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Abstract

We present an approach to shape optimization problems that uses an unfitted finite

element method (FEM). The domain geometry is represented, and optimized, using a (dis-

crete) level set function and we consider objective functionals that are defined over bulk

domains. For a discrete objective functional, defined in the unfitted FEM framework, we

show that the exact discrete shape derivative essentially matches the shape derivative at

the continuous level. In other words, our approach has the benefits of both optimize-then-

discretize and discretize-then-optimize approaches.

Specifically, we establish the shape Fréchet differentiability of discrete (unfitted)

bulk shape functionals using both the perturbation of the identity approach and direct

perturbation of the level set representation. The latter approach is especially convenient

for optimizing with respect to level set functions. Moreover, our Fréchet differentiability

results hold for any polynomial degree used for the discrete level set representation of the

domain. We illustrate our results with some numerical accuracy tests, a simple model (ge-

ometric) problem with known exact solution, as well as shape optimization of structural

designs.

We also present some analysis of the Landau–de Gennes model for liquid crystals

in an unfitted framework and derive a consistency estimate for a scalar-valued version of

this PDE. These results will (eventually) form the foundation of an unfitted method for

the Landau–de Gennes model.

viii



Chapter 1. Introduction

Considerable work has been done on shape optimization with the following refer-

ences giving a good overview [62, 38, 69, 39, 76, 66]. The main idea is to optimize (e.g.

minimize) an objective functional over an admissible set of shapes or domains. Typically,

the objective functional depends on the solution of a partial differential equation (PDE)

over the domain to be optimized [74, 42], which gives a PDE-constrained, shape optimiza-

tion problem. A classic example is finding the shape of a rigid body in a fluid flow that

has minimum drag (i.e. that minimizes the viscous dissipation in the fluid velocity field

around the body) [60, 61, 53, 34]. Other applications can be found in image processing

[41, 23], microswimmers and fluids [77, 78, 48], and optimal (elastic) structures [19, 17].

For practical applications, one usually uses gradient-based optimization to find op-

timal shapes; thus, one has to calculate shape derivatives to obtain effective descent di-

rections [38]. For the continuous problem, one can derive exact shape derivative formulas

provided the domain and PDE-data are sufficiently smooth [22]. But these formulas de-

pend on solutions of PDEs, which are almost never analytically tractable. Moreover, the

domain geometry must be represented in a way that can be easily varied for optimization

purposes. Hence, for real applications, numerical discretization of the PDE and geome-

try is necessary to make shape optimization problems tractable. A variety of numerical

methods may be used for shape optimization, though finite element methods (FEM) are

popular [43] because of their ability to handle complex geometry.

However, using FEMs with conforming meshes for the domain geometry introduces

an issue for gradient-based optimization methods. The discrete objective functional now

depends on the mesh vertex positions in a non-obvious way [5] and can be complicated
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to differentiate [29, 40] or requires automatic differentiation [46]. Essentially, the diffi-

culty comes from the fact that perturbing the mesh (geometry) also perturbs the finite

element space used for computing the PDE solution. The approach just described is called

the Discretize-then-Optimize approach.

The alternative approach is called Optimize-then-Discretize. In this case, one de-

rives the exact shape derivative formulas at the continuous level, then simply replaces all

quantities with their discrete approximation [1]. Thus, computing the derivative is more

straightforward than the other approach. Unfortunately, it suffers from inconsistent gradi-

ents, i.e. the discrete approximation of the shape derivative is not the exact derivative of

the discrete objective functional. Hence, a gradient-based optimization method that uses

these derivatives may get stuck and not reach a true optimum. In addition, one has to de-

form the mesh as the domain changes which introduces some challenges, such as avoiding

mesh degeneracies and general remeshing of the domain [1]. Despite this, some success is

enjoyed by this approach [45, 54], but the issues remain. See [33, 7] for a detailed discus-

sion on the Optimize-then-Discretize versus Discretize-then-Optimize approaches.

Therefore, we propose an unfitted approach for shape optimization that avoids the

above dichotomy. Our method uses discrete level set functions to represent the domain

and an unfitted FEM for solving the PDEs. We show that, for bulk shape functionals, the

exact, discrete shape derivative in terms of perturbing the domain’s discrete level set func-

tion can be easily computed and, essentially, matches the continuous formula. Effectively,

we take the discretize-then-optimize approach, but our formula is the same as that from

the optimize-then-discretize approach (c.f. Sec. 5.5). Ergo, we gain the benefits of both

approaches.
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In [25], they consider shape optimization with extended FEM and level sets and

apply finite differences (with respect to the level set) to the finite element stiffness matrix

and load vector. However, this is a purely discretize-then-optimize approach and the com-

puted shape derivative is not easy to interpret. In [24], they consider shape optimization

with multi-meshes and they describe a method of mappings approach that yields a (seem-

ingly) simple discrete shape derivative formula that is discretely consistent. However, they

demonstrate that applying their formula to a Poisson problem results in a complicated

formula involving many jump terms and special extension terms that are not easy to im-

plement within their FEM framework. They then opt for a Hadamard formulation of the

shape derivative, which is the optimize-then-discretize approach and gives gradients that

are not consistent.

The closest reference to our work is [6], which derived similar level set shape deriva-

tive formulas to ours (c.f. our Theorem 5.16 to [6, Thm 5.1]). Nevertheless, there are two

main differences with our work: (i) we are able to prove Fréchet differentiability of our

formulas, whereas [6] only proves Gâteaux differentiability; (ii) we allow for discrete level

set functions of arbitrary polynomial degree, but [6] only considers piecewise linear level

set functions. We also emphasize that [6] assumes that the zero level set does not pass

through any vertices of the mesh, which is related to our Assumption 4. It is notable that

[6] also considers boundary functionals, which we do not, however the resulting discrete

formulas are much more complicated than the continuous versions.

Some other related works are the following. In [18], they apply cutFEM techniques

and level sets to shape optimization of elastic structures, but their formulation is of the

optimize-then-discretize type only. In [14], they consider a Bernoulli free boundary prob-
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lem, which can be posed as a shape optimization problem, and its approximation by cut-

FEM. Moreover, they formally compute discrete shape derivatives in the Gâteaux sense

under some smoothness assumptions, including a boundary value correction method, and

compare these to using continuous derivative formulas. Numerical experiments show that

the various derivative formulas perform similarly with some issues of getting stuck on local

minimizers.

Recently in [29], they computed the exact shape and topological derivative of dis-

crete shape functionals, but their analysis was limited to piecewise linear level set func-

tions. Our analysis allows for discrete level sets of arbitrary polynomial degree and yields

formulas that are easier to interpret than in [29]. Furthermore, [9, 8] presents theoretical

tools for shape optimization of sets defined via intersection.

The thesis is split into two main sections: (i) a section on shape optimization with

unfitted finite element methods (Chapters 2-8); (ii) development of an unfitted method for

simulating liquid crystals (Chapters 9-11).

The discussion on shape optimization is organized as follows. Chapter 2 presents a

model problem, shape optimization with linear elasticity as the PDE constraint, to illus-

trate our shape derivative technique. Next, in Chapter 3, the discretization of the linear

elasticity PDE is introduced along with an unfitted finite element framework. The anal-

ysis of the model problem: existence and uniqueness, well-conditioning, and consistency

estimates are addressed in Chapter 4. Chapter 5 discusses the shape derivative and es-

tablishes the shape Fréchet differentiability of discrete bulk shape functionals. Moreover,

the shape derivative is connected to the level set formulation and allows for direct per-

turbation of the level set function. In Chapter 6, the full shape optimization algorithm is

4



described within a level set framework that allows for directly updating the level set func-

tion. Then, we give numerical results to demonstrate the method in Chapter 7 with con-

cluding remarks in Chapter 8.

Additionally, in Chapters 9 and 10, we address the Landau–de Gennes model for

liquid crystals in the unfitted finite element framework and discuss the analysis for a

scalar-valued version: a modified Allen–Cahn PDE. Some concluding remarks are given in

Chapter 11.
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Chapter 2. Linear Elasticity PDE

We setup a classic example problem to illustrate our unfitted approach to shape

optimization. Let Ω ⊂ Rd, for d = 2 or 3 with Lipschitz boundary ∂Ω := ΓD∪ΓN such that

ΓD ∩ ΓN = ∅. We also denote the outward normal of Ω by ν. We consider the following

linear elasticity equations with displacement field u(x):

−∇ · σ = f , σ = 2µϵ(∇u) + λtr(ϵ(∇u))I, in Ω

u = 0, on ΓD, σν = gN on ΓN,

(2.1)

where ϵ(∇u) := 1
2(∇u + ∇uT ), µ and λ are Lamé parameters, and σ is the stress tensor.

Additionally, f and gN are body and surface force densities, respectively. The term ∇ · σ

denotes taking the row-wise divergence on σ. An example of a 2-D elastic domain Ω is

given in Figure 2.1. The typical physical example we consider is a cantilever, with zero

Dirichlet boundary conditions indicating that the cantilever is anchored along ΓD.

The weak formulation of (2.1) is as follows. First, define the linear and bilinear

forms:

χ (Ω; v) := (f ,v)Ω + (gN,v)ΓN
, ∀v ∈ H1(Ω),

a (Ω; u,v) := 2µ (ϵ(∇u), ϵ(∇v))Ω + λ (∇ · u,∇ · v)Ω , ∀u,v ∈ H1(Ω).
(2.2)

Then, we seek the unique solution u ∈ VD(Ω) := {v ∈ H1(Ω) : v|ΓD = 0} such that

a (Ω; u,v) = χ (Ω; v) ∀v ∈ VD(Ω). (2.3)

We will sometimes denote the solution to (2.3) by u(Ω) to emphasize the dependence of

the solution on the domain Ω.

6



Ω

ΓD

ΓD

ΓN

ΓN

ΓN

ΓN

ν

ν

Figure 2.1. Diagram of 2-D domain representing a cantilever. The cantilever is anchored
on the left and is hanging out freely to the right. Note that Γ := ∂Ω ≡ ΓD ∪ ΓN.

2.1. Minimization Problem

For any v ∈ VD, let J (Ω; v) be a shape (cost) functional. Furthermore, let A be a

set of admissible domains that accounts for some boundary constraints, regularity proper-

ties, etc., and consider the following minimization problem

J(Ωmin,u(Ωmin)) = min
Ω∈A

min
u∈VD(Ω)

J (Ω; u) , subject to u uniquely solving (2.3) on Ω. (2.4)

If A has some compactness properties, such as enforcing a bounded Lipschitz constant on

the domains, see [1], then existence of a minimizer can be shown.

Proceeding formally, we rewrite the minimization problem using a Lagrangian to

free the PDE-constraint, i.e. for any Ω ∈ A, define

L (Ω; v, q) := J (Ω; v)− a (Ω; v, q) + χ (Ω; q) , ∀v, q ∈ H1(Ω), (2.5)

and note that by (2.3) the following property holds

J (Ω; u(Ω)) = L (Ω; u(Ω), q) , ∀q ∈ VD(Ω). (2.6)

The Lagrangian framework allows us to characterize the minimizer in (2.4) as a saddle-

7



point, i.e.

L
(
Ω̄; ū, p̄

)
= min

Ω∈A
min

u∈VD(Ω)
max

q∈VD(Ω)
L (Ω; v, q) , (2.7)

for some Ω̄ ∈ A, ū ∈ VD, and p̄ ∈ VD. Assuming L is Fréchet differentiable, with

δqL (Ω; v, q) (·), δvL (Ω; v, q) (·), and δΩL (Ω; v, q) (·) denoting the Fréchet derivatives with

respect to each argument, the following first order conditions must hold for ū and p̄:

δqL
(
Ω̄; ū, p̄

)
(z) = 0, ∀z ∈ VD(Ω̄),

δvL
(
Ω̄; ū, p̄

)
(w) = 0, ∀w ∈ VD(Ω̄),

(2.8)

which means that ū and p̄ solve the following variational problems

a
(
Ω̄; ū,v

)
= χ

(
Ω̄; v

)
, ∀v ∈ VD(Ω̄),

a
(
Ω̄; w, p̄

)
= δvJ

(
Ω̄; ū

)
(w), ∀w ∈ VD(Ω̄).

(2.9)

Thus, Ω̄ = Ωmin, ū = u(Ωmin) solves (2.3) on Ωmin and p̄ = p(Ωmin) solves an adjoint

problem. In addition, we have the following first order condition for Ω̄:

δΩL
(
Ω̄; ū, p̄

)
(Y ) = δΩJ (Ω; ū) (Y )− δΩa (Ω; ū, p̄) (Y ) + δΩχ (Ω; p̄) (Y ) = 0, (2.10)

for all admissible shape perturbations Y .

Note that, ultimately, we are after the derivative of the reduced functional J (Ω) :=

J (Ω; u(Ω)), where u(Ω) solves (2.3). Indeed, we seek to compute the shape derivative of

J (Ω), so that we can perform gradient based optimization (see Section 6.2). This is given

by the Correa-Seeger theorem [22, pg. 427]:

δΩJ (Ω) (Y ) = δΩL (Ω; ū(Ω), p̄(Ω)) (Y ), (2.11)

for any admissible domain Ω.

8



As an example shape functional, we are interested in the so-called compliance func-

tional χ, plus a penalty term on the volume of the domain:

J (Ω; v) = χ (Ω; v) + a0|Ω|, (2.12)

where χ is a sum of the work of the external forces acting on Ω (note: a0 > 0). Neverthe-

less, our level set shape derivative formulas can be applied to other bulk shape functionals.

Note that by using (2.12), the problem is self-adjoint and p̄ = ū.

9



Chapter 3. Unfitted Discretization

Our shape derivative technique takes full advantage of the framework of unfitted

FEM, which uses level sets to represent the domain, as well as a Nitsche method and in-

terface stabilization to yield a well-posed problem [15, 36, 12, 16, 50]. This section de-

scribes our discretization of the forward problem (2.3) (see also [37]).

3.1. Domain Representation with Level Sets

Let ϕ : D̂ → R be a C1 level set function, with c−1 ≥ |∇ϕ| ≥ c > 0 on D̂, where

D̂ ⊂ Rd is a fixed, open, “hold-all,” polygonal domain (e.g. a box) that we call the design

domain. We represent the exact domain Ω by Ω = {x ∈ D̂ : ϕ(x) < 0} (see Figure 3.1),

where the boundary of Ω partitions as

∂Ω = Γ̂ ∪ Γ, where Γ̂ := ∂D̂ ∩ Ω, and Γ := {x ∈ D̂ : ϕ(x) = 0}. (3.1)

Essentially, Γ is the free part of the domain that is being optimized. Note that ϕ ̸= 0 on

Γ̂, except on Γ̂∩Γ. This partitioning of the boundary will induce an analogous partitioning

of the Dirichlet and Neumann boundaries, i.e.

∂Ω ≡
(
Γ̂D ∪ ΓD

)
∪
(
Γ̂N ∪ ΓN

)
≡
(
Γ̂D ∪ Γ̂N

)
︸ ︷︷ ︸

=Γ̂

∪ (ΓD ∪ ΓN)︸ ︷︷ ︸
=Γ

, (3.2)

and similarly for the discrete boundaries (see below). The “hatted” boundaries will be in-

active, while “unhatted” are active.

The discrete domain is represented by a discrete version of ϕ, denoted ϕh. To this

end, let T̂h = {T} be a conforming shape regular mesh of D̂, where all T ∈ T̂h are treated

as open sets, and define the space

Bh = {ϕh ∈ W 1,∞(D̂) : ϕh|T ∈ W 2,∞(T ), ∀T ∈ T̂h}, (3.3)

10



Ω

ΓD ΓN

ΓN

ΓN

Γ̂D

Γ̂N

Γ̂N

Γ̂N

ν

ν

Figure 3.1. Diagram of the design domain. The outer design domain boundary ∂D̂ is indi-
cated by the long and short dashed line, where the short dashed lines correspond to Ω̄ ∩ Γ̂;
the solid boundaries indicate Γ.

with norm given by

∥ϕh∥Bh := ∥ϕh∥W 1,∞(D̂) + max
T∈T̂h
∥∇2ϕh∥L∞(T ). (3.4)

Then, we let ϕh ∈ Bh and define the discrete domain Ωh = {x ∈ D̂ : ϕh(x) < 0} with

∂Ωh = Γ̂h ∪ Γh, Γ̂h := ∂D̂ ∩ Ωh, and Γh := {x ∈ D̂ : ϕh(x) = 0}. (3.5)

Again, we assume c−1 ≥ |∇ϕh| ≥ c > 0 a.e. to guarantee Ωh is well-defined and ∂Ωh has

dimension d − 1. We also have an analogous partitioning of the discrete boundaries as in

(3.2), i.e.

∂Ωh ≡
(
Γ̂h,D ∪ Γh,D

)
∪
(
Γ̂h,N ∪ Γh,N

)
≡
(
Γ̂h,D ∪ Γ̂h,N

)
∪ (Γh,D ∪ Γh,N) = Γ̂h ∪ Γh. (3.6)

In practice, we take ϕh ∈ Bh ⊂ Bh to be a finite element function where Bh is a

fixed, background (Lagrange) finite element space on D̂:

Bh = {vh ∈ C0(D̂) : vh|T ∈ Pk(T ), ∀T ∈ T̂h}, for some k ≥ 1. (3.7)

Using level sets to represent geometries has a long history [57, 68], with some recent work

on level set functions defined on unstructured meshes [4].
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3.2. Subdomains and Meshes

For any given domain Ω (an open set with Lipschitz boundary), we approximate

it by Ωh which will be determined from an approximated level set function (as noted in

(3.5)). Note that Ω will be changing due to shape optimization iterations. Let δ > 0 be a

layer thickness parameter (to be determined later) for extending domains, i.e. define the

open set

Ωδ = Eδ(Ω) := int{x ∈ D̂ : dist (x,Ω) ≤ δ}, (3.8)

and Ωh,δ = Eδ(Ωh). Note that Ω0 ≡ Ω and Ωh,0 = Ωh. With this, we define the active mesh

and corresponding domain (see Figure 3.2):

Tδ ≡ Th,δ ≡ Th,δ(Ωh) = {T ∈ T̂h : Ωh,δ ∩ T ̸= ∅},

Dδ ≡ Dh,δ ≡ Dh,δ(Ωh) = {x ∈ T : T ∈ Th,δ(Ωh)},
(3.9)

where the discrete extended domains Dδ are jagged versions of Ωh,δ.

Next, we define the tubular (or shell region) that contains Γh (the active part):

Σ±
δ ≡ Σ±

h,δ ≡ Σ±
h,δ(Γh) = {x ∈ D̂ : dist (x,Γh) ≤ δ},

Σ+
δ ≡ Σ+

h,δ ≡ Σ+
h,δ(Γh) = {x ∈ D̂ \ Ωh : dist (x,Γh) ≤ δ},

(3.10)

i.e. the shell regions always contain the zero level set. The corresponding meshes are (see

Figure 3.2)

TΣ± ≡ TΣ±
δ

(Γh) = {T ∈ T̂h : T ∩ Σ±
δ ̸= ∅},

TΣ+ ≡ TΣ+
δ
(Γh) = {T ∈ T̂h : T ∩ Σ+

δ ̸= ∅}.
(3.11)

For simplicity, we assume that ΓD and ΓN lie on disconnected parts of Γ so that we

12



(a) The active mesh Tδ depicted by the collec-
tion of elements above.

(b) In red, we have the shell region Σ±
δ that

surrounds the active boundary.

(c) The selection of elements, TΣ± , around the
shell region Σ±

δ .
(d) The facet selection FΣ± is depicted above.

Figure 3.2. Illustrations of subdomains.

have a clear decomposition:

Σ±
h,δ(Γh) = Σ±

h,δ,D(Γh,D) ∪ Σ±
h,δ,N(Γh,N), Σ+

h,δ(Γh) = Σ+
h,δ,D(Γh,D) ∪ Σ+

h,δ,N(Γh,N),

TΣ±
δ

(Γh) = TΣ±
δ,D
∪ TΣ±

δ,N
, TΣ+

δ
(Γh) = TΣ+

δ,D
∪ TΣ+

δ,N
.

(3.12)

We also have the set of shell facets (see Figure 3.2):

FΣ± ≡ FΣ±
δ

= {F ∈ ∂Th,δ : F = T1 ∩ T2, for some T1 ∈ Th,δ, T2 ∈ TΣ± , such that T1 ̸= T2},

(3.13)

where ∂Th,δ := {∂T : T ∈ Th,δ} denotes the set of all facets within the active mesh. Again

we have the following decomposition: FΣ±
δ

= FΣ±
δ,D
∪ FΣ±

δ,N
. Note that the facets on the

boundary of Dh,δ are not included in (3.13).

Remark 1. One does not have to assume that ΓD and ΓN lie on disconnected parts of Γ.

In this case, we alternatively define Σ±
h,δ,N(Γh,N) and Σ±

h,δ,D(Γh,D) as follows so that the two
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sets are disjoint:

Σ±
δ,D ≡ Σ±

h,δ,D(Γh,D) := {x ∈ D̂ : dist (x,Γh,D) ≤ δ},

Σ±
δ,N ≡ Σ±

h,δ,N(Γh,N) := Σ±
δ \ Σ±

δ,D.

(3.14)

Similarly, the previous subdomain definitions can be redefined analogously for when ΓD and

ΓN are not disconnected. This will be necessary later for the continuity and coercivity of

our bilinear form.

3.3. The Finite Element Scheme

The background finite element space is based on Bh but with Dirichlet boundary

conditions on Γ̂h,D built-in:

B̊h = Bh ∩ {v ∈ H1(D̂) : v|Γ̂h,D = 0}. (3.15)

With this, we have the restricted finite element space on Dh,δ:

Vh ≡Vh(Ωh) = {vh ∈ C0(Dh,δ) : vh = v̂h|Dh,δ , for some v̂h ∈ B̊h}, (3.16)

i.e. Vh = B̊h|Dh,δ .

The unfitted approach [37] for (2.3) requires special facet stabilization terms to en-

sure that the method is stable and that the condition number of the corresponding (finite

dimensional) linear system does not depend on how elements are cut by the boundary.

Given a facet F = T1 ∩ T2, with T1 ̸= T2, let ωF = T1 ∪ T2 be the local facet “patch.”

For any u,v ∈ Bh, define the local stabilization form, known as the “direct” version of the

ghost penalty method as in [50]

sh,F (u,v) :=
∫
ωF

(u1 − u2) · (v1 − v2)dx, (3.17)
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where ui = EP (u|Ti) (i = 1, 2), and similarly for vi, where EP : Pk(T ) → Pk(Rd) is the

obvious extension of a polynomial on an element T to all of Rd using its analytic formula.

For the analysis, we also define (3.17) for arbitrary functions u,v ∈ L2(D̂). Set ui =

EP (ΠTiu|Ti) (i = 1, 2), where ΠTi is the L2(Ti) projection onto Pk(Ti).

The global stabilization form, for a set of facets F , is given by

sh (F ; u,v) := 1
h2

∑
F∈F

sh,F (u,v) , (3.18)

where sh (F ; u,v) ≤ (sh (F ; u,u))1/2 (sh (F ; v,v))1/2 follows because sh (F ; ·, ·) is an inner

product. Then, we introduce the following stabilized bilinear form:

ah (Ωh; u,v) := a (Ωh; u,v) + γssh(FΣ±
δ,D

; u,v) + γsh
2sh(FΣ±

δ,N
; u,v), (3.19)

where γs > 0.

Next, we introduce the Nitsche stabilization technique for handling boundary con-

ditions in our unfitted method. For all u,v ∈ Bh, define the following forms:

Ah (Ωh; u,v) := ah (Ωh; u,v)− (σ(u)νh,v)Γh,D − (u,σ(v)νh)Γh,D

+ γDh
−1b (Ωh; u,v) + γNh(σ(u)νh,σ(v)νh)Γh,N

b (Ωh; u,v) := 2µ(u,v)Γh,D + λ(u · νh,v · νh)Γh,D

χh (Ωh; v) := χ (Ωh; v) + γNh(gN,σ(v)νh)Γh,N ,

(3.20)

where γD > 0, γN ≥ 0 are fixed coefficients. These forms are similarly defined on the exact

domain Ω.

Our unfitted numerical scheme is as follows. Find uh ∈ Vh(Ωh) such that

Ah (Ωh; uh,vh) = χh (Ωh; vh) ∀vh ∈ Vh(Ωh), (3.21)
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where the Dirichlet condition on Γh,D is only penalized here. This scheme is a slight varia-

tion of the unfitted finite element method in [37] (see also [13]).

Let us (formally) verify the consistency of the scheme, though this is proved later

in Section 4.4. For simplicity, we replace Ωh by Ω and take the exact data f and gN.

Next, we substitute the exact solution u of (2.3) for uh and integrate by parts

(−∇ · σ(u),vh)Ωh + (σ(u)ν,vh)Γh − (σ(u)ν,vh)Γh,D − (u,σ(vh)ν)Γh,D

+ γDh
−1b (Ωh; u,vh) + γNh (σ(u)ν,σ(vh)ν)Γh,N + (stabiliz. forms)

= (f ,vh)Ωh + (gN,vh)Γh,N + γNh (gN,σ(vh)ν)Γh,N ,

(3.22)

for all vh ∈ Vh(Ωh). Using the strong form (2.1) and rearranging, we get

− (u,σ(vh)ν)Γh,D + γDh
−1b (Ωh; u,vh)

+ γNh (σ(u)ν − gN,σ(vh)ν)Γh,N + (stabiliz. forms) = 0,
(3.23)

where the first three terms vanish by (2.1). The stabilization forms are not zero, but van-

ish as h → 0 (see Prop. 4.4). Note: γN is allowed to be zero, but it may be useful to have

in the case of other boundary conditions.
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Chapter 4. Error Analysis for the Linear Elasticity PDE

We give a brief overview of the error analysis for the approximation of (2.3) with

(3.21). To this end, we define some convenient norms:

∥v∥2
ah

:= ah (Ωh; v,v) , ∥v∥2
b := b (Ωh; v,v) ,

|||v|||2h := ∥v∥2
ah

+ h∥σ(v)∥2
L2(Γh,D) + γNh∥σ(v)νh∥2

L2(Γh,N) + h−1∥v∥2
b ,

(4.1)

for all v ∈ H2(D̂) ∪Bh.

4.1. Inverse Estimates

In order to obtain some of these inverse estimates and to ensure coercivity of our

bilinear form, we make a reasonable assumption, as in [50, Assumption 5.3], for a bound

on the number facets that have been cut and a uniform bound (independent of h) on the

number of paths that end on any interior element.

Assumption 1. For every element T ∈ TΣ+ there exists a path from x ∈ T to a point

within an interior element y ∈ S ∈ Tδ\TΣ+ and has the following properties: The number

of facets that are cut by the path from x to y has a uniform bound of K ≲ (1 + δ
h
) and the

total number of paths that end in any interior element S ∈ Tδ\TΣ+ has a uniform bound,

M , independent of h.

This is a reasonable assumption as long as the interface Γ is smooth and sufficiently

resolved by the mesh. We have the following useful inverse estimates.

Proposition 4.1. Let T1 ∈ TΣ± and T2 ∈ Tδ be such that T1 ̸= T2 and T̄1 ∩ T̄2 = F ̸= ∅.

Then for u with u|Ti ∈ Pm(Ti) for i = 1, 2, we have that

∥u∥2
L2(T1) ≲ ∥u∥2

L2(T2) + sh,F (u,u) , (4.2)

∥∇u∥2
L2(T1) ≲ ∥∇u∥2

L2(T2) + 1
h2 sh,F (u,u) . (4.3)
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The proofs of (4.2) and (4.3) are given in Lemma 3.1 of [63] and in Lemma 5.2 of [50] re-

spectively.

We also have the following extension estimates.

