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We present a numerical method, based on a tensor order parameter description of a 
nematic phase, that allows fully anisotropic elasticity. Our method thus extends the 
Landau-de Gennes Q-tensor theory to anisotropic phases. A microscopic model of the 
nematogen is introduced (the Maier-Saupe potential in the case discussed in this paper), 
combined with a constraint on eigenvalue bounds of Q. This ensures a physically valid 
order parameter Q (i.e., the eigenvalue bounds are maintained), while allowing for more 
general gradient energy densities that can include cubic nonlinearities, and therefore elastic 
anisotropy. We demonstrate the method in two specific two dimensional examples in 
which the Landau-de Gennes model including elastic anisotropy is known to fail, as well 
as in three dimensions for the cases of a hedgehog point defect, a disclination line, and a 
disclination ring. The details of the numerical implementation are also discussed.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Liquid crystals (LCs) are a critical material for emerging technologies [1,2]. Their response to optical [3–7], electric/mag-
netic [8–10], and mechanical actuation [11–14] has already yielded various devices, e.g. electronic shutters [15], novel types 
of lasers [16,17], dynamic shape control of elastic bodies [18,19], and others [20–24]. Furthermore, in the emerging field 
of active matter, self propulsion often leads to nematic order, both because of the broken symmetry in motion induced by 
the constituent particles, and because the elongated particles themselves promote liquid crystalline ordering [25,26]. Fruit-
ful connections are being found with such disparate areas of Biology as rearrangements in confluent epithelial tissue [27], 
neural stem cell cultures [28], or cellular motors comprising microtubule bundles and kinesin complexes [29].

LCs are a meso-phase of matter in which its ordered macroscopic state is between a spatially disordered liquid, and a 
fully crystalline solid [30]. In their nematic phase, in which long ranged orientational order exists, the Landau-de Gennes 
(LdG) theory introduces a tensor-valued function Q to describe local order in the LC material. In particular, the eigenframe 
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of Q yields information about the statistics of the distribution of LC molecule orientations. The energy functional of Q that 
describes the LC material involves both a bulk potential, and an elastic contribution involving the derivatives of Q.

Unlike the related description of a LC nematic phase in terms of a director, the analysis based on Q is generally limited to 
the so called one constant approximation, appropriate for an elastically isotropic phase. In this case, the Landau-de Gennes 
energy is supplemented by a gradient term of the form L1|∇Q|2, where L1 is the elastic constant. Inclusion of elastic 
anisotropy requires gradient terms at least of third order in Q. Unfortunately, at this order, the energy is known to become 
unbounded for any choice of parameters [31,32]. Therefore, in principle, the requirement of a stable energy would imply 
consideration of terms at least of fourth order in gradients. Since there are 22 possible fourth order invariants allowed by 
symmetry [33], the Landau-de Gennes theory becomes overly complex for anisotropic systems.

This paper develops an alternative method to the LdG model that uses a special type of singular bulk potential, the 
so-called Ball-Majumdar potential [31]. This potential has the following desirable properties: (i), it can be derived from 
a microscopic interaction potential by using the tools of statistical mechanics; and (ii), it enforces that Q has physically 
permissible eigenvalues. However, this choice of potential introduces some novel difficulties that are not present in the 
standard LdG model, chief among them is that in the implementation the energy as a function of Q does not have a closed 
form, rather it needs to be evaluated entirely numerically. This is analogous to other self consistent field theories as applied, 
for example, to polymers [34]. Many numerical methods and implementations already exist for the standard LdG model, e.g. 
[35–41]. However, numerical methods for the Ball-Majumdar potential have been given only recently [42,43]. In this paper 
we formalize this prior work, contrast its results with the LdG model in cases in which the latter fails, and also show the 
power of the method by computing defect configurations in three spatial dimensions.

2. Liquid crystal theory

We briefly review in this section the Landau-de Gennes theory for a nematic phase, as well as the more microscopic 
Maier-Saupe theory. Consider an anisotropic LC molecule which is uniaxial, with orientation described by the unit vector p. 
The Maier-Saupe potential between two molecules i and j is a contact interaction of the form −κ

(
(pi · p j)

2 − 1/3)
)
, where 

κ is the interaction constant [1]. In the isotropic phase, the thermal average of p is zero, while it is nonzero in the nematic 
phase. The Landau-de Gennes theory of a nematic phase is formulated instead in terms of a mesoscopic order parameter, 
the symmetric, traceless tensor Q. In the isotropic phase Q = 0. In the nematic phase, Q is nonzero. A uniaxial nematic 
phase corresponds to two of the eigenvalues of Q being equal, and a biaxial phase to the general case. Note that although 
the molecules themselves are uniaxial, the distribution of local orientations may itself be uniaxial or biaxial.

2.1. Landau-de Gennes theory

Let � be the set of symmetric, traceless 3 × 3 matrices. Given a tensor-valued function Q : � → �, where � is a physical 
domain with Lipschitz boundary �, the free energy of the LdG model is defined as [44,45]:

E[Q] :=
∫
�

W(Q,∇Q)dx + 1

ε2

∫
�

ψ(Q)dx

+ η�

∫
�

f�(Q)dS(x) −
∫
�

χ(Q)dx,

(1)

with

W(Q,∇Q) := 1

2

(
L1|∇Q|2 + L2|∇ · Q|2 + L3(∇Q)T ··· ∇Q,

+ L4∇Q ··· (e · Q) + L∗∇Q ··· [(Q · ∇)Q]
)
,

(2)

where {Li}4
i=1, L∗ , are material dependent elastic constants, and

|∇Q|2 := (∂k Q ij)
2, |∇ · Q|2 := (∂ j Q i j)

2, (∇Q)T ··· ∇Q := (∂ j Q ik)(∂k Q ij),

∇Q ··· (e · Q) := e jkl Q ji∂l Q ki, ∇Q ··· [(Q · ∇)Q] := Q lk(∂l Q i j)(∂k Q ij).
(3)

We use the convention of summation over repeated indices. Energies in Eq. (1) are made dimensionless by writing them in 
units of the temperature, T , while lengths are scaled by a characteristic length ξ . The value of the dimensionless parameter 
ε2 ≡ L1/(T ξ2) determines the relative weight of the gradient dependent energy W(Q, ∇Q) to the bulk potential ψ(Q) and 
thus determines ξ [46]. All five elastic constants can be related to the five independent constants of the Oseen-Frank model 
(i.e. K1, K2, K3, K4, and the twist q0) [44,45]. Indeed, L4 accounts for twist and L∗ is needed to have five independent 
constants. Note that taking Li = 0, for i = 2, 3, 4, and L∗ = 0 gives the one constant LdG model. More complicated models 
can also be considered [45,1,47]. The bulk potential ψ(Q) is discussed in the next subsection.
2
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The surface energy f�(Q), with parameter η� ≥ 0, accounts for weak anchoring of the LC (i.e. penalization of boundary 
conditions). For example, a Rapini-Papoular type anchoring energy [48] can be considered:

f�(Q) = 1

2
tr (Q − Q�)2 ≡ 1

2
|Q − Q�|2, (4)

where Q�(x) ∈ � for all x ∈ �.
The function χ(·) accounts for interactions with external fields (e.g., an electric field). For example, the energy density 

of a dielectric LC with fixed boundary potential is given by −1/2 D · E [49], where the electric displacement D is related to 
the electric field E by the linear constitutive law [50,1,51]:

D = εE = ε̄E + εaQE, ε(Q) = ε̄I + εaQ, (5)

where ε is the LC material’s dielectric tensor and ε̄, εa are constitutive dielectric permittivities. Thus, in the presence of an 
electric field, χ(·) becomes

χ(Q) = −1

2
D · E = −1

2

[
ε̄|E|2 + εaE · QE

]
. (6)

2.2. Landau-de Gennes bulk potential

The bulk potential ψ is a double-well type of function that is given by

ψ(Q) = K − A

2
tr(Q2) − B

3
tr(Q3) + C

4

(
tr(Q2)

)2
. (7)

Above, A, B , C are material parameters such that A, B , C are positive; K is a convenient constant to ensure ψ ≥ 0. Stationary 
points of ψ are either uniaxial or isotropic Q-tensors [52].

