tkh ∈ N
⊥
h (nkh) ∩ [H1

��
(�)]d and Tk

h =
nkh ⊗ tkh + tkh ⊗ nkh such that

1

τ

ˆ
�

(
tkh · vh + ∇tkh : ∇vh |skh |2

)+ δ�h E
h
uni−i[skh ,�k

h + Tk
h;Vh] = 0 (45)

for all Vh = nkh ⊗ vh + vh ⊗ nkh, vh ∈ N
⊥
h (nkh) ∩ [H1

��
(�)]d .

(2) Projection: update �k+1
h ∈ Th by

�k+1
h (xi ) := nkh(xi ) + tkh(xi )

|nkh(xi ) + tkh(xi )|
⊗ nkh(xi ) + tkh(xi )

|nkh(xi ) + tkh(xi )|
∀xi ∈ Nh . (46)

(3) Gradient flow step for sh : find sk+1
h ∈ Sh(gh) such that

1

τ

ˆ
�

(sk+1
h − skh) zh + δsh E

h
uni−t[sk+1

h ,�k+1
h ; zh] = 0 ∀zh ∈ Sh(0).

The symbols δ�h E
h
uni−m and δsh E

h
uni−m stand for the standard first variations of these

functionals, whereas δsh E
h
LdG,bulk uses the following convex splitting method [54,64]

to obtain an unconditionally stable scheme. Letψc,ψe be convex functions so that the
double-well potential splits as ψLdG(s) = ψc(s) − ψe(s) and take

δsh E
h
LdG,bulk[sk+1

h ; zh] := 1

ηB

ˆ
�

(
ψ ′
c(s

k+1
h ) − ψ ′

e(s
k
h)
)
zh dx ∀ zh ∈ Sh(0). (47)

EnergydecreasepropertyNote that the discrete interaction energy (24) can bewritten
equivalently as

Eh
uni−i[skh ,�k

h] = 1

8

∑
i, j

ki j
(
sh(x1)

2 + sh(x j )
2
)(

1 − �k
h(xi ) : �k

h(x j )
)
.

To show that Step 2 decreases this energy, namely

Eh
uni−i[skh ,�k+1

h ] ≤ Eh
uni−i[skh , �̂k+1

h ], (48)

we recall that ki j ≥ 0 if i �= j and invoke the following result from [12, Lemmas 3
and 4], but omit its proof.
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Lemma 10 (monotonicity) Let the mesh Th be weakly acute (cf. (20)) and let vh ∈ Uh

be such that |vh(xi )| ≥ 1 for all xi ∈ Nh. The discrete tensor fields Vh, Ṽh ∈ Uh,

Vh(xi ) = vh(xi ) ⊗ vh(xi ), Ṽh(xi ) = vh(xi )
|vh(xi )| ⊗ vh(xi )

|vh(xi )| .

satisfy the inequality

1 − Vh(xi ) : Vh(x j ) ≤ 1

2
|δi j Ṽh |2.

We also need the following key property of (47) (cf. [47, Lemma 4.1], for example).

Lemma 11 (convex-concave splitting) Given skh , s
k+1
h ∈ Sh, we have

ˆ
�

ψLdG(sk+1
h ) dx −

ˆ
�

ψLdG(skh) dx ≤ δsh E
h
LdG,bulk[sk+1

h ; sk+1
h − skh ].

Next, we prove that the discrete gradient flow algorithm is energy-decreasing.

Theorem 2 (energy decrease) If the meshes are weakly acute and τ ≤ C0hd/2, with
C0 proportional to Eh

uni−t[s0h ,�0
h]−1/2, then it holds that

Eh
uni−t[sKh , �K

h ] + 1

2τ

⎛
⎝K−1∑

k=0

‖tkh‖2H1
ω(�)

+ ‖sk+1
h − skh‖2L2(�)

⎞
⎠ ≤ Eh

uni−t[s0h , �0
h] ∀K ≥ 1,

where H1
ω(�) is the weighted Sobolev space defined in (44). Therefore, the algorithm

stops in a finite number of steps: given a tolerance ε, there exists K = Kε ≥ 1 such
that 1

τ
(‖tKh ‖2

H1
ω(�)

+ ‖sKh − sK−1
h ‖2) < ε.