Proposition 4.2. The following estimates hold for v ∈ Bh:

∥v∥2
L2(Dδ) ≲ ∥v∥2

L2(Ωh) +Kh2sh
(
FΣ±

δ
; v,v

)
, (4.4)

∥∇v∥2
L2(Dδ) ≲ ∥∇v∥2

L2(Ωh) +Ksh
(
FΣ±

δ
; v,v

)
, (4.5)

2µ∥ϵ(∇v)∥2
L2(Dδ) + λ∥tr(ϵ(∇v))∥2

L2(Dδ) ≲ ∥∇v∥2
L2(Ωh) +Ksh

(
FΣ±

δ
; v,v

)
, (4.6)

where K ≲ (1 + δ
h
).

Proof. The proof uses (4.2) and (4.3) repeatedly. For every element T ∈ TΣ+ , we create a

path from T to an interior element T ′ ∈ Tδ\TΣ+ . The norm over T can be estimated by

the norm over T ′ plus any facets that have been cut by our path. So, for (4.4), we have

the following:

∥v∥2
L2(Dδ) =

∑
∀T∈Tδ\TΣ+

∥v∥2
L2(T ) +

∑
∀T∈TΣ+

∥v∥2
L2(T )

≲ ∥v∥2
L2(Ωh) +

∑
∀T∈TΣ+

∥v∥2
L2(T ),

and now we use (4.2) repeatedly. Let us denote the path from any T ∈ TΣ+ to an element

T ′ ∈ Tδ\TΣ+ that has the desired properties in Assumption 1, by pT : [0, 1] → D̂ and

denote the collection of facets passed through by pT by FpT having at most K facets in

this collection. So then we get

∥v∥2
L2(Dδ) ≲ (M + 1)∥v∥2

L2(Ωh) +
∑

∀T∈TΣ+

∑
∀F∈FpT

sh,F (v,v)

≲ ∥v∥2
L2(Ωh) +Kh2sh(FΣ±

δ
; v,v),
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Figure 4.1. Example of a facet path, pT , in red with a neighborhood of this path in green.

and the last line follows due to fact that FpT ⊂ FΣ±
δ

and that any individual facet is

passed through order K ≲ (1 + δ
h
) number of times from paths pT for all T ∈ TΣ+ . To un-

derstand this, we first consider how many facets any path pT passes through. As shown in

Figure 4.1, given any path pT , we denote Oh(pT ) to be a neighborhood of pT that has been

extended by a distance of h. This guarantees that Oh(pT ) will contain all elements that

pT passes through. And due to the shape regularity of the mesh and the quasi-uniform

mesh we can estimate K (the number of elements that intersect pT ) by taking the area

of Oh(pT ) and dividing by the area of the smallest element. The length of pT is at most

δ, hence area of Oh(pT ) is at most πh2 + 2hδ and the area of any element is of order h2.

Hence, K ≲ πh2+2hδ
h2 ≲ (1 + δ

h
).

As long as the mesh sufficiently resolves Γ, we should have the number of paths

that pass through any individual facet is also of order K. Hence (4.4) follows, and the
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proof for (4.5) follows analogously. Now we consider (4.6):

2µ∥ϵ(∇v)∥2
L2(Dδ) + λ∥tr(ϵ(∇v))∥2

L2(Dδ) = 1
2µ∥∇v +∇vT∥2

L2(Dδ) + 1
4λ∥tr(∇v +∇vT )∥2

L2(Dδ)

≤ 2µ∥∇v∥2
L2(Dδ) + λ∥tr(∇v)∥2

L2(Dδ)

≲ (2µ+ λ)∥∇v∥2
L2(Dδ)

≲ (2µ+ λ)∥∇v∥2
L2(Ωh) + (2µ+ λ)Ksh

(
FΣ±

δ
; v,v

)
,

where we have used the inverse inequality (4.5).

Corollary 4.3.

∥v∥2
L2(Dδ\Σ±

δ,N) ≲ ∥v∥
2
L2(Ωh) +Kh2sh

(
FΣ±

δ,D
; v,v

)
, (4.7)

∥∇v∥2
L2(Dδ\Σ±

δ,N) ≲ ∥∇v∥2
L2(Ωh) +Ksh

(
FΣ±

δ,D
; v,v

)
, (4.8)

2µ∥ϵ(∇v)∥2
L2(Dδ\Σ±

δ,N) + λ∥tr(ϵ(∇v))∥2
L2(Dδ\Σ±

δ,N) ≲ ∥∇v∥2
L2(Ωh) +Ksh

(
FΣ±

δ,D
; v,v

)
. (4.9)

Proof. The proof is similar to the proof of Prop. 4.2.

2µ∥ϵ(∇v)∥2
L2(Dδ\Σ±

δ,N
) + λ∥tr(ϵ(∇v))∥2

L2(Dδ\Σ±
δ,N

)

= 1
2µ∥∇v +∇vT∥2

L2(Dδ\Σ±
δ,N

) + 1
4λ∥tr(∇v +∇vT )∥2

L2(Dδ\Σ±
δ,N

)

≤ 2µ∥∇v∥2
L2(Dδ\Σ±

δ,N
) + λ∥tr(∇v)∥2

L2(Dδ\Σ±
δ,N

)

≤ (2µ+ λ)∥∇v∥2
L2(Dδ\Σ±

δ,N
)

≲ (2µ+ λ)∥∇v∥2
L2(Ωh) + (2µ+ λ)Ksh(FΣ±

δ,D
; v,v).

Indeed, if we use Dδ\Σ±
δ,N instead of Dδ we only end up with the facet stabilization term

for facets belonging to FΣ±
δ,D

.

Remark 2. Since we always assume that |Γ̂D| > 0, we have the classic Korn’s inequality

[20, Thm. 6.15-4]. Let A ⊂ D̂ be Lipschitz and assume that Γ̂D ⊂ ∂A. Then, there exists a
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constant C = C(A, Γ̂D) such that

∥v∥H1(A) ≤ C∥ϵ(∇v)∥L2(A), for all v ∈ B̊h. (4.10)

Thus, for instance, one can bound the left-hand-side of (4.6) below by C̃∥∇v∥L2(Dδ), for

some bounded constant C̃.

We will also need the following estimates for use in the a priori estimate.

Proposition 4.4. For all v ∈ Hk(D̂) we have the following estimate for the stabilization

term:

sh
(
FΣ±

δ
; v,v

)
≲ h2k||u||2Hk+1(Dδ), (4.11)

and if I(v) is the Lagrange (or Scott-Zhang) interpolant of v, we also have

sh
(
FΣ±

δ
; v − I(v),v − I(v)

)
≲ h2k||u||2Hk+1(Dδ). (4.12)

Proof. The proof can be found in [50, Lem. 5.8].

The following lemma is a generalization of [36, Lem. 4.2] (see also [37, eqn. (64)]).

Lemma 4.5. Let A be a compact, C1,1 domain in Rd. Then, for any T ∈ T̂h, we have

∥w∥2
L2(T∩∂A) ≤ C

[
(1 + κ0hT )h−1

T ∥w∥2
L2(T ) + hT∥∇w∥2

L2(T )

]
, for all w ∈ H1(T ), (4.13)

where the constant C is independent of A and κ0 depends on ∥∇2bA∥L∞(∂A), where bA is

the signed distance function of A.
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Proof. Set S = T ∩ ∂A and note that S ⊂ ∂T ∪ ∂(T ∩ A) by the following argument:

S = T ∩ ∂A = (∂T ∪ T ) ∩ ∂A = (∂T ∩ ∂A) ∪ (T ∩ ∂A)

⊂ ∂T ∪ [T ∩ ∂A]

⊂ ∂T ∪
[
T ∩ (∂A ∩ Ac)

]
⊂ ∂T ∪

[
T ∩ (A ∩ Ac)

]
⊂ ∂T ∪

[
(T ∩ A) ∩ (T c ∪ Ac)

]
⊂ ∂T ∪

[
(T ∩ A) ∩ (T ∩ A)c

]
= ∂T ∪ ∂(T ∩ A),

(4.14)

where we have used the fact that ∂B = B ∩Bc. Define T ′ = T ∩ A. We further decompose

S into two subsets S1 and S2 where S1 = S ∩ ∂T lies along ∂T and S2 = (S ∩ ∂T ′) \ S1 lies

entirely within the interior of T . By construction, S1 ∩ S2 = ∅ and by (4.14) we have

S1 ∪ S2 = S ∩ [∂T ∪ ∂T ′]

= S ∩ [∂T ∪ ∂(T ∩ A)]

= S.

(4.15)

Now we prove that ∥w∥2
L2(Si) has the bound in (4.13) for i = 1, 2. Let bA : Rd → R

be the signed distance function of A, with int(A) = {bA(x) < 0}. By [22, Ch. 5, Thm 4.3],

and the compactness of A, there exists an open neighborhood N of ∂A such that bA ∈

C1,1(N ). By the classic Stein extension theorem, let b : Rd → R be a C1,1 extension of

bA|N to Rd.

Next, let F : T̂ → T be an affine map from the unit diameter reference element T̂

to T , and note that |∇̂F | = O(hT ). Define Â = F −1(A), Ŝ = F −1(S), T̂ ′ = F −1(T ′),

Ŝi = F −1(Si), for i = 1, 2, and note that Ŝ = Ŝ1 ∪ Ŝ2, Ŝ1 ∩ Ŝ2 = ∅, Ŝ1 ⊂ ∂T̂ , and Ŝ2 ⊂ ∂T̂ ′.
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We also define ŵ = w ◦ F and b̂ = h−1
T b ◦ F , where |∇̂b̂| ≤ O(1) everywhere, and note that

∇̂b̂|
∂Â

= γ0n̂A, where 0 < γ0 = O(1) and n̂A is the (outward) unit normal of ∂Â.

If Ŝ1 ̸= ∅, then let n̂ be the outward normal vector of ∂T̂ and note that

∫
∂T̂

n̂ · ∇̂b̂ ŵ2dS = ±γ0

∫
Ŝ1
ŵ2dS +

∫
∂T̂\Ŝ1

n̂ · ∇̂b̂ ŵ2dS,

where the sign depends on the orientation of n̂. Using the divergence theorem, we have

that

∫
∂T̂

n̂ · ∇̂b̂ ŵ2dS =
∫
T̂
∇̂ ·

(
∇̂b̂ ŵ2

)
dx =

∫
T̂
(∆̂b̂)ŵ2dx + 2

∫
T̂
ŵ∇̂b̂ · ∇̂ŵdx.

Combining, we get

∥ŵ∥2
L2(Ŝ1) ≲ ∥∆̂b̂∥L∞(T̂ )∥ŵ∥

2
L2(T̂ ) + ∥ŵ∥

L2(T̂ )∥∇̂ŵ∥L2(T̂ ) + ∥ŵ∥2
L2(∂T̂ )

≲ (1 + ∥∆̂b̂∥
L∞(T̂ ))∥ŵ∥

2
L2(T̂ ) + ∥∇̂ŵ∥2

L2(T̂ ),

(4.16)

where we used a standard trace inequality. If Ŝ1 = ∅, then (4.16) trivially holds. Moreover,

(4.16) holds with Ŝ1 replaced with Ŝ2. Summing the two inequalities, we get

∥ŵ∥2
L2(Ŝ) ≲ (1 + ∥∆̂b̂∥

L∞(T̂ ))∥ŵ∥
2
L2(T̂ ) + ∥∇̂ŵ∥2

L2(T̂ ).

Mapping back to T , we obtain

∥w∥2
L2(S) ≲ (1 + hT∥∆b∥L∞(T ))h−1

T ∥w∥2
L2(T ) + hT∥∇w∥2

L2(T ),

where we note the scaling |∆̂b̂| ≈ hT |∆b|, and that |∆b| depends on the curvature of ∂A.
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Proposition 4.6. Given a domain Ωh with Lipschitz boundary, we have the following

standard trace and inverse estimates:

∥v∥2
L2(∂Ωh) ≲ ∥v∥L2(Ωh)∥v∥H1(Ωh) ∀v ∈ H1(Ωh), (4.17)

∥v∥2
H1(Dδ) ≲ h−2∥v∥2

L2(Dδ) ∀v ∈ Vh(Dδ), (4.18)

h∥∇v∥2
L2(Γh,D) ≲ ∥∇v∥2

L2(Ωh) +Ksh

(
FΣ±

δ,D
; v,v

)
∀v ∈ Vh(Dδ), (4.19)

sh (FΣ± ; v,v) ≲ h−2∥v∥2
L2(TΣ± ) ∀v ∈ Vh(Dδ). (4.20)

Proof. The proofs of (4.17), (4.18), and can be found in Theorems 1.6.6, 4.5.11 of [11]. For

(4.19), using Lemma 4.5 and inverse estimate (4.18) yields

∥∇v∥2
L2(Γh,D) =

∑
T∈T̂h

T∩Γh,D ̸=∅

∥∇v∥2
L2(T∩Γh,D) ≲

∑
T∈T̂h

T∩Γh,D ̸=∅

h−1∥∇v∥2
L2(T ).

Then, using (4.8), we get (4.19). We also note that the same argument also holds true for

Γh,D replaced with Γh and FΣ±
δ,D

replaced with FΣ±
δ

due to (4.13) and (4.5).

The proof of (4.20) follows by approximating the L2 norm over T1 by the L2 norm

on an adjacent element T2 which is justified due to the shape regularity of elements:

sh (FΣ± ; v,v) = 1
h2

∑
F∈FΣ±

∫
ωF

(v1 − v2)2dx

≲
1
h2

∑
F∈FΣ±

∫
ωF

v2
1 + v2

2dx = 1
h2

∑
F∈FΣ±

[∫
ωF

v2
1dx +

∫
ωF

v2
2dx

]
,

where we now use the shape regularity of the mesh to estimate the L2 norm over T1 and

bound it by the L2 norm over T2 and vice versa, i.e.

sh (FΣ± ; v,v) ≲ 1
h2

∑
F∈FΣ±

[∫
T1(F )

v2
1dx +

∫
T2(F )

v2
2dx

]

≲
∑

F∈FΣ±

1
h2

∫
T1(F )

v2
1dx = h−2∥v∥2

L2(TΣ± ).
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We first note the following estimates which can be found in [13, 37] and references

therein.

Proposition 4.7. The following inverse inequality and Poincaré estimate hold:

|||v|||h ≲ h−1∥v∥L2(Dδ) ∀v ∈ Vh(Ωh), (4.21)

∥v∥L2(Dδ) ≲ |||v|||h ∀v ∈ Vh(Ωh). (4.22)

Proof. Recall that |||v|||h := ∥v∥2
ah

+ h∥σ(v)∥2
L2(Γh,D) + γNh∥σ(v)νh∥2

L2(Γh,N) + h−1∥v∥2
b , so

we proceed term-by-term. First,

∥v∥2
ah
≡ a (Ωh; v,v) + γssh

(
FΣ±

δ,D
; v,v

)
+ γsh

2sh

(
FΣ±

δ,N
; v,v

)

≲ (ϵ(∇v), ϵ(∇v))Ωh + (∇ · v,∇ · v)Ωh + h−2∥v∥2
L2(Dδ) + h2h−2∥v∥2

L2(Dδ)

≲ ∥v∥H1(Ωh) + h−2∥v∥2
L2(Dδ) ≲ h−2∥v∥2

L2(Dδ),

where we used the inverse inequalities (4.18) and (4.20). Next, using Proposition 4.6, we

have

h∥σ(v)∥2
L2(Γh,D) + γNh∥σ(v)νh∥2

L2(Γh,N) ≲ h∥σ(v)∥2
L2(Γh)

= h∥2µ(ϵ(∇v)) + λtr(ϵ(∇v))I∥2
L2(Γh)

≲ h∥∇v∥2
L2(Γh)

≲ ∥∇v∥2
L2(Ωh) +Ksh

(
FΣ±

δ,D
; v,v

)

≲ h−2∥v∥2
L2(Dδ),

where we also used inequalities (4.18), (4.19), and (4.20). Next,

h−1∥v∥2
b ≡ h−12µ(v,v)L2(Γh,D) + h−1λ(v · ν,v · ν)L2(Γh,D)

≲ h−1∥v∥2
L2(Γh,D) ≲ h−1∥v∥L2(Dδ)∥v∥H1(Dδ)

≲ h−2∥v∥2
L2(Dδ),
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where we have used the trace inequality (4.17) and inverse inequality (4.18). Hence (4.21)

is true. To show (4.22), we start with (4.4):

∥v∥2
L2(Dδ) ≲ ∥v∥2

L2(Ωh) +Kh2sh
(
FΣ±

δ
; v,v

)
≲ ∥v∥2

L2(Ωh) +Ksh

(
FΣ±

δ,D
; v,v

)
+Kh2sh

(
FΣ±

δ,N
; v,v

)
.

Since v = 0 on Γ̂h,D ̸= ∅, it follows from the Poincaré inequality that

∥v∥2
L2(Dδ) ≲ ∥∇v∥2

L2(Ωh) +Ksh

(
FΣ±

δ,D
; v,v

)
+Kh2sh

(
FΣ±

δ,N
; v,v

)

≲ 2µ∥ϵ(∇v)∥2
L2(Ωh) + λ∥tr(ϵ(∇v))∥2

L2(Ωh) +Ksh

(
FΣ±

δ,D
; v,v

)
+Kh2sh

(
FΣ±

δ,N
; v,v

)

≲ ∥v∥2
ah

≲ |||v|||2h .

Proposition 4.8. The bilinear form Ah is continuous and, for sufficiently large γD, coer-

cive. Specifically, we have

Ah (Ωh; u,v) ≲ |||u|||h |||v|||h , ∀u,v ∈ Vh(Ωh), (4.23)

|||v|||2h ≲ Ah (Ωh; v,v) , ∀v ∈ Vh(Ωh). (4.24)

Proof. Note that Ah defines an inner product on Vh. The continuity of Ah is trivial to

show, so only the positive definiteness of Ah remains. So let v ∈ Vh with v ̸= 0 and note

that we have the following:

|(σ(v)νh,v)Γh,D| ≤
(

2µ∥ϵ(∇v)∥Γh,D + λ∥tr(ϵ(∇v))∥Γh,D

)
∥v∥b

≲
(

2µ∥ϵ(∇v)∥2
Γh,D + λ∥tr(ϵ(∇v))∥2

Γh,D

)1/2
∥v∥b

≲
δh

2

(
2µ∥ϵ(∇v)∥2

Γh,D + λ∥tr(ϵ(∇v))∥2
Γh,D

)
+ 1

2δh∥v∥
2
b

∼=
∑
K∈T̂h

δh

2

(
2µ∥ϵ(∇v)∥2

Γh,D∩K + λ∥tr(ϵ(∇v))∥2
Γh,D∩K

)
+ 1

2δh∥v∥
2
b .
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Using the trace inequality from Lemma 4.5, we have

h
(

2µ∥ϵ(∇v)∥2
Γh,D∩K + λ∥tr(ϵ(∇v))∥2

Γh,D∩K

)
≲
(

2µ∥ϵ(∇v)∥2
K + λ∥tr(ϵ(∇v))∥2

K

)
.

Thus, we obtain:

|(σ(v)νh,v)Γh,D | ≲
δ

2

(
2µ∥ϵ(∇v)∥2

TΣ±
δ,D

+ λ∥tr(ϵ(∇v))∥2
TΣ±

δ,D

)
+ 1

2δh∥v∥
2
b

≲
δ

2

(
2µ∥ϵ(∇v)∥2

Dδ\Σ±
δ,N

+ λ∥tr(ϵ(∇v))∥2
Dδ\Σ±

δ,N

)
+ 1

2δh∥v∥
2
b .

And then using (4.9) we get the following:

|(σ(v)νh,v)Γh,D| ≤ C
δ

2

[
∥∇v∥2

L2(Ωh) +Ksh

(
FΣ±

δ,D
; v,v

)]
+ C

1
2δh∥v∥

2
b .

Note that by definition of ah we have 1
2∥∇v∥2

L2(Ωh) + γssh

(
FΣ±

δ,D
; v,v

)
≤ ah (Ωh; v,v).

Hence, by choosing δ = min{ 1
4C ,

γs
2CK} we get

|(σ(v)νh,v)Γh,D | ≤
1
4ah (Ωh; v,v) + Ch−1∥v∥2

b .

Therefore, upon choosing γD sufficiently large (independent of h), it follows that

Ah (Ωh; v,v) ≥ 1
2∥v∥

2
ah

+ (γD − C)h−1∥v∥b + γNh (σ(v)νh,σ(v)νh)Γh,N

≳ ∥v∥2
ah

+ h∥σ(v)∥2
L2(Γh,D) + h−1∥v∥b + γNh∥σ(v)νh∥2

L2(Γh,N)
∼= |||v|||2h ,

(4.25)

where we invoke the definition of ∥ · ∥ah , (4.19), and Korn’s inequality (4.10). This estab-

lishes the coercivity of Ah.

Theorem 4.9. There exists a unique uh ∈ Vh(Ωh) such that

Ah (Ωh; uh,vh) = χh (Ωh; vh) ∀vh ∈ Vh(Ωh). (4.26)

Proof. Due to the fact that Ah is continuous and coercive from the previous lemma and

that χh is a bounded linear functional, the proof follows directly from the Lax-Milgram

Theorem.
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4.2. Conditioning of the Mass and Stiffness Matrix

Let {φi}Ni=1 be the standard finite element basis of Vh(Ωh) with N denoting the di-

mension of Vh. So then for any v ∈ Vh(Ωh) we can rewrite v as v =
N∑
i=1

v̂iφi. We define the

form mh(u,v) := (u,v)Ωn
h

+ sh
(
FΣ±

δ
; u,v

)
and then define the mass and stiffness matrices

M and A as follows:

mij :=mh(φi, φj) ⇐⇒ mh(v,w) = (Mv̂, ŵ)RN

aij :=Ah (Ωh;φi, φj) ⇐⇒ Ah (Ωh; v,w) = (Av̂, ŵ)RN

For all v,w ∈ Vh(Ωh). We also recall a standard equivalence of norms estimate

hd∥v̂∥2
RN ∼ ∥v∥2

L2(Dδ). (4.27)

We follow the proof of the theorem from [37] on the condition numbers of the mass

and stiffness matrices:

Theorem 4.10. The condition numbers of mass and stiffness matrices M and A satisfy

the following estimates:

κ(M) ∼ 1 κ(A) ≲ h−2, (4.28)

where the hidden constants are independent of h and indepenent of the cut of the mesh.

Proof. Note that we have the following

(Av̂, ŵ)RN = Ah (Ωh; v,w)

≲ |||v|||h |||w|||h

≲ h−2∥v∥L2(Dδ)∥w∥L2(Dδ)

≲ hd−2∥v̂∥RN∥ŵ∥RN ,
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where we have used (4.23), (4.21), and (4.27). And so we have (Av̂, ŵ)RN ≲ hd−2∥v̂∥RN∥ŵ∥RN

and by taking a supremum over all ŵ such that ∥ŵ∥RN = 1 we obtain the fact that

∥Av̂∥RN ≲ hd−2∥v̂∥RN which then implies ∥A∥RN ≲ hd−2. Now to compute ∥A−1∥RN . Note

that we have the following:

hd/2∥v̂∥RN ≲ ∥v∥L2(Dδ) ≲ |||v|||h ,

Recall that by coercivity of Ah in (4.24) we have that |||v|||2h ≲ Ah (Ωh; v,v) which implies

|||v|||h ≲
Ah (Ωh; v,v)
|||v|||h

≤ sup
w∈Vh(Ωh)\{0}

Ah (Ωh; v,w)
|||w|||h

= sup
w∈Vh(Ωh)\{0}

(Av̂, ŵ)
∥ŵ∥RN

∥ŵ∥RN
|||w|||h

≲ sup
w∈Vh(Ωh)\{0}

h−d/2 (Av̂, ŵ)
∥ŵ∥RN

.

Now then, we have the following:

hd∥v̂∥RN ≲ ∥Av̂∥RN ∀v̂ ∈ RN .

Hence, by choosing v̂ = A−1w we get that

∥A−1ŵ∥RN ≲ h−d∥ŵ∥RN =⇒ ∥A−1∥RN ≲ h−d.

So then it follows that κ(A) = ∥A∥RN∥A−1∥RN ≲ h−2.

The proof regarding the mass matrix can be proved in the same way but is slightly

easier since we only need the equivalence of norms estimate (4.27) and continuity and co-

ercivity properties of mh
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4.3. Pseudo-Galerkin Orthogonality

We recall that our bilinear form Ah (Ωh; u,v) can be defined for functions u,v ∈

H1(Ωh). Moreover, we can extend the exact solution u on Ω to an open neighborhood

Dδ that contains both Ω and Ωh using the following bounded extension operator (see [11,

Thm. 1.4.5]).

Theorem 4.11. Suppose that Ω has a Lipschitz boundary and let v ∈ W k,p(Ω). Then,

there is an extension mapping E : W k,p(Ω) → W k,p(Rd) such that for all integers k ≥ 0

and all 1 ≤ p ≤ ∞, that satisfies

E(v)|Ω = v and ∥E(v)∥Wk,p(Rd) ≤ C∥v∥Wk,p(Ω),

where C is independent of v.

Now let u ∈ H1(Ω), with u = 0 on ΓD ∪ Γ̂D, solve (2.1) and assume u ≡ E(u)

is extended to H1(D̂) using Theorem 4.11. Now we also suitably extend f and gN so that

−∇ · σ(u) = f in Ωh and σ(u)ν = gN on Γh,N. We also assume that gN = 0 on Γ̂h,N.

Then, u satisfies the following:

(f ,v)Ωh = −(∇ · σ(u),v)Ωh

= −(σ(u)νh,v)∂Ωh + (σ(u),∇v)Ωh

= −(σ(u)νh,v)Γh,D − (σ(u)νh,v)Γh,N∪Γ̂h,N
+ (σ(u),∇v)Ωh

= −(σ(u)νh,v)Γh,D − (gN,v)Γh,N + a (Ωh; u,v)

(f ,v)Ωh + (gN,v)Γh,N = a (Ωh; u,v)− (σ(u)νh,v)Γh,D

χ (Ωh; v) = a (Ωh; u,v)− (σ(u)νh,v)Γh,D

(4.29)

where v ∈ B̊h and v = 0 on Γ̂h,D.
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Proposition 4.12. Let R(a, t) := a + tY (a), for all t in a bounded, open interval I, and

a.e. a ∈ Rd, where Y ∈ [W 1,∞(Rd)]d. Assume that ∥Y ∥W 1,∞ is sufficiently small so that

for all t ∈ I, ∇aR(a, t) is a matrix with positive determinant and |∇aR(a, t)| = O(1), i.e.

R(·, t) : Rd → Rd is a differentiable homeomorphism for all t ∈ I. Let g ∈ L1(Rd) and

define q : Rd × I → R by q(a, t) = g ◦R(a, t). Then, q ∈ L1(Rd × I) and ∥q∥L1(Rd×I) ≤

C|I| · ∥g∥L1(Rd) for some bounded constant C.

Proof. Define g̃ : Rd × I → R by g̃(a, τ) = g(a) for a.e. a ∈ Rd and all τ ∈ I. Clearly,

g̃ ∈ L1(Rd × I). Next, define Θ(a, t) = (R(a, t), t) and note that Θ ∈ [W 1,∞(Rd × I)]d+1.

Moreover, we have that det(∇a,tΘ(a, t)) = det(∇aR(a, t)) > 0 for all t ∈ I. Thus, Θ :

Rd × I → Rd × I is a differentiable homeomorphism.

Now, by change of variable, note that

∞ > |I| · ∥g∥L1(Rd) =
∫
Rd

∫
I
|g̃(y, τ)|dτdy =

∫
Rd

∫
I
|g̃ ◦Θ(a, t)| det(∇a,tΘ(a, t))dtda

=
∫
Rd

∫
I
|g ◦R(a, t)| det(∇aR(a, t))dtda,

which means that |g ◦R| det(∇aR) is in L1(Rd × I). Since det(∇aR) ∈ L∞(Rd × I), then

q ≡ g ◦R ∈ L1(Rd × I) and ∥q∥L1(Rd×I) ≤ C|I| · ∥g∥L1(Rd).

