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Abstract

We consider the simplest one-constant model, put forward by J. Eriksen, for
nematic liquid crystals with variable degree of orientation. The equilibrium state is
described by a director field n and its degree of orientation s, where the pair (n, s)
minimizes a sum of Frank-like energies and a double well potential. In particular, the
Euler-Lagrange equations for the minimizer contain a degenerate elliptic equation for
n, which allows for line and plane defects to have finite energy. Using a special
discretization of the liquid crystal energy, and a strictly monotone energy decreasing
gradient flow scheme, we present a simulation of a plane-defect in three dimensions to
illustrate our method.

1 INTRODUCTION

Complex fluids are ubiquitous in nature and industrial processes and are critical for
modern engineering systems [20, 11]. Liquid crystals [27, 16, 14, 3, 2, 10, 6, 21, 22, 4, 26]
are a relatively simple example of a material with microstructure that may or may not be
immersed in a fluid with a free interface [30, 29].

Several numerical methods for liquid crystals have been proposed [5]. Some are based
on harmonic mappings [7, 1, 15, 19, 23] where a unit vector field (called the director field)
is used to represent the orientation of liquid crystal molecules; in these methods, they only
model the equilibrium state. Some methods for the dynamics of liquid crystals can be
found in [18, 24, 28].

The main result of our work is a finite element method (FEM) with provable stability
and convergence properties, which we use to explore equilibrium configurations of liquid
crystals via gradient flows. The equilibrium theory, found in [17, 16, 27], deals with a
director field n, that represents the orientation of liquid crystal molecules, and a scalar
parameter s, −1/2 < s < 1, that represents the degree of alignment that molecules have
with respect to n. The main purpose of this model is to represent line and plane defects
with finite elastic/free energy. Some related work can be found in [12, 13, 22, 21, 25, 4, 26].
The most relevant work that we know of is in [14, 7] which also considers the variable



degree-of-orientation s parameter. However, in both cases they regularize the model to
avoid an inherent degeneracy introduced by the s parameter. The regularization is
completely artificial and removes the ability to truly capture line and plane defects. The
purpose of the regularization is purely mathematical. Our method builds on [8, 9] and
consists of a special discrete energy that does not use any regularization, hence we can
compute minimizers that exhibit line and plane defects.

In this proceedings paper, we only briefly review the continuous model and show some
numerical results.

2 ERICKSEN’S ONE CONSTANT MODEL

In Ericksen’s model [17], the configuration of liquid crystals is described by the
orientation of the liquid crystal n and its degree of orientation s. Here, the director field
n : Ω ⊂ R

d → S
d−1 is a vector-valued function with unit length, and the degree of

orientation s : Ω ⊂ R
3 → [−1

2
, 1] is a real valued function. The case s = 1 represents the

state of prefect alignment in which all molecules are parallel to n. Likewise, s = −1/2
represents the state of microscopic order in which all molecules are orthogonal to the
orientation n. When s = 0, the molecules do not lie along any preferred direction which
represent the state that the distribution of molecules is isotropic.

The equilibrium state of the liquid crystals is described by the pair (s,n) minimizing a
bulk-energy functional which in the simplest one-constant model reduces to

E[Ω, s,n] :=

∫

Ω

κ|∇s|2 + s2|∇n|2dx

︸ ︷︷ ︸

:=E1[Ω,s,n]

+

∫

Ω

ψ(s)dx

︸ ︷︷ ︸

:=E2[Ω,s]

, (1)

with κ > 0, where the double well potential function ψ is a C2 function defined on
−1/2 < s < 1 (see [17]). The parameter κ depends on the material properties of the liquid
crystal and captures the “elastic” energy associated with various modes of orientation, such
as splay, bend, twist, and saddle-splay [27].

Note that when the degree of orientation s equals a non-zero constant, the energy (1)
reduces to the standard Oseen-Frank energy [27]. The introduction of the degree of
orientation relaxes the energy of defects. In fact, with finite energy E[Ω, s,n], defects
(discontinuity of n) may still occur in the singular set

S := {x ∈ Ω, s(x) = 0}. (2)

We develop a suitable discretization of the energy (1) and a gradient flow strategy to
compute its discrete minimizer. We emphasize that our method can handle a singular set
(of dimension 0, 1, or 2) without introducing any artificial parameters.

3 NUMERICAL EXPERIMENT: PLANE DEFECT IN 3-D

We simulate the gradient flow evolution of the liquid crystal director field toward a
plane defect equilibrium state on a cube domain (Ω is the unit cube). This is motivated by
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Figure 1: Evolution to-
ward an (equilibrium)
plane defect (Section 3).
The director field n is
shown at five different
horizontal slices. The time
step used was δt = 0.02.

an exact solution found in [27, Sec. 6.4]. We set κ = 0.2 and remove the double well
potential.

The following Dirichlet boundary conditions on ∂Ω ∩ ({z = 0} ∪ {z = 1}) are imposed
for s and n:

z = 0 : s = s∗, n = (1, 0, 0),

z = 1 : s = s∗, n = (0, 1, 0),
(3)

where s∗ = 0.750025, i.e. on the top and bottom faces of the cube, we set s to a fixed
constant. We set the director field n to point in the x (y) direction on the bottom (top)
face. On the remaining four sides of the cube, we allow s and n to vary freely (physically,
there is no explicit forcing of the molecule’s orientation). Initial conditions on Ω for the
gradient flow are: s = s∗ and a regularized point defect away from the center of the cube.
Figures 1 and 2 show our numerical results.

Figure 1 shows the evolution of the director field n toward the plane defect. The exact
solution corresponds to n = (1, 0, 0) on the bottom half of the cube z < 0.5, n = (0, 1, 0) on
the top half of the cube z > 0.5, with a discontinuity at z = 0.5. Only a few slices are
shown in Figure 1 because of the simple form of the equilibrium solution.

Figure 2 shows the components of n evaluated along a one dimensional vertical slice.
Clearly, the numerical solution approximates the exact solution well, except at the narrow
transition region near z = 0.5.

4 CONCLUSION

We have presented numerical simulations of liquid crystal equilibrium states which
minimize a discrete version of the energy (1). Our method is able to capture minimizers
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Figure 2: Evolution to-
ward an (equilibrium)
plane defect (Section
3). Plots of the three
components of n, eval-
uated along the vertical
line x = 0.5, y = 0.5,
are shown at three
time indices. Legend:
x-component of n is
the solid blue curve,
y-component of n is
the dashed black curve,
z-component of n is the
dotted red curve. One can
see that, at equilibrium,
n is nearly piecewise
constant with a narrow
transition region around
z = 0.5.

with defects of large dimension and finite energy, and is useful for exploring interesting
configurations of liquid crystals. It is not clear at this time how close these configurations
are to real structures; this will require further investigation and experiments. One
extension of this work is to include external field effects (e.g. electric or magnetic) and see
how that may affect the minimizers. Moreover, we could explore how the equilibrium
shapes of liquid crystal droplets are affected by line and plane defects by including a free
interface with surface tension in the problem.
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