This potential was introduced to describe the vicinity of the isotropic-nematic phase transition, which is weakly first 
order. Therefore the eigenvalues of Q are small. However, the same potential is used to describe systems deep inside the 
nematic phase, while not providing for any constraint on the eigenvalues. It is known that they can leave their physically 
admissible range in some circumstances. For example, consideration of an elastically anisotropic phase K1 �= K3 requires that 
L∗ �= 0. In this case, the energy E[Q] is unbounded below for any choice of physical parameters [31,32], a divergence that 
is related to the absence of a constraint on the eigenvalues. The computational approach that we present here is precisely 
designed to remedy this problem.

3. Self consistent mean field theory

3.1. Macroscopic order parameter

We review the singular bulk potential introduced in [53,31]. The goal is to have a bulk potential that correctly controls 
the eigenvalues of Q ∈ �, where � is the set of symmetric, traceless 3 × 3 matrices. Note that � is spanned by a set of five 
basis matrices {Ek}5

k=1 [54].
The first step is to introduce a definition of the macroscopic order parameter (or mesoscopic field, under the assumption 

of local equilibrium), given by

Q =
∫
S2

(
p ⊗ p − 1

3
I
)

ρ(p)dS(p), (8)

where ρ ∈P is the equilibrium probability distribution of the LC molecules given by statistical mechanics, i.e.

P :=

⎧⎪⎨⎪⎩ρ ∈ L1(S2;R) | ρ ≥ 0,

∫
S2

ρ(p)dS(p) = 1

⎫⎪⎬⎪⎭ . (9)

Note that Q as defined is a thermal average. Therefore the minimization discussed in Sec. 3.2 at fixed Q needs to be 
understood in a mean field sense. Note also that in the case of a non uniform configuration, we will assume that the same 
definition is valid so that an order parameter field Q(x) is defined from the local distribution ρ(p, x).

Equation (8) implies that the eigenvalues of Q, denoted λi ≡ λi(Q), satisfy

−1

3
≤ λi(Q) ≤ 2

3
, for i = 1,2,3,

3∑
λi(Q) = 0. (10)
i=1

3
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In numerical work involving the Landau-de Gennes energy, equilibrium configurations of Q are obtained by energy mini-
mization, where the energy functional E(Q) is independent of any probability distribution of the underlying orientation of 
uniaxial molecules. In other words, (10) is not guaranteed. In contrast, the potential function defined below in Eq. (13)
provides an energetic penalty so that the eigenvalues of Q satisfy the bounds in (10).

3.2. Self-consistent free energy

Let us define the entropy functional

S[ρ] =
∫
S2

ρ(p) lnρ(p)dS(p), (11)

and the intermolecular interaction kernel

K [ρ,η] =
∫
S2

∫
S2

[
(p · q)2 − 1

3

]
ρ(p)η(q)dS(p)dS(q), (12)

where ρ and η are two probability distribution functions in P . The Maier-Saupe Potential is defined as

IMS[ρ] = T S[ρ] − κ K [ρ,ρ], (13)

where T > 0 is temperature, and κ > 0 is a constant (we have omitted the Boltzmann constant kB ). With this definition, IM S

reduces to the thermodynamic free energy when the distribution ρ is the corresponding equilibrium probability distribution.
One, however, proceeds differently. Given a value of Q (or locally, if a field Q(x) is specified), we minimize IMS[ρ] over 

the space of probability distribution functions with the condition that Q is given by Eq. (8).
It is straightforward to write the interaction energy solely as a function of Q. We have

K [ρ,ρ] =
∫
S2

qT

⎛⎜⎝∫
S2

[
p ⊗ p − 1

3
I
]
ρ(p)dS(p)

⎞⎟⎠qρ(q)dS(q)

=
∫
S2

qT Qqρ(q)dS(q) = Q :
∫
S2

[
q ⊗ q − 1

3
I
]
ρ(q)dS(q) = Q : Q = |Q|2,

(14)

where we used the fact that Q is traceless. Therefore, the energy term in the Maier-Saupe free energy of a given configura-
tion Q is simply −κ |Q|2.

The computation of the entropy for fixed Q is more complex. As in other field theories, one needs to “invert” the 
relationship in (8), i.e., given Q find the corresponding ρ that provides this value of Q in equilibrium. Of course, this is 
ill-posed, so we must impose some additional conditions. We use a mean field assumption, according to which ρ minimizes 
IMS[ρ] over the admissible set, and define the corresponding mean field free energy as

ψ(Q) := inf
ρ∈AQ

IMS[ρ],

= T inf
ρ∈AQ

S[ρ] − κ |Q|2, (15)

where the admissible set is

AQ :=

⎧⎪⎨⎪⎩ρ ∈ P | Q =
∫
S2

[
p ⊗ p − 1

3
I
]
ρ(p)dS(p)

⎫⎪⎬⎪⎭ . (16)

Since Q is fixed, we can focus on the entropy. Define

f (Q) :=
{

infρ∈AQ S[ρ], if eigenvalues of Q satisfy (10),

+∞, else.
(17)

Then

ψ(Q) = T f (Q) − κ |Q|2. (18)

Fig. 1 shows plots of Eq. (18) for Q parameterized as
4
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Fig. 1. The bulk potential, Eq. (18), with Q = S(n ⊗ n − (1/3)I) + R(m ⊗ m − (1/3)I) and κ/T = 4. The energy goes to infinity as Q approaches the physical 
bounds. For the chosen value of κ/T there are three minima that represent uniaxial states for each possible director direction which are highlighted with 
black dots.

Q = S

(
n ⊗ n − 1

3
I
)

+ R

(
m ⊗ m − 1

3
I
)

(19)

over the “physical triangle” as in [52]. For the plots we set κ/T = 4. As seen in the figure, when Q gets close to the physical 
bounds the bulk potential diverges. For this value of κ/T , there are three minima corresponding to uniaxial states where 
the director is n, m, or n × m. For κ/T < 3.4049 there is a single minimum at Q = 0 corresponding to the isotropic phase 
[42].

3.3. Properties

Before proceeding with the numerical algorithm, and for completeness, we begin by summarizing a few preliminary 
results, see [31].

Lemma 1. For any Q ∈ �, such that −1/3 < λi(Q) < 2/3 (for i = 1, 2, 3), the set AQ is non-empty.

Proof. Given Q ∈ �, let R be the orthogonal matrix that diagonalizes Q, i.e. � = RT QR, where (�)ii = λi(Q), for i = 1, 2, 3, 
where 2/3 > λ1 ≥ 0, −1/3 < λ3 ≤ 0. Now define the following (generalized) function (singular measure)

ρ̃(p) =
3∑

k=1

(
λk + 1

3

)
δ(p − ek) + δ(p + ek)

2
, where

∫
S2

ρ̃(p)dS(p) = 1, (20)

where δ(· − a), for a ∈ S2, is the Dirac delta function on S2 such that∫
S2

g(p)δ(p − a)dS(p) = g(a). (21)

Now let Xij := ∫
S2

(
p ⊗ p − 1

3 I
)

i j ρ̃(p) dS(p), for 1 ≤ i, j ≤ 3, and one can check that

Xii = λi, for i = 1,2,3, and Xij = 0, for i �= j. (22)

In other words, we have

� =
∫
S2

(
p ⊗ p − 1

3
I
)

ρ̃(p)dS(p), (23)

i.e. it satisfies the constraint. Next, we replace (δ(p − ek) + δ(p + ek))/2 by a regularized version

φε
k (p) =

{
1

2|A1
ε | , if |p · ek| ≥ 1 − ε,

0, if |p · ek| < 1 − ε,
(24)

where ±Ak
ε denotes the spherical cap at ±ek and |A1

ε | = 2πε is the area of one of the two spherical caps over which 
φε

k �= 0, with ε > 0 small. Now define a regularized version of (20):

ρ̃ε(p) = a0

3∑
k=1

(
λk + 1

3
+ a1

)
φε

k (p), (25)

where a0 > 0 and a1 are constants. For convenience, define
5
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rk
i = 1

2|A1
ε |

∫
+Ak

ε∪−Ak
ε

p2
i dS(p), ri

i = 1 − O (ε),∀i, rk
i = O (ε2), for i �= k,

(26)

and note that 1 = ∑
i=1 rk

i for all k = 1, 2, 3, and symmetry implies

rk
i = ri

k, and ri
k = ri

t for all i,k, t distinct, (27)

which implies that rk
k + 2ri

k = 1 whenever i �= k. Now define Xε
i j := ∫

S2

(
p ⊗ p − 1

3 I
)

i j ρ̃
ε(p) dS(p), for 1 ≤ i, j ≤ 3, and com-

pute:

Xε
ii = a0

3∑
k=1

(
λk + 1

3
+ a1

)
1

2|A1
ε |

∫
+Ak

ε∪−Ak
ε

(
p2

i − 1

3

)
dS(p)

= a0

3∑
k=1

(
λk + 1

3
+ a1

)(
rk

i − 1

3

)

= a0

∑
k �=i

(
λk + 1

3
+ a1

)(
rk

i − 1

3

)
+ a0

(
λi + 1

3
+ a1

)(
ri

i − 1

3

)
.