Corollary 4.13. Let R(a, t) have the same function defined in Prop. 4.12. Now let g ∈

Lp(Rd), and define q : Rd × I → R by q(a, t) = g ◦ R(a, t). Then, q ∈ Lp(Rd × I) and

∥q∥Lp(Rd×I) ≤ C|I|1/p∥g∥Lp(Rd) for some bounded constant C.

Corollary 4.14. Let R(a, t) have the same function defined in Prop. 4.12. Now let g ∈

H1(Rd) and let Γ ⊂ Rd be the Lipschitz boundary of a bounded set Ω, and define q : Γ ×

I → R by q(a, t) = g ◦R(a, t). Then, q ∈ L2(Γ × I) and ∥q∥L2(Γ×I) ≤ C|I|1/2∥g∥H1(Rd) for

some bounded constant C.
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Assumption 2. We assume that the exact domain Ω is of class Cq+1, with q ≥ 1, that

Ωh is the sub-zero level set of a discrete level set function ϕh having polynomial degree q,

and that Ωh approximates Ω to order q as described in (4.30), (4.31), and (4.32). We also

define our finite element space Vh to contain piecewise polynomials of up to order q and

assume that gN ∈ Hq(D̂), f ∈ Hq−1(D̂).

Assumption 2 implies that we have solution regularity u ∈ Hq+1(Ω), and by the extension

operator in Theorem 4.11, we consider u to be extended onto D̂ with u ∈ Hq+1(D̂).

To proceed with our analysis, we use the same approach as in [32] and [50] in which

we have an approximation of the discrete domain Ωh, with the discrete level set function

ϕh, satisfying

dist(Ω,Ωh) ≲ hq+1, (4.30)

where q ≥ 1 is the order of the geometry approximation (i.e. q is the polynomial degree of

ϕh). In addition, we assume that there exists a mapping Φ with the following properties:

Φ(Ω) = Ωh Φ(Ωδ) = Ωh,δ

∥Φ− id∥L∞(Ωδ) ≲ hq+1 ∥∇Φ− I∥L∞(Ωδ) ≲ hq

∥ det(∇Φ)− 1∥L∞(Ωδ) ≲ hq,

(4.31)

where Φ is a continuous well-defined map that is invertible for sufficiently small h, and

ν = ∇ϕ/|∇ϕ| on Γ, νh = ∇ϕh/|∇ϕh| on Γh. Moreover, for surface elements, we note the

following estimates from [32]

dS(Φ(a)) = µhdS(a), ∥µh − 1∥L∞(Γh) ≲ hq, ∥ν − νh∥L∞(Γh) ≲ hq. (4.32)

where dSh (dS) represents the Lebesgue measure for Γh (Γ). We abuse notation and use
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dS for either Γ or Γh depending on the context. The function µh is the Jacobian resulting

from the change of variables for the surface integral.

The following basic result is needed to deal with the boundary stabilization terms

coming from Nitsche’s method (see Prop. 4.16).

Proposition 4.15. Assume Ω, Ωh satisfy the approximation properties (4.31), (4.32). Let

Θ ⊂ ∂Ω and Θh be its discrete approximation. Suppose f ∈ H1(D̂) with f = 0 on Θ, and

gh is a piecewise polynomial function over T̂h. Then,

(f, gh)Θh ≲ h(q+1)/2∥f∥
H1(D̂) · ∥gh∥L2(Θh), (4.33)

(f, gh)Θh ≲ hq+1∥∇f∥
H1(D̂) · ∥gh∥L2(Θh), if f ∈ H2(D̂). (4.34)

Proof. We start with

(f, gh)Θh =
∫

Θh
f(x)gh(x)dS

=
∫

Θ
(f ◦Φ)(gh ◦Φ)µhdS

=
∫

Θ
(f ◦Φ− f)(gh ◦Φ)µhdS

≲
∫

Θ

∣∣∣∣(f ◦Φ− f)(gh ◦Φ)
∣∣∣∣dS

≲ ∥f ◦Φ− f∥L2(Θ) · ∥gh ◦Φ∥L2(Θ),

(4.35)

and note that ∥gh ◦ Φ∥L2(Θ) ≃ ∥gh∥L2(Θh). Next, we focus on the f term and use a refined

trace estimate:

∥f ◦Φ− f∥2
L2(Θ) ≤ ∥f ◦Φ− f∥2

L2(∂Ω) ≲ ∥f ◦Φ− f∥L2(Ω)∥f ◦Φ− f∥H1(Ω),
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followed by

∥f ◦Φ− f∥L2(Ω) ≲
∥∥∥∥∫ 1

0
∇f(id + t(Φ− id)) · (Φ− id)dt

∥∥∥∥
L2(Ω)

≲ hq+1
∥∥∥∥∫ 1

0
|∇f(id + t(Φ− id))|dt

∥∥∥∥
L2(Ω)

≲ hq+1 ∥∇f∥
L2(D̂) ,

where we used Prop. 4.12 to view ∇f(id + t(Φ − id)) as a function in L2(D̂ × [0, 1]) and

apply the norm bound. Combining everything, we get (4.33).

Now, assume additional regularity of f , namely f ∈ H2(D̂), and reconsider the f

term in (4.35):

∥f ◦Φ− f∥2
L2(Θ) =

∥∥∥∥∫ 1

0
∇f(id + t(Φ− id)) · (Φ− id)dt

∥∥∥∥2

L2(Θ)

≲ h2(q+1)
∥∥∥∥∫ 1

0
|∇f(id + t(Φ− id))|dt

∥∥∥∥2

L2(Θ)

≲ h2(q+1)
∫

Θ

∫ 1

0
|∇f(id + t(Φ− id))|2dtdS

≃ h2(q+1) ∥∇f ◦R∥2
L2(Θ×[0,1]) ,

where R(a, t) = id(a) + t(Φ(a)− id(a)). Then, we apply the trace inequality in Cor. 4.14

to obtain

∥f ◦Φ− f∥L2(Θ) ≲ hq+1 ∥∇f∥
H1(D̂) ,

and combine with (4.35) to get (4.34).

Proposition 4.16. Let q ≥ 1 be the order of approximation of Ωh and assume Ω is Cq+1.

Moreover, if q = 1, assume the (extended) exact solution u is in H2(D̂) and gN ∈ H1(D̂);
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else, u ∈ H3(D̂) and gN ∈ H2(D̂). Then, for all vh ∈ Vh(Ωh), we have

γDh
−1b (Ωh; u,vh) ≲ hq∥u∥

H2(D̂)∥vh∥H1(Ωh),

− (u,σ(vh)νh)Γh,D ≲ hq+1/2∥u∥
H2(D̂) |||vh|||h ,

γNh (σ(u)νh − gN,σ(vh)νh)Γh,N ≲ hq+1/2
[
∥u∥

Hmin{q,2}+1(D̂) + ∥gN∥Hmin{q,2}(D̂)

]
|||vh|||h .

(4.36)

Proof. To derive the first line of (4.36), we use (4.34) and a trace estimate:

γDh
−1b (Ωh; u,vh) = γDh

−1
[
2µ(u,vh)Γh,D + λ(u · νh,vh · νh)Γh,D

]

≲ γDh
−1
[
2µhq+1∥u∥

H2(D̂) · ∥vh ◦Φ∥L2(ΓD)

+ λhq+1∥u∥
H2(D̂) · ∥νh(vh · νh) ◦Φ∥L2(ΓD)

]

≲ γDh
q∥vh∥L2(Γh,D)

[
2µ∥u∥

H2(D̂) + λ∥u∥
H2(D̂)

]
≲ hq∥u∥

H2(D̂)∥vh∥H1(Ωh).

Next, we use (4.34) and the definition of |||·|||h to obtain

− (u,σ(vh)νh)Γh,D ≲ hq+1∥u∥
H2(D̂)∥σ(vh)∥L2(Γh,D) ≲ hq+1/2∥u∥

H2(D̂) |||vh|||h .

For the last estimate, note that

(σ(u)νh − gN,σ(vh)νh)Γh,N = (σ(u)ν − gN,σ(vh)νh)Γh,N + (σ(u)(νh − ν),σ(vh)νh)Γh,N ,

and estimating the second term with ∥νh − ν∥L∞(Γh) ≲ hq gives

γN (σ(u)(νh − ν),σ(vh)νh)Γh,N ≲ hq∥σ(u)∥L2(Γh,N)γN∥σ(vh)νh∥L2(Γh,N)

≲ hq−1/2∥∇u∥H1(Ωh) |||vh|||h .

Now, we focus on the other term and first assume q ≥ 2 and note that u ∈ H3(D̂) and

gN ∈ H2(D̂). Again, we use (4.34) and the definition of |||·|||h to get

γN (σ(u)ν − gN,σ(vh)νh)Γh,N ≲ hq+1∥σ(u)ν − gN∥H2(D̂)γN∥σ(vh)νh∥L2(Γh,N)

≲ hq+1/2
[
∥∇u∥

H2(D̂) + ∥gN∥H2(D̂)

]
|||vh|||h .
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On the other hand, if q = 1, then we have the following estimate due to (4.33):

γN (σ(u)ν − gN,σ(vh)νh)Γh,N ≲ h∥σ(u)ν − gN∥H1(D̂)γN∥σ(vh)νh∥L2(Γh,N)

≲ h1/2
[
∥∇u∥

H1(D̂) + ∥gN∥H1(D̂)

]
|||vh|||h .

Combining everything gives the last line of (4.36).

4.4. A Priori Estimate

Since (4.29) is satisfied for all v ∈ B̊h, it follows that we can choose v = vh ∈

Vh(Ωh) so that we have

Ah (Ωh; u,vh) = χh (Ωh; vh)− (u,σ(vh)νh)Γh,D + γDh
−1b (Ωh; u,vh)

+ γNh (σ(u)νh,σ(vh)νh)Γh,N − γNh (gN,σ(vh)νh)Γh,N

+ γssh

(
FΣ±

δ,D
; u,vh

)
+ γsh

2sh

(
FΣ±

δ,N
; u,vh

)
∀vh ∈ Vh(Ωh).

(4.37)

Then, subtracting (3.21) we get the following pseudo Galerkin orthogonality property

∀vh ∈ Vh(Ωh):

Ah (Ωh; u,vh)− Ah (Ωh; uh,vh)

= − (u,σ(vh)νh)Γh,D + γDh
−1b (Ωh; u,vh) + γNh (σ(u)νh,σ(vh)νh)Γh,N

− γNh (gN,σ(vh)νh)Γh,N + γssh

(
FΣ±

δ,D
; u,vh

)
+ γsh

2sh

(
FΣ±

δ,N
; u,vh

)

= − (u,σ(vh)νh)Γh,D + γDh
−1b (Ωh; u,vh) + γNh (σ(u)νh,σ(vh)νh)Γh,N

− γNh (gN,σ(vh)νh)Γh,N + γssh

(
FΣ±

δ,D
; u,vh

)
+ γsh

2sh

(
FΣ±

δ,N
; u,vh

)

≲ γssh

(
FΣ±

δ,D
; u,vh

)
+ γsh

2sh

(
FΣ±

δ,N
; u,vh

)

+ hq
[
∥u∥

Hmin{q,2}+1(D̂) + ∥gN∥Hmin{q,2}(D̂)

]
|||vh|||h ,

(4.38)

where we have used (4.36) in the last line.

We first review a basic interpolation result [11]. Recall Dδ from (3.9) and assume

δ > 0 is large enough so that Dδ contains both Ω and Ωh. Let πh,SZ : H1(Dδ) → Vh(Ωh)
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be the Scott-Zhang interpolation operator and define πh : H1(Ω) ∋ u 7→ πh,SZE(u) ∈

Vh(Ωh), using the bounded extension operator from Theorem 4.11. For the remainder of

this section, we abuse notation and write u ≡ E(u).

Proposition 4.17. For all integers m, s, such that 0 ≤ m ≤ s ≤ q + 1, where q is the

polynomial degree of Vh, and k ≤ q, we have

∥u− πhu∥Hm(Dδ) ≲ hs−m∥u∥Hs(Ω),

|||u− πhu|||h ≲ hk∥u∥Hk+1(Ω).

From this, one can derive the following error estimate.

Theorem 4.18. Let u ∈ Hk+1(D̂) be the extended solution of (2.1) on Ω to D̂, and let

uh ∈ Vh(Ωh) be the finite element approximation defined in (3.21) with q = k. Then, the

following a priori estimates hold

|||u− uh|||h ≲ hk
[
∥u∥Hk+1(Ω) + ∥gN∥Hmin{k,2}(D̂)

]
,

∥u− uh∥L2(Ω) ≲ hk+1
[
∥u∥Hk+1(Ω) + ∥gN∥Hmin{k,2}(D̂)

]
,

(4.39)

where by some standard a priori PDE estimates we also have ∥u∥Hk+1(Ω) ≲ ||f ||Hk−1(Ω) +

∥gN∥Hk(Ω) [26].

Proof. By the triangle inequality and our interpolation estimate, we have

|||u− uh|||h ≲ |||u− πhu|||h + |||πhu− uh|||h ≲ hk∥u∥Hk+1(Ω) + |||πhu− uh|||h . (4.40)
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Now we deal with the second term above using the coercivity of Ah:

|||πhu− uh|||2h ≲ Ah (Ωh; πhu− uh, πhu− uh)

= Ah (Ωh; πhu− u, πhu− uh) + Ah (Ωh; u− uh, πhu− uh)

≲ |||πhu− u|||h · |||πhu− uh|||h + Ah (Ωh; u− uh, πhu− uh)

≲
1
2ϵ |||πhu− u|||2h + ϵ

2 |||πhu− uh|||2h + Ah (Ωh; u− uh, πhu− uh) ,

where we used a weighted Young’s inequality. Then, by choosing ϵ appropriately and re-

ordering terms, we obtain |||πhu− uh|||2h ≲ |||πhu− u|||2h + Ah (Ωh; u− uh, πhu− uh).

Next, we use the pseudo-Galerkin orthogonality property (4.38) and note the geom-

etry approximation of Ω is order q = k. Thus, we get the following:

|||πhu− uh|||2h ≲ |||πhu− u|||2h + Ah (Ωh; u− uh, πhu− uh)

≲ |||πhu− u|||2h + sh

(
FΣ±

δ,D
; u, πhu− uh

)
+ h2sh

(
FΣ±

δ,N
; u, πhu− uh

)

+ hkCk |||πhu− uh|||h

≲ |||πhu− u|||2h + s̃h
(
FΣ±

δ
; u, πhu− uh

)
+ hkCk |||πhu− uh|||h ,

where Ck :=
[
∥u∥

Hmin{k,2}+1(D̂) + ∥gN∥Hmin{k,2}(D̂)

]
comes from (4.38) and s̃h

(
FΣ±

δ
; ·, ·

)
includes the h2 weighting on Σ±

δ,N. Applying another weighted Young’s inequality on the

last term with a well-chosen weight, we get

|||πhu− uh|||2h ≲ |||πhu− u|||2h + s̃h
(
FΣ±

δ
; u, πhu− uh

)
+ h2kC2

k

≲ h2k∥u∥2
Hk+1(Ω) +

(
s̃h
(
FΣ±

δ
; u,u

))1/2 (
s̃h
(
FΣ±

δ
; vh,vh

))1/2
+ h2kC2

k

where, for brevity, we denote vh := πhu − uh, and we used Prop. 4.17. Again, we use a

weighted Young’s inequality to obtain

|||πhu− uh|||2h ≲ h2k
(
∥u∥2

Hk+1(Ω) + C2
k

)
+ ϵ

2sh
(
FΣ±

δ
; u,u

)
+ 1

2ϵsh
(
FΣ±

δ
; vh,vh

)
≲ h2k

((
1 + ϵ

2

)
∥u∥2

Hk+1(Ω) + C2
k

)
+ 1

2ϵ |||πhu− uh|||2h ,
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where we used (4.11), the properties of the bounded extension operator, and the definition

of |||·|||h. By choosing ϵ appropriately, we combine the far right term with the left-hand-

side to get

|||πhu− uh|||2h ≲ h2k
[
∥u∥Hk+1(Ω) + ∥gN∥Hmin{k,2}(D̂)

]2
.

Combining this result with (4.40) gives the first line of (4.39). The second line follows by

a classic duality argument [37].
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Chapter 5. Unfitted Shape Derivatives

We start with a review of basic shape differentiability results [22, 39] based on vec-

tor displacements of the domain. Next, we extend these shape derivatives to allow for per-

turbation of the domain by perturbing its level set description. Then, we develop these

results further to allow for shape functionals over domains that intersect a fixed Lipschitz

subset (i.e. an element of a finite element mesh).

5.1. Fréchet Differentiability of Shape Functionals

We review the Fréchet differentiability of shape functionals following [39, 1]. A

classic approach to shape differentiation uses a perturbation of the identity. Let U ∈

[W 1,∞(Rd)]d be a vector field and define the deformation mapping as follows

ΦU (a) := id(a) + U(a), for all a ∈ Rd. (5.1)

This mapping induces a deformed domain ΩU := ΦU (Ω). For ∥U∥W 1,∞ sufficiently small,

if Ω is Lipschitz, then ΩU will also be Lipschitz and homeomorphic to Ω [22]. We have the

following definition [1, Defn. 4.1].

Definition 5.1. Let Ω be Lipschitz. A shape functional J(Ω) is said to be shape differen-

tiable at Ω if the mapping U 7→ J(ΩU ) from [W 1,∞(Rd)]d into R, where ΩU = ΦU (Ω)

using (5.1), is Fréchet differentiable at U = 0. The Fréchet derivative of J at Ω is an op-

erator in L([W 1,∞(Rd)]d,R), denoted J ′(Ω)(·), and the following limit holds

lim
∥U∥W1,∞ →0

|J(ΩU )− J(Ω)− J ′(Ω)(U)|
∥U∥W 1,∞

= 0. (5.2)

We note a classic expansion of the determinant from [76, Lem. B.2].
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Lemma 5.2. For any n× n matrix B, such that |B| < 1, we have

det(I +B) = 1 + tr (B) + 1
2
[
(tr (B))2 − tr

(
B2
)]

+O(|B|3), (5.3)

The next two lemmas are applications of results in [22, 39]. We include the proofs

of both Lemmas since we build on it later when computing shape derivatives on “cut” ele-

ments.

Lemma 5.3. Given f ∈ L1(Rd) and U ∈ [W 1,∞(Rd)]d we have that

lim
∥U∥W1,∞ →0

∫
Ω [f(ΦU (a))− f(a)]G(∇aU(a))da

∥U∥W 1,∞
= 0, (5.4)

where G : Rd×d → R is continuous and |G(M)| ≤ C|M | for all M ∈ Rd×d, for some

bounded constant C > 0.

Proof. We have that

I0(U) := |
∫

Ω [f(ΦU (a))− f(a)]G(∇aU (a))da|
∥U∥W 1,∞

≤ C
∫

Ω
|f(ΦU (a))− f(a)|da∥∇aU(a)∥∞

∥U∥W 1,∞
≤ C

∫
Ω
|f(ΦU (a))− f(a)|da.

Next, let {fk} be a sequence in C∞(Rd) such that fk → f in L1 as k → ∞. Then, for any

k ≥ 1, we have

I0(U) ≲
∫

Ω
|(f − fk)(ΦU (a))− (f − fk)(a)|da +

∫
Ω
|fk(ΦU (a))− fk(a)|da

≤
∫

Ω
|(f − fk)(ΦU (a))|da + ∥f − fk∥L1(Rd) +

∫
Ω
|fk(ΦU (a))− fk(a)|da

=
∫

Φ−1
U (Ω)

|(f − fk)(x)| det(∇Φ−1
U )dx + ∥f − fk∥L1(Rd) +

∫
Ω
|fk(ΦU (a))− fk(a)|da

≤ (CU + 1)∥f − fk∥L1(Rd) +
∫

Ω

∫ 1

0
|∇fk(ΦsU (a))||U(a)|dsda,

where CU > 0 is a bounded constant for all U such that ∥U∥W 1,∞ is sufficiently small, and

we used the fundamental theorem of calculus for line integrals:

fk(ΦU (a))− fk(a) =
∫ 1

0
∇fk(a + sU(a)) ·U(a)ds.
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Letting Ck := maxa∈Ω,0≤s≤1 |∇fk(ΦsU (a))|, we get

I0(U) ≤ C(CU + 1)∥f − fk∥L1(Rd) + CCk|Ω| · ∥U∥L∞

Hence,

lim
∥U∥W1,∞ →0

I0(U) ≤ C(CU + 1)∥f − fk∥L1(Rd),

for all k ≥ 1. Since the left-side is independent of k, we have that lim∥U∥W1,∞ →0 I0(U) = 0,

thus proving the assertion.

Lemma 5.4. Given f ∈ W 1,1(Rd) and U ∈ [W 1,∞(Rd)]d we have that

lim
∥U∥W1,∞ →0

∫
Ω f(ΦU (a))− f(a)da−

∫
Ω∇f(a) ·U(a)da

∥U∥W 1,∞
= 0. (5.5)

Proof. By the fundamental theorem of calculus, we have

f(ΦU (a))− f(a) =
∫ 1

0
∇f(a + sU(a)) ·U(a)ds, (5.6)

and so

I0(U) :=
∫

Ω
f(ΦU (a))− f(a)da−

∫
Ω
∇f(a) ·U(a)da

=
∫

Ω

∫ 1

0
∇f(a + sU(a)) ·U(a)dsda−

∫
Ω
∇f(a) ·U(a)da

=
∫

Ω

∫ 1

0
[∇f(ΦsU (a))−∇f(a)] ·U(a)dsda,

(5.7)

and note that by Prop. 4.12, ∇f ◦ ΦsU (a) can be viewed as function in L1(Rd × [0, 1]),

provided ∥U∥W 1,∞ is sufficiently small. Indeed, the entire integrand in the last integral of
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(5.7) is in L1(Rd × [0, 1]). Therefore, we can apply Fubini’s theorem:

|I0(U)|
∥U∥W 1,∞

= 1
∥U∥W 1,∞

∣∣∣∣∫ 1

0

∫
Ω

[∇f(ΦsU (a))−∇f(a)] ·U(a)dads
∣∣∣∣

≤
∫ 1

0

∫
Ω
|∇f(ΦsU (a))−∇f(a)| dads

≤
∫ 1

0

∫
Ω
|∇(f − fk)(ΦsU (a))| dads+

∫ 1

0

∫
Ω
|∇(f − fk)(a)| dads

+
∫ 1

0

∫
Ω
|∇fk(ΦsU (a))−∇fk(a)| dads,

(5.8)

where we introduced a sequence {fk} in C∞(Rd) such that fk → f in W 1,1 as k → ∞. We

apply a change of variables to the first term:

∫ 1

0

∫
Ω
|∇(f − fk)(ΦsU (a))| dads =

∫ 1

0

∫
Φ−1
sU (Ω)

|∇(f − fk)(x)| det(∇Φ−1
sU (x))dxds

≤ γ0∥f − fk∥W 1,1(Rd),

where γ0 is a bounded constant when ∥U∥W 1,∞(Rd) is sufficiently small. The last term in

(5.8) is estimated with the mean value theorem to give

∫ 1

0

∫
Ω
|∇fk(ΦsU (a))−∇fk(a)| dads ≤ Ck∥U∥L∞(Rd),

where Ck depends on ∥∇∇fk∥L∞ . Thus,

lim
∥U∥W1,∞ →0

|I0(U)|
∥U∥W 1,∞

≤ lim
∥U∥W1,∞ →0

(γ0 + 1)∥f − fk∥W 1,1(Rd) + Ck∥U∥L∞(Rd)

≤ (γ0 + 1)∥f − fk∥W 1,1(Rd)

which holds for every k ≥ 1. Taking k →∞ proves (5.5).

The following result is an application of the results in [22, 39, 1].

Theorem 5.5. For the shape functional J(Ω) :=
∫

Ω f(x)dx with f ∈ W 1,1(Rd) we have

that J(Ω) is shape differentiable at Ω (in the sense of Definition 5.1) with Fréchet deriva-

tive J ′(Ω)(U) =
∫
∂Ω f(a)U(a) · ν(a)da for all U ∈ [W 1,∞(Rd)]d.
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Proof. Using (5.3), we begin with

J(ΩU )− J(Ω) =
∫

ΩU

f(x)dx−
∫

Ω
f(a)da

=
∫

Ω
f(ΦU (a)) det(I +∇aU(a))da−

∫
Ω
f(a)da

=
∫

Ω
f(ΦU (a))− f(a)da +

∫
Ω
f(ΦU (a))tr(∇aU(a))da

+
∫

Ω
f(ΦU (a))O(|∇aU(a)|2)da

=
∫

Ω
f(ΦU (a))− f(a)da +

∫
Ω
∇a · [f(a)U(a)]da−

∫
Ω
∇af(a) ·U(a)da

+
∫

Ω
[f(ΦU (a))− f(a)]∇a ·U(a)da +

∫
Ω
f(ΦU (a))O(|∇aU(a)|2)da.

By Gauss’ divergence theorem, we have

J ′(Ω)(U ) =
∫
∂Ω
f(a)U (a) · ν(a)da

=
∫

Ω
∇a · [f(a)U(a)]da

So then, by Lemmas 5.3, 5.4, we find that

lim
∥U∥W1,∞ →0

J(ΩU )− J(Ω)− J ′(Ω)(U)
∥U∥W 1,∞

= 0,

meaning that J(Ω) is Fréchet differentiable with J ′(Ω)(U) =
∫
∂Ω f(a)U(a) · ν(a)da

being the Fréchet derivative. Note that, by Sobolev embedding, f ∈ W 1,1(Ω) implies

f ∈ L1(∂Ω).

5.2. Connecting the Domain Perturbation with the Level Set Perturbation

Our goal is to obtain a shape differentiation formula in terms of perturbations of

the level set representation ϕ of Ω (see Section 3.1), since this is more convenient for the

optimization algorithm. See also [58, 47].

5.2.1. The Speed Method

We first review the velocity (speed) method for domain perturbations. Let V (x, t)

be a d-dimensional, vector field that is Lipschitz in x, for each t, and continuously differ-
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entiable in t for each x. For any given a ∈ Rd, consider the following ODE:

ẋ = V (x, t), ∀ t > 0, x(0) = a ∈ Rd, (5.9)

with unique solution (see [35]) x(t) being the trajectory of a (material) point a moving

with velocity V (x(t), t). Indeed, V induces a deformation mapping through (5.9) in the

following way. Let x(t; a) be the unique solution of (5.9) (for a given a). Then,

Φt(a) := x(t; a), for all a ∈ Rd, (5.10)

is the corresponding deformation mapping. Moreover, a Taylor expansion in t yields

Φt(a) = a + tV (a, 0) + W (a, t), for all a ∈ Rd, (5.11)

where |W (a, t)| = O(t2). With this, one can establish the Gâteaux shape differentiablity

of our shape functional J(Ω) =
∫

Ω f(x) dx, for f ∈ W 1,1(Rd), with respect to V (x(0), 0)

using classic techniques. In other words, setting Ωt = Φt(Ω), we have

dGJ(Ω)(V ) := lim
t→0+

J(Ωt)− J(Ω)
t

=
∫
∂Ω
f(a)V (a, 0) · ν(a)da, (5.12)

which, of course, agrees with the result in Theorem 5.5 if U(a) ≡ V (a, 0). The same re-

sult holds if the remainder term in (5.11) is dropped.

5.2.2. Level Set Gâteaux Derivative

Now, we consider Ω to be defined by a level set function, ϕ, i.e. Ω(ϕ) := {x ∈ Rd :

ϕ(x) < 0} (sub-zero level set), where ϕ satisfies Definition 5.6 for some positive constants

c0 and δ0.