Proof We proceed as in [12, Lemma 6] except for the presence of the variable order
parameter skh and the weighted H1

ω(�)metric.Wemake the induction assumption that

Eh
uni−t[skh ,�k

h] ≤ � := Eh
uni−t[s0h ,�0

h].
for k ≥ 0 and show the estimate

1

2τ

(
‖tkh‖2H1

ω(�)
+ ‖sk+1

h − skh‖2L2(�)

)
+ Eh

uni−t[sk+1
h ,�k+1

h ] ≤ Eh
uni−t[skh ,�k

h].

Upon summation on k this implies the asserted estimate.We split the proof into several
steps.

Step 1: Explicit expression for the solution to (45). In order to simplify the notation,
we write

σi j := ki j
skh(xi )

2 + skh(x j )
2

2
≥ 0, if i �= j,

�̃
k+1
h := �k

h + Tk
h .

(49)
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We set vh = tkh in (45), and thus Vh = Tk
h , to obtain

1

τ
‖tkh‖2H1

ω(�)
+ 1

2

∑
i, j

σi j (δi j�̃
k+1
h ) : (δi jTk

h) = 0.

The elementary equality 2(δi j�̃
k+1
h ) : (δi jTk

h) = |δi j�̃k+1
h |2 − |δi j�̃k

h |2 + |δi jTk
h |2

and (24) yield

1

2

∑
i, j

σi j (δi j�̃
k+1
h ) : (δi jTk

h) = Eh
uni−i[skh , �̃k+1

h ] − Eh
uni−i[skh ,�k

h] + Eh
uni−i[skh ,Tk

h],

and therefore we deduce

1

τ
‖tkh‖2H1

ω(�)
+ Eh

uni−i[skh , �̃k+1
h ] + Eh

uni−i[skh ,Tk
h] = Eh

uni−i[skh ,�k
h]. (50)

Step 2: Monotonicity of projection. We define the updated line field to be

�̂
k+1
h = (nkh + tkh) ⊗ (nkh + tkh),

and recall that �k+1 defined in (46) is its nodewise normalization. From Lemma 10,
we have the monotonocity relation (48):

Eh
uni−i[skh ,�k+1

h ] ≤ Eh
uni−i[skh , �̂k+1

h ].

Step 3: Bound of the energy Eh
uni−i[skh , �̂k+1

h ]. Expanding the expression for �̂
k+1
h ,

we have

�̂
k+1
h = �̃

k+1
h + tkh ⊗ tkh .

Therefore, by Cauchy-Schwarz,

Eh
uni−i[skh , �̂k+1

h ] = Eh
uni−i[skh , �̃k+1

h ] + Eh
uni−i[skh , tkh ⊗ tkh ] + 1

2

∑
i, j

σi j (δi j �̃
k+1
h ) : δi j (tkh ⊗ tkh)

≤ Eh
uni−i[skh , �̃k+1

h ] + Eh
uni−i[skh , tkh ⊗ tkh ] + 2Eh

uni−i[skh , �̃k+1
h ]1/2Eh

uni−i[skh , tkh ⊗ tkh ]1/2,

whence

Eh
uni−i[skh , �̂k+1

h ] ≤ Eh
uni−i[skh , �̃k+1

h ]
+ Eh

uni−i[skh , tkh ⊗ tkh]1/2
(
Eh
uni−i[skh , tkh ⊗ tkh]1/2 + 2Eh

uni−i[skh , �̃k+1
h ]1/2

)
.

(51)

123



J. P. Borthagaray et al.

Invoking the induction hypothesis, we readily see that Eh
uni−i[skh ,�k

h] ≤ �, and using
(50) gives

1

τ
‖tkh‖2H1

ω(�)
+ Eh

uni−i[skh , �̃k+1
h ] ≤ �. (52)

To bound Eh
uni−i[skh , tkh ⊗ tkh], we write

δi j (tkh ⊗ tkh) = δi j tkh ⊗ tkh(x j ) + tkh(xi ) ⊗ δi j tkh,

and thereby obtain

δi j (tkh ⊗ tkh) : δi j (tkh ⊗ tkh) ≤ C |δi j tkh |2 max
{|tkh(xi )|, |tkh(x j )|}2.

Using (49), we deduce

Eh
uni−i[skh , tkh ⊗ tkh] ≤ C

∑
i, j

σi j |δi j tkh |2 max
{|tkh(xi )|, |tkh(x j )|}2

≤ C
∑
T∈Th

|tkh |2H1
ω(T )

∥∥∥tkh
∥∥∥2
L∞(T )

≤ C |tkh |2H1
ω(�)

‖tkh‖2L∞(�).