(28)

Since ri
i = r1

1 for all i, and rk
i = r2

1 for all i �= k, we continue to simplify (28):

Xε
iia

−1
0 =

(
r2

1 − 1

3

)∑
k �=i

(
λk + 1

3
+ a1

)
+

(
λi + 1

3
+ a1

)(
r1

1 − 1

3

)

=
(

r2
1 − 1

3

)[
2

3
− λi + 2a1

]
+

(
λi + 1

3
+ a1

)(
r1

1 − 1

3

)
= λi

(
r1

1 − r2
1

)
+

(
1

3
+ a1

)(
r1

1 + 2r2
1 − 1

)
︸ ︷︷ ︸

=0

= λi

(
r1

1 − r2
1

)
.

(29)

Thus, letting a0 := (
r1

1 − r2
1

)−1 = 1 + O (ε), we get

Xε
ii = λi, for i = 1,2,3. (30)

In addition, for i �= j, we see that

Xε
i j = a0

3∑
k=1

(
λk + 1

3
+ a1

)
1

2|A1
ε |

∫
+Ak

ε∪−Ak
ε

pi p j dS(p) = 0, (31)

where the integral term drops by symmetry/cancellation. Note that (30) and (31) hold for any value of a1. We must choose 
a1 such that

1 =
∫
S2

ρ̃ε(p)dS(p) = a0

3∑
k=1

(
λk + 1

3
+ a1

)
= a0 (1 + 3a1) ,

⇒ a1 = 1

3

(
1

a0
− 1

)
= O (ε),

(32)

where a1 may be negative. Since λk + 1/3 > 0, choosing ε > 0 sufficiently small (but fixed), we see that λk + (1/3) + a1 > 0
for k = 1, 2, 3. Therefore, ρ̃ε(p) ≥ 0 for all p, and ρ̃ε ∈P . Moreover,

� =
∫
S2

(
p ⊗ p − 1

3
I
)

ρ̃ε(p)dS(p), (33)

and ρ̃ε ∈A� . Finally, by rotating coordinates with R, and defining ρ̂ε (Rp) := ρ̃ε(p), (33) transforms into
6
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Q =
∫
S2

(
p̂ ⊗ p̂ − 1

3
I
)

ρ̂ε(p̂)dS(p̂), (34)

where ρ̂ε ∈AQ . So AQ is non-empty. �
The following result lays out the main aspects of f needed.

Theorem 2. Given Q with −1/3 < λi(Q) < 2/3 (for i = 1, 2, 3), there exists a unique minimizer ρ∗ ∈AQ to the optimization problem 
in (17). In other words,

f (Q) =
∫
S2

ρ∗(p) lnρ∗(p)dS(p), (35)

where

ρ∗(p) = exp
(
pT Ap

)
Z(A)

, Z(A) =
∫
S2

exp
(

pT Ap
)

dS(p), (36)

and A ∈ � (symmetric, traceless) is the (unique) Lagrange multiplier for the constraint in (16). Moreover, A satisfies the following 
non-linear equation, a requirement of mean field self-consistency:

1

Z(A)

∂ Z(A)

∂A
: P = Q : P, for all P ∈ �. (37)

Proof. Step 1. We show that the minimization problem is well-posed. From Lemma 1, we know AQ is non-empty. Moreover, 
the constraint in (16) is clearly convex, so AQ is a convex set. In addition, S[·] is a convex functional on P , because ρ lnρ
is a (strictly) convex function of ρ . Hence, S[·] is weakly lower semi-continuous on P . So, by standard theory from the 
calculus of variations, there exists a minimizer ρ∗ ∈AQ , and it is unique by convexity.

Step 2. Derive the Euler-Lagrange equations that characterize the minimizer. We will mainly proceed formally, but this 
can be made more rigorous with similar arguments as in [55, Ch. 8]. In order to account for the constraint in AQ, define 
the Lagrangian

L [ρ,A] := S[ρ] + A : C [ρ] =
∫
S2

ρ(p) lnρ(p)dS(p) + A : C [ρ] ,

C [ρ] := Q −
∫
S2

(
p ⊗ p − 1

3
I
)

ρ(p)dS(p) ∈ �,

(38)

where A is a constant matrix in �. In order to account for the other constraints of ρ being a probability measure, let us 
parameterize it:

ρ(p) = eω(p)

Z(ω)
, where Z(ω) =

∫
S2

eω(p) dS(p), (39)

where ω : S2 →R ∪ {−∞} is an “arbitrary” (measurable) function; thus, ρ is a probability measure for any ω. We list some 
perturbation formulas that will be useful later. Let ωε = ω + εη, where ε > 0 is small, and η is an arbitrary measurable 
function (perturbation). Then, standard variational calculus gives

δω(eω)(η) := d

dε

∣∣∣
ε=0

eω+εη = ηeω, δω Z(ω)(η) =
∫
S2

η(p)eω(p) dS(p),

δω

(
ω

Z(ω)

)
(η) = η

Z(ω)
− ω

(Z(ω))2
δω Z(ω)(η) = 1

Z(ω)

⎛⎜⎝η − ω

∫
S2

η(p)ρ(p)dS(p)

⎞⎟⎠ = 1

Z(ω)
(η − ωη̄) ,

δω

(
eω

Z(ω)

)
(η) = ηeω

Z(ω)
− eω

(Z(ω))2
δω Z(ω)(η) = ρ(p) (η(p) − η̄) ,

(40)

where η̄ =Eρ [η] (the expected value with respect to ρ).
7
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Step 3. Next, we derive the KKT conditions for the optimal solution of the problem, in terms of ω. So, we instead form 
the Lagrangian (38) in terms of ω: L [ω,A] := S[ω] + A : C [ω]. Computing the variation of the entropy, we have

δω S[ω](η) =
∫
S2

δω

(
eω

Z(ω)

)
(η) [ω(p) − ln Z(ω)] dS(p) +

∫
S2

ρ(p)

[
η(p) − 1

Z(ω)
δω Z(ω)(η)

]
dS(p)

=
∫
S2

ρ(p) (η(p) − η̄) [ω(p) + 1 − ln Z(ω)] dS(p) =
∫
S2

ρ(p) (η(p) − η̄)ω(p)dS(p),

(41)

where the last equality is because of the definition of η̄ and the fact that +1 − ln Z(ω) is a constant. Note that ρ satisfies 
(39).

Next, note that

A : C [ω] = A : Q −
∫
S2

pT Ap
eω(p)

Z(ω)
dS(p). (42)

Hence, the first variation of the constraint gives

δω(A : C [ω])(η) = −
∫
S2

pT Ap δω

(
eω

Z(ω)

)
(η)dS(p) = −

∫
S2

pT Apρ(p) (η(p) − η̄) dS(p). (43)

The first KKT condition is given by δωL [ω,A] (η) = 0, for all admissible η. Therefore, by the above calculations, we obtain

0 = δωL [ω,A] (η) =
∫
S2

[
ω(p) − pT Ap

]
ρ(p) (η(p) − η̄) dS(p), (44)

for all admissible η. This implies that ω(p) − pT Ap = c, where c is any constant. So, from (39), we find

ρ(p) = ec exp
(
pT Ap

)
Z(ω)

= exp
(
pT Ap

)
Z(A)

, (45)

where the ec term cancels out. Since the minimizer is unique, we have proven (36). The second KKT condition simply 
recovers the constraint 0 = ∂L [ω,A]/∂A = C [ω].