Definition 5.6. Let ϕ ∈ C0,1(Rd;R) and assume that Γ(ϕ) := {x ∈ Rd : ϕ(x) = 0}

is non-empty. We say that ϕ is non-degenerate, with constants c0 > 0 and δ0 > 0, if

|∇ϕ(x)| ≥ c0 for a.e. x ∈ Rd such that dist(x,Γ(ϕ)) < δ0.
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In addition, we take ϕ to be C2(Rd). By [22, Ch. 2, Thm. 4.2], Ω(ϕ) is a C2, open

set, and ∂Ω(ϕ) ≡ Γ(ϕ), so Ω(ϕ) is well-defined. For the shape functional, J(Ω), we seek to

compute the Gâteaux shape derivative with respect to ϕ, i.e.

dGJ(Ω(ϕ))(η) := lim
t→0+

J(Ω(ϕ+ tη))− J(Ω(ϕ))
t

, (5.13)

for any η ∈ C2(Rd). We will derive an explicit formula for (5.13) using (5.12). Define a

perturbed level set function

ϕ̃(x, t) = ϕ(x) + tη(x), ⇒ ∂tϕ̃ = η, (5.14)

where t is the perturbation parameter; one can think of ϕ̃ as a time-dependent level set

function. Set Ωt := Ω(ϕ̃(·, t)) = {x ∈ Rd : ϕ̃(x, t) < 0} and Γt := ∂Ωt = {x ∈ Rd :

ϕ̃(x, t) = 0}. Note that |∇ϕ̃(x, t)| ≥ c0/2 > 0 for all x in a neighborhood of Γt if t is

sufficiently small. This ensures that Γt is (locally) a C2 surface by the implicit function

theorem. Next, define a velocity field

V (x, t) = − ∇ϕ̃(x, t)
|∇ϕ̃(x, t)|2

η(x), (5.15)

which satisfies the same conditions for V in (5.9), and let x(t) be the corresponding solu-

tion of (5.9). If x(0) = a ∈ Γ0, we have that ϕ̃(x(t), t) = 0 for all t because

d

dt
ϕ̃(x(t), t) ≡ DV ϕ̃(x, t)

∣∣∣∣
x=x(t)

= ∂tϕ̃(x, t)
∣∣∣∣
x=x(t)

+
(
∇ϕ̃(x, t)

∣∣∣∣
x=x(t)

)
· ẋ(t)

= η(x(t)) +∇ϕ̃(x(t), t) · V (x(t), t) = 0.

Thus, V evolves the zero level set of ϕ̃. Moreover, if Φt(a) is the induced map from V ,

then the sub-zero level set Ωt satisfies Ωt = Φt(Ω0). With this, one can compute (5.13) by
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using (5.12), i.e.

dGJ(Ω(ϕ))(η) = lim
t→0+

J(Ω(ϕ+ tη))− J(Ω(ϕ))
t

= lim
t→0+

J(Ωt)− J(Ω0)
t

=
∫
∂Ω
f(a)V (a, 0) · ν(a)da

=
∫
∂Ω
f(a)

(
− ∇ϕ̃(a, 0)
|∇ϕ̃(a, 0)|2

η(a)
)
· ν(a)da

=
∫
∂Ω
f(a)

(
− η(a)
|∇ϕ(a)|

)
da,

where we used the fact that ν = ∇ϕ/|∇ϕ| on ∂Ω and ϕ̃(a, 0) = ϕ(a). All of the above

extends to having ϕ, η in W 2,∞(Rd); in this case, Ω(ϕ) is a C1,1 domain [22, Ch. 5, Thm

4.3].

5.2.3. Level Set Fréchet Derivative

Our goal now is to extend this to computing the Fréchet shape derivative of

J(Ω(ϕ)) with respect to ϕ, which is defined as follows.

Definition 5.7. Let Ω = Ω(ϕ) be the sub-zero level set of ϕ ∈ X that satisfies Definition

5.6 for some positive constants c0 and δ0. A shape functional J(ϕ) ≡ J(Ω(ϕ)) is said to be

level set shape Fréchet differentiable at ϕ if the mapping η 7→ J(Ω(ϕ + η)) from X into R

is Fréchet differentiable at η = 0. The Fréchet derivative of J(Ω(·)), at ϕ, is an operator in

L(X ,R), denoted J ′(Ω(ϕ))(·), and the following limit holds

lim
∥η∥X →0

|J(Ω(ϕ+ η))− J(Ω(ϕ))− J ′(Ω(ϕ))(η)|
∥η∥X

= 0. (5.16)

In this section, we use Definition 5.7 with X = W 2,∞(Rd). Moreover, we shall prove

that J(Ω) =
∫

Ω f(x) dx is level set shape Fréchet differentiable by using Theorem 5.5. To

do this, we have to reconcile two different, but similar, notions of domain perturbation.
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The first is the perturbed domain Ω(ϕ + η) and the second is through a perturbation of

the identity approach given by

Φη(a) = a + Vη(a), for all a ∈ Rd, Vη(a) := − ∇ϕ(a)
|∇ϕ(a)|2η(a). (5.17)

Note the similarity with Φt from (5.11) and (5.15), but Φt is not the same as Φη. Recall

Φt satisfies (5.9) with V given by (5.15), and note that ∇aΦt(a) uniquely satisfies the

matrix valued ODE [22, Ch. 8]:

d

dt
M(a, t) = [∇xV (Φt(a), t)]M(a, t), ∀ t > 0, M(a, 0) = I, ∀a ∈ Rd, (5.18)

which follows by the theory in [35]. Furthermore, we have an explicit formula for

∇aΦt(a):

∇aΦt(a) = exp
{∫ t

0
∇xV (x(s; a), s) ds

}
=: A(t), (5.19)

where exp {·} is the matrix exponential.

Theorem 5.8. Let {ϕk}k≥1 be a sequence of smooth functions such that ∥ϕk − ϕ∥W 2,∞ → 0

as k →∞. Assume |∇ϕ| ≥ c0 > 0 and |∇η| ≤ c0/2, so that |∇(ϕ+ η)| ≥ c0/2. In addition,

assume ∥η∥W 2,∞ ≤ c1 for some fixed constant c1. Set Φ̃ = Φt|t=1. Then,

∥Φη − Φ̃∥L∞(Rd) ≤ O (∥η∥L∞∥η∥W 1,∞) ,

∥∇Φη −∇Φ̃∥L∞(Rd) ≤ O
(
∥η∥2

W 2,∞

)
+ q1∥ϕk∥W 3,∞∥η∥2

L∞ + q2∥ϕk − ϕ∥W 2,∞∥η∥L∞ ,

(5.20)

for all k ≥ 1, for some bounded constants q1, q2.

Proof. Recall that Φt is defined in Section 5.2.1 and is different from Φη. For now, take
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a ∈ Rd fixed and note that the solution of (5.9) satisfies:

|x(t)− a| =
∣∣∣∣∫ t

0
V (x(s), s) ds

∣∣∣∣
=
∣∣∣∣∣
∫ t

0

∇ϕ(x(s)) + s∇η(x(s))
|∇ϕ(x(s)) + s∇η(x(s))|2η(x(s)) ds

∣∣∣∣∣
≤
∣∣∣∣∣
∫ t

0

η(x(s))
|∇ϕ(x(s)) + s∇η(x(s))| ds

∣∣∣∣∣
≤ 2
c0
∥η∥L∞ , 0 ≤ t ≤ 1,

(5.21)

for some constant C depending on c0. We first estimate ∥Φη − Φ̃∥L∞(Rd) and we start with

Vη(a)− V (x(s), s) = ∇ϕ(a)
|∇ϕ(a)|2η(a)− ∇[ϕ(x(s)) + sη(x(s))]

|∇[ϕ(x(s)) + sη(x(s))]|2η(x(s))

= T1 + T2 + T3,

(5.22)

where

T1 = 1
|∇ϕ(a)|2 (η(a)∇ϕ(a)− η(x(s))∇ϕ(x(s))) ,

T2 = − s

|∇ϕ(a)|2η(x(s))∇η(x(s)),

T3 = η(x(s))∇[ϕ(x(s)) + sη(x(s))]
(
|∇[ϕ(x(s)) + sη(x(s))]|2 − |∇ϕ(a)|2
|∇ϕ(a)|2|∇[ϕ(x(s)) + sη(x(s))]|2

)
.

(5.23)

Next, we note the following basic estimates:

|∇ϕ(x(s))−∇ϕ(a)| = |∇2ϕ(x(ξ)) · (x(s)− a)| ≤ C∥∇2ϕ∥L∞∥η∥L∞ ,

|η(x(s))− η(a)| = |∇η(x(ξ)) · (x(s)− a)| ≤ C∥∇η∥L∞∥η∥L∞ ,
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for some bounded constant C. Using these estimates, we obtain the following:

|T1| =
1

|∇ϕ(a)|2 |η(a)∇ϕ(a)− η(x(s))∇ϕ(x(s))|

≤ 1
|∇ϕ(a)|2

[
|η(a)∇ϕ(a)− η(a)∇ϕ(x(s))|+ |η(a)∇ϕ(x(s))− η(x(s))∇ϕ(x(s))|

]

≲ ∥η∥2
L∞ + ∥∇η∥L∞∥η∥L∞

|T2| =
|s|

|∇ϕ(a)|2 |η(x(s))∇η(x(s))|

≲ ∥∇η∥L∞∥η∥L∞

|T3| = |η(x(s))∇[ϕ(x(s)) + sη(x(s))]| ·
∣∣∣∣∣ |∇ϕ(x(s)) + s∇η(x(s))|2 − |∇ϕ(a)|2
|∇ϕ(a)|2|∇ϕ(x(s)) + s∇η(x(s))|2

∣∣∣∣∣
≤ ∥η∥L∞ ·

∣∣∣∣|∇ϕ(x(s)) + s∇η(x(s))| − |∇ϕ(a)|
∣∣∣∣ · [|∇ϕ(x(s)) + s∇η(x(s))|+ |∇ϕ(a)|

]
|∇ϕ(a)|2|∇ϕ(x(s)) + s∇η(x(s))|

≲ ∥η∥L∞ ·
∣∣∣∣|∇ϕ(x(s)) + s∇η(x(s))| − |∇ϕ(a)|

∣∣∣∣
≤ ∥∇η∥L∞∥η∥L∞

Hence, we have that

|T1|, |T2|, |T3| ≤ C∥η∥L∞∥η∥W 1,∞ , (5.24)

which gives a bound for (5.22). Since x(1) ≡ Φ̃(a) = a +
∫ 1

0 V (x(s), s)ds, and a was

arbitrary, we get

∥Φη − Φ̃∥L∞(Rd) =
∥∥∥∥∫ 1

0
Vη(a)− V (x(s), s) ds

∥∥∥∥ ≤ C∥η∥L∞∥η∥W 1,∞ . (5.25)

Next, using that Vη(a) ≡ V (a, 0), we estimate

∇V (x(s), s)A(s)−∇V (a, 0) = T4 + T5

T4 := [∇V (x(s), s)−∇Vη(a)]A(s),

T5 := ∇Vη(a) [A(s)− I] .

(5.26)
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Estimating T4 is similar to estimating (5.23). We first note that |∇η(x(s)) − ∇η(a)| ≤

C∥∇2η∥L∞∥η∥L∞ , for some bounded constant C. Furthermore,

|∇2ϕ(x(s))−∇2ϕ(a)| ≤ |∇2(ϕ− ϕk)(x(s))−∇2(ϕ− ϕk)(a)|+ |∇2ϕk(x(s))−∇2ϕk(a)|

≤ 2∥ϕ− ϕk∥W 2,∞ + |∇3ϕk(x(ξ)) · (x(s)− a)|

≤ 2∥ϕ− ϕk∥W 2,∞ + C∥∇3ϕk∥L∞∥η∥L∞ ,

(5.27)

for every k ≥ 1. Next, by the properties of the matrix exponential, we have

|A(s)− I| ≤
∫ s

0
|∇xV (x(µ; a), µ)| dµ|A|(s), |A|(s) = exp

{∫ s

0
|∇xV (x(µ; a), µ)| dµ

}
.

(5.28)

Note that |A(s)| is uniformly bounded for all 0 ≤ s ≤ 1, and |∇xV (x(µ; a), µ)| ≤

C∥η∥W 1,∞ for sufficiently small η. Combining these estimates, and the usual arguments,

we have

|∇V (x(s), s)A(s)−∇V (a, 0)| ≤ C
(
∥η∥2

W 2,∞ + ∥ϕ− ϕk∥W 2,∞∥η∥L∞ + ∥∇3ϕk∥L∞∥η∥2
L∞

)
,

(5.29)

for all 0 ≤ s ≤ 1. From this, we obtain the bound on ∥∇Φη −∇Φ̃∥L∞ given in (5.20).

Corollary 5.9. Assume the hypothesis of Thm. 5.8 holds. Then,

∥ det(∇Φη)− det(∇Φ̃)∥L∞(Rd) ≤ O
(
∥η∥2

W 2,∞

)
+ q1∥ϕk∥W 3,∞∥η∥2

L∞ + q2∥ϕk − ϕ∥W 2,∞∥η∥L∞ ,

(5.30)

for all k ≥ 1, for some bounded constants q1, q2.

Theorem 5.10. Assume ϕ ∈ W 2,∞(Rd) and that it satisfies Definition 5.6 for some pos-

itive constants c0, δ0. Let Ω(ϕ + η) be the sub-zero level set of ϕ + η. For the shape func-
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tional J(Ω) :=
∫

Ω f(x)dx with f ∈ W 1,1(Rd) we have that J(Ω) is level set shape differ-

entiable at Ω (in the sense of Definition 5.7 with X = W 2,∞(Rd)) with Fréchet derivative

J ′(Ω)(η) =
∫
∂Ω f(a) (−η(a)|∇ϕ(a)|−1) da for all η ∈ W 2,∞(Rd).

Proof. First note that Ω(ϕ+ η) = Ω1 = Φ1(Ω0) ≡ Φ̃(Ω) and Ω(ϕ) = Ω0 ≡ Ω. In addition,

J ′(Ω(ϕ))(η) =
∫
∂Ω(ϕ)

f(a)
(
− η(a)
|∇ϕ(a)|

)
da =

∫
∂Ω
f(a)Vη(a) · ν da = J ′(Ω)(Vη),

where Vη is given by (5.17). Now, note that

J(Ω(ϕ+ η)) =
∫

Φ̃(Ω)
f(x)dx−

∫
Φη(Ω)

f(x)dx +
∫

Φη(Ω)
f(x)dx

=
∫

Φ̃(Ω)
f(x)dx−

∫
Φη(Ω)

f(x)dx + J(ΩVη)

=
∫

Ω
f(Φ̃(a)) det(∇aΦ̃(a))da−

∫
Ω
f(Φη(a)) det(∇aΦη(a))da︸ ︷︷ ︸

=T6

+J(ΩVη).

(5.31)

By the fundamental theorem of calculus, we have

f(Φ̃(a))− f(Φη(a)) =
∫ 1

0
∇f

(
sΦ̃(a) + (1− s)Φη(a)

)
·
(
Φ̃(a)−Φη(a)

)
ds, (5.32)

and so

|T6| ≤
∫

Ω

∣∣∣f(Φ̃(a))− f(Φη(a))
∣∣∣ · | det(∇aΦ̃(a))|da

+
∫

Ω
|f(Φη(a))| ·

∣∣∣det(∇aΦ̃(a))− det(∇aΦη(a))
∣∣∣ da

≤ C∥f∥W 1,1(Rd)∥η∥2
W 1,∞

+ C∥f∥L1(Rd)

(
∥η∥2

W 2,∞ + ∥ϕk∥W 3,∞∥η∥2
L∞ + ∥ϕk − ϕ∥W 2,∞∥η∥L∞

)
,

(5.33)

where we used Theorem 5.8 and Corollary 5.9. Therefore,

J(Ω(ϕ+ η))− J(Ω(ϕ))− J ′(Ω(ϕ))(η) = T6 + J(ΩVη)− J(Ω)− J ′(Ω)(Vη), (5.34)
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and since ∥Vη∥W 1,∞ ≤ Cη∥η∥W 1,∞ , for all k ≥ 1, we obtain

lim
∥η∥W2,∞ →0

|J(Ω(ϕ+ η))− J(Ω(ϕ))− J ′(Ω(ϕ))(η)|
∥η∥W 2,∞

≤ C∥ϕk − ϕ∥W 2,∞ + Cη lim
∥Vη∥W1,∞ →0

|J(ΩVη)− J(Ω)− J ′(Ω)(Vη)|
∥Vη∥W 1,∞

≤ C∥ϕk − ϕ∥W 2,∞ ,

(5.35)

where we used Theorem 5.5. Taking k →∞ proves the result.

5.3. Shape Differentiability on a Cut Subdomain

We now extend the above results to computing shape derivatives when Ω is “cut”

by another fixed domain. In other words, consider the shape functional:

JT (Ω) =
∫
T∩Ω

f(x) dx, (5.36)

where, again, f ∈ W 1,1(Rd) and T is a fixed, bounded Lipschitz domain with piecewise

smooth boundary. We seek to prove that (5.36) is Fréchet differentiable with respect to Ω

keeping T fixed. In Section 5.4, T will correspond to an element in the mesh.

We start by introducing a smooth regularization ρϵ of the characteristic function χT

with ϵ > 0, that satisfies the following properties:

ρϵ(x)→ χT (x), for all x /∈ ∂T, ∥ρϵ − χT∥L1(Rd) → 0, as ϵ→ 0. (5.37)

With this, we define

J ϵT (Ω) =
∫

Ω
ρϵ(x)f(x) dx, ⇒ lim

ϵ→0
J ϵT (Ω) =

∫
Ω
χT (x)f(x) dx = JT (Ω). (5.38)

The following assumption is crucial.

Assumption 3. Assume that ∂Ω ∩ ∂T has vanishing Rd−1 Lebesgue measure.
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Under Assumption 3, we have that

χ∂Ω(x)ρϵ(x)→ χ∂Ω∩T (x), for a.e. x ∈ ∂Ω, as ϵ→ 0, (5.39)

and also

lim
ϵ→0

∫
∂Ω
ρϵ(x)g(x) dS(x) =

∫
∂Ω∩T

g(x) dS(x), for all g ∈ L1(∂Ω). (5.40)

5.3.1. Fréchet Differentiability on a Cut Subdomain

Throughout this section, we will assume that Ω is Lipschitz.. We first show the

Fréchet differentiability of the shape functional for standard domain perturbations (analo-

gous to Section 5.1). We start with the following lemmas.

Lemma 5.11. Given f ∈ L1(Rd) and U ∈ [W 1,∞(Rd)]d we have that

lim
∥U∥W1,∞ →0

∫
Ω [f(ΦU (a))χT (ΦU (a))− f(a)χT (a)]G(∇aU(a))da

∥U∥W 1,∞
= 0, (5.41)

where G : Rd×d → R is continuous and |G(M)| ≤ C|M | for all M ∈ Rd×d, for some

bounded constant C > 0.

Proof. Since χT ∈ L∞(Rd), then f · χT ∈ L1(Rd). Thus, the result follows from Lemma

5.3.

Lemma 5.12. Given f ∈ W 1,1(Rd) and U ∈ [W 1,∞(Rd)]d we have that

lim
∥U∥W1,∞ →0

lim
ϵ→0

∫
Ω f(ΦU (a))ρϵ(ΦU (a))− f(a)ρϵ(a)da−

∫
Ω∇[f(a)ρϵ(a)] ·U (a)da

∥U∥W 1,∞
= 0,

(5.42)

provided Assumption 3 holds.
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Proof. Let ϵ > 0 be fixed and start by expanding the numerator in (5.42), i.e.

Iϵ(U) :=
∫

Ω
f(ΦU (a))ρϵ(ΦU (a))− f(a)ρϵ(a)da−

∫
Ω
∇[f(a)ρϵ(a)] ·U(a)da

=
∫

Ω

∫ 1

0
∇ [f(ΦsU (a))ρϵ(ΦsU (a))] ds ·U(a)da−

∫
Ω
∇[f(a)ρϵ(a)] ·U(a)da

=
∫

Ω

∫ 1

0
[∇ [f(ΦsU (a))ρϵ(ΦsU (a))]−∇[f(a)ρϵ(a)]] ·U(a)dsda,

(5.43)

where we used (5.6). Expanding further, we get

Iϵ(U ) =
∫

Ω

∫ 1

0
[∇ [f(ΦsU (a))ρϵ(ΦsU (a))]−∇[f(ΦsU (a))ρϵ(a)]] ·U(a)dsda

+
∫

Ω

∫ 1

0
[ρϵ(a) (∇f(ΦsU (a))−∇f(a))] ·U(a)dsda

+
∫

Ω

∫ 1

0
∇ · [ρϵ(a) (f(ΦsU (a))− f(a)) U (a)] dsda

−
∫

Ω

∫ 1

0
ρϵ(a)∇ · [(f(ΦsU (a))− f(a)) U(a)] dsda

=: A1
ϵ + A2

ϵ + A3
ϵ − A4

ϵ .

(5.44)

Next, estimate A2
ϵ . By the Lebesgue dominated convergence theorem and Fubini’s Thm.

(using Prop. 4.12),

lim
ϵ→0

|A2
ϵ |

∥U∥W 1,∞
= 1
∥U∥W 1,∞

∣∣∣∣∫
Ω
χT (a)

∫ 1

0
(∇f(ΦsU (a))−∇f(a)) ·U(a)dsda

∣∣∣∣
≤ 1
∥U∥W 1,∞

∫ 1

0

∫
Ω∩T
|∇f(ΦsU (a))−∇f(a)| dads ∥U∥L∞

≤
∫ 1

0

∫
Ω
|∇f(ΦsU (a))−∇f(a)| dads.

(5.45)

We then have

lim
∥U∥W1,∞ →0

lim
ϵ→0

|A2
ϵ |

∥U∥W 1,∞
= 0, (5.46)

by using the same method from (5.8) in the proof of Lemma 5.4. For A3
ϵ , we apply the

divergence theorem:

lim
ϵ→0

A3
ϵ = lim

ϵ→0

∫ 1

0

∫
∂Ω
ρϵ(a) (f(ΦsU (a))− f(a)) U (a) · ν(a)dS(a)ds

=
∫
∂Ω
χT (a)

∫ 1

0
(f(ΦsU (a))− f(a)) U(a) · ν(a)dsdS(a).

(5.47)
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Then,

lim
∥U∥W1,∞ →0

lim
ϵ→0

|A3
ϵ |

∥U∥W 1,∞
≤ lim

∥U∥W1,∞ →0

∫ 1

0

∫
∂Ω
|f(ΦsU (a))− f(a)| dS(a)ds = 0, (5.48)

by a similar argument as for A2
ϵ and using a trace theorem. As for A4

ϵ , we have

lim
ϵ→0

A4
ϵ =

∫
Ω
χT (a)

∫ 1

0
∇ · [(f(ΦsU (a))− f(a)) U(a)] dsda, (5.49)

and so

lim
∥U∥W1,∞ →0

lim
ϵ→0

|A4
ϵ |

∥U∥W 1,∞

≤ lim
∥U∥W1,∞ →0

1
∥U∥W 1,∞

∫ 1

0

∫
Ω∩T
∇ · [(f(ΦsU (a))− f(a)) U(a)] dads

≤ lim
∥U∥W1,∞ →0

∫ 1

0

∫
Ω
|∇ (f(ΦsU (a))− f(a))| dads+

∫ 1

0

∫
Ω
|f(ΦsU (a))− f(a)| dads

≤γ1∥f − fk∥W 1,1(Rd),

(5.50)

for all k ≥ 1 by using the same method from (5.8) in the proof of Lemma 5.4. Thus,

lim
∥U∥W1,∞ →0

lim
ϵ→0

|A4
ϵ |

∥U∥W 1,∞
= 0.

Now, we expand A1
ϵ :

A1
ϵ =

∫ 1

0

∫
Ω
∇ · [f(ΦsU (a)) (ρϵ(ΦsU (a))− ρϵ(a)) U(a)] dads

−
∫ 1

0

∫
Ω
f(ΦsU (a)) (ρϵ(ΦsU (a))− ρϵ(a))∇ ·U(a)dads

=: B1
ϵ −B2

ϵ .

(5.51)

By the Lebesgue dominated convergence theorem,

lim
ϵ→0

|B2
ϵ |

∥U∥W 1,∞
≤
∫ 1

0

∫
Ω
|f(ΦsU (a))| |χT (ΦsU (a))− χT (a)| dads. (5.52)

For each fixed U and s ∈ [0, 1], let Es = {a ∈ Rd : |χT (ΦsU (a))− χT (a)| = 1}, and note

that |χT (ΦsU (a))− χT (a)| = 0 on Rd \ Es. Also, note that χT ◦ ΦsU = χ
T̃
, i.e. is the

characteristic function of T̃ = Φ−1
sU (T ).
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A simple argument gives that Es ⊂ Ẽ := (T \ T̃ )∪(T̃ \T ). Set δ = s∥U∥L∞ . Clearly,

dist(x, ∂T ) ≤ δ for all x ∈ T̃ \ T . Moreover, let x ∈ T \ T̃ , so it has a pre-image a /∈ T

with x = ΦsU (a). Since |x − a| ≤ δ, and the line segment with endpoints x, a intersects

∂T , then dist(x, ∂T ) ≤ δ, which holds for all x ∈ T \ T̃ . Therefore, dist(x, ∂T ) ≤ δ for all

x ∈ Ẽ.

Let ωT be the signed distance function to ∂T that is negative inside T . Since ∂T

is Lipschitz and piecewise smooth, the level sets {ωT = c} are Lipschitz and piecewise

smooth for all |c| sufficiently small. Clearly,

Ẽ ⊂ S̃δ := {ωT ≥ −δ} ∩ {ωT ≤ δ} ≡ {ωT ≥ −δ} \ {ωT > δ}.

Since the level sets are Lipschitz and piecewise smooth, one can show that |S̃δ| ≤ δC0,

where C0 is a bounded constant depending on the perimeter of ∂T . Indeed, by the mono-

tone convergence theorem, χ
S̃δ
→ χ∂T as ∥U∥W 1,∞ → 0.

Returning to (5.52), we find that

lim
ϵ→0

|B2
ϵ |

∥U∥W 1,∞
≤ γ2∥f − fk∥L1 + max

0≤s≤1
∥fk ◦ΦsU∥L∞

∫ 1

0

∫
Es

1dads

≤ γ2∥f − fk∥L1 + Lk

∫ 1

0

∫
S̃δ

1dads ≤ γ2∥f − fk∥L1 + LkC0∥U∥L∞ .

(5.53)

As before, we get

lim
∥U∥W1,∞ →0

lim
ϵ→0

|B2
ϵ |

∥U∥W 1,∞
= 0.

For B1
ϵ , we have by the Divergence theorem and the Lebesgue dominated conver-

gence theorem,

lim
ϵ→0

|B1
ϵ |

∥U∥W 1,∞
≤
∫ 1

0

∫
∂Ω
|f(ΦsU (a))| |χT (ΦsU (a))− χT (a)| dS(a)ds. (5.54)
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Similar to (5.53), we get

lim
ϵ→0

|B2
ϵ |

∥U∥W 1,∞
≤ γ3∥f − fk∥W 1,1 + max

0≤s≤1
∥|∇fk ◦ΦsU∥L∞

∫ 1

0

∫
Es∩∂Ω

1dS(a)ds

≤ γ3∥f − fk∥W 1,1 + Lk

∫ 1

0

∫
S̃δ∩∂Ω

1dS(a)ds,
(5.55)

and note that, by the monotone convergence theorem, χ
S̃δ∩∂Ω → χ∂T∩∂Ω as ∥U∥W 1,∞ → 0,

which yields

lim
∥U∥W1,∞ →0

lim
ϵ→0

|B2
ϵ |

∥U∥W 1,∞
≤ γ3∥f − fk∥W 1,1 + Lk|∂T ∩ ∂Ω|d−1, (5.56)

where |∂T ∩ ∂Ω|d−1 is the Rd−1 Lebesgue measure of ∂T ∩ ∂Ω. Invoking Assumption 3, and

taking the limit in k, we obtain

lim
∥U∥W1,∞ →0

lim
ϵ→0

|B2
ϵ |

∥U∥W 1,∞
= 0.

The proof of (5.42) is complete.