Since the mesh Th is shape regular and quasi-uniform, we resort to the inverse inequal-
ity ‖tkh‖L∞(�) ≤ Ch−d/2‖tkh‖L2(�) and rewrite the above expression as follows:

Eh
uni−i[skh , tkh ⊗ tkh] ≤ Ch−d |tkh |2H1

ω(�)
‖tkh‖2L2(�)

≤ Ch−d‖tkh‖4H1
ω(�)

.

Consequently, (52) yields the bound

Eh
uni−i[skh , tkh ⊗ tkh]1/2 + 2Eh

uni−i[skh , �̃k+1
h ]1/2 ≤ Ch−d/2τ� + 2�1/2 ≤ 4�1/2,

provided τ ≤ C�−1/2hd/2. Inserting this expression into (51) results in

Eh
uni−i[skh , �̂k+1

h ] ≤ Eh
uni−i[skh , �̃k+1

h ] + Ch−d/2�1/2‖tkh‖2H1
ω(�)

.

Step 4: Bound of the energy Eh
uni[skh ,�k+1

h ]. Combining this estimate with (50) and
(48), we find

Eh
uni−i[skh ,�k

h] ≥ 1

τ
‖tkh‖2H1

ω(�)
+ Eh

uni−i[skh , �̃k+1
h ]

≥ 1

τ

(
1 − C�1/2h−d/2τ

)
‖tkh‖2H1

ω(�)
+ Eh

uni−i[skh , �̂k+1
h ]

≥ 1

2τ
‖tkh‖2H1

ω(�)
+ Eh

uni−i[skh ,�k+1
h ],
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provided τ ≤ C�−1/2hd/2 with a geometric constant C perhaps smaller than before.
Since the scalar variable skh remains fixed in the gradient flow for �k+1

h , adding
Eh
uni−s[skh ] to both sides of the above inequality gives

1

2τ
‖tkh‖2H1

ω(�)
+ Eh

uni−m[skh ,�k+1
h ] ≤ Eh

uni−m[skh ,�k
h]. (53)

Step 5: Gradient flow for sh . Taking zh = sk+1
h −skh ∈ Sh(0) in step 3 of the algorithm,

and using the elementary identity

2sk+1
h

(
sk+1
h − skh

) = ∣∣sk+1
h

∣∣2 − ∣∣skh ∣∣2 + ∣∣sk+1
h − skh

∣∣2,
we readily obtain

Eh
uni−m[sk+1

h ,�k+1
h ] − Eh

uni−m[skh ,�k+1
h ] ≤ δsh E

h
uni−m[sk+1

h ,�k+1
h ; sk+1

h − skh ].

In addition, applying Lemma 11 leads to

Eh
LdG,bulk[sk+1

h ] − Eh
LdG,bulk[skh ] ≤ δsh E

h
LdG,bulk[sk+1

h ; sk+1
h − skh ],

and together with the previous inequality implies

Eh
uni−t[sk+1

h , �k+1
h ] − Eh

uni−t[skh , �k+1
h ] ≤ δs E

h
uni−t[sk+1

h , �k+1
h ; sk+1

h − skh ] = − 1

τ
‖sk+1

h − skh‖2L2(�)
.

Adding this expression to (53) yields the desired estimate and completes the proof. ��
Remark 8 (CFL condition) The stability constraint τ ≤ CEuni−t[s0h ,�0

h]−1/2hd/2 is
due to the weighted H1

ω(�) norm and the use of an inverse estimate between L∞(�)

and L2(�). If theweightω = (skh)
2 is bounded away fromzero, then theCFL condition

ismilder, namely τ ≤ CEuni−t[s0h ,�0
h]−1/2hd/2−1| log h| [12]. Theweightω is critical

because it accelerates the algorithm upon allowing large variations of �k
h near defects

where it becomes small.

Remark 9 (convergence to stationary points) Even though the discrete gradient flow
algorithm described in this section is energy-decreasing, it is not guaranteed to reach
a global minimizer of Eh

uni−t . The discrete equilibrium configuration may be a local
minimizer but is very unlikely to be a saddle point. This is because the latter would
not be stable under small perturbations induced by round-off errors.