Step 4. Finally, the last step in the inversion is an equation to determine A ∈ �. Starting from the relation Z(A) =∫
S2 exp

(
pT Ap

)
dS(p), we first differentiate with respect A but in the direction of general symmetric matrices, not necessarily 

trace free:

∂ Z(A)

∂A
=

∫
S2

∂

∂A

(
pT Ap

)
exp

(
pT Ap

)
dS(p) =

∫
S2

(p ⊗ p)exp
(

pT Ap
)

dS(p)

=
∫
S2

(
p ⊗ p − 1

3
I
)

exp
(

pT Ap
)

dS(p) + 1

3
I
∫
S2

exp
(

pT Ap
)

dS(p)

= Z(A)

⎡⎢⎣∫
S2

(
p ⊗ p − 1

3
I
)

ρ(p)dS(p) + 1

3
I

⎤⎥⎦ = Z(A)

[
Q + 1

3
I
]

,

(46)

where ρ satisfies (45). Thus, the multiplier A satisfies the following equation

1

Z(A)

∂ Z(A)

∂A
= Q + 1

3
I. (47)

Dotting (47) with an arbitrary “test” function in �, we get (37). �
We will also make use of these results for f . Note that the partition function (39) is a single particle partition function 

obtained by integration over p ∈ S2, but with specified values of the Lagrange multiplier A. The fact that it simply involves 
a quadratic form of p originates from the form of the constrain (8). In the mean field approximation considered, given Q
there is a unique A, defined by (47), so that the corresponding ρ in (39) gives as average precisely Q.

The following result illustrates additional properties of f (Q), including the simultaneous diagonalization of Q and A, 
which can be useful for numerical implementation purposes.
8
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Corollary 3. The function f (Q) is a strictly convex function of Q. In addition, any Q ∈ �, and the corresponding unique A coming from 
solving the constrained minimization problem in Theorem 2, are diagonalized by the same orthogonal matrix R, i.e.

� = RT QR, � = RT AR, (48)

where � = diag(λ1, λ2, λ3) and � = diag(π1, π2, π3), where {πi}3
i=1 are the eigenvalues of A.

Moreover, the Lagrange multiplier A can be characterized as the optimal solution of the dual problem. In other words, define

W (A) := ln (Z(A)) − Q : A, (49)

where W (·) : � → R is a strictly convex function (but not uniformly strictly convex). Then, the optimal Lagrange multiplier A from 
Theorem 2 is the unique minimizer of (49) over the set of symmetric, traceless matrices, i.e. an unconstrained minimization problem.

Proof. Convexity. Let Q0, Q1 ∈ � with eigenvalues satisfying (10), and let ρi be the minimizer in (35) corresponding to Qi , 
for i = 0, 1. Set Q(t) = Q0(1 − t) + Q1t for all t ∈ [0, 1], and also define ρ(·, t) := ρ0(·)(1 − t) + ρ1(·)t . Then, since S[ρ] is a 
strictly convex functional of ρ , for all 0 < t < 1 we have

f (Q(t)) = min
ρ∈AQ(t)

S[ρ] ≤ S[ρ(·, t)] < S[ρ0](1 − t) + S[ρ1]t

=
(

min
ρ∈AQ0

S[ρ]
)

(1 − t) +
(

min
ρ∈AQ1

S[ρ]
)

t = f (Q0)(1 − t) + f (Q1)t,
(50)

which verifies the strict convexity of f (·).
Simultaneous diagonalization. Given Q, let A and ρ be the optimal solution of the constrained minimization problem, 

and let R be the orthogonal matrix such that � = RT AR where � is a diagonal matrix. Then, using the change of variable 
p = Rq, we get

Z(A)Q =
∫
S2

(
ppT − 1

3
I
)

exp
(

pT Ap
)

dS(p) =
∫
S2

(
RqqT RT − 1

3
RRT

)
exp

(
qT RT ARq

)
dS(q)

= R

⎡⎢⎣∫
S2

(
qqT − 1

3
I
)

exp

(
3∑

i=1

πiq
2
i

)
dS(q)

⎤⎥⎦RT ,

(51)

i.e.

RT QR = 1

Z(A)

∫
S2

(
qqT − 1

3
I
)

exp

(
3∑

i=1

πiq
2
i

)
dS(q). (52)

Now, note that for i �= j, there holds

0 =
∫
S2

qiq j︸︷︷︸
odd

exp

(
3∑

i=1

πiq
2
i

)
︸ ︷︷ ︸

even

dS(q).
(53)

That means RT QR must be diagonal. Since matrix diagonalization (with orthogonal matrices) is unique, RT QR ≡ �.
The dual minimization problem. Let A∗ be the optimal Lagrange multiplier from (37); it is clear that A∗ solves the first 

order condition for (49):

0 = ∂W (A)

∂A
: P = 1

Z(A)

∂ Z(A)

∂A
: P − Q : P, for all P ∈ �. (54)

Next, we compute the Hessian of W (A) for any A ∈ �:

T : ∂2W (A)

∂A2
: P = 1

Z(A)
T : ∂2 Z(A)

∂A2
: P − 1

(Z(A))2

(
∂ Z(A)

∂A
: T

)(
∂ Z(A)

∂A
: P

)
, (55)

where
9
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1

Z(A)

∂ Z(A)

∂A
: P =

∫
S2

pT Ppρ(p)dS(p) = Eρ [pT Pp],

1

Z(A)
T : ∂2 Z(A)

∂A2
: P =

∫
S2

(
pT Tp

)(
pT Pp

)
ρ(p)dS(p) = Eρ [

(
pT Tp

)(
pT Pp

)
],

(56)

for all P, T ∈ �; note that Eρ [·] is the expected value with respect to ρ , which is determined by A. To show strict convexity, 
we must verify that ∂2

A W (A) is positive definite for all A:

P : ∂2W (A)

∂A2
: P = Eρ [

(
pT Pp

)2] −
(
Eρ [pT Pp]

)2 = Eρ [
(

pT Pp −Eρ [pT Pp]
)2], (57)

which is the covariance of pT Pp with respect to ρ (which depends on A) and is always positive semi-definite. If (57) were 
identically zero, then that would imply that some marginal distribution of ρ is a Dirac delta. But this is not possible given 
the form of ρ in (45) so long as A is finite. Therefore, ∂2 W (A)

∂A2 is positive definite for all A ∈ � such that |A| < ∞. This means 
that W (·) is strictly convex. �
4. Minimizing the Landau-de Gennes energy

The free energy minimization of the self consistent free energy (18) shares many elements with minimization procedures 
of the Landau-de Gennes free energy. We summarize known results concerning the later here, and emphasize the differences 
with the proposed method.

4.1. Existence of a minimizer

The admissible space for Q when seeking a minimizer is

V (P) := {
Q ∈ H1(�;�) | Q|�D = P

}
, (58)

where P ∈ H1(�; �). Note that � is spanned by a set of five orthonormal basis matrices {Ek}5
k=1. The set �D ⊂ � is where 

strong anchoring is imposed, i.e. Q|� = QD ∈ H1(�; �), where ψ(QD(x)) < ∞ for all x ∈ �. The weak anchoring function Q�

is taken in L2(�; �), with ψ(Q�(x)) < ∞ for all x ∈ �. The minimization problem for the LdG energy functional (1) is

min
Q∈V (QD )

E[Q], (59)

Existence of a minimizer requires the energy to be bounded from below. The following theorem [36, Lem. 4.1] establishes 
this result for the L1, L2, and L3 terms only.

Theorem 4. Let a (·, ·) : H1(�; �) × H1(�; �) →R be the symmetric bilinear form defined by

a (P,T) =
∫
�

L1∇P ··· ∇T + L2(∇ · P) · (∇ · T) + L3(∇P)T ··· ∇T dx. (60)

Then a (·, ·) is bounded. If L1 , L2 , L3 satisfy

0 < L1, −L1 < L3 < 2L1, −3

5
L1 − 1

10
L3 < L2, (61)

then there is a constant C > 0 such that a (P,P) ≥ C |P|2
H1(�)

for all P ∈ H1(�). Moreover, if |�D | > 0, then there is a constant C ′ > 0

such that a (P,P) ≥ C ′‖P‖2
H1(�)

for all P ∈V (0).

We also have the bilinear form b (·, ·) : H1(�; �) × H1(�; �) → R and trilinear form c (·, ·; ·) : H1(�; �) × H1(�; �) ×
H1(�; �) →R accounting for the L4 and L∗ terms:

b (P,T) = L4

2

∫
�

∇P ··· (e · T) + ∇T ··· (e · P)dx, (62)

c (T,P;Q) = L∗
2

∫
�

{
∇P ··· [(T · ∇)Q] + ∇P ··· [(Q · ∇)T]

+∇T ··· [(P · ∇)Q] + ∇T ··· [(Q · ∇)P]
+∇Q ··· [(P · ∇)T] + ∇Q ··· [(T · ∇)P]

}
dx.