Theorem 5.13. Given the shape functional JT (Ω) :=
∫

Ω∩T f(x)dx with f ∈ W 1,1(Rd) we

have that JT (Ω) is shape differentiable at Ω (in the sense of Definition 5.1) with Fréchet

derivative J ′
T (Ω)(U ) =

∫
∂Ω∩T f(a)U(a) · ν(a)dS(a) for all U ∈ [W 1,∞(Rd)]d, provided

Assumption 3 holds.

Proof. Set AT (U) := J ′
T (Ω)(U), let ϵ > 0 be fixed, and define

AϵT (U ) :=
∫
∂Ω
ρϵ(a)f(a)U(a) · ν(a)dS(a),
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where AϵT (U)→ AT (U ) by (5.40). Using (5.3), we have

J ϵT (ΩU )− J ϵT (Ω) =
∫

ΩU

ρϵ(x)f(x)dx−
∫

Ω
ρϵ(a)f(a)da

=
∫

Ω
ρϵ(ΦU (a))f(ΦU (a)) det(I +∇aU(a))da−

∫
Ω
ρϵ(a)f(a)da

=
∫

Ω
ρϵ(ΦU (a))f(ΦU (a))− ρϵ(a)f(a)da

+
∫

Ω
ρϵ(ΦU (a))f(ΦU (a))tr(∇aU(a))da

+
∫

Ω
ρϵ(ΦU (a))f(ΦU (a))O(|∇aU(a)|2)da.

(5.57)

Continuing, we get

J ϵT (ΩU )− J ϵT (Ω) =
∫

Ω
ρϵ(ΦU (a))f(ΦU (a))− ρϵ(a)f(a)da

−
∫

Ω
∇a (ρϵ(a)f(a)) ·U(a)da

+
∫

Ω
[ρϵ(ΦU (a))f(ΦU (a))− ρϵ(a)f(a)]∇a ·U(a)da

+
∫

Ω
[ρϵ(a)f(a)∇a ·U(a) +∇a (ρϵ(a)f(a)) ·U(a)] da

+
∫

Ω
ρϵ(ΦU (a))f(ΦU (a))O(|∇aU(a)|2)da.

(5.58)

By Gauss’ divergence theorem, we arrive at

J ϵT (ΩU )− J ϵT (Ω)− AϵT (U) =
∫

Ω
ρϵ(ΦU (a))f(ΦU (a))− ρϵ(a)f(a)da

−
∫

Ω
∇a (ρϵ(a)f(a)) ·U(a)da

+
∫

Ω
[ρϵ(ΦU (a))f(ΦU (a))− ρϵ(a)f(a)]∇a ·U(a)da

+
∫

Ω
ρϵ(ΦU (a))f(ΦU (a))O(|∇aU(a)|2)da.

(5.59)

Then, by Lemmas 5.11, 5.12, we find that

lim
∥U∥W1,∞ →0

JT (ΩU )− JT (Ω)− J ′
T (Ω)(U )

∥U∥W 1,∞
= lim

∥U∥W1,∞ →0
lim
ϵ→0

J ϵT (ΩU )− J ϵT (Ω)− AϵT (U )
∥U∥W 1,∞

= 0,

(5.60)

which proves the assertion.
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5.3.2. Level Set Fréchet Differentiability on a Cut Subdomain

In this section, we will assume that the level set function ϕ for Ω is in W 2,∞(Rd),

hence Ω is better than Lipschitz and is in fact C1,1. We now prove the cut version of The-

orem 5.10.

Theorem 5.14. Adopt the hypothesis of Theorem 5.13. Assume ϕ ∈ W 2,∞(Rd) and that

it satisfies Definition 5.6 for some positive constants c0, δ0. Let Ω(ϕ + η) be the sub-zero

level set of ϕ + η. Then, JT (Ω) is level set shape differentiable at Ω (in the sense of Def-

inition 5.7) with Fréchet derivative J ′
T (Ω)(η) =

∫
∂Ω∩T f(a) (−η(a)|∇ϕ(a)|−1) da for all

η ∈ [W 2,∞(Rd)]d.

Proof. Recall that Φt in (5.10) is different from Φη in (5.17). We first note that Ω(ϕ+η) =

Ω1 = Φ1(Ω0) ≡ Φ̃(Ω) and Ω(ϕ) = Ω0 ≡ Ω. In addition,

J ′
T (Ω(ϕ))(η) =

∫
∂Ω(ϕ)∩T

f(a)
(
− η(a)
|∇ϕ(a)|

)
da =

∫
∂Ω∩T

f(a)Vη(a) · ν da = J ′
T (Ω)(Vη),

where Vη is given by (5.17). Now, note that

JT (Ω(ϕ+ η))

=
∫

Φ̃(Ω)∩T
f(x)dx−

∫
Φη(Ω)∩T

f(x)dx +
∫

Φη(Ω)∩T
f(x)dx

= lim
ϵ→0

∫
Φ̃(Ω)

f(x)ρϵ(x)dx−
∫

Φη(Ω)
f(x)ρϵ(x)dx + JT (ΩVη)

= lim
ϵ→0

∫
Ω
f(Φ̃(a))ρϵ(Φ̃(a)) det(∇aΦ̃(a))da−

∫
Ω
f(Φη(a))ρϵ(Φη(a)) det(∇aΦη(a))da︸ ︷︷ ︸

=Zϵ

+ J(ΩVη).
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Next, we split the Zϵ term:

Zϵ = Q1
ϵ +Q2

ϵ ,

Q1
ϵ =

∫
Ω
f(Φη(a))ρϵ(Φη(a))

(
det(∇aΦ̃(a))− det(∇aΦ̃(a))

)
da

Q2
ϵ =

∫
Ω

(
f(Φ̃(a))ρϵ(Φ̃(a))− f(Φη(a))ρϵ(Φη(a))

)
det(∇aΦ̃(a))da.

(5.61)

Estimating Q1
ϵ is similar to (5.33), i.e. we have

lim
ϵ→0
|Q1

ϵ | ≤ C∥f∥L1(Rd)

(
∥η∥2

W 2,∞ + ∥ϕk∥W 3,∞∥η∥2
L∞ + ∥ϕk − ϕ∥W 2,∞∥η∥L∞

)
. (5.62)

As for Q2
ϵ , we have the following:

Q2
ϵ =

∫
Ω

(
f(Φ̃(a))ρϵ(Φ̃(a))− f(Φη(a))ρϵ(Φη(a))

)
det(∇aΦ̃(a))da

=
∫

Ω

∫ 1

0
∇(fρϵ) ◦ (tΦ̃ + (1− t)Φη) · (Φ̃−Φη) det(∇aΦ̃(a))dtda

|Q2
ϵ | ≲

∫
Ω

∫ 1

0

∣∣∣∇(fρϵ) ◦ (tΦ̃ + (1− t)Φη) · (Φ̃−Φη)
∣∣∣ dtda

≤
∫ 1

0

∫
Ω

∣∣∣∇ · [(fρϵ) ◦ (tΦ̃ + (1− t)Φη)(Φ̃−Φη)
]∣∣∣ dtda

+
∫ 1

0

∫
Ω

∣∣∣(fρϵ) ◦ (tΦ̃ + (1− t)Φη)
∣∣∣ ∣∣∣∇ · (Φ̃−Φη)

∣∣∣ dtda,

(5.63)

where we have used the fundamental theorem for line integrals. Note that we have the

following estimate as a consequence of Theorem 5.8

lim
ϵ→0

∫ 1

0

∫
Ω

∣∣∣(fρϵ) ◦ (tΦ̃ + (1− t)Φη)
∣∣∣ ∣∣∣∇ · (Φ̃−Φη)

∣∣∣ dtda
≲ ∥f∥L1(Rd)

(
∥η∥2

W 2,∞ + ∥ϕk∥W 3,∞∥η∥2
L∞ + ∥ϕk − ϕ∥W 2,∞∥η∥L∞

)
.

(5.64)

Now we use the divergence theorem and Theorem 5.8 on the remaining term to get the

following estimate.

lim
ϵ→0

∫ 1

0

∫
Ω

∣∣∣∇ · [(fρϵ) ◦ (tΦ̃ + (1− t)Φη)(Φ̃−Φη)
]∣∣∣ dtda

≲ lim
ϵ→0

∫ 1

0

∫
∂Ω

∣∣∣(fρϵ) ◦ (tΦ̃ + (1− t)Φη)(Φ̃−Φη)
∣∣∣ dtda

≲∥f∥W 1,1(Rd)∥η∥2
W 2,∞ .

(5.65)
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Hence,

lim
ϵ→0
|Zϵ| ≲ ∥f∥W 1,1(Rd)

(
∥η∥2

W 2,∞ + ∥ϕk∥W 3,∞∥η∥2
L∞ + ∥ϕk − ϕ∥W 2,∞∥η∥L∞

)
. (5.66)

Therefore,

JT (Ω(ϕ+ η))− JT (Ω(ϕ))− J ′
T (Ω(ϕ))(η) = lim

ϵ→0
Zϵ + JT (ΩVη)− JT (Ω)− J ′

T (Ω)(Vη), (5.67)

and since ∥Vη∥W 1,∞ ≤ Cη∥η∥W 1,∞ , for all k ≥ 1, we obtain

lim
∥η∥W2,∞ →0

|JT (Ω(ϕ+ η))− JT (Ω(ϕ))− J ′
T (Ω(ϕ))(η)|

∥η∥W 2,∞

≤ C∥ϕk − ϕ∥W 2,∞ + Cη lim
∥Vη∥W1,∞ →0

|JT (ΩVη)− JT (Ω)− J ′
T (Ω)(Vη)|

∥Vη∥W 1,∞

≤ C∥ϕk − ϕ∥W 2,∞ ,

(5.68)

where we used Theorem 5.13. Taking k →∞ proves the result.

5.4. Shape Fréchet Differentiability over a Mesh

We now consider piecewise defined functions over the mesh T̂h. In particular, on T̂h,

define:

Wh = {wh ∈ L1(D̂) : wh|T ∈ W 1,1(T ), ∀T ∈ T̂h}, (5.69)

with norm given by

∥wh∥Wh
:= ∥wh∥L1(D̂) +

∑
T∈T̂h

∥∇wh∥L1(T ) +
∑
F∈F̂0

h

∥ JwhK ∥L1(F ). (5.70)

By using the previous results, we can generalize Theorem 5.5 to allow for functions in Wh.

To this end, we need a global mesh version of Assumption 3.

Assumption 4. Assume that ∂Ω ∩ ∂T has vanishing Rd−1 Lebesgue measure for all T ∈

T̂h.
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Theorem 5.15. For the shape functional J(Ω) :=
∫

Ω fh(x)dx with fh ∈ Wh we have that

J(Ω) is shape differentiable at Ω (in the sense of Definition 5.1) with Fréchet derivative

J ′(Ω)(U) =
∫
∂Ω fh(a)U(a) ·ν(a)da for all U ∈ [W 1,∞(Rd)]d, provided Assumption 4 holds.

Proof. First, note that fh|T ∈ W 1,1(T ) for all T ∈ T̂h. Let fT : Rd → R be a bounded

extension of fh|T to W 1,1(Rd), for all T ∈ T̂h. Then,

J(ΩU )− J(Ω)− J ′(Ω)(U) =
∑
T∈T̂h

JT (ΩU )− JT (Ω)− J ′
T (Ω)(U ),

where

JT (Ω) =
∫

Ω∩T
fT (a)da, J ′

T (Ω)(U) =
∫
∂Ω∩T

fT (a)U(a) · ν(a)da. (5.71)

For each term in the sum, one can apply Theorem 5.13. Since the sum is finite, we easily

obtain the Fréchet shape differentiability of J(Ω).

Next, we consider domains defined using the space Bh given in Section 3.1. Thus,

let Ω(ϕh) be the sub-zero level set of ϕh, where ϕh ∈ Bh and satisfies Definition 5.6 for

some positive constants c0, δ0. We will show that J(Ω(ϕh)) is level set shape Fréchet dif-

ferentiable in the sense of Definition 5.7 with X = Bh.

Theorem 5.16. Assume ϕh ∈ Bh satisfies Definition 5.6 for some positive constants

c0, δ0. For the shape functional J(Ω(ϕh)) :=
∫

Ω(ϕh) fh(x)dx with fh ∈ Wh, we have

that J(Ω(ϕh)) is level set shape differentiable at Ω(ϕh) (in the sense of Definition 5.7 with

X = Bh) with Fréchet derivative J ′(Ω(ϕh))(ηh) =
∫
∂Ω(ϕh) fh(a) (−ηh(a)|∇ϕh(a)|−1) da for

all ηh ∈ Bh, provided Assumption 4 holds.

Proof. We proceed similarly to the proof of Theorem 5.15. Let fT : Rd → R be a bounded

extension of fh|T to W 1,1(Rd), for all T ∈ T̂h. Moreover, let ϕT : Rd → R be a bounded
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extension of ϕh|T to W 2,∞(Rd), for all T ∈ T̂h; similarly, do a piecewise extension for ηh to

{ηT} ⊂ W 2,∞(Rd). See [71, Sec. VI.3.1] for details of the extension. Then,

J(Ω(ϕh + ηh))− J(Ω(ϕh))− J ′(Ω(ϕh))(ηh)

=
∑
T∈T̂h

JT (Ω(ϕT + ηT ))− JT (Ω(ϕT ))− J ′
T (Ω(ϕT ))(ηT ),

where

JT (Ω(ϕT )) =
∫

Ω(ϕT )∩T
fT (a)da, J ′

T (Ω(ϕT ))(ηT ) =
∫
∂Ω(ϕT )∩T

fT (a)
(
− ηT
|∇ϕT (a)|

)
da.

(5.72)

For each term in the sum, one can apply Theorem 5.14. Since the sum is finite, we easily

obtain the Fréchet shape differentiability of J(Ω(ϕh)).

5.5. When the Boundary Intersects a Facet

We now consider the case where Assumption 4 is violated. Suppose the violation

happens on a single facet F = T+ ∩ T− where E := ∂Ω ∩ ∂T ⊂ F with |E|d−1 > 0. On

E, |ν · n| = 1 where n is the outer normal of ∂T+. Then, one can obtain the following

modification of Theorem 5.15:

J ′(Ω)(U) =
∫
∂Ω\E

fhU · νdS +
∫
E
fh,+

(
1− sgn(U · n)

2

)
U · n dS

+
∫
E
fh,−

(
1 + sgn(U · n)

2

)
U · n dS,

(5.73)

where fh,± is the restriction of fh from T±. Note that (5.73) is not a Fréchet derivative,

or even a Gâteaux derivative, because (5.73) is not linear in U ; hence, we refer to (5.73)

as the first variation of J(Ω). If fh is continuous across the mesh, then (5.73) reduces the

Fréchet derivative in Thm. 5.15.
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The corresponding modification of Theorem 5.16 is given by

J ′(Ω)(U) = −
∫
∂Ω\E

fh
ηh
|∇ϕh|

dS +
∫
E

fh,+
|∇ϕh,+|

(
1 + sgn(ηh(∇ϕh · n))

2

)
ηh dS

+
∫
E

fh,−
|∇ϕh,−|

(
1− sgn(ηh(∇ϕh · n))

2

)
ηh dS,

(5.74)

where we have assumed that sgn(∇ϕh,+ · n) = sgn(∇ϕh,− · n) on E with ϕh,± denoting

the restriction of ϕh from T±. If fh and ∇ϕh are continuous across the mesh, then (5.74)

reduces the Fréchet derivative in Thm. 5.16.

In Section 7.3, we illustrate the effect of the discontinuous derivative at facets with

a numerical example.
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Chapter 6. Unfitted Shape Optimization

We consider a discrete form of the optimization problem discussed in Section 2.1

using the unfitted formulation in (3.21). Furthermore, we develop a gradient descent opti-

mization method to find discrete minimizers using the level set shape derivative formulas

derived earlier.

6.1. Admissible Set

The domain Ωh is parameterized by a level set function ϕh ∈ Bh. Thus, in princi-

ple, we seek to minimize a shape functional J(Ωh) over the set of admissible shapes

Ãh = {φh ∈ Bh : c−1 ≥ |∇φh| ≥ c}, (6.1)

for some suitable constant c > 0, where the inequality constraints are needed to ensure the

domain does not degenerate. Unfortunately, Ãh is not a convex set.

Therefore, we define a localized admissible set, that is convex, in order to pose a

well-defined minimization problem. Suppose we have a given domain Ωh that is repre-

sented through the level set function ϕh ∈ Ãh. Next, define:

C(Σ) = {φh ∈ Bh : |∇φh| ≤ c/2, φh|Σ = 0}, (6.2)

where Σ ⊂ ∂D̂, which may be empty, is used to impose additional design constraints in

Figure 6.1. Example of the level set constraint set Σ ⊂ ∂D̂ that is denoted by the solid
lines.
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our optimization (see Figure 6.1). We now verify that C is a convex set. Let φh, ψh ∈ C

and λ ∈ [0, 1]. Then,

|∇ [λφh + (1− λ)ψh]| = |λ∇φh + (1− λ)∇ψh|

≤ λ|∇φh|+ (1− λ)|∇ψh|

≤ λc/2 + (1− λ)c/2 = c/2,

i.e. λφh+(1−λ)ψh ∈ C for all φh, ψh ∈ C and all λ ∈ [0, 1]. Now, define the local admissible

set Ah(ϕh,Σ) = {ϕh}+C(Σ), where ϕh is a given reference level set function, and note that

any ψh ∈ Ah(ϕh,Σ) satisfies ψh = ϕh + φh, for some φh ∈ C(Σ) and

|∇ϕh +∇φh| ≥ ||∇ϕh| − |∇φh|| = |∇ϕh| − |∇φh|

≥ c− c/2 > c/2 > 0.

Ergo, any ψh ∈ Ah(ϕh,Σ) parameterizes a well-defined domain as its sub-zero level set.

In our computations, we iteratively update the convex set Ah(·,Σ) in our gradient descent

procedure (see Section 6.4).

In practice, we do not allow |∇ϕh| to become close to 0 during the optimization. In

fact, we strive to maintain |∇ϕh| ≈ 1 or at least |∇ϕh| ≥ 1
2 . Then, the constraint in (6.2)

corresponds to |∇φh| ≤ 1/4. During the optimization, we periodically reinitialize ϕh so

that it is close to a signed distance function having the same zero level set as before (see

Section 6.4).

6.2. Discrete Optimization Problem

For any vh ∈ Vh(Ωh(ϕh)), let J (ϕh; vh) ≡ J (Ωh(ϕh); vh) be the shape (cost) func-

tional in (2.12). For a given reference domain Ωh(ϕ̂h), with reference level set function ϕ̂h,
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consider the following minimization problem

J (ϕh,min; uh(ϕh,min)) = min
ϕh∈Ah(ϕ̂h,Σ)

min
uh∈Vh(Ωh(ϕh))

J (ϕh; uh) ,

subject to uh solving (3.21) on Ωh(ϕh),

(6.3)

where uh(ϕh) ≡ uh(Ωh(ϕh)). Since Bh is finite dimensional, Ah(ϕ̂h,Σ) effectively enforces

a bounded Lipschitz constant on the domains it contains; thus, Ah(ϕ̂h,Σ) has enough com-

pactness to ensure existence of a minimizer (see [1]).

We rewrite the minimization problem using a Lagrangian to free the PDE-

constraint, i.e. for any ϕh ∈ Ah(ϕ̂h,Σ), define

L (ϕh; vh, qh) := J (ϕh; vh)− Ah (Ωh(ϕh); vh, qh) + χh (Ωh(ϕh); qh) , ∀vh, qh ∈ Bh, (6.4)

and note that by (3.21) the following property holds

J (ϕh; uh(ϕh)) = L (ϕh; uh(ϕh), qh) , ∀qh ∈ Vh(Ωh(ϕh)), (6.5)

for any ϕh ∈ Ãh. The Lagrangian framework allows us to characterize the minimizer in

(6.3) as a saddle-point, i.e.

L
(
ϕ̄h; ūh, p̄h

)
= min

ϕh∈Ah(ϕ̂h,Σ)
min

uh∈Vh(Ωh(ϕh))
max

qh∈Vh(Ωh(ϕh))
L (ϕh; uh, qh) , (6.6)

for some ϕ̄h = ϕ̂h + q̄h with q̄h ∈ C(Σ), ūh ∈ Vh(Ω̄h), and p̄h ∈ Vh(Ω̄h), where Ω̄h ≡ Ω̄h(ϕ̄h).

Since L is Fréchet differentiable, with δaL (Ω; v, q) (·) denoting the Fréchet derivative with

respect to the argument a, the following first order conditions must hold for ūh and p̄h:

δqhL
(
ϕ̄h; ūh, p̄h

)
(zh) = 0, ∀zh ∈ Vh(Ω̄h),

δvhL
(
ϕ̄h; ūh, p̄h

)
(wh) = 0, ∀wh ∈ Vh(Ω̄h),

(6.7)
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which implies that ūh and p̄h solve the following variational problems

Ah
(
Ω̄h(ϕ̄h); ūh,vh

)
= χh

(
Ω̄h(ϕ̄h); vh

)
, ∀vh ∈ Vh(Ω̄h),

Ah
(
Ω̄h(ϕ̄h); wh, p̄h

)
= δvhJ

(
ϕ̄h; ūh

)
(wh), ∀wh ∈ Vh(Ω̄h).

(6.8)

Thus, ϕ̄h = ϕh,min, Ω̄h = Ωh,min, ūh = uh(ϕh,min) solves (3.21) on Ωh,min, and p̄h =

ph(ϕh,min) solves an adjoint problem. In addition, we have the following first order con-

dition for ϕ̄h:

L′
(
ϕ̄h; ūh, p̄h

)
(rh − q̄h) ≥ 0, ∀ rh ∈ C(Σ). (6.9)

6.3. Reduced Gradient

Note that, ultimately, we are after the derivative of the reduced functional

J (ϕh) := J (ϕh; uh(ϕh)) in (6.5), i.e. we seek to compute the level set shape deriva-

tive J ′ (ϕh) (ηh) ≡ J ′ (ϕh; u(ϕh)) (ηh), so that we can perform gradient based optimization.

This is given by the Correa-Seeger theorem [22, pg. 427]:

J ′ (ϕh) (ηh) = L′ (ϕh; ūh(ϕh), p̄h(ϕh)) (ηh), ∀ ηh ∈ Bh, (6.10)

for any ϕh ∈ Ãh. In our case, because of (2.12), the problem is self-adjoint and p̄h = ūh.

We now apply our results from Section 5.4 to compute (6.10). However, our formu-

las only consider bulk functionals (not boundary functionals). Thus, we restrict our prob-

lem by taking γN = 0, ΓD = ∅, and gN ̸= 0 only within Σ ⊂ ∂D̂. This allows us to avoid

differentiating any boundary integrals. In addition, for convenience, we take f = 0, which

implies that χh (Ωh; vh) is independent of any shape perturbations in C(Σ).
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Evaluating the Fréchet derivatives, we obtain for all ϕh ∈ Ãh that

χ′
h (Ωh(ϕh); vh) (ηh) = 0, J ′ (Ωh(ϕh); vh) (ηh) = −a0

∫
Γh(ϕh)

ηh
|∇ϕh|

dS(x),

A′
h (Ωh(ϕh); uh,vh) (ηh) = −

∫
Γh(ϕh)

(2µε(∇uh) : ε(∇vh) + λ(∇ · uh)(∇ · vh))
ηh
|∇ϕh|

dS(x),

(6.11)

for all uh,vh ∈ Vh(Ωh(ϕh)), and all ηh ∈ Bh, where a0 is the penalty parameter in (2.12).

Note that the facet stabilization terms in (3.19) do not contribute anything because we

take the facet patch selections to be fixed and independent of the perturbation ηh. Hence,

since p̄h = ūh, (6.10) reduces to

J ′ (ϕh) (ηh) = L′ (ϕh; ūh(ϕh), p̄h(ϕh)) (ηh)

=
∫

Γh(ϕh)

(
2µ|ε(∇ūh)|2 + λ(∇ · ūh)2 − a0

) ηh
|∇ϕh|

dS(x).
(6.12)

Implementing (6.12) is straightforward within an unfitted finite element software,

e.g. ngsolve [67], ngsxfem [49], provided Assumption 4 holds. Otherwise, we need to

compute (5.74), which can be tedious. Fortunately, since ϕh is a piecewise polynomial,

the set E in (5.74) must equal the entire facet F , which delivers some simplification. But

(5.74) is still non-linear in the perturbation ηh. In our computations, we simply choose a

side of F , either T+ or T−, which is automatically done by ngsxfem because the domain

boundary is never allowed to fall exactly on a mesh facet.

6.4. Shape Optimization Algorithm

Our algorithm is essentially gradient descent. Let B (ωh, ηh) be a bilinear form de-

fined for all ωh, ηh in Bh; for example, we may take B (ωh, ηh) = (ωh, ηh)H1(D̂). Moreover,

we introduce the following restricted finite element space Qh = {φh ∈ Bh : φh|Σ = 0}.
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Then, given a current domain Ωh(ϕh), we find a descent direction δϕh ∈ Qh that satisfies

B (δϕh, ηh) = −J ′ (ϕh) (ηh), ∀ ηh ∈ Qh. (6.13)

We then update ϕh by ϕh ← ϕh + αδϕh, where α > 0 is a step-size determined through a

back-tracking line search. Note that the choice of the facet patches for stabilization stays

fixed during the line search.

As mentioned earlier in Section 6.1, we want the level set function ϕh to satisfy

|∇ϕh| ≈ 1 or at least |∇ϕh| ≥ 1
2 . To satisfy this requirement, we start with an initial level

set function which is the signed distance function for our initial shape, hence |∇ϕh| = 1 al-

most everywhere. The shape optimization algorithm however does not preserve this prop-

erty and over many iterations we may no longer have |∇ϕh| ≈ 1. To remedy this, we reini-

tialize ϕh to that of a signed distance function after a set number of iterations.

Several methods for level set reinitialization on unstructured grids exist, such as

the DRLSE algorithm [51], in which the reinitialization involves solving a fully explicit

difference scheme. Other methods include [59], which use local projections and [3], which

uses a fixed-point method.

In our algorithm, we compute the signed distance function directly by over sam-

pling the boundary, computing the signed distance to the boundary from every node on

the mesh, and then interpolating to a function in the background finite element space.

One can also use the method in [65].
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Chapter 7. Numerical Results for Shape Optimization

We include some numerical experiments of the full PDE minimization problem as

well as some numerical tests to confirm the validity of the shape derivative formulation.

In each of the following simulations we use a level set formulation, with a fixed

background mesh, to define the boundary of Ω. We start by checking the validity of our

shape derivative formula in the elasticity PDE framework by performing two tests using a

finite difference approximation of the shape derivative.

7.1. Shape Derivative Test

First, we fixed an initial shape, and then compare our shape derivative formula

with an increasingly better finite difference approximation. I.e., we approximate the shape

derivative by

J ′
FD(ϕh)(ηh) = J(ϕh + ϵηh)− J(ϕh)

ϵ
,

and then compare J ′
FD to our shape derivative formula for decreasing ϵ. The exact shape

derivative J ′
exact(ϕh)(ηh) is given by (6.12).

We use degree k = 1 for Bh and set ϕh = Ihϕ and ηh = Ihη, where Ih is the stan-

dard nodal interpolant for Bh. In doing the comparison, we compute the following

ζ(ϵ) = |J
′
exact − J ′

FD|
ϵ

.

For this simulation, we fix the design domain D̂ := (0.0, 2.0) × (0.0, 1.0) and choose

the initial shape (Figure 7.1) Ω := D̂ \ Br(x0), where r = 0.2 and x0 = (0.3, 0.3) and

Br(x0) is the ball of radius r centered at x0. We use a continuous piecewise linear finite

element space and choose an arbitrary direction to compute the shape derivative, and then
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(a) Initial shape (b) Perturbed shape

Figure 7.1. We have an example of an initial shape and an arbitrary perturbation of that
shape.

compare our shape derivative formula (6.12) to an increasingly better finite difference ap-

proximation of the shape derivative.