7 Numerical experiments

To illustrate our method, we present computational experiments carried out with the
MATLAB/C++ toolbox FELICITY [62]. We first consider a problem for the Landau
- de Gennes energy with orientable Dirichlet boundary conditions. In such a case, the
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Fig. 2 Minimizing configurations for the Landau-de Gennes and Ericksen energies in 2-D for the setting
discussed in Sect. 7.1. Left: degree of orientation for both models (left is uniaxial Landau-de Gennes, right
is Ericksen). Right: line field � (left) and director field n (right) are displayed. In this case, the line field is
orientable, so both the Ericksen model and uniaxially constrained model give the same result

resulting line field of degree +1 is orientable, and the energy minimization problem
is equivalent to the one given by minimizing the Ericksen energy; this allows us
to compare with [47]. Afterwards, we illustrate the method’s ability to capture non-
orientable defects of degree+1/2 in two and three dimensional experiments, the latter
leading to a non-straight line defect. We conclude with a Saturn-ring defect of degree
−1/2 around a colloidal spherical inclusion. In all our experiments, mesheswere taken
to be weakly acute (cf. (20)).

7.1 Ericksen versus Landau de Gennes

It is known that, if the line field is orientable, then a director field representation is
equivalent. Thus, we compare the solutions for the Ericksen and the Landau-deGennes
model with orientable boundary conditions. In this first experiment we are not taking
into account the double-well potential. If � = m⊗m is an orientable line field, then
a straightforward calculation gives |∇�|2 = 2|∇m|2, and therefore

Euni−m[s,�] = d − 1

2d

ˆ
�

|∇s|2dx +
ˆ

�

s2|∇m|2dx = 2Eerk−m[s,m],

where the Ericksen energy corresponds to κ = d−1
2d .

We consider � = (0, 1)2, and impose the Dirichlet boundary conditions on ∂�:

s = 1

2
, n = (x, y) − (1/2, 1/2)

|(x, y) − (1/2, 1/2)| , � = n ⊗ n,

and compare theminimizers of the discrete energies Eh
erk−m (with κ = 1

4 ) and Eh
uni−m.

We initialize both gradient flows with s = 1/2 and a point defect away from the center.
Figure 2 shows the equilibrium configurations for both models. For the solutions
displayed, we computed Eh

uni−m[sh,LdG,�] = Eh
erk−m[sh,Erk,n] ≈ 1.234, although

min(sh,LdG) ≈ 2.3 × 10−4 while min(sh,Erk) ≈ 5.8 × 10−5.
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Fig. 3 A +1/2 degree point defect in 2-D (Sect. 7.2). Left: the degree-of-orientation s is plotted with the
singular region at the center. Right: the line field � is plotted and colored based on s. The time step for the
gradient flow was τ = 10−2. This configuration cannot be captured by the Ericksen (director) model

7.2 Non-orientable field in two dimensions

Next, we simulate a non-orientable defect in the unit square � = (0, 1)2. We set the
double-well potential with a convex splitting

ψLdG(s) = ψc(s) − ψe(s)

:= (26.20577s2 + 1) − (−4.1649313s4 + 30.2874s2),

with ηB = 1/16, and note that ψLdG has a local maximum at s = 0 and a global
minimum at s = s∗ := 0.7 with ψLdG(s∗) = 0 (by symmetry in two dimensions,
ψLdG(−s∗) = 0). We impose Dirichlet boundary conditions for both s and � on
�s = �� = ∂�,

s = s∗, n(x, y) = (cos θ, sin θ), � = n ⊗ n,

θ(x, y) = 1

2
atan2

(
y − 1/2

x − 1/2

)
,

(54)

where atan2 is the four-quadrant inverse tangent function, i.e. the boundary conditions
for � correspond to a +1/2 degree defect centered at (0.5, 0.5). We initialize the
gradient flow with s = s∗ and � corresponding to a +1/2 degree defect located at
(0.7167, 0.2912), which has initial energy Eh

uni[sh,�h] = 18.5468. We show the
final equilibrium configurations of s and the tensor field � in Fig. 3. The method
clearly captures the non-orientable defect at the domain center. The final state has
Eh
uni[sh,�h] = 2.1192 and min(sh) ≈ 4.734 × 10−3.
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Fig. 4 A +1/2 degree line defect in a 3-D cube domain (Sect. 7.3). Left: line field � is shown at levels
z = 0.0, 0.5, 1.0 (colored by s). Right: The s = 0.05 iso-surface is shown that contains the line defect. In
each horizontal plane, the line field exhibits a +1/2 degree point defect in 2-D. The twisting of the line
defect is due to the choice of boundary conditions

7.3 Line defect in three dimensions

We simulate a non-orientable line defect in the unit cube (0, 1)3. The double-well
potential with a convex splitting is given by

ψLdG(s) = ψc(s) − ψe(s)

:= (36.7709s2 + 1) − (−7.39101s4 + 4.51673s3 + 39.27161s2),

with ηB = 1/16, and note that ψLdG has a local maximum at s = 0 and a global
minimum at s = s∗ := 0.700005531 with ψLdG(s∗) = 0.