(63)
10
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Next, consider the following sub-part of the energy (1):

Ẽ[Q] :=
∫
�

W(Q,∇Q)dx + 1

ε2

∫
�

ψ(Q)dx,

≡ 1

2
a (Q,Q) + 1

2
b (Q,Q) + 1

6
c (Q,Q;Q) + 1

ε2

∫
�

ψ(Q)dx.

(64)

Combining Theorem 4 with the form of the energy in (1) and other basic results (see [36, Lem. 4.2, Thm. 4.3] for 
instance) we arrive at the following result.

Theorem 5 (existence of a minimizer). Suppose that QD and �D are defined as above and that χ is a bounded linear functional on 
V (QD). Let ̃E be given by (64), where ψ is given by (18). Furthermore, assume T > 0, let L4 be bounded, and assume that

L̃1 := L1 − max

(
L∗
3

,−3

2
L∗

)
, (65)

and ̃L1 , L2 , L3 satisfy (61) with L1 replaced by ̃L1 . Then ̃E has a minimizer in the space V (QD), whose eigenvalues are strictly within 
the physical limits (10) almost everywhere. Furthermore, E in (1), with ψ given by (18), has a minimizer in V (QD), whose eigenvalues 
are strictly within the physical limits (10) almost everywhere.

Proof. When L4 = L∗ = 0, the result follows from [36, Lem. 4.2, Thm. 4.3]. Otherwise, consider the case where L∗ is positive 
(the negative case is similar). Consider the constrained admissible set

A := {Q ∈ V (QD) | − 1/3 ≤ λi(Q) ≤ 2/3, for i = 1,2,3}, (66)

and note that A is a closed, convex set. Since the minimum eigenvalue of L1I + L∗Q (on A) is ̃L1, using Theorem 4, we have 
that Ẽ satisfies the bound

Ẽ[Q] ≥ 1

2

∫
�

L̃1|∇Q|2 + L2(∇ · Q)2 + L3(∇Q)T ··· ∇Q dx

+ L4

2

∫
�

∇Q ··· (e · Q)dx + 1

ε2

∫
�

ψ(Q)dx

≥ C

2

∫
�

|∇Q|2 dx + L4

2

∫
�

∇Q ··· (e · Q)dx + 1

ε2

∫
�

ψ(Q)dx,

(67)

for all Q ∈A, for some constant C > 0. Furthermore, one can show

Ẽ[Q] ≥ 1

2
(C − ζ0)

∫
�

|∇Q|2 dx − C ′

ζ0

∫
�

|Q|2 dx + 1

ε2

∫
�

ψ(Q)dx, (68)

for any ζ0 > 0 where C ′ > 0 is some bounded constant. Choosing ζ0 = C/2, we get

Ẽ[Q] ≥ C

4

∫
�

|∇Q|2 dx + 1

ε2

∫
�

ψ̃(Q)dx, (69)

where ψ̃(Q) := T f (Q) − (κ + 2ε2C ′/C)|Q|2. Thus, Ẽ[Q] is clearly bounded below by a coercive energy on A. By standard 
calculus of variations [56,57], there exists a minimizer, Q̃, of Ẽ[·] in A. Moreover, f (Q̃) < ∞ almost everywhere, meaning 
the eigenvalues of Q̃ are strictly within the physical limits almost everywhere. The same holds true for E[·]. �
4.2. Gradient flow

We look for an energy minimizer using a gradient flow strategy [40,37,41,35] applied to the energy (1). Let t represent 
“time” and suppose that Q ≡ Q(x, t) satisfies an evolution equation such that limt→∞ Q(·, t) =: Q∗ is a local minimizer of 
E , where Q(x, 0) = Q0, and Q0 ∈ V (QD) is the initial guess for the minimizer. The tensor Q(·, t) evolves according to the 
following L2(�) gradient flow:

(∂tQ(·, t),P) = −δQ E[Q;P], ∀P ∈ V (0), (70)

where (·, ·) is the L2 inner product over �. Formally, the solution of (70) will converge to Q∗ .
11
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Remark 6. If ψ is the Landau-de Gennes bulk potential in (7), then (70) is essentially a tensor-valued Allen-Cahn equation. By the 
standard theory of parabolic PDEs [58,59], it has a unique solution. The same result also holds when ψ is the singular bulk potential.

We use a numerical scheme for approximating (70) by first discretizing in time by minimizing movements [60]. Let 
Qk(x) ≈ Q(x, kδt), where δt > 0 is a finite time-step, and k is the time index. Then (70) becomes a sequence of variational 
problems. Given Qk , find Qk+1 ∈V (QD) such that(

Qk+1 − Qk

δt
,P

)
= −δQ E[Qk+1;P], ∀P ∈ V (0), (71)

which is equivalent to

Qk+1 = arg min
Q∈V (QD )

F (Q), F (Q) := 1

2δt
‖Q − Qk‖2

L2(�)
+ E[Q], (72)

and yields the useful property F (Qk+1) ≤ F (Qk). However, (71) is a fully-implicit equation and requires an iterative solution 
because of the non-linearities in W(Q, ∇Q) and ψ(Q). As in the Landau-de Gennes case, ψ(Q) is non-convex [42], so that 
we adopt a convex splitting method [61,41,62]. Setting ψc(Q) = T f (Q) and ψe(Q) = κ |Q|2, we see that (18) already has the 
form of a convex splitting:

ψ(Q) ≡ ψc(Q) − ψe(Q), (73)

i.e. ψc and ψe are convex functions of Q.
In computing (71), we treat ψc implicitly and ψe explicitly. Therefore, (71) becomes the following. Given Qk , find Qk+1 ∈

V (QD) such that(
Qk+1 − Qk

δt
,P

)
+ a

(
Qk+1,P

) + b
(
Qk+1,P

) + c
(
Qk+1,P;Qk+1

)
1

ε2

∫
�

∂ψc(Qk+1)

∂Q
: P dx + η�

∫
�

∂ f�(Qk+1)

∂Q
: P dS(x)

= 1

ε2

∫
�

∂ψe(Qk)

∂Q
: P dx +

∫
�

∂χ(Qk)

∂Q
: P dx, ∀P ∈ V (0),

(74)

where the right-hand-side of (74) is completely explicit. We then apply Newton’s method to solving (74).
Next, we approximate (74) by a finite element method, so we introduce some basic notation and assumptions in that 

regard. We assume that � ⊂R3 is discretized by a conforming shape regular triangulation Th = {Ti} consisting of simplices, 
i.e. we define �h := ∪T ∈Th T . Furthermore, we define the space of continuous piecewise linear functions on �h :

Mh(�h) :=
{

v ∈ C0(�h) | v|T ∈ P1(T ), ∀T ∈ Th

}
, (75)

where Pk(T ) is the space of polynomials of degree ≤ k on T .
We discretize (74) by a P1 approximation of the Q variable denoted Qh . To this end, define

Sh(�h) :=
{

P ∈ C0(�h;�) | P =
5∑

i=1

qi,hEi, qi,h ∈Mh(�h),1 ≤ i ≤ 5

}
, (76)

and let Qh ∈ Sh(�h). Thus, Qh = ∑5
i=1 qi,hEi , and Qh ∈ H1(�; �).

The fully discrete L2-gradient flow now follows from (74), which we explicitly state. Given Qh,k , find Qh,k+1 ∈ Sh(�h) ∩
V (IhQD), where Ih denotes the Lagrange interpolation operator, such that(

Qh,k+1 − Qh,k

δt
,P

)
+ a

(
Qh,k+1,P

) + b
(
Qh,k+1,P

) + c
(
Qh,k+1,P;Qh,k+1

)
1

ε2

∫
�

Ih

(
∂ψc(Qh,k+1)

∂Q

)
: P dx + η�

∫
�

∂ f�(Qh,k+1)

∂Q
: P dS(x)

= 1

ε2

∫
�

∂ψe(Qh,k)

∂Q
: P dx +

∫
�

∂χ(Qh,k)

∂Q
: P dx, ∀P ∈ Sh(�h) ∩V (0).