Here are the results:

Table 7.1. Shape Derivative Test

eps J(ϕh) J(ϕh + ϵηh) J ′
exact J ′

FD |J ′
exact − J ′

FD| ζ(ϵ)
1.00E-01 0.75860 0.95387 0.38283 1.95275 1.56992e+00 15.69922
1.00E-02 0.75860 0.76296 0.38283 0.43641 5.35852e-02 5.35852
1.00E-03 0.75860 0.75899 0.38283 0.38804 5.21949e-03 5.21949
1.00E-04 0.75860 0.75864 0.38283 0.38332 4.93417e-04 4.93417
1.00E-05 0.75860 0.75860 0.38283 0.38287 4.94585e-05 4.94585
1.00E-06 0.75860 0.75860 0.38283 0.38283 4.90236e-06 4.90236
1.00E-07 0.75860 0.75860 0.38283 0.38283 6.47544e-07 6.47544
1.00E-08 0.75860 0.75860 0.38283 0.38283 3.88828e-06 388.82848

The last entry in Table 7.1 is expected due to the roundoff and truncation error

from the finite difference approximation for small ϵ.

7.2. Shape Derivative Translation Test

Second, we test the formula by choosing different initial shapes and computing the

shape derivative in arbitrary directions. In practice, we chose a shape consisting of the

entire design domain D̂ minus a hole and then translate the hole to get different inital
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shapes.

For this simulation, we fix ϵ = 1.00E−07 and choose initial shape like that depicted

in Figure 7.1 for the first iteration (Ω := D̂ \ Br(x0), where r = 0.2 and x0 = (0.3, 0.3)

and Br(x0) is the ball of radius r centered at x0) and compare it with J ′
FD. Then for sub-

sequent iterations, we translate the hole by v = (0.1, 0.05) after every iteration. We use a

continuous piecewise linear finite elements for every iteration.

Table 7.2. Shape Derivative Translation Test

it J(ϕh(·, t)) J(ϕh(·, t) + ϵηh(·)) J ′
exact J ′

FD |J ′
exact − J ′

FD| ζ
0 0.75860 0.75860 0.38283 0.38283 6.47544e-07 6.47544
1 0.74186 0.74186 0.13959 0.13959 1.25195e-06 12.51948
2 0.73253 0.73253 0.03503 0.03503 3.21555e-07 3.21555
3 0.72807 0.72807 0.02159 0.02159 4.34587e-07 4.34587
4 0.72670 0.72670 0.05205 0.05205 3.60208e-09 0.03602
5 0.72722 0.72722 0.08675 0.08675 8.78340e-08 0.87834
6 0.72883 0.72883 0.10066 0.10066 2.01567e-08 0.20157
7 0.73113 0.73113 0.08418 0.08418 4.94938e-07 4.94938

7.3. Simple Example

This is a simple geometric shape optimization problem for testing purposes. Let

u = u(x, y) be a given function defined by

u(x, y) = 1
p

(
1
α
xp + 1

β
yp
)
,

∇u =
(

1
α
xp−1,

1
β
yp−1

)
⇒ |∇u|2 =

(
xp−1

α

)2

+
(
yp−1

β

)2

,

(7.1)

given α, β > 0. Next, let λ > 0 and A0 > 0 be given, and define the following shape

functional:

J(Ω) =
∫

Ω
|∇u|2 dA− λ (|Ω| − A0) , (7.2)
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and note that u does not depend on Ω. Applying standard shape differentiation formulas,

we get

δJ(Ω; V ) =
∫
∂Ω

(
|∇u|2 − λ

)
V · νdS, (7.3)

for all smooth V . For any critical point Ω∗ of (7.2), we must have δJ(Ω∗; V ) = 0 for all

smooth V , which means the integrand must vanish. In other words,

|∇u|2 = λ, for all (x, y) ∈ ∂Ω∗,

⇒
(
xp−1

α
√
λ

)2

+
(
yp−1

β
√
λ

)2

= 1,
(7.4)

which is the equation for a superellipse, i.e. ∂Ω∗ is a superellipse. If we take A0 to be the

desired area of the superellipse, then we must have

4(αβλ)
1
p−1

(
Γ
(
1 + 1

2p−2

))2

Γ
(
1 + 1

p−1

) = A0, (7.5)

where Γ represents the Gamma function, and so λ is uniquely determined by A0.

In our numerical test, we take α = 1, β = 2, λ = 0.18, and p = 4. The

design domain is D̂ := (−1.0, 1.0) × (−1.1, 1.1) and the initial guess for the opti-

mal shape is a disk of radius 0.5 centered at the origin. We use k = 1, 2, 3 for Bh in

the level set approximation of ϕh. The stopping criteria for each simulation was when

the difference in J between successive iterations was less than 10−8. See Table 7.3 for

a list of converged J and J ′ values for different mesh sizes. The computed values of

J ′ are the vector 2-norm of the coefficients of the basis representation of the linear

form: J ′(ϕh)(ηh) = ((|∇u|2 − λ)|∇ϕh|−1, ηh)∂Ωh(ϕh). Since p = 4, the superellipse can

be represented exactly by a discrete level set function using degree 6 piecewise poly-

nomials. Thus, we computed the exact value of the cost at the minimizer, which is

Jexact = −0.3702425373188486 and we confirmed that |J ′
exact| = 3.3 · 10−18.
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The ngsxfem add-on package to NGSolve uses an isoparametric mapping for im-

plementing higher order unfitted schemes. But this is technically outside of our theory

because we assume exact integration on the higher order interface without invoking an

isoparametric map. On the other hand, ngsxfem provides an alternative method for inte-

grating with higher order interfaces that uses subdivision of the underlying mesh. Essen-

tially, with enough subdivision levels, one can get a sufficiently accurate approximation of

the various integrals, which is the approach we use in this superellipse experiment.

Table 7.3. Ellipse Shape Derivative Test

maxh k = 1 k = 2 k = 3
|J − Jexact| |J ′| |J − Jexact| |J ′| |J − Jexact| |J ′|

0.1 1.1700e-03 1.7223e-02 3.6038e-05 1.5115e-06 1.9625e-07 9.0576e-08
0.05 7.3293e-04 5.0726e-03 4.8018e-06 3.7531e-07 9.5482e-09 4.3523e-08
0.025 1.7098e-04 2.2085e-03 2.0907e-07 1.2123e-07 1.9605e-10 1.6617e-08
0.0125 5.7855e-05 7.8292e-04 9.4514e-08 7.6382e-08 5.7451e-11 1.5158e-08

Figure 7.2 shows plots of the numerical minimizers compared against the exact

minimizer. We now discuss the practical issue of when the discrete boundary, ∂Ωh, lies

along a mesh facet (recall Section 5.5). First, note that if ∂Ωh has a non-trivial intersec-

tion with a facet F , then it must lie along the entire facet, because ∂Ωh is represented by

piecewise polynomials. Moreover, the ngsxfem package avoids these ambiguous situations

by adding a small number, e.g. 10−14, to the nodal values of the level set function ϕh that

lie along the facet. In effect, this forces the derivative formula (5.74) to “choose a side.”

Nevertheless, when the boundary does lie along a facet, the derivative of the cost is

discontinuous at that facet. The practical effect on the optimization is that the numerical

interface, ∂Ωh, can be “faceted.” In Figure 7.2(a), aside from the rounded corners where

the numerical minimizer (red) deviates from the exact minimizer (blue), we see that the
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(a) Polynomial degree k = 1 (b) Polynomial degree k = 2 (c) Polynomial degree k = 3

Figure 7.2. The exact interface is in blue, the approximate interface is in red.

red interface (mostly) follows the mesh facets along the nearly straight portions of the in-

terface. The exact interface, for the most part, does not lie along any mesh facets. This is

particularly noticeable at the bottom left of Figure 7.2(a)

Figure 7.3. Expanded view of Figure 7.2 (a).
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It is not surprising that the exact discrete minimizer has some mesh dependence.

In these experiments, and others we have run, this effect is fairly mild. Moreover, this

faceting effect is significantly reduced when using higher order methods, as Figure 7.2(b,c)

indicates.

7.4. Shape Optimization Elasticity

We introduce a numerical simulation of the PDE constrained minimization problem

(2.4), with the compliance shape functional (2.12)

J (Ω; v) = χ (Ω; v) + a0|Ω|,

In this instance, the area penalization parameter is a0 = 0.3 and we choose mate-

rial parameters λ = 0 µ = 5 in the linear elasticity PDE. Additionally, we choose facet

stabilization parameter γs = 2 with layer thickness parameter δ = h, and choose Nitsche

stabilization parameters γD = 10µ and γN = 0.

Figure 7.4. Left: Initial shape. Right: level set function constraint set Σ ⊂ D̂.

We mimic the setup of [17] in order to corroborate our results. We choose

the initial shape as depicted in Figure 7.4 (left). We define the design domain to be

D̂ := (0.0, 2.0)× (0.0, 1.0) and choose an initial shape of D̂ with 12 holes: 10 of which have

radius 0.1 and are evenly spaced, and the remaining two are centered at the top right and

bottom right corners having radius 0.25. Additionally, Γ̂D = ∅ as we previously assumed
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and ΓD consists of the line segment between (0.0, 0.0) and (0.0, 0.15) and a second line

segment between (0.0, 1.0) and (0.0, 0.85). Also, gN = (0.0,−1.0) on the line segment

between (2.0, 0.4) and (2.0, 0.6) (i.e. on ΓN).

Note that the level set function is constrained to not change along Σ ⊂ ∂D̂ as de-

picted in Figure 7.4 (right). This is to ensure the feasibility of the resulting shape.

Here are some of the results:

(a) The initial guess and an exaggerated
displacement of the cantilever is shown

(b) We have the same initial shape as above
now with the mesh being shown.

Figure 7.5. Initial shape

(a) Piecewise linear finite elements with an
exaggerated displacement.

(b) Piecewise quadratic finite elements with an
exaggerated displacement.

Figure 7.6. Resulting shapes for piecewise linear and quadratic finite elements

The resulting optimal shapes for both piecewise linear and piecewise quadratic Bh

are nearly identical (see Figure 7.6). The optimization history is given in Figure 7.7. The

optimization for degree k = 2 used the isoparametric mapping approach in ngsxfem be-
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cause the subdivision method would have been prohibitively expensive. Since the mesh

size was h = 0.02, the isoparametric mapping was only a small perturbation from a lin-

ear triangle element. Nevertheless, this does induce a small error in our shape derivative,

which introduces a small error when computing a descent direction. This is evidenced by

the red curve in Figure 7.7(a) stopping at iteration index ≈ 340.
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(a) Cost vs. iteration number for piecewise lin-
ear (blue) and piecewise quadratic (red) finite
element methods.

0 100 200 300 400 500
10−4

10−3

10−2

10−1

100

101

102

iterations

d
J
va
l

Degree 1
Degree 2

(b) Norm of δJ vs. iteration number for piece-
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finite element methods.

Figure 7.7. Cost and Norm of δJ vs. iteration number

We also plot the step size vs iteration number in Figure 7.8.
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(a) Piecewise linear finite elements
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(b) Piecewise quadratic finite elements

Figure 7.8. Step size vs. iteration number
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Chapter 8. Remarks on Unfitted Shape Optimization

We presented a numerical shape optimization technique that takes advantage of un-

fitted finite element methods. We showed how to compute the exact discrete shape deriva-

tive of bulk shape functionals, under mild assumptions, and established the Fréchet differ-

entiability of discrete bulk shape functionals. This is done using both the perturbation of

the identity approach, as well as direct perturbation of the level set representation of the

domain. Our formulation allows for including a discrete PDE constraint and our discrete

derivative mimics the shape derivative formula from the continuous problem. In other

words, our method enjoys advantages of both the discretize-then-optimize and optimize-

then-discretize philosophies.

We illustrated our method by considering the shape optimization of an elastic

body. Specifically, we used a Lagrangian approach to deal with the linear elasticity PDE

constraint. Furthermore, our level set based shape derivative approach allowed for directly

optimizing the level set representation of the domain. No ad-hoc extension velocities

were needed to update the level set function. Our numerical results demonstrated the

effectiveness of our approach. For instance, the step sizes chosen by our gradient descent

method are not excessively small, which can happen with some optimize-then-discretize

approaches.

Our method can be easily applied to a two-phase material problem, such as an elas-

tic body with a fixed shape but with two different material regions, Ω1 and Ω2, inside. In

this case, the level set function marks one of the phases, say Ω1, and the weak formulation

involves a sum over the two sub-domains. As long as there is no boundary integral over

∂Ω1 ∩ ∂Ω2 in the weak form, our methodology can be applied.
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A point of future work is to extend our method to handle boundary functionals.

Most likely, this will require some kind of regularization of the cost functional. Another

area to investigate is the connection of our method to time-dependent problems, i.e. to

extend our approach to solving PDEs in time-dependent geometries, as well as shape opti-

mization with time-varying shape constraints.
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Chapter 9. Landau–de Gennes Model

Modeling liquid crystals in three dimensions at the continuum level involves the use

of a tensor order parameter Q that is symmetric and traceless, i.e. it belongs to

S0 := {Q ∈ R3×3 | QT = Q, tr(Q) = 0}. (9.1)

Since Q is based on a probability distribution of LC molecules, the eigenvalues of Q, de-

noted λi, satisfy

−1
3 ≤ λi(Q) ≤ 2

3 , for i = 1, 2, 3, (9.2)

and, since Q is traceless, λ3 = −(λ1 + λ2). When all eigenvalues are equal, then they are

0 and Q = 0, which represents the isotropic state. If all eigenvalues are distinct, then Q

is in a biaxial state. However, usually Q has a single largest eigenvalue with the other two

eigenvalues equal; this is called a uniaxial state and Q may be expressed as

Q = s
(

n⊗ n− 1
3I
)
, (9.3)

where n, which has unit length |n| = 1, is the eigenvector of the largest eigenvalue. The

scalar order parameter s is called the degree-of-orientation and is a measure of the orien-

tational order of the LC molecules, and n is called the director that represents the average

direction in which the molecules are pointing. Note that −1
2 ≤ s ≤ 1.

For LCs in a physical domain Ω, we model the LC state through a tensor-valued

function Q : Ω → S0. We assume Ω has Lipschitz boundary Γ with outward pointing unit

normal vector ν. The free energy of the LdG model is defined as [55, 56, 64]:

E [Q] :=
∫

Ω
f(Q,∇Q) dx +

∫
Ω
ψ(Q) dx

+
∫

Γ
g(Q) dS(x) +

∫
Γ
ϕ(Q) dS(x)−

∫
Ω
χ(Q) dx,

(9.4)
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with the elastic energy (with twist component as in [73, 64]) given by

f(Q,∇Q) := 1
2

(
ℓ1|∇Q|2 + ℓ2|∇ ·Q|2 + ℓ3(∇Q)T ··· ∇Q

+ 4ℓ1τ0∇Q ··· (ε ·Q)
)
,

(9.5)

where {ℓi}3
i=1 (units of J · m−1) and τ0 (units of m−1) are material dependent elastic con-

stants, and ψ is a “bulk” potential, ε is the Levi-Civita symbol, and

|∇Q|2 := Qij,kQij,k, |∇ ·Q|2 := Qij,jQik,k,

(∇Q)T ··· ∇Q := Qij,kQik,j, ∇Q ··· (ε ·Q) := εjklQik,lQij,

(9.6)

where we use the convention of summation over repeated indices and εjkl is the Levi–

Civita tensor. The transpose in the third term indicates to swap one of the Q indices with

the derivative index. The elastic constants in the LdG model can be related to the elastic

constants in the Oseen–Frank model (see [55, 56]). Note that taking ℓi = 0, for i = 2, 3,

and τ0 = 0 gives the often used one constant LdG model. More complicated models can

also be considered [56, 31, 70].

Next, the bulk potential ψ is a double-well type of function that is given by

ψ(Q) = a0 −
a2

2 tr(Q2)− a3

3 tr(Q3) + a4

4
(
tr(Q2)

)2
. (9.7)

Above, a2, a3, a4 are material parameters (units of J · m−3) such that a2, a3, a4 are posi-

tive; a0 is a convenient constant to ensure ψ ≥ 0. Stationary points of ψ are either uniax-

ial or isotropic Q-tensors [52].

The surface energy, composed of the quadratic g(Q) and higher-order boundary

potential ϕ(Q), accounts for weak anchoring of the LC (i.e. penalization of boundary con-

ditions). For example, a Rapini-Papoular type anchoring energy [2] can be considered:

g(Q) = w0

2 |Q−QΓ|2 + w1

2 |Q̃− Q̃
⊥|2, ϕ̃(Q) = w2

4 (|Q̃|2 − s2
0)

2
, (9.8)
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where w0, w1, and w2 are positive constants (units of J · m−2), QΓ(x) ∈ S0 for all x ∈ Γ,

and s0 is the scalar order parameter of the uniaxial Q that minimizes the double well. We

set Q̃ := Q + s0
3 I, and define the standard projection onto the plane orthogonal to ν, that

is, Q⊥ := ΠQΠ where Π = I − ν ⊗ ν. We define QΓ to be uniaxial of the form

QΓ = s0

(
ν ⊗ ν − 1

3I
)
. (9.9)

The w0 term in (9.8) models homeotropic (normal) anchoring, while w1 and w2 model pla-

nar degenerate anchoring.

For the analysis, we modify the "boundary" potential to have quadratic growth. Let

ρ : [0,∞)→ R+ be a smooth cut-off function, i.e.

ρ(r) = 1 if r < b1,

ρ(r) = monotone if b1 ≤ r ≤ b2,

ρ(r) = 0 if r > b2,

where 1 ≤ b1 < b2 are fixed constants. We then modify the boundary potential

ϕ(Q) = ϕ̃(Q)ρ(|Q|2) + w2
2|Q|2

(
1− ρ(|Q|2)

)
, (9.10)

which then implies the following estimates

|ϕ(Q)| ≤ w2s
4
0

4 + c0|Q|2, |ϕ′(Q)| ≤ c1|Q|, |ϕ′′(Q)| ≤ c2. (9.11)

Where c0, c1, and c2 are constant.

The function χ(·) models external forcing on the LC system. Usually, χ(Q) is taken

to be linear in Q, i.e. χ(Q) = UΩ : Q, where UΩ : Ω → R3×3 is a given function. For

instance, the energy density of a dielectric LC with fixed boundary potential is given by
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−1/2 D · E [75], where the electric displacement D is related to the electric field E by the

linear constitutive law [27, 31, 10]:

D = εE = ε̄E + εaQE, ε(Q) = ε̄I + εaQ, (9.12)

where ε is the LC material’s dielectric tensor and ε̄, εa are constitutive dielectric permit-

tivities. Thus, we may rewrite the dielectric energy density as

−1
2D · E = −1

2 ε̄|E|
2 + χ(Q), χ(Q) = −1

2εaE ·QE ≡ −1
2εaE⊗ E : Q = UΩ : Q, (9.13)

where χ(Q) has units of J/m3 and UΩ = −(1/2)εaE ⊗ E. We do not include the term

(ε̄/2)|E|2 in (9.4) because it is independent of Q.

9.1. Basic Theory

The function space for posing the weak formulation of the time-dependent LdG

problem is given by Q := H1(Ω; S0). Note that S0 can be uniquely identified with a five

dimensional vector space [30], i.e. there exists 3 × 3, symmetric traceless basis matrices

{Ei}5
i=1 such that any Q ∈ S0 can be uniquely expressed as Q = qiE

i, for some coefficients

q1, . . . , q5. Therefore, Q is isomorphic to H1(Ω;R5).

We now summarize some basic results that are needed in the well-posedness of the

weak formulation. The following theorem [21, Lem. 4.1] establishes this result for the ℓ1,

ℓ2, ℓ3 terms in the elastic energy.

Theorem 9.1. Let ae (·, ·) : Q×Q→ R be the symmetric bilinear form defined by

ae (Q,P ) := ℓ1 (Qij,k, Pij,k)Ω + ℓ2 (Qij,j, Pik,k)Ω + ℓ3 (Qij,k, Pik,j)Ω .
(9.14)

Then ae (·, ·) is bounded. If ℓ1, ℓ2, ℓ3 satisfy

0 < ℓ1, −ℓ1 < ℓ3 < 2ℓ1, −3
5ℓ1 −

1
10ℓ3 < ℓ2, (9.15)

87



then there is a constant c > 0 such that ae (P, P ) ≥ c∥∇P∥2
0,Ω for all P ∈ Q.

Proposition 9.2 (Coercivity). Let s (·, ·) : Q × Q → R be the symmetric bilinear form

defined by

s (Q,P ) = w0 (Q,P )Γ + w1
(
Q−Q⊥, P

)
Γ
. (9.16)

There exists a constant α1 > 0 such that

ae (P, P ) + s (P, P ) ≥ α1∥P∥2
1,Ω, ∀P ∈ Q. (9.17)

We also have the bilinear form at (·, ·) : Q×Q→ R, which is not coercive, account-

ing for the twist term:

at (Q,P ) := 2ℓ1τ0
[
εikl (Qjk,l, Pij)Ω + εikl (Pjk,l, Qij)Ω

]
, (9.18)

and satisfies the bound

at (Q,P ) ≤ 2ℓ1τ0
√

27 [|Q|1,Ω∥P∥0,Ω + |P |1,Ω∥Q∥0,Ω] . (9.19)

For later use, we define one bilinear form to contain (9.14), (9.16), and (9.18):

bi (Q,P ) = ae (Q,P ) + at (Q,P ) + s (Q,P ) , (9.20)

which satisfies the following continuity result.

Proposition 9.3 (Continuity). There holds

ae (Q,P ) ≤ ce|Q|1,Ω|P |1,Ω, at (Q,P ) ≤ ct∥Q∥1,Ω∥P∥1,Ω,

s (Q,P ) ≤ cs∥Q∥0,Γ∥P∥0,Γ, bi (Q,P ) ≤ c0∥Q∥1,Ω∥P∥1,Ω,

(9.21)

for all Q,P ∈ Q, where

ce = ℓ1 + 3ℓ2 + ℓ3, ct = 2
√

27ℓ1τ0, cs = w0 + 3w1, c0 = ce + ct + β3cs, (9.22)

where β3 > 0 is a trace embedding constant depending on Ω.
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Next, we define a convenient right-hand-side function lrhs:

lrhs(P ) = (χ(P ), 1)Ω + w0 (QΓ, P )Γ + w1

(
−s0

3 ν ⊗ ν, P
)

Γ
. (9.23)

Using (9.20) and (9.23), we can now write E [Q] in the form

E [Q] = (1/2)bi (Q,Q) + (1/η2) (ψ(Q), 1)Ω + (1/ω) (ϕ(Q), 1)Γ − lrhs(Q), (9.24)

which gives the first variation of E as:

δQE [Q;P ] = bi (Q,P ) + (1/η2) (ψ′(Q), P )Ω + (1/ω) (ϕ′(Q), P )Γ − lrhs(P ). (9.25)

9.2. Time-dependent Flow

We consider an evolution equation for Q that is motivated from the Beris–Edwards

system [79]. Let v be the velocity of the liquid crystal fluid domain and assume that v is

divergence free. We introduce the strain and vorticity tensor, respectively,

S = S(∇v) := ∇v + (∇v)T

2 , W = W (∇v) := ∇v− (∇v)T

2 . (9.26)

Then, Q evolves by the following parabolic system

∂tQ+ (v · ∇)Q+ 1
τ0

δ̂E
δQ

= B (∇v, Q) ,

B (∇v, Q) := WQ−QW + p0 (QS + SQ) + 2p0

3 S − 2p0(S : Q) (Q+ I/3) ,

(9.27)

where τ0 is the relaxation time, p0 ∈ [−1, 1] is a material parameter, ·̂ is the traceless part,

and the boundary conditions come from the weak anchoring conditions. The full strong

form is given by

∂tQ+ (v · ∇)Q−B (∇v, Q) + 1
τ0

(
− ̂div (A∇Q) + 1

η2 ψ̂
′(Q)

)
= 1
τ0
ÛΩ, in Ω,

∂νAQ+ w0(Q−QΓ) + w1(Q̃− Q̃⊥) + 1
ω
ϕ̂′(Q) = 0, on Γ,

(9.28)
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where A is a 6-tensor such that

ae (Q,P ) + at (Q,P ) = (A∇Q,∇P )Ω .

In this case, Q(x, t) satisfies a parabolic PDE (in strong form), and by the standard theory

of parabolic PDEs [28, 44], it has a unique solution. The next chapter considers a simpli-

fied version of this system for numerical analysis purposes.
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Chapter 10. The Modified Allen–Cahn Problem

Before we consider unfitted methods for the Landau–de Gennes model, we first con-

sider the Allen–Cahn equation with some additional nonlinear terms that have properties

as the double well terms in (9.28):

∂ty(·, t) + div (vy)− div (A∇y) + ψ′(y) = f, in Ω(t), for t > 0,

∂νy + w0(y − yΓ) + ϕ′(y) = g, on Γ(t), for t > 0,
(10.1)

where f and g are given functions of time and space, A ∈ R3×3 is a symmetric, positive

definite matrix, and the material velocity v is divergence free, i.e. ∇ · v = 0. We note that

the analysis for this modified Allen–Cahn equation can be generalized to the analysis for

the Landau–de Gennes model.

Additionally, ψ and ϕ are double well functions for the scalar variable y(x, t) that

have the same form as in the Landau–de Gennes model and note that ϕ satisfies a scalar

version of (9.10) and (9.11) as well. We also assume that ψ′(0) = ϕ′(0) = 0.

In the following analysis, we consider a convex splitting technique of the double

well potentials ψ and ϕ.

ψ := ψc − ψe

ϕ := ϕc − ϕe

(10.2)

where ψc, ψe, ϕc, and ϕe are all chosen so that each is convex but ψe and ϕe are quadratic.

I.e.

ψe := βψy
2

ϕe := βϕy
2

(10.3)

where βψ, βϕ > 0. Furthermore, due to our specific ψ and ϕ, the convex splitting can be

performed so that ψ ≥ 0 and ϕ ≥ 0. We also note that ψ is quartic and has a similar form
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as (9.7) and that ϕ has quadratic growth like (9.10) and satisfies inequalities (9.11). This

will be useful in many of the following proofs in this section.

10.1. Domain Mappings and Extension Operator

Given u(x, t) : Ω(t) → R we assume that there exists an extension operator, say E

such that

Eu(x, t) : Oδ(Ω(t))→ R, (10.4)

and E has the following properties: For u ∈ L∞([0, T ];Hm+1(Ω(t))) ∩W 2,∞(Q) we have

∥Eu∥Hk(Oδ(Ω(t))) ≤ c1∥u∥Hk(Ω(t)), k = 0, 1, ...,m+ 1

∥∇(Eu)∥L2(Oδ(Ω(t))) ≤ c2∥∇u∥L2(Ω(t)),

∥Eu∥W 2,∞(Oδ(Q)) ≤ c3∥u∥W 2,∞(Q).

(10.5)

For u ∈ L∞([0, T ];Hm+1(Ω(t))) with ∂tu ∈ L∞([0, T ];Hm(Ω(t))) we have

∥∂t(Eu)∥Hm(Oδ(Ω(t))) ≤ c4
(
∥u∥Hm+1(Ω(t)) + ∥∂tu∥Hm(Ω(t))

)
. (10.6)

See [50] for a proof of the existence of an operator that satisfies these estimates.