The boundary conditions for�were constructed in the following way. Let θ0(x, y)
define a+1/2 degree defect in the plane, located at (0.3, 0.3) similar to (54). Likewise,
let θ1(x, y) define a+1/2 degree defect in the plane, located at (0.7, 0.7). Next, define
the Dirichlet boundary �s = �� = ∂� \ �o, where �o := � ∩ ({z = 0} ∪ {z = 1}).
Then, the Dirichlet conditions are

s = s∗, n(x, y) = (cos θ, sin θ, 0), � = n ⊗ n,

θ(x, y, z) = (1 − z)θ0(x, y) + zθ1(x, y) + π z,

with vanishing Neumann condition on �o. Basically, the boundary conditions consist
of rotating a planar +1/2 degree point defect as a function of z. The solution is
computedwith the gradient flow approach (45) and time step τ = 10−3, and initialized
with

s = s∗, n = (cosα, sin α, 0), � = n ⊗ n, α(x, y, z) = θ2(x, y) + π z,
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Fig. 5 Horizontal slices of the +1/2 degree line defect in a 3-D cube domain shown in Fig. 4 (Sect. 7.3).
Top: left is z = 0.2, right is z = 0.4. Bottom: left is z = 0.6, right is z = 0.8. The location of the point
defect in each plane rotates with the boundary conditions

where θ2(x, y) corresponds to a +1/2 degree defect centered at (0.5, 0.5); this con-
figuration has an initial energy of Eh

uni[sh,�h] = 10.013214.
Figure 4 shows three dimensional views of the minimizing configuration, where

as Fig. 5 shows four horizontal slices of the solution. A non-orientable line defect is
observed, with final energy Eh

uni[sh,�h] = 5.2042593769 and min(sh) ≈ 2.145 ×
10−2.

7.4 Saturn-ring defect

Next, we simulate the Saturn-ring defect [2,32] using the double well potential from
Sect. 7.3 with ηB = 0.09. The domain � is a “prism” type of cylindrical domain with
square cross-section [−0.25

√
2, 0.75

√
2]2, is centered about the z = 0 plane, and has
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Fig. 6 Saturn-ring defect in 3-D (Sect. 7.4). Left: the line field is plotted with color scale based on the
degree-of-orientation s; the−1/2 degree defect is visible on the left and right sides of the spherical inclusion
(discretized sphere). Right: a view of the s = 0.25 isosurface in blue that contains the ring defect. The time
step for the gradient flow was τ = 10−3. The configuration is symmetric about the vertical axis. Away
from the sphere, the solution is s = 0.7 and � = (0, 0, 1) ⊗ (0, 0, 1)

height 6. The domain contains a spherical inclusion, with boundary �i , centered at
(
√
2/4,

√
2/4, 0) with radius 0.283/

√
2. See [48, Sec. 5.1.1] for a precise definition.

We use the following Dirichlet boundary conditions on �s = �� = ∂�,

n = ν, on �i , n = (0, 0, 1)T , on �o, � = n ⊗ n, on ∂�, s = s∗, on ∂�,

where �o is the outer boundary of �, ν is the outer normal vector of the spherical
inclusion, and s∗ is the global minimum of the double well potential ψ . The initial
conditions in� for the gradient flow are: s = s∗ and n = (0, 0, 1)T , which have initial
energy Eh

uni[sh,�h] = 7.59906.
We show the final equilibrium configurations of s and the tensor field � in Fig. 6.

A cross-section of the solution is shown that illustrates the −1/2 degree nature of the
Saturn-ring defect (note: the defect set of a ring about the equator of the inclusion).
The final state has Eh

uni[sh,�h] = 2.98004 and min(sh) ≈ 5.026× 10−2. In contrast
to our previous experiments using the Ericksen model [48], this new simulation is
consistent with the physics of liquid crystals [2,32].

8 Conclusions

We introduced a structure-preserving finite element method for a uniaxially-
constrained Q-tensor model of nematic liquid crystals. In such a model, the energy is
a degenerate functional of a tensor that must satisfy a rank-one constraint a.e. in the
physical domain. We proved the �-convergence of the discrete energies as the mesh
size tends to zero and developed an energy-decreasing gradient flow algorithm for the
computation of discrete solutions. The numerical experiments show that this method
is capable of capturing high-dimensional and non-orientable defect structures.
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