(77)

We iterate this procedure until some stopping criterion is achieved. As is the case with the Landau-de Gennes model, 
solving (77) at each time-step requires Newton’s method, i.e. we must compute the gradient and Hessian of the energy. In 
particular, we need to compute the gradient and Hessian of the singular bulk potential ψc ≡ T f , as we detail in Section 5.
12
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5. Evaluating the singular bulk potential

As in other self consistent mean field theories, the main difficulty with the method is that no explicit formula for f (Q)

is available. Instead, one has to solve the mean field self-consistency equation (37) numerically for a given Q. In the ap-
plication of Newton’s method to the solution of (77), we must compute ∂ψc(Q)/∂Q and ∂2ψc(Q)/∂Q2, evaluated at the 
current guess of the solution Qh,k+1, where ψc ≡ T f . Since Qh,k+1 = Qh,k+1(x) is spatially varying, this can potentially 
be very expensive to compute. However, note the presence of the Lagrange interpolation operator Ih in (77), i.e. see the 
term Ih

(
∂ψc(Qh,k+1)/∂Q

)
. Hence, f , and its derivatives, need only be evaluated at the finite element degrees-of-freedom 

(or nodes) of the mesh. Moreover, the computation at each node is completely independent of all other nodes, i.e. it is 
embarrassingly parallel. Therefore, the numerical implementation of the singular bulk potential is completely tractable.

There are two main steps involved in the determination of the bulk potential f (Q) and its derivatives: the calculation 
of the single particle partition function (36), and the solution of the mean field self consistency equation (37). We establish 
here some of the properties necessary for their calculation.

5.1. Differentiability

We require the gradient and Hessian of f (Q) in solving (77) via Newton’s method.

Proposition 7. Given Q ∈ � with eigenvalues that satisfy −1/3 < λi(Q) < 2/3, let A ∈ � be the unique minimizer of (49). Then, there 
holds

f (Q) = Q : A − ln Z(A) = −W (A) ,

∂ f (Q)

∂Q
: P = A : P, for all P ∈ �,

T : ∂2 f (Q)

∂Q2
: P =

(
∂A

∂Q
: T

)
: P, for all P,T ∈ �,

(78)

where ∂A/∂Q : T is the unique solution of the linear system(
∂A

∂Q
: T

)
: ∂2W (A)

∂A2
: P = T : P, for all P ∈ �, (79)

for any T ∈ �, where ∂2W (A) /∂A2 is the constant 4-tensor evaluated at A.

Proof. Let ρ be the probability distribution given by (36). Then, by (35),

f (Q) =
∫
S2

ρ(p) lnρ(p)dS(p) =
∫
S2

exp
(
pT Ap

)
Z(A)

(
pT Ap − ln Z(A)

)
dS(p),

= A :
∫
S2

(
p ⊗ p − 1

3
I
)

ρ(p)dS(p) − ln Z(A) = Q : A − ln Z(A) = −W (A) ,

(80)

where we used (8) and (49). Next, using (80),

∂ f (Q)

∂Q
: P = P : A + Q : A′ − 1

Z(A)

∂ Z(A)

∂A
: A′ = P : A + Q : A′ −

(
Q + 1

3
I
)

: A′

= P : A + Q : A′ − Q : A′ = A : P,

(81)

where � � A′ ≡ (∂A/∂Q) : P and we used (47).
By differentiating (81), we clearly get the last line of (78). Thus, we need a characterization of ∂A/∂Q. Recall that A is 

the unique minimizer of (49), i.e. A satisfies (54). So, we differentiate (54) with respect to Q, in the direction T:(
∂A

∂Q
: T

)
: ∂2W (A)

∂A2
: P = T : P, for all P ∈ �. � (82)

Remark 8. The 4-tensor ∂2W (A) /∂A2 is positive definite, but the coercivity constant degrades as |A| → ∞.

5.2. Optimization procedure

Given Q, we describe a procedure to obtain the corresponding A = A(Q), as well as its derivative with respect to Q.
13
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5.2.1. Solving the Euler-Lagrange equation
Recall (49) and define the linear form FQ(A; P) to be the first variation of (49) with respect to A:

FQ(A;P) := 1

Z(A)

∂ Z(A)

∂A
· P − Q : P. (83)

Thus, given Q ∈ �, we want to find A such that FQ(A; P) = 0 for all P ∈ �. In other words, we want to find a zero of the 
non-linear function FQ(·; P). Hence, we apply Newton’s method.

For a given A, define the bilinear form:

mA(P,T) := ∂

∂A
FQ(A;P) : T

= 1

Z(A)
P : ∂2 Z(A)

∂A2
: T − 1

Z(A)

(
∂ Z(A)

∂A
: P

)
1

Z(A)

(
∂ Z(A)

∂A
: T

)
.

(84)

Then Newton’s method is as follows.

• Initialize. Set A0 ∈ � (can take the zero 3 × 3 matrix) and set k = 0.
• While not converged, do:

1. Solve the following (linear) variational problem. Find δAk+1 ∈ � such that

mAk (δAk+1,P) = −FQ(Ak;P), ∀P ∈ �. (85)

2. Update. Set Ak+1 := Ak + δAk+1.
3. If |δAk+1| is less than some tolerance, then stop.
4. Else, set k ← k + 1 and return to Step (1).

Let A∗ be the solution, i.e. FQ(A∗; P) = 0 for all P ∈ �. Let A′∗(T) = (∂A/∂Q) : T. We obtain A′∗(T) as the unique solution 
of the following variational problem. Find A′∗(T) ∈ �, for every T ∈ �, such that

mA∗(A′∗(T),P) = T : P, ∀P ∈ �. (86)

5.2.2. Matrix-vector form
Recall the basis {Ek}5

k=1 that spans �. We rewrite the Newton method in terms of this basis.

• Initialize. Let α0 ∈R5, with α0 = (α1
0 , ..., α5

0), such that A0 = ∑5
�=1 α�

0E� . Can simply take α0 = 0. Set k = 0.
• While not converged, do:

1. Compute. Let bk ∈ R5 such that b�
k = −FQ(Ak; E�) for � = 1, ..., 5. Moreover, let Hk ∈ R5×5, i.e. Hk = [hij

k ]5
i, j=1, such 

that hij
k = mAk (Ei, E j) for 1 ≤ i, j ≤ 5.

2. Solve for δαk+1 ∈R5:

Hk(δαk+1) = bk (87)

3. Update. Set αk+1 := αk + δαk+1, and define Ak+1 = ∑5
�=1 α�

k+1E� .
4. If |δαk+1| is less than some tolerance, then stop.
5. Else, set k ← k + 1 and return to Step (1).

Let A∗ be the solution, i.e. FQ(A∗; P) = 0 for all P ∈ �. Let A′∗(E�) = (∂A/∂Q) : E� , for each � = 1, ..., 5, and let (α′∗)� ∈R5

be such that

A′∗(E�) =
5∑

k=1

[(α′∗)� · ek]Ek. (88)

Next, let H∗ be the Hessian matrix corresponding to A∗ . Then, we obtain A′∗(E�) by solving for (α′∗)� the equation

H∗(α′∗)� = e�, for each � = 1, ...,5. (89)

Note: this is a one time solve (there is no Newton iteration).
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5.2.3. Computational issues
The main difficulty associated with our method is that, contrary to the case of the Landau-de Gennes energy (or the 

Oseen-Frank energy in the director representation of the nematic), the energy density as a function of Q is not known 
explicitly. As in other self consistent field theories, practical computation requires a numerical scheme. In this case, the 
approximation involved in the evalulation of the free energy of a configuration is due to both the Lagrange interpolation 
operator Ih in (77), and the fact that integrals on the unit sphere cannot be computed exactly. Hence we must address the 
following issues.

• The integrals must be approximated by quadrature, ideally a high order quadrature rule.
• The strict convexity of the functional in (49) degrades as |A| becomes large, and this is exactly the situation that arises 

when the eigenvalues of Q approach the physical limits in (10). Thus, any inaccuracies in the computations (e.g. the 
integrals) can adversely affect the convergence of the Newton method.

• Furthermore, when A becomes large, exp
(
pT Ap

)
becomes extremely large. Even though we divide by Z(A), there could 

be an intermediate overflow result or inaccuracies.