Let Ωn denote the exact domain of (10.1) at a particular time tn and that Ωn
h is

a high order approximation of Ωn. To proceed with our analysis, we use assume that Ωn

satisfies Assumption 2 so that we have a geometry approximation Ωn
h that is of order q ≥ 1

(i.e. q is the polynomial degree of our level set function) for each n. And we similarly have

the same geometry approximation estimate (4.30). Moreover, for each n we assume that

there exists a mapping Φ : Oδ(Ωn) → Oδ(Ωn
h) that satisfies (4.31) and (4.32) where Φ is

a continuous well-defined map that is invertible for sufficiently small h. Note that we have

adopted much of the same notation as in Section 4.3.
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For any u : Ωn
h → R in the background finite element space Bh, define uℓ := u ◦Φ−1

and note the following estimates:

∥uℓ∥2
L2(Oδ(Ωn)) ≃ ∥u∥2

L2(Oδ(Ωn
h

)) ∥uℓ∥2
L2(Ωn) ≃ ∥u∥2

L2(Ωn
h

)

∥∇uℓ∥2
L2(Oδ(Ωn)) ≃ ∥∇u∥2

L2(Oδ(Ωn
h

)) ∥∇uℓ∥2
L2(Ωn) ≃ ∥∇u∥2

L2(Ωn
h

)

(10.7)

10.2. Semi-discrete Method

We first introduce a time-discretization of the forward problem (10.1). We consider

a uniform time step given by δt := T/N , where T is the final time and N is the number

of time steps to be taken. Also, let tn := nδt and denote yn := y(tn) with analogous def-

initions for Ωn, Γn, fn, gn, etc. We also use implicit Euler for the time discretization and

obtain the following semi-discrete formulation.

yn − yn−1

δt
+ (v · ∇)yn − div (A∇yn) + ψ′(yn) = fn, in Ωn, for n = 1, 2, ...N,

∂νy
n + w0(yn − ynΓ) + ϕ′(yn) = gn, on Γn, for n = 1, 2, ...N,

y0 = h, in Ω0.

(10.8)

10.2.1. Variational Formulation in Space

The variational formulation for the semi-discrete problem is as follows. Find yn ∈

H1(Ωn) such that for all z ∈ H1(Ωn) we have

∫
Ωn
fnzdx +

∫
Γn
gnzdS

=
∫

Ωn

yn − yn−1

δt
zdx + 1

2

∫
Ωn

(v · ∇yn)z − (v · ∇z)yndx + 1
2

∫
Γn

(ν · v)ynzdS

+
∫

Ωn
(A∇yn) · ∇zdx +

∫
Ωn
ψ′(y)zdx +

∫
Γn
w0(yn − ynΓ)z + ϕ′(yn)zdS,

(10.9)
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for each n = 1, 2, ...N . Next, we define our linear and bilinear forms as follows:

an (y, z) = 1
2

∫
Ωn

(v · ∇y)z − (v · ∇z)ydx +
∫

Ωn
(A∇y) · ∇zdx

+ 1
2

∫
Γn

(ν · v)yzdS +
∫

Γn
w0yzdS,

χn (z) =
∫

Ωn
fnzdx +

∫
Γn
gnzdS +

∫
Γn
w0y

n
ΓzdS.

(10.10)

Hence, we have the following weak formulation. Find yn ∈ H1(Ωn) such that for all z ∈

H1(Ωn):

∫
Ωn

1
δt
ynzdx + an (yn, z) +

∫
Ωn
ψ′(yn)zdx +

∫
Γn
ϕ′(yn)zdS = χn (z) +

∫
Ωn

1
δt
yn−1zdx,

(10.11)

for each n = 1, 2, ...N .

10.2.2. Stability of the Semi-discrete Method

Let us now consider an equivalent problem from the perspective of energy mini-

mization: find yn ∈ H1(Ωn) such that

yn = arg min
y∈H1(Ωn)

Jn(y)

Jn(y) := 1
2a

n (y, y)− χn (y) +
∫

Ωn
ψ(y)dx +

∫
Γn
ϕ(y)dS + 1

2δt∥y − y
n−1∥2

L2(Ωn).

(10.12)

Lemma 10.1. The function Jn in (10.12) is convex, and hence (10.11) and (10.12) admit

a unique solution, for sufficiently small δt. In particular,

δt ≤ min

 1
4βψ

,
1
4

(
β2
ϕC

2
Ωn

α
+ α

4

)−1

,
1
4

(
C2

Ωn(βϕ − Cv/4)2

α
+ α

4

)−1
 ,

where βψ, βϕ > 0 are terms that come from the convex splitting of ψ and ϕ in (10.3) and

Cv := min
D̂

(2w0 − |v|).
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Proof.

Jn(y) = 1
2a

n (y, y)− χn (y) +
∫

Ωn
ψ(y)dx +

∫
Γn
ϕ(y)dS + 1

2δt∥y − y
n−1∥2

L2(Ωn)

= 1
2

∫
Ωn

(A∇y) · ∇ydx + 1
4

∫
Γn

(ν · v)y2dS + 1
2

∫
Γn
w0y

2dS − χn (y)

+
∫

Ωn
ψ(y)dx +

∫
Γn
ϕ(y)dS + 1

2δt∥y − y
n−1∥2

L2(Ωn)

(10.13)

We now use convex splitting of ψ and ϕ and rearrange all the above terms to get the fol-

lowing:

Jn(y) = Jn1 (y) + Jn2 (y)− χn (y) +
∫

Ωn
ψc(y)dx +

∫
Γn
ϕc(y)dS + 1

2δt

∫
Ωn
−2yyn−1 + (yn−1)2dx

Jn1 (y) := −
∫

Ωn
βψy

2dx + 1
4δt

∫
Ωn
y2dx

Jn2 (y) := 1
2

∫
Ωn

(A∇y) · ∇ydx + 1
4

∫
Γn

(ν · v)y2dS + 1
2

∫
Γn
w0y

2dS + 1
4δt

∫
Ωn
y2dx−

∫
Γn
βϕy

2dS,

(10.14)

where all the terms above are trivially convex except for Jn1 (y) and Jn2 (y). We show that

for sufficiently small δt, both are convex. Hence, Jn then is also convex. For Jn1 (y), we

note that we have the following:

−
∫

Ωn
βψy

2dx + 1
4δt

∫
Ωn
y2dx =

∫
Ωn

( 1
4δt − βψ

)
y2dx, (10.15)

which is convex as long as δt ≤ 1
4βψ

. For Jn2 (y), we have

1
2

∫
Ωn

(A∇y) · ∇ydx + 1
4

∫
Γn

(ν · v)y2dS + 1
2

∫
Γn
w0y

2dS + 1
4δt

∫
Ωn
y2dx−

∫
Γn
βϕy

2dS

≥α2 ∥∇y∥
2
L2(Ωn) + 1

4

∫
Γn

(2w0 − |v|) y2dS + 1
4δt

∫
Ωn
y2dx− βϕCΩn∥y∥L2(Ωn)∥y∥H1(Ωn)

≥α4 ∥∇y∥
2
L2(Ωn) + Cv

4 ∥y∥
2
L2(Γn) +

[
1

4δt −
β2
ϕC

2
Ωn

α
− α

4

]
∥y∥2

L2(Ωn),

(10.16)
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where we have used a trace estimate and a weighted Young’s inequality. We also notice

that if Cv := min
D̂

(2w0 − |v|) ≥ 0 then (10.16) is convex as long as

δt ≤ 1
4

(
β2
ϕC

2
Ωn

α
+ α

4

)−1

.

Otherwise, analogous arguments show that we need the restriction

δt ≤ 1
4

(
C2

Ωn(βϕ − Cv/4)2

α
+ α

4

)−1

.

Lemma 10.2. We have the following estimate for controlling the double well potentials.

Additionally, if δt is chosen sufficiently small we have coercivity in (10.11). Hence, ∀y ∈

H1(Ωn) we have,

an (y, y) +
∫

Ωn
ψ′(y)ydx +

∫
Γn
ϕ′(y)ydS ≥ α

2 ∥∇y∥
2
L2(Ωn) − ζ ′∥y∥2

L2(Ωn)
(10.17)

where ζ ′ =
[
C2

Ωnζ
2

2α + α
2 + 2βψ

]
and ζ = 2βϕ + 1

2∥ν · v∥L∞(Γn) where βψ and βϕ come from

convex splitting in (10.3).

Proof.

an (y, y) +
∫

Ωn
ψ′(y)ydx +

∫
Γn
ϕ′(y)ydS

= 1
2

∫
Γn

(ν · v)y2dS +
∫

Ωn
(A∇y) · ∇ydx +

∫
Ωn
ψ′(y)ydx +

∫
Γn
w0y

2 + ϕ′(y)ydS

≥ α∥∇y∥2
L2(Ωn) + 1

2

∫
Γn

(ν · v)y2dS +
∫

Ωn
ψ′(y)ydx +

∫
Γn
w0y

2 + ϕ′(y)ydS

≥ α∥∇y∥2
L2(Ωn) −

1
2∥ν · v∥L

∞(Γn)∥y∥2
L2(Γn) +

∫
Ωn
ψ′(y)ydx +

∫
Γn
ϕ′(y)ydS

(10.18)

where we have used the fact that the matrix A is symmetric positive definite and hence we

find that it is strongly elliptic (vTAv ≥ α∥v∥2 and α > 0). We will also recall one of the
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convexity properties to find that 0 ≤ [ψ′
c(y)− ψ′

c(0)](y − 0) with analogous property for ϕc.

So now we have the following:

an (y, y) +
∫

Ωn
ψ′(y)ydx +

∫
Γn
ϕ′(y)ydS

≥ α∥∇y∥2
L2(Ωn) −

1
2∥ν · v∥L

∞(Γn)∥y∥2
L2(Γn) +

∫
Ωn
ψ′
c(y)y − ψ′

e(y)ydx +
∫

Γn
ϕ′
c(y)y − ϕ′

e(y)ydS

≥ α∥∇y∥2
L2(Ωn) −

[
2βϕ + 1

2∥ν · v∥L
∞(Γn)

]
∥y∥2

L2(Γn) +
∫

Ωn
[ψ′
c(y)− ψ′

c(0)](y − 0)− 2βψy2dx

+
∫

Γn
[ϕ′
c(y)− ϕ′

c(0)](y − 0)dS

≥ α∥∇y∥2
L2(Ωn) −

[
2βϕ + 1

2∥ν · v∥L
∞(Γn)

]
∥y∥2

L2(Γn) −
∫

Ωn
2βψy2dx

≥ α∥∇y∥2
L2(Ωn) − CΩnζ∥y∥L2(Ωn)∥y∥H1(Ωn) − 2βψ∥y∥2

L2(Ωn)

≥ α∥∇y∥2
L2(Ωn) −

C2
Ωnζ

2

2α ∥y∥2
L2(Ωn) −

α

2 ∥y∥
2
H1(Ωn) − 2βψ∥y∥2

L2(Ωn)

= α

2 ∥∇y∥
2
L2(Ωn) −

[
C2

Ωnζ
2

2α + α

2 + 2βψ
]
∥y∥2

L2(Ωn)

(10.19)

where ζ = 2βϕ + 1
2∥ν · v∥L∞(Γn) and we have what we wanted to show.

Lemma 10.3. Let yn solve (10.11) for n = 1, 2, ...N . Then, we have the following stability

estimate:

∥yk∥2
L2(Ωk) + α

2 δt
k∑

n=1
∥∇yn∥2

L2(Ωn) ≤ 2
(
D + C1∥y0∥2

L2(Ω0)

)
exp((C2 + ζ ′′)2tk), (10.20)

where D = δt
N∑
n=1

[
∥fn∥2

L2(Ωn) + ∥gn + w0y
n
Γ∥2

L2(Γn)

]
.

Proof. Recall (10.11)

∫
Ωn

1
δt
ynzdx + an (yn, z) +

∫
Ωn
ψ′(yn)zdx +

∫
Γn
ϕ′(yn)zdS = χn (z) +

∫
Ωn

1
δt
yn−1zdx,

(10.21)
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and choose z = 2δtyn so that we get

2∥yn∥2
L2(Ωn) + 2δtan (yn, yn) + 2δt

∫
Ωn
ψ′(yn)yndx + 2δt

∫
Γn
ϕ′(yn)yndS

= 2δtχn (yn) +
∫

Ωn
2yn−1yndx.

(10.22)

And now, rearranging terms and applying Lemma 10.2, we obtain the following:

(1− 2δtζ ′)∥yn∥2
L2(Ωn) + αδt∥∇yn∥2

L2(Ωn) ≤ 2δtχn (yn) + ∥yn−1∥2
L2(Ωn), (10.23)

where we estimate χn (yn) as follows:

χn (yn) =
∫

Ωn
fnyndx +

∫
Γn

(gn + w0y
n
Γ)yndS

≤ ∥fn∥L2(Ωn)∥yn∥L2(Ωn) + ∥gn + w0y
n
Γ∥L2(Γn)∥yn∥L2(Γn)

≤ 1
2∥f

n∥2
L2(Ωn) + 1

2∥y
n∥2

L2(Ωn) + 1
2∥g

n + w0y
n
Γ∥2

L2(Γn) + 1
2∥y

n∥2
L2(Γn)

≤ 1
2∥f

n∥2
L2(Ωn) + 1

2∥y
n∥2

L2(Ωn) + 1
2∥g

n + w0y
n
Γ∥2

L2(Γn) + CΩn

2 ∥y
n∥L2(Ωn)∥yn∥H1(Ωn)

≤ 1
2∥f

n∥2
L2(Ωn) + 1

2∥g
n + w0y

n
Γ∥2

L2(Γn) +
[
C2

Ωn

4α + α

4 + 1
2

]
∥yn∥2

L2(Ωn) + α

4 ∥∇y
n∥2

L2(Ωn).

(10.24)

So then, by combining (10.23) and the above estimate, we get

(1− δtζ ′′) ∥yn∥2
L2(Ωn) + α

2 δt∥∇y
n∥2

L2(Ωn) ≤ δt∥fn∥2
L2(Ωn)

+ δt∥gn + w0y
n
Γ∥2

L2(Γn) + ∥yn−1∥2
L2(Ωn),

(10.25)

where ζ ′′ =
[
2ζ ′ + C2

Ωn
2α + α

2 + 1
]
. Now using Lemmas 3.4 and 3.5 from [50], we get the

following estimates for ∥yn−1∥2
L2(Ωn):

∥y0∥2
L2(Ω1) ≤ ∥y0∥2

L2(Oδ(Ω0)) ≤ C1∥y0∥2
L2(Ω0),

∥yn−1∥2
L2(Ωn) ≤ ∥yn−1∥2

L2(Oδ(Ωn−1)) ≤ (1 + C2δt)∥yn−1∥2
L2(Ωn−1) + α

4 δt∥∇y
n−1∥2

L2(Ωn−1).

(10.26)
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Now, by summing up (10.25) over n = 1, ..., k, we get the following:

(1− δtζ ′′)
k∑

n=1
∥yn∥2

L2(Ωn) + α

2 δt
k∑

n=1
∥∇yn∥2

L2(Ωn)

≤ δt
k∑

n=1

[
∥fn∥2

L2(Ωn) + ∥gn + w0y
n
Γ∥2

L2(Γn)

]
+

k∑
n=1
∥yn−1∥2

L2(Ωn).

(10.27)

We now apply (10.26) to each term in
k∑

n=1
∥yn−1∥2

L2(Ωn) and reorder to get

(1− δtζ ′′) ∥yk∥2
L2(Ωk) + α

4 δt
k∑

n=1
∥∇yn∥2

L2(Ωn)

≤ D + C1∥y0∥2
L2(Ω0) +

k−1∑
n=0

δt(C2 + ζ ′′)∥yn∥2
L2(Ωn),

(10.28)

where D = δt
N∑
n=1

[
∥fn∥2

L2(Ωn) + ∥gn + w0y
n
Γ∥2

L2(Γn)

]
is the initial data. By choosing δt suffi-

ciently small so that (1− δtζ ′′) ≥ 1
2 we get

1
2∥y

k∥2
L2(Ωk) + α

4 δt
k∑

n=1
∥∇yn∥2

L2(Ωn) ≤ D + C1∥y0∥2
L2(Ω0) +

k−1∑
n=0

δt(C2 + ζ ′′)∥yn∥2
L2(Ωn).

(10.29)

And by the discrete Gronwall inequality stated in Lemma 1 of the appendix, we get the

assertion:

∥yk∥2
L2(Ωk) + α

2 δt
k∑

n=1
∥∇yn∥2

L2(Ωn) ≤ 2
(
D + C1∥y0∥2

L2(Ω0)

)
exp((C2 + ζ ′′)2tk). (10.30)

10.3. Discretization in Time and Space

The Unfitted Finite Element Scheme

We define the background finite element space Bh and the restricted finite element

space Vh in the same way as (3.7) and (3.16) but state it again.

Bh ={vh ∈ C0(D̂) : vh|T ∈ Pk(T ), ∀T ∈ T̂h}, for some k ≥ 1.

Vh ≡Vh(Ωh) = {vh ∈ C0(Dh,δ) : vh = v̂h|Dh,δ , for some v̂h ∈ Bh},
(10.31)
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i.e. Vh = Bh|Dh,δ . We recall from Section 3.3 that the unfitted approach requires a special

facet stabilization term which we previously defined in (3.17) and (3.18)

We use an implicit Euler method to approximate the time derivative and we derive

the variational formulation of the Allen–Cahn PDE in (10.1) to obtain:

∫
Ωn
h

fnh zhdx +
∫

Γn
h

gnhzhdS

=
∫

Ωn
h

ynh − yn−1
h

δt
zhdx + 1

2

∫
Ωn
h

(v · ∇ynh)zh − (v · ∇zh)ynhdx + 1
2

∫
Γn
h

(ν · v)ynhzhdS

+
∫

Ωn
h

(A∇ynh) · ∇zhdx +
∫

Ωn
h

ψ′(ynh)zhdx +
∫

Γn
h

w0(ynh − ynΓ,h)zh + ϕ′(ynh)zhdS,

(10.32)

where ynΓ,h, fnh , and gnh are the interpolants of ynΓ, fn, and gn respectively that have been

suitably extended such that the following estimates hold:

∥fnh − fn∥H1(O(Ωn)) ≈ hq

∥gnh − gn∥H1(Γn
h

) ≈ hq

∥ynΓ,h − ynΓ∥H1(Γn
h

) ≈ hq,

(10.33)

on some extended region O(Ωn) that contains Ωn
h. Also, v is a suitable extension on

O(Ωn) and for simplicity we assume that v is defined on the entire design domain.

Next, we define the following linear and bilinear forms

anh (y, z) = 1
2

∫
Ωn
h

(v · ∇y)z − (v · ∇z)ydx +
∫

Ωn
h

(A∇y) · ∇zdx

+ 1
2

∫
Γn
h

(ν · v)yzdS +
∫

Γn
h

w0yzdS

Anh (y, z) = anh (y, z) + γssh(FnΣ±
δ

; y, z)

χnh (z) =
∫

Ωn
h

fnh zdx +
∫

Γn
h

gnhzdS +
∫

Γn
h

w0y
n
Γ,hzdS

(10.34)
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where γs > 0. And so the unfitted finite element scheme is as follows: Find ynh ∈ Vh(Ωn
h)

such that for all zh ∈ Vh(Ωn
h) we have

∫
Ωn
h

ynh
δt
zhdx + Anh (ynh , zh) +

∫
Ωn
h

ψ′(ynh)zhdx +
∫

Γn
h

ϕ′(ynh)zhdS = χnh (z) +
∫

Ωn
h

yn−1
h

δt
zhdx

(10.35)

for each n = 1, 2, ..., N .

10.3.1. Coercivity of the Fully Discrete Method

Lemma 10.4. Assume that ψ′(0) = ϕ′(0) = 0 and that the convex splitting in (10.2) was

done so that ϕc ≥ 0 and ψc ≥ 0. Then we have the following estimate for controlling the

double well potentials. Additionally, if δt is chosen sufficiently small we have coercivity in

(10.35). Hence, ∀ynh ∈ H1(Ωn
h) we have,

anh (ynh , ynh) +
∫

Ωn
h

ψ′(ynh)ynhdx +
∫

Γn
h

ϕ′(ynh)ynhdS ≥
α

2 ∥∇y
n
h∥2

L2(Ωn
h

) − ζ ′
h∥ynh∥2

L2(Ωn
h

) (10.36)

where ζ ′
h =

[
C2

Ωn
h
ζ2
h

2α + α
2 + 2βψ

]
and ζh = 2βϕ + 1

2∥ν · v∥L∞(Γn
h

) where βψ and βϕ come from

convex splitting in (10.3).

Proof. This is the same proof from Lemma 10.2.

10.4. Error Analysis for the Fully Discrete Method

We give a brief overview of the error analysis for the approximation of the weak

form. We make the same assumption as earlier (Assumption 1) and recall the previous

inverse estimates from Proposition 4.2.
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10.4.1. Stability of the Fully Discrete Method

Theorem 10.5. Let yn solve (10.35) for n = 1, 2, ...N . Then, we have the following stabil-

ity estimate:

∥yk∥2
L2(Ωk

h
) + α

4 δt
k∑

n=1
∥∇ynh∥2

L2(Ωn
h

)

≤ exp((C2 + ζ ′′
h)tk)

(
D + C1∥y0∥2

L2(Ω0
h

) + C1Kh
2sh(F0

Σ±
δ

; y0
h, y

0
h)
) (10.37)

where D = CIδt
N∑
n=1

[
∥fn∥2

L2(Ωn
h

) + ∥gn + w0y
n
Γ∥2

L2(Γn
h

)

]
and C1, C2 are constants that de-

pend on the estimates of the extension operator and CI is a constant that depends on the

interpolation of the initial data.

Proof. Recall (10.35):

∫
Ωn
h

ynh
δt
zhdx + Anh (ynh , zh) +

∫
Ωn
h

ψ′(ynh)zhdx +
∫

Γn
h

ϕ′(ynh)zhdS = χnh (z) +
∫

Ωn
h

yn−1
h

δt
zhdx,

(10.38)

and choose zh = 2δtynh so that we get

2∥ynh∥2
L2(Ωn

h
) + 2δtAnh (ynh , ynh) + 2δt

∫
Ωn
h

ψ′(ynh)ynhdx + 2δt
∫

Γn
h

ϕ′(ynh)ynhdS

= 2δtχnh (ynh) +
∫

Ωn
h

2yn−1
h ynhdx.

(10.39)

Next, by rearranging terms and using Lemma 10.4, we get the following:

(1− 2δtζ ′
h)∥ynh∥2

L2(Ωn
h

) + αδt∥∇ynh∥2
L2(Ωn

h
) + 2δtγssh(FnΣ±

δ
; ynh , ynh) ≤ 2δtχnh (ynh) + ∥yn−1

h ∥2
L2(Ωn

h
).

(10.40)
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Now notice that we can estimate χnh (ynh) as follows:

χnh (ynh) =
∫

Ωn
h

fnh y
n
hdx +

∫
Γn
h

(gnh + w0y
n
Γ,h)ynhdS

≤ ∥fnh ∥L2(Ωn
h

)∥ynh∥L2(Ωn
h

) + ∥gnh + w0y
n
Γ,h∥L2(Γn

h
)∥ynh∥L2(Γn

h
)

≤ 1
2∥f

n
h ∥2

L2(Ωn
h

) + 1
2∥y

n
h∥2

L2(Ωn
h

) + 1
2∥g

n
h + w0y

n
Γ,h∥2

L2(Γn
h

) + 1
2∥y

n
h∥2

L2(Γn
h

)

≤ CI
2 ∥f

n∥2
L2(Ωn

h
) + 1

2∥y
n
h∥2

L2(Ωn
h

) + CI
2 ∥g

n + w0y
n
Γ∥2

L2(Γn
h

) +
CΩn

h

2 ∥y
n
h∥L2(Ωn

h
)∥ynh∥H1(Ωn

h
)

≤ CI
2 ∥f

n∥2
L2(Ωn

h
) + CI

2 ∥g
n + w0y

n
Γ∥2

L2(Γn
h

) +
C2

Ωn
h

4α + α

4 + 1
2

 ∥ynh∥2
L2(Ωn

h
) + α

4 ∥∇y
n
h∥2

L2(Ωn
h

),

(10.41)

where CI is the constant corresponding to the interpolation estimate of the initial data.

So, then by combining (10.23) and the above estimate, we get

(1− δtζ ′′
h) ∥ynh∥2

L2(Ωn
h

) + α

2 δt∥∇y
n
h∥2

L2(Ωn
h

) + 2δtγssh(FnΣ±
δ

; ynh , ynh)

≤ CIδt∥fn∥2
L2(Ωn

h
) + CIδt∥gn + w0y

n
Γ∥2

L2(Γn
h

) + ∥yn−1
h ∥2

L2(Ωn
h

)

(10.42)

where ζ ′′
h =

[
2ζ ′
h +

C2
Ωn
h

2α + α
2 + 1

]
. And now using Lemmas 5.5 and 5.7 from [50], we get the

following estimates for ∥yn−1
h ∥2

L2(Ωn
h

) that hold for all 1 ≤ n ≤ N for constants C1, C2, C3

that do not depend on n:

∥y0
h∥2

L2(Ω1
h

) ≤ ∥y
0
h∥2

L2(Oδ(Ω0
h

) ≤ C1∥y0
h∥2

L2(Ω0
h

) + C1Kh
2sh(F0

Σ±
δ

; y0
h, y

0
h)

∥yn−1
h ∥2

L2(Ωn
h

) ≤ ∥yn−1
h ∥2

L2(Oδ(Ωn−1
h

)

≤ (1 + C2δt)∥yn−1
h ∥2

L2(Ωn−1
h

) + α

4 δt∥∇y
n−1
h ∥2

L2(Ωn−1
h

) + C3δtKsh(Fn−1
Σ±
δ

; yn−1
h , yn−1

h ).

(10.43)

Now, choosing γs ≥ C3K and by summing up (10.42) over n = 1, ..., k, we get the follow-
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ing:

(1− δtζ ′′
h)

k∑
n=1
∥ynh∥2

L2(Ωn
h

) + α

2 δt
k∑

n=1
∥∇ynh∥2

L2(Ωn
h

) + 2δtγs

k∑
n=1

sh(FnΣ±
δ

; ynh , ynh)

≤ CIδt
k∑

n=1

[
∥fn∥2

L2(Ωn
h

) + ∥gn + w0y
n
Γ∥2

L2(Γn
h

)

]
+

k∑
n=1
∥yn−1

h ∥2
L2(Ωn

h
).

(10.44)

We now apply (10.43) to each term in
k∑

n=1
∥yn−1

h ∥2
L2(Ωn

h
) and reorder to get

(1− δtζ ′′
h) ∥yk∥2

L2(Ωk
h

) + α

4 δt
k∑

n=1
∥∇ynh∥2

L2(Ωn
h

) + δtγs

k∑
n=1

sh(FnΣ±
δ

; ynh , ynh)

≤ δt
k∑

n=2

[
(C2 + ζ ′′

h)∥yn−1
h ∥2

L2(Ωn−1
h

)

]
+D + C1∥y0∥2

L2(Ω0
h

) + C1Kh
2sh(F0

Σ±
δ

; y0
h, y

0
h),

(10.45)

where D = CIδt
N∑
n=1

[
∥fn∥2

L2(Ωn
h

) + ∥gn + w0y
n
Γ∥2

L2(Γn
h

)

]
is the initial data. And by choosing

δt sufficiently small so that (1− δtζ ′′
h) ≥ 1

2 we have

1
2∥y

k∥2
L2(Ωk

h
) + α

4 δt
k∑

n=1
∥∇ynh∥2

L2(Ωn
h

) + δtγs

k∑
n=1

sh(FnΣ±
δ

; ynh , ynh)

≤ δt
k∑

n=2

[
(C2 + ζ ′′

h)∥yn−1
h ∥2

L2(Ωn−1
h

)

]
+D + C1∥y0∥2

L2(Ω0
h

) + C1Kh
2sh(F0

Σ±
δ

; y0
h, y

0
h).

(10.46)

And by the discrete Gronwall inequality stated in Lemma 1 of the appendix, we get the

assertion:

∥yk∥2
L2(Ωk

h
) + δt

k∑
n=1

[
α

2 ∥∇y
n
h∥2

L2(Ωn
h

) + γs

k∑
n=1

sh(FnΣ±
δ

; ynh , ynh)
]

≤ 2
(
D + C1∥y0∥2

L2(Ω0
h

) + C1Kh
2sh(F0

Σ±
δ

; y0
h, y

0
h)
)

exp((C2 + ζ ′′
h)2tk).

(10.47)

10.4.2. Consistency Estimate

Taking (10.11) before the approximation of the time derivative we get:∫
Ωn

[∂tyn]zdx + an (yn, z) +
∫

Ωn
ψ′(yn)zdx +

∫
Γn
ϕ′(yn)zdS = χn (z) ∀z ∈ H1(Ωn),

(10.48)
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and we choose z = zℓh := zh ◦ Φ−1 for arbitrary zh ∈ Vh(Ωn
h). Now also recall the fully

discrete formulation:

∫
Ωn
h

ynh − yn−1
h

δt
zhdx + Anh (ynh , zh) +

∫
Ωn
h

ψ′(ynh)zhdx +
∫

Γn
h

ϕ′(ynh)zhdS = χnh (zh) . (10.49)

Now, taking the difference between (10.48) and the fully discretized problem (10.49), we

get the following:

∫
Ωn
h

En − En−1

δt
zhdx + anh (En, zh) + γssh(FnΣ±

δ
;En, zh)

= E0(zh) +
∫

Ωn
h

ψ′(ynh)zhdx−
∫

Ωn
ψ′(yn)zℓhdx +

∫
Γn
h

ϕ′(ynh)zhdS −
∫

Γn
ϕ′(yn)zℓhdS,

(10.50)

where we have the following definitions

En := yn − ynh ∀n,

E0(zh) := E1(zh) + E2(zh) + E3(zh) + E4(zh),

E1(zh) :=
∫

Ωn
h

yn − yn−1

δt
zhdx−

∫
Ωn

[∂tyn]zℓhdx,

E2(zh) := anh (yn, zh)− an
(
yn, zℓh

)
,

E3(zh) := γssh(FnΣ±
δ

; yn, zh),

E4(zh) := χn
(
zℓh
)
− χnh (zh) ,

Eψ(zh) :=
∫

Ωn
h

ψ′(ynh)zhdx−
∫

Ωn
ψ′(yn)zℓhdx,

Eϕ(zh) :=
∫

Γn
h

ϕ′(ynh)zhdS −
∫

Γn
ϕ′(yn)zℓhdS.

(10.51)
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We further split (10.50) using the lagrange interpolant of yn denoted by ynI ∈ Vh(Ωn
h) given

that yn is sufficiently smooth. Next, define

En := yn − ynI︸ ︷︷ ︸
en

+ ynI − ynh︸ ︷︷ ︸
en
h

∈Vh(Ωn
h

)

∀n. (10.52)

Then, we get the following∫
Ωn
h

enh − en−1
h

δt
zhdx + anh (enh, zh) + γssh(FnΣ±

δ
; enh, zh) = EI(zh) + E0(zh) + Eψ(zh) + Eϕ(zh),

(10.53)

where

EI(zh) := −
∫

Ωn
h

en − en−1

δt
zhdx− anh (en, zh)− γssh(FnΣ±

δ
; en, zh). (10.54)

Lemma 10.6. Given f ∈ Lq(Ωn
h), g ∈ Lq(Γnh), w ∈ W 1,p(O(Ωn

h)), and u ∈ W 2,p(O(Ωn
h)),

where 1
p

+ 1
q

= 1, there holds:
∫

Ωn
h

|(w ◦Φ)f − wf | dx ≲ hq+1∥∇w∥Lp(O(Ωn
h

))∥f∥Lq(Ωn
h

)

∫
Γn
h

|(u ◦Φ)g − ug| dS ≲ hq+1∥u∥W 2,p(O(Ωn
h

))∥g∥Lq(Γn
h

)

(10.55)

Proof. We have∫
Ωn
h

|(w ◦Φ)f − wf | dx =
∫

Ωn
h

∣∣∣∣f ∫ 1

0
∇w(tΦ + (1− t)id) · (Φ− id)

∣∣∣∣ dx
≤ ∥Φ− id∥L∞(Ωn

h
)∥∇w∥Lp(O(Ωn

h
))∥f∥Lq(Ωn

h
)

≲ hq+1∥∇w∥Lp(O(Ωn
h

))∥f∥Lq(Ωn
h

),

∫
Γn
h

|(u ◦Φ)g − ug| dx =
∫

Γn
h

∣∣∣∣g ∫ 1

0
∇u(tΦ + (1− t)id) · (Φ− id)

∣∣∣∣ dx
≤ ∥Φ− id∥L∞(Γn

h
)∥∇u∥W 1,p(O(Γn

h
))∥g∥Lq(Γn

h
)

≲ hq+1∥u∥W 2,p(O(Ωn
h

))∥g∥Lq(Γn
h

).
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Lemma 10.7. Given f ∈ L1(Ωn
h) and g ∈ L1(Γnh), there holds:∣∣∣∣∣

∫
Ωn
h

f det(∇Φ)− fdx
∣∣∣∣∣ ≲ hq|f∥L1(Ωn

h
)∣∣∣∣∣

∫
Γn
h

gµh − gdx
∣∣∣∣∣ ≲ hq∥g∥L1(Γn

h
)

(10.56)

Proof. This proof follows from the basic properties of Φ. First, note∣∣∣∣∣
∫

Ωn
h

f [det(∇Φ)− 1]dx
∣∣∣∣∣ ≤ ∥ det(∇Φ)− 1∥L∞(Ωn

h
)∥f∥L1(Ωn

h
)

≲ hq∥f∥L1(Ωn
h

),

where we have used (4.31). Moreover, we have the following:∣∣∣∣∣
∫

Γn
h

g[µh − 1]dx
∣∣∣∣∣ ≤ ∥µh − 1∥L∞(Γn

h
)∥g∥L1(Γn

h
)

≲ hq∥g∥L1(Ωn
h

),

where we have used (4.32).

Lemma 10.8. Given v ∈ [Lp(Ωn
h)]d, then we have the following:

∥(∇ΦT )−1v − v∥Lp(Ωn
h

) ≲ hq∥v∥Lp(Ωn
h

) (10.57)

Proof. Note that (∇ΦT )−1 = (∇ΦT − I + I)−1 = I + (∇ΦT − I) +O(h2q) ≈ I + (∇ΦT − I).

Thus, we get

∥(∇ΦT )−1v − v∥pLp(Ωn
h

) =
∫

Ωn
h

∣∣∣[(∇ΦT )−1 − I]v
∣∣∣p dx

≲
∫

Ωn
h

∣∣∣(∇ΦT − I)v
∣∣∣p dx

≤ ∥∇Φ− I∥pL∞(Ωn
h

)∥v∥
p
Lp(Ωn

h
)

≲ hqp∥v∥pLp(Ωn
h

).

Hence, it follows that

∥(∇ΦT )−1v − v∥Lp(Ωn
h

) ≲ hq∥v∥Lp(Ωn
h

).
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Lemma 10.9. Assume the following regularity of the exact solution:

yn ∈ W 2,∞(C) ∩ L∞([0, T ];Hm+1(Ω(t))), ∂ty
n ∈ L∞([0, T ];Hm(Ω(t))),

where C := ⋃
t∈(0,T )

Ω(t) × {t} is the space-time cylinder. Then, we have the following esti-

mate for EI(zh):

|EI(zh)| ≲ hmK1/2 sup
t∈[0,T ]

(
∥y∥Hm+1(Ω(t)) + ∥yt∥Hm(Ω(t))

)
·
[
∥zh∥H1(Ωn

h
) + sh(FnΣ±

δ
; zh, zh)1/2

]

Proof. The proof follows from Lemma 5.12 in [50].

Lemma 10.10. Assume yn ∈ W 2,∞(C) ∩ L∞([0, T ];Hm+1(Ω(t))). Then, we have the

following estimate for E0(zh):

|E0(zh)| ≲ [δt+ hq + hm]
[
∥yn∥W 2,∞(C) + sup

t∈[0,T ]
∥y∥Hm+1(Ω(t)) +

N∑
n=1

[
∥fn∥H1(Ωn

h
) + ∥gn∥H2(Ωn

h
)
]]
·

·
[
∥zh∥H1(Ωn

h
) + sh(FnΣ±

δ
; zh, zh)1/2

]
.

(10.58)

Proof. For E1(zh) we use Taylor’s Theorem using the integral form of the remainder:

y(x, tn−1) = y(x, tn) + yt(x, tn)(tn−1 − tn) +
∫ tn−1

tn
ytt(x, t)(tn−1 − t)dt.

Then, we get the following:

E1(zh) =
∫

Ωn
h

yn − yn−1

δt
zhdx−

∫
Ωn
ynt z

ℓ
hdx

=
∫

Ωn
h

yt(x, tn)zh +
∫ tn

tn−1

ytt(x, t)
δt

(tn−1 − t)zhdtdx−
∫

Ωn
ynt z

ℓ
hdx

=
∫

Ωn
h

∫ tn

tn−1

ytt(x, t)
δt

(tn−1 − t)dtzhdx +
∫

Ωn
h

yt(x, tn)zhdx−
∫

Ωn
ynt z

ℓ
hdx

=
∫

Ωn
h

∫ tn

tn−1

ytt(x, t)
δt

(tn−1 − t)dtzhdx +
∫

Ωn
h

yt(x, tn)zhdx−
∫

Ωn
h

(ynt ◦Φ)zh det(∇Φ)dx,

(10.59)
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where in the last line we performed a change of variables. And now we split the above into

two parts:∣∣∣∣∣
∫

Ωn
h

∫ tn

tn−1

ytt(x, t)
δt

(tn−1 − t)dtzhdx
∣∣∣∣∣ ≤ 1

δt
∥ytt∥L∞(O(Q))

∫ tn

tn−1
|tn−1 − t|dt

∫
Ωn
h

|zh|dx

= 1
δt
∥ytt∥L∞(O(Q))

1
2δt

2∥zh∥L1(Ωn
h

)

≲ δt∥y∥W 2,∞(C)∥zh∥L2(Ωn
h

),

(10.60)

where we have used Hölder’s inequality and some standard techniques. Next,∣∣∣∣∣
∫

Ωn
h

yt(x, tn)zhdx−
∫

Ωn
h

(ynt ◦Φ)zh det(∇Φ)dx
∣∣∣∣∣

≤
∣∣∣∣∣
∫

Ωn
h

ynt zh − (ynt ◦Φ)zhdx
∣∣∣∣∣+ hq

∫
Ωn
h

|(ynt ◦Φ)zh|dx

≲hq+1 ∥∇ynt ∥L∞(O(Ωn
h

)) ∥zh∥L1(Ωn
h

) + hq∥ynt ∥L∞(O(Ωn
h

))∥zh∥L1(Ωn
h

)

≲hq∥y∥W 2,∞(C)∥zh∥L2(Ωn
h

),

(10.61)

where we have used the fundamental theorem of calculus for line integrals, Corollary 4.13,

the geometry approximation between the discrete and exact domains, and some other

standard estimates.

Now we handle E2(zh):

|E2(zh)| =
∣∣∣anh (yn, zh)− an

(
yn, zℓh

)∣∣∣ , (10.62)

and we recall the definitions of anh (·, ·) and an (·, ·).

anh (yn, zh) = 1
2

∫
Ωn
h

(v · ∇yn)zh − (v · ∇zh)yndx +
∫

Ωn
h

(A∇yn) · ∇zhdx

+ 1
2

∫
Γn
h

(ν · v)ynzhdS +
∫

Γn
h

w0y
nzhdS,

an
(
yn, zℓh

)
= 1

2

∫
Ωn

(v · ∇yn)zℓh − (v · ∇zℓh)yndx +
∫

Ωn
(A∇yn) · ∇zℓhdx

+ 1
2

∫
Γn

(ν · v)ynzℓhdS +
∫

Γn
w0y

nzℓhdS.
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Next, we split (10.62) using the triangle inequality:

|E2(zh)| ≤ I1 + I2 + I3 + I4 + I5,

I1 :=
∣∣∣∣∣
∫

Ωn
h

(v · ∇yn)zhdx−
∫

Ωn
(v · ∇yn)zℓhdx

∣∣∣∣∣ ,
I2 :=

∣∣∣∣∣
∫

Ωn
h

(v · ∇zh)yndx−
∫

Ωn
(v · ∇zℓh)yndx

∣∣∣∣∣ ,
I3 :=

∣∣∣∣∣
∫

Ωn
h

(A∇yn) · ∇zhdx−
∫

Ωn
(A∇yn) · ∇zℓhdx

∣∣∣∣∣ ,
I4 :=

∣∣∣∣∣
∫

Γn
h

(ν · v)ynzhdS −
∫

Γn
(ν · v)ynzℓhdS

∣∣∣∣∣ ,
I5 :=

∣∣∣∣∣
∫

Γn
h

w0y
nzhdS −

∫
Γn
w0y

nzℓhdS

∣∣∣∣∣ ,
and we deal with the terms one by one. First,

I1 =
∣∣∣∣∣
∫

Ωn
h

(v · ∇yn)zhdx−
∫

Ωn
(v · ∇yn)zℓhdx

∣∣∣∣∣
=
∣∣∣∣∣
∫

Ωn
h

(v · ∇yn)zh − [(v · ∇yn) ◦Φ]zh det(∇Φ)dx
∣∣∣∣∣

≲

∣∣∣∣∣
∫

Ωn
h

(v · ∇yn)zh − [(v · ∇yn) ◦Φ]zhdx
∣∣∣∣∣+ hq∥[(v · ∇yn) ◦Φ]zh∥L1(Ωn

h
)

≲ hq+1∥∇(v · ∇yn)∥L∞(O(Ωn
h

))∥zh∥L1(Ωn
h

) + hq∥v∥L∞(Ωn)∥∇yn∥L∞(Ωn)∥zh∥L1(Ωn
h

)

≲ hq+1∥(∇v)∇yn + (∇2yn)v∥L∞(O(Ωn
h

))∥zh∥L2(Ωn
h

) + hq∥v∥L∞(Ωn)∥y∥W 2,∞(C)∥zh∥L2(Ωn
h

)

≲ hq+1∥v∥W 1,∞(O(Ωn
h

))∥y∥W 2,∞(O(Q))∥zh∥L2(Ωn
h

) + hq∥v∥L∞(Ωn)∥y∥W 2,∞(C)∥zh∥L2(Ωn
h

)

≲ hq∥y∥W 2,∞(C)∥zh∥L2(Ωn
h

),

(10.63)

where we have used a basic change of variables and Lemmas 10.6 and 10.7. Next,
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I2 =
∣∣∣∣∣
∫

Ωn
h

(v · ∇zh)yndx−
∫

Ωn
(v · ∇zℓh)yndx

∣∣∣∣∣
=
∣∣∣∣∣
∫

Ωn
h

(ynv · ∇zh)− [(ynv · ∇zℓh) ◦Φ] det(∇Φ)dx
∣∣∣∣∣

≲

∣∣∣∣∣
∫

Ωn
h

(ynv · ∇zh)− [(ynv) ◦Φ] · (∇zℓh ◦Φ)dx
∣∣∣∣∣+ hq

∥∥∥(ynv · ∇zℓh) ◦Φ
∥∥∥
L1(Ωn

h
)

≲

∣∣∣∣∣
∫

Ωn
h

(ynv · ∇zh)− [(ynv) ◦Φ] · (∇Φ)−1∇zhdx
∣∣∣∣∣+ hq∥v∥L∞(Ωn)∥yn∥L∞(Ωn)∥∇zℓh ◦Φ∥L2(Ωn

h
)

≲

∣∣∣∣∣
∫

Ωn
h

(ynv− (ynv) ◦Φ) · ∇zhdx
∣∣∣∣∣+ hq

∫
Ωn
h

|[(ynv) ◦Φ] · ∇zh|dx

+ hq∥v∥L∞(Ωn)∥y∥W 2,∞(C)∥(∇Φ)−1∇zh∥L2(Ωn
h

)

≲ hq+1∥∇(ynv)∥L∞(O(Ωn
h

))∥∇zh∥L1(Ωn
h

) + hq∥v∥L∞(Ωn)∥yn∥L∞(Ωn)∥∇zh∥L1(Ωn
h

)

+ hq∥v∥L∞(Ωn)∥y∥W 2,∞(C)∥∇zh∥L2(Ωn
h

) + h2q∥v∥L∞(Ωn)∥y∥W 2,∞(C)∥∇zh∥L2(Ωn
h

)

≲ hq∥∇yn(v)T + yn∇v∥L∞(O(Ωn
h

))∥zh∥H1(Ωn
h

) + hq∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

)

≲ hq∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

),

(10.64)

where, again we have used a basic change of variables and Lemmas 10.6, 10.7, and 10.8.

For I3, we have
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I3 =
∣∣∣∣∣
∫

Ωn
h

(A∇yn) · ∇zhdx−
∫

Ωn
(A∇yn) · ∇zℓhdx

∣∣∣∣∣
=
∣∣∣∣∣
∫

Ωn
h

(A∇yn) · ∇zh − (A(∇yn ◦Φ)) · (∇zℓh) ◦Φ det(∇Φ)dx
∣∣∣∣∣

≲

∣∣∣∣∣
∫

Ωn
h

(A∇yn) · ∇zh − (A(∇yn ◦Φ)) · (∇zℓh) ◦Φdx
∣∣∣∣∣+ hq∥(A(∇yn ◦Φ)) · (∇zℓh) ◦Φ∥L1(Ωn

h
)

≲

∣∣∣∣∣
∫

Ωn
h

(A∇yn) · ∇zh − (A(∇yn ◦Φ)) · (∇Φ)−1∇zhdx
∣∣∣∣∣+ hq∥A∥∞∥∇yn∥L∞(Ωn)∥(∇Φ)−1∇zh∥L1(Ωn

h
)

≲

∣∣∣∣∣
∫

Ωn
h

(A∇yn) · ∇zh − (A(∇yn ◦Φ)) · ∇zhdx
∣∣∣∣∣+ hq∥A∥∞∥y∥W 2,∞(C)∥zh∥H1(Ωn

h
)

≲ hq+1∥∇(A∇yn)∥L∞(O(Ωn
h

))∥∇zh∥L1(Ωn
h

) + hq∥A∥∞∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

)

≲ hq+1∥A∥∞∥∇2yn∥L∞(Ωn
h

)∥zh∥H1(Ωn
h

) + hq∥A∥∞∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

)

≲ hq∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

),

(10.65)

where we, again used a basic change of variables and Lemmas 10.6, 10.7, and 10.8. Then,

I4 =
∣∣∣∣∣
∫

Γn
h

(ν · v)ynzhdS −
∫

Γn
(ν · v)ynzℓhdS

∣∣∣∣∣
=
∣∣∣∣∣
∫

Γn
h

(ν · v)ynzh − ν · ((ynv) ◦Φ)zhµhdS
∣∣∣∣∣

≲

∣∣∣∣∣
∫

Γn
h

(ν · v)ynzh − ν · ((ynv) ◦Φ)zhdS
∣∣∣∣∣+ hq∥(ν · (v ◦Φ))(yn ◦Φ)zh∥L1(Γn

h
)

≲ hq+1∥∇(ynv)∥L∞(O(Ωn
h

))∥zh∥L1(Γn
h

) + hq∥v∥L∞(Γn)∥yn∥L∞(Γn)∥zh∥L1(Γn
h

)

≲ hq+1∥∇ynvT + yn∇v∥L∞(Ωn
h

)∥zh∥H1(Ωn
h

) + hq∥v∥L∞(Γn)∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

)

≲ hq∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

).

The term I5 =
∣∣∣∫Γn

h
w0y

nzhdS −
∫

Γn w0y
nzℓhdS

∣∣∣ ≲ hq∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

) is handled

in the same way as the previous term except it is a little simpler since there is no need to
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deal with the material velocity. And now putting everything together we get the following:

|E2(zh)| ≲ hq∥y∥W 2,∞(C)∥zh∥H1(Ωn
h

).

Now, we handle E3(zh) using a Cauchy-Schwarz inequality and Proposition (4.4):

|E3(zh)| = |γssh(FnΣ±
δ

; yn, zh)|

≤ γssh(FnΣ±
δ

; yn, yn)1/2sh(FnΣ±
δ

; zh, zh)1/2

≲ hm∥y∥Hm+1(Oδ(Ωn
h

))sh(FnΣ±
δ

; zh, zh)1/2

≲ hm∥y∥Hm+1(Ωn)sh(FnΣ±
δ

; zh, zh)1/2.

(10.66)

Next, we estimate E4(zh):

|E4(zh)| =
∣∣∣χn (zℓh)− χnh (zh)

∣∣∣
=
∣∣∣∣∣
∫

Ωn
fnzℓhdx +

∫
Γn

(gn + w0y
n
Γ)zℓhdS −

∫
Ωn
h

fnh zhdx−
∫

Γn
h

(gnh + w0y
n
Γ,h)zhdS

∣∣∣∣∣
=
∣∣∣∣∣
∫

Ωn
h

(fn ◦Φ)zh det(∇Φ)− fnh zhdx +
∫

Γn
h

((gn + w0y
n
Γ) ◦Φ)zhµh − (gnh + w0y

n
Γ,h)zhdS

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Ωn
h

(fn ◦Φ)zh det(∇Φ)− fnh zhdx
∣∣∣∣∣

+
∣∣∣∣∣
∫

Γn
h

((gn + w0y
n
Γ) ◦Φ)zhµh − (gnh + w0y

n
Γ,h)zhdS

∣∣∣∣∣ ,
(10.67)

where all we have done so far is use a change of variables. Then, we deal with the two
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terms separately: ∣∣∣∣∣
∫

Ωn
h

(fn ◦Φ)zh det(∇Φ)− fnh zhdx
∣∣∣∣∣

≲

∣∣∣∣∣
∫

Ωn
h

(fn ◦Φ)zh − fnzhdx
∣∣∣∣∣+ hq

∫
Ωn
h

|(fn ◦Φ)zh| dx

≲hq+1∥∇fn∥L2(O(Ωn
h

))∥zh∥L2(Ωn
h

) + hq∥fn ◦Φ∥L2(Ωn
h

)∥zh∥L2(Ωn
h

)

≲hq+1∥fn∥H1(O(Ωn
h

))∥zh∥L2(Ωn
h

) + hq∥fn∥L2(Ωn)∥zh∥L2(Ωn
h

)

≲hq∥fn∥H1(O(Ωn
h

))∥zh∥L2(Ωn
h

),

(10.68)

∣∣∣∣∣
∫

Γn
h

((gn + w0y
n
Γ) ◦Φ)zhµh − (gnh + w0y

n
Γ,h)zhdS

∣∣∣∣∣
≲

∣∣∣∣∣
∫

Γn
h

((gn + w0y
n
Γ) ◦Φ)zh − (gn + w0y

n
Γ)zhdS

∣∣∣∣∣+ hq
∫

Γn
h

|((gn + w0y
n
Γ) ◦Φ)zh| dS

≲

∣∣∣∣∣
∫

Γn
h

∇gn(tΦ + (1− t)id) · (Φ− id)zhdS
∣∣∣∣∣+ hq∥gn ◦Φ∥H1(Ωn

h
)∥zh∥H1(Ωn

h
)

≲hq+1∥gn∥H2(O(Ωn
h

))∥zh∥H1(Ωn
h

) + hq∥gn∥H1(Ωn
h

)∥zh∥H1(Ωn
h

)

≲hq∥gn∥H2(O(Ωn
h

))∥zh∥H1(Ωn
h

).

(10.69)

Hence, it follows that

|E4(zh)| ≲ hq∥fn∥H1(O(Ωn
h

))∥zh∥L2(Ωn
h

) + hq∥gn∥H2(O(Ωn
h

))∥zh∥H1(Ωn
h

)

≲ hq
[
∥fn∥H1(Ωn

h
) + ∥gn∥H2(Ωn

h
)
]
∥zh∥H1(Ωn

h
).

Combining the estimates for Ei(zh) with i = 1, 2, 3, 4, the proof is finished.
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Lemma 10.11. Assume yn ∈ Hm+1(Ω) for m ≥ 1. Then, we have the following estimate:

|Eψc(zh)| :=
∣∣∣∣∣
∫

Ωn
h

ψ′
c(ynh)zhdx−

∫
Ωn
ψ′
c(yn)zℓhdx

∣∣∣∣∣
≲
[
hq + hm+1

] [
∥yn∥3

Hm+1(Ωn
h

) + C
]
∥zh∥H1(Ωn

h
)

+
[
∥ynh∥2

H1(Ωn
h

) + ∥yn∥2
H1(Ωn

h
) + C

]
∥enh∥L2(Ωn

h
)∥zh∥H1(Ωn

h
),∣∣∣∣∣Eψe(enh) +

∫
Ωn
h

ψ′
e(enh)enhdx

∣∣∣∣∣ :=
∣∣∣∣∣
∫

Ωn
h

ψ′
e(ynh)zhdx−

∫
Ωn
ψ′
e(yn)zℓhdx +

∫
Ωn
h

ψ′
e(enh)enhdx

∣∣∣∣∣
≲
[
hq + hm+1

]
∥yn∥Hm+1(Ωn

h
)∥enh∥L2(Ωn

h
).

(10.70)

This results in the following estimate:∣∣∣∣∣Eψ(enh) +
∫

Ωn
h

ψ′
e(enh)enhdx

∣∣∣∣∣ ≲ [
hq + hm+1

] [
∥yn∥3

Hm+1(Ωn
h

) + C
]
∥enh∥H1(Ωn

h
)

+
[
∥ynh∥2

H1(Ωn
h

) + ∥yn∥2
H1(Ωn

h
) + C

]
∥enh∥L2(Ωn

h
)∥enh∥H1(Ωn

h
)

(10.71)

Proof. Using a change of variables, we have the following:

∫
Ωn
ψ′
c(yn)zℓhdx =

∫
Ωn
h

ψ′
c(yn ◦Φ)zh det(∇Φ)dx.

Now using the fundamental theorem of calculus for line integrals and some standard tech-
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niques we get

|Eψc(zh)|

=
∣∣∣∣∣
∫

Ωn
h

ψ′
c(ynh)zhdx−

∫
Ωn
ψ′
c(yn)zℓhdx

∣∣∣∣∣
=
∣∣∣∣∣
∫

Ωn
h

ψ′
c(ynh)zhdx−

∫
Ωn
h

ψ′
c(yn ◦Φ)zh det(∇Φ)dx

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Ωn
h

ψ′
c(yn ◦Φ)zh [det(∇Φ)− 1] dx

∣∣∣∣∣+
∣∣∣∣∣
∫

Ωn
h

[ψ′
c(ynh)− ψ′

c(yn ◦Φ)] zhdx
∣∣∣∣∣

≲hq
∫

Ωn
h

|ψ′
c(yn ◦Φ)zh| dx +

∣∣∣∣∣
∫

Ωn
h

[ψ′
c(yn)− ψ′

c(yn ◦Φ)] zhdx
∣∣∣∣∣+

∣∣∣∣∣
∫

Ωn
h

[ψ′
c(ynh)− ψ′

c(yn)] zhdx
∣∣∣∣∣

≲hq
∫

Ωn
h

|ψ′
c(yn ◦Φ)zh| dx +

∣∣∣∣∣
∫

Ωn
h

ψ′′
c (c1y

n + (1− c1)(yn ◦Φ)) · (yn − yn ◦Φ)zhdx
∣∣∣∣∣

+
∣∣∣∣∣
∫

Ωn
h

ψ′′
c (c2y

n
h + (1− c2)yn) · (ynh − yn)zhdx

∣∣∣∣∣ ,
(10.72)

where we have used the geometry approximation and the mean value theorem with c1, c2 ∈

[0, 1]. And now we use Hölder’s inequality on all three terms. Due to the Sobolev embed-

ding theorems we have that zh ∈ H1(Ωn
h) =⇒ zh ∈ L6(Ωn

h) for Ωn
h ⊂ R3. Hence,
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|Eψc(zh)|

≲hq∥ψ′
c(yn ◦Φ)∥L2(Ωn

h
)∥zh∥L2(Ωn

h
)

+ ∥ψ′′
c (c1y

n + (1− c1)(yn ◦Φ))∥L3(Ωn