Therefore, we introduce the following modifications of the optimization method described earlier. Before computing any 
of the above, first do an eigen-decomposition of Q. If the eigenvalues are in the range:

−1

3
+ δ0 ≤ λi(Q) ≤ 2

3
− δ0, for i = 1,2,3, (90)

for some δ0 > 0, then the plain Newton method above is sufficient (it converges in ≈ 5 iterations). Numerical experience 
indicates that δ0 = 0.05 to 0.1 is adequate. If the eigenvalues are outside the range (90), then one must use a sufficiently ac-
curate quadrature rule to ensure that the system in (83) is accurately approximated. In addition, a more robust optimization 
procedure should be used (e.g., the Broyden-Fletcher-Goldfarb-Shanno algorithm with a line search to ensure the objective 
function decreases) to account for possible numerical sensitivities. This is not difficult to implement since the problem size 
is small. However, we have not explored this possibility yet.

Next, as a general concern, the integrals should be computed using a shifting procedure. For example, consider the 
computation of

1

Z(A)

∂ Z(A)

∂A
= 1∫

S2 exp
(
pT Ap

)
dS(p)

∫
S2

(p ⊗ p)exp
(

pT Ap
)

dS(p), (91)

for a given A ∈ �. Let C0 = |A|. Then, (91) is equivalent to

1

Z(A)

∂ Z(A)

∂A
= 1∫

S2 exp
(
pT Ap − C0

)
dS(p)

∫
S2

(p ⊗ p)exp
(

pT Ap − C0

)
dS(p). (92)

The advantage of (92) over (91) is that, when |A| is large, (92) will not result in an overflow calculation.
Lastly, all the integrals over the unit sphere have been approximated by Lebedev quadrature [63]. We ascertain the 

accuracy of the computation in section 6.1. However, we note that they involve uniformly distributed points, so when the 
probability distribution ρ becomes very localized, the integration may fail. We have not encountered this problem in our 
numerical results below, but note that it would be possible to use an adaptive quadrature method instead. Indeed, one could 
adapt the quadrature rule depending on the performance of the Newton solve, or on how close the eigenvalues are to the 
physical limits.

6. Results

All simulations were implemented using the Matlab/C++ finite element toolbox FELICITY [64,65]. For all 3-D simulations, 
we used the algebraic multi-grid solver (AGMG) [66–69] to solve the linear systems appearing in Newton’s method. In 2-D, 
we simply used the “backslash” command in Matlab. Numerical calculations were performed with Matlab version R2017b 
on a Haswell processor with a base clock of 2.5 Ghz at the Minnesota Supercomputing Institute. Spatially distributed 
Newton iterations were paralleized over 24 threads (Matlab parfor). Execution timings given below correspond to this 
configuration.

In our simulations, we chose ε = 1. We also tested the method with smaller values of ε , and a finer mesh, and there 
were no issues. The number of iterations needed to relax increased roughly proportional to the decrease in ε2 . But the end 
result was the same.

6.1. Accuracy of Newton’s method

We first look at the accuracy of Newton’s method described in Sec. 5.2 to invert the mean field self consistency relation, 
and obtain the Lagrange multiplier A(Q). To test this, we run the procedure for various degrees of the Lebedev quadrature. 
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Table 1
Maximum component of the difference Amax − A, for A given by Newton’s method for various Lebedev quadrature degrees and Q with various eigenvalues 
parametrized by Sn . Amax is given by Newton’s method with maximum quadrature degree 5810.

Degree Sn = 0.1 Sn = 0.6 Sn = 0.97 Sn = 0.995

14 0.04 1.4 49.6 No Convergence
86 3.2 × 10−9 1.4 × 10−3 31.2 No Convergence
590 1.8 × 10−15 6.8 × 10−14 7.1 × 10−3 No Convergence
2030 7.2 × 10−15 5.1 × 10−14 5.1 × 10−12 0.1
3470 2.3 × 10−14 6.6 × 10−14 1.9 × 10−12 3.3 × 10−4

|Amax| 0.82 5.1 58.3 347

Fig. 2. Singular bulk potential, Eq. (18), as a function of Sn for κ/T = 4 and κ/T = 10. Dots show the location of the minimum for either case. As κ/T
increases, the minimum of the bulk potential approaches the physical limit of Sn = 1.

We use in the test a tensor Q with maximum eigenvalue parametrized as maxi(λi) = (2/3)Sn , for a range of Sn . We have 
examined the cases Sn = 0.1, Sn = 0.6, Sn = 0.97, and Sn = 0.995, which is the largest value of Sn for which the algorithm 
converges. Note that if Sn = −0.5 or 1, the physical limit of the eigenvalues is reached, Q is no longer physical, and the 
corresponding A diverges. The maximum degree of the Lebedev quadrature tested is 5810, and we denote A given by 
quadrature at this degree by Amax . Table 1 summarizes the results in terms of the maximum component of the difference 
Amax − A for various quadrature degrees. We find that for quadrature degrees below 500, the eigenvalues of Q must be 
relatively small in order to obtain accurate values of A. For Q with eigenvalues close to their physical limit, the Lebedev 
quadrature degree must be sufficiently high. Depending on the value of κ/T , it may be necessary to use larger degrees 
of quadrature or more sophisticated methods to find A, as illustrated in Fig. 2 showing the bulk potential, Eq. (18), as a 
function of Sn . As κ/T increases, and the liquid crystal becomes more ordered, the equilibrium value of Sn increases.

6.2. Boundedness of the bulk potential

We next examine two spatially nonuniform configurations which are unstable in the Landau-de Gennes theory when 
L∗ �= 0, but remain stable when using the singular bulk potential. In the first example, we choose a weakly perturbed 
configuration away from uniform. We take as initial condition a purely uniaxial configuration defined by Q = Sn(x)(n̂ ⊗ n̂ −
1/3I) where I is the identity matrix, n̂ = (0, 1, 0) is fixed, and Sn(x) = S0 + β sinπkx, where S0 = 0.6751 is chosen so as to 
minimize the bulk potential with κ/T = 4. We set β = 0.1, k = 10, L1 = 1, L2 = L3 = L4 = 0, and L∗ = 3. For this ratio of 
κ/T , the equilibrium configuration is inside the nematic phase. Note that the coefficients are just outside the limits stated 
in Theorem 5, but the minimizer found appears to be robust.

We run the gradient flow described in Sec. 4.2 on the components of Q, decomposed in the basis

E1 =
⎛⎜⎝

2√
3

0 0

0 − 1√
3

0

0 0 − 1√
3

⎞⎟⎠ , E2 =
⎛⎝0 0 0

0 1 0
0 0 −1

⎞⎠ ,

E3 =
⎛⎝0 1 0

1 0 0
0 0 0

⎞⎠ , E4 =
⎛⎝0 0 1

0 0 0
1 0 0

⎞⎠ , E5 =
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠ ,

(93)

using a square domain defined by [0, 1]2 with a body centered mesh with 150 × 150 squares (44701 vertices), linear basis 
functions, and a time step in the minimization δt = 4 × 10−3. The same parameters are used for both the singular bulk 
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Fig. 3. Energy of the perturbed uniform configuration as a function of S0 and k for the Maier-Saupe bulk potential and the double well potential when 
L1 = 1, L2 = L3 = L4 = 0 L∗ = 3. In the case of the double well, there is a saddle point and unbounded energy, while the Maier-Saupe energy remains 
bounded below since it diverges if S → −0.5 or S → 1.

Fig. 4. Comparison of the evolution of Sn for the perturbed uniform configuration given by Maier-Saupe bulk potential, and that given by the Landau-de 
Gennes double well potential. We use k = 10, β = 0.1, and L∗ = 3. The evolution corresponding to the Maier-Saupe bulk potential relaxes to a uniform 
configuration, while the configuration evolving under the double well diverges rapidly.

potential and the standard bulk potential of Landau-de Gennes (see (7)). When L∗ �= 0, the total LdG energy with standard 
double well potential is unbounded from below when k > 0. However, the singular bulk potential maintains a bounded free 
energy for a nonzero range of L∗ since it diverges outside of the range −1/2 ≤ Sn ≤ 1. This is illustrated in Fig. 3 where we 
show the total free energy for a set of configurations within a range of S0 and k. The (standard) double well energy has a 
saddle along the line k = 0 indicating lack of stability for any k and a range of amplitudes S0. On the other hand, given the 
divergence of the Maier-Saupe bulk potential outside the admissible range of eigenvalues of Q, the free energy computed 
remains bounded below for all admissible values of S0 and k. In fact, the surface plot.

To further illustrate the difference between the two energies, we show in Fig. 4 the gradient flow of Sn during the 
minimization procedure described in Sec. 4.2. The configuration obtained by iterating with the standard Landau-de Gennes 
double well energy diverges quickly, whereas in the Maier-Saupe case, it simply relaxes to a uniform configuration.

The second configuration studied is an adaptation of the example from Ball and Majumdar [31] meant to demonstrate 
the stability of the singular bulk potential. We consider a cylindrically symmetric initial condition Q = Sn(r)(r̂ ⊗ r̂ − 1/3I)
with

Sn(r) =
{

S0(2 + sin πkr
5 ) 0 < r < 5

2S0(2 + sinπk)(1 − r
10 ) 5 < r < 10.

(94)

This initial condition is allowed to relax by gradient flow as in Sec. 4.2. The value of S0 = 0.32 is chosen so that the 
eigenvalues of Q are close to the physically admissible limit, and κ/T = 3 so that the bulk potential is minimized for the 
isotropic phase S = 0 [42]. We also set k = 5, L1 = 1, L2 = L3 = L4 = 0, and L∗ = 3. A body centered mesh with 150 × 150
squares in a square domain with bounds [−10, 10]2, and time step δt = 4 × 10−3 are used. Each iteration of the gradient 
flow for this mesh size takes ∼ 30 CPU minutes to complete. By direct substitution of Eq. (94) into the Landau-de Gennes 
free energy, Ball and Majumdar showed that the energy is unbounded below if there is no constraint on the value of S0
when L∗ �= 0 [31]. Fig. 5 shows several time steps in the gradient flow of Sn for the initial condition (94) with both the 
singular bulk potential and the standard double well Landau-de Gennes potential. As expected, the flow corresponding to 
the standard double well potential fails to converge when L∗ �= 0, whereas the singular bulk potential eventually converges 
to a configuration with uniform eigenvalues.

6.3. Three dimensional configurations

Although the self consistent field theoretic method introduced might appear to lead to a more complex numerical im-
plementation than the Landau-de Gennes theory, we show that even with modest computational resources it is possible to 
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Fig. 5. Evolution of Sn for the example from Ball and Majumdar [31] for the Maier-Saupe bulk potential and standard bulk potential with k = 5 and L∗ = 3. 
The system with the Maier-Saupe potential eventually relaxes to the isotropic phase, while the double well system diverges rapidly.

Fig. 6. 3D visualization of the equilibrium configurations for a m = +1 point defect (left) and a m = −1/2 line disclination (right). For both figures, the 
surface shows all points where Sn = 0.5Smax i.e. the “boundaries” of the defects. For both simulations we set κ/T = 4, L1 = 1, L2 = L3 = L4 = 0 and L∗ = 3.

obtain defected configurations in three spatial dimensions. We consider three examples: a m = +1 point defect, a line discli-
nation of charge m = −1/2, and a Saturn ring loop disclination. For all calculations we use κ/T = 4, L1 = 1, L2 = L3 = L4 = 0, 
and L∗ = 3. As above, the equilibrium configuration is in the nematic phase. For the point defect and line disclination, we 
use a cubic domain with bounds [−5, 5]3 with a uniform tetrahedral mesh with 41 × 41 × 41 vertices. For the Saturn ring 
we use a cubic domain of size [−30, 30]3 with a spherical cavity of radius 7.5 and a body-centered-cubic (bcc) mesh with 
127108 vertices. For all computations, we use piecewise linear finite elements and a time step δt = 5 × 10−2. Iteration is 
continued until the energy change falls within a tolerance of 10−6. For the point defect, Dirichlet boundary conditions on 
the components of Q are used on all sides of the computational domain so as to enforce the topological charge of the defect 
at the center. For the line disclination, Neumann boundary conditions on the components of Q are used on the top and bot-
tom of the computational domain, while Dirichlet conditions are used on all lateral sides to maintain the topological charge 
of the line at the center of the domain. For the Saturn ring, Dirichlet boundary conditions fixing a uniform configuration 
with molecules oriented along the z-axis are used on the exterior sides of the domain while Dirichlet conditions are used 
on the interior sphere to fix a configuration with molecules oriented radially.

Fig. 6 shows 3D visualizations of equilibrium configurations for a m = +1 point defect and a m = −1/2 line disclination. 
Both simulations reach equilibrium in ∼ 12 CPU hours. The surfaces in both figures show all points where Sn = 0.5Smax

which we define as the “boundary” of the defect. Note that for the line disclination, the eigenvalue profile is not isotropic 
due to the inclusion of cubic order terms in the elastic free energy. Also note that the defect core becomes biaxial, that is, 
the eigenvalues of Q become distinct. These two features are shown clearly in Fig. 7, which shows a cut in z = 0 plane of 
Sn along with the molecular orientation probability distribution, ρ(p), at various points through the defect. Far from the 
defect, the distribution is uniaxial and the corresponding Q has two degenerate eigenvalues. As the core of the defect is 
approached, the distribution spreads out in the xy plane and the corresponding Q has three distinct eigenvalues. At the 
center of the defect, the distribution is once again uniaxial but now corresponds to a disk with all orientations in the xy
plane equally weighted, which is distinct from the commonly referred to phenomenon of “escape to the third dimension” 
[1]. This biaxiality and the anisotropy are consistent with experimental observations in chromonic lyotropic liquid crystals 
[70], and has been discussed in detail in [43].

Finally, Fig. 8 shows a 3D visualization and a cut through the x = 0 plane of a Saturn ring loop disclination around 
a particle with homeotropic anchoring. As before, the surface shows all points on the “boundary” of the defect while 
the cut shows the value of Sn . The shape of the defect and the director field with a characteristic m = −1/2 charge are 
consistent with previous investigations of the Saturn ring [71,72]. The Saturn ring configuration takes ∼ 84 CPU hours to 
reach equilibrium. This is longer than the other 3D simualations because the mesh is larger and the system requires more 
iterations to reach equilibrium.
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Fig. 7. Cut of the equilibrium configuration of Sn in the z = 0 plane for a disclination line with plots of the molecular orientation probability distribution, 
ρ(p), at various points through the disclination. The distribution becomes biaxial as the core of the defect is approached. At the center of the core all 
orientations in the xy plane are equally probable. The eigenvalues of Q are listed below the corresponding distribution as (λ1, λ2, λ3).

Fig. 8. 3D visualization of the equilibrium configuration for a Saturn ring loop disclination (left) and plot of Sn in the x = 0 plane for the same configuration 
(right). The surface shows all points where Sn = 0.5Smax i.e. the “boundary” of the defect. For the simulation we set κ/T = 4, L1 = 1, L2 = L3 = L4 = 0 and 
L∗ = 3.

7. Conclusions and discussion

The analysis of a new computational method to obtain equilibrium configurations of a nematic liquid crystal has been 
presented. The method, based on the Ball-Majumdar singular bulk potential, can overcome known limitations of the Landau-
de Gennes theory in the case of elastically anisotropic media. We present selected numerical results demonstrating the 
convergence of the method in cases in which the Landau-de Gennes theory fails, and a study of prototypical three dimen-
sional configurations that include both point and line topological defects. The code developed has been incorporated into 
the FELICITY finite element framework in order to facilitate adoption [64,65].

The results shown have been obtained with a particular microscopic interaction model: the Maier-Saupe contact poten-
tial. This is a simple case to study since the resulting interaction energy is simply quadratic in Q. However, the extension 
to more complex interaction energies is possible assuming one knows their explicit functional representation in terms of 
the mesoscale Q. The eigenvalue constraint as introduced is captured in the entropy functional, which only depends on 
the definition of Q, and hence is independent of the form of the interaction energy functional. Of course, the limitation of 
a mean field approximation remains as long as the energy only depends on the local statistical average of the molecular 
orientation p. This is not expected to be a serious shortcoming as long as thermal fluctuations are negligible. This is the 
case in the majority of contemporary studies that focus on systems deep inside the nematic phase.

We have restricted our analysis to finding minimizers of the free energy functional, but the method can be readily 
extended to studies of nematodynamics (including hydrodynamic interactions). One simply needs to replace the Landau-de 
Gennes functional by the free energy computed from the singular potential. While there is an additional computational cost 
involved, it is not severe as demonstrated by our calculations of defect configurations in three dimensions, as long as one 
takes advantage of parallelism. The method can be therefore applied to the study of the temporal evolution of elastically 
anisotropic systems, including mass flows. Such a capability should be specially relevant to studies of nematic active matter 
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in which the length of the molecular constituents, and the dependence of their elastic constants on the Debye length when 
charged, leads to strong elastic anisotropy.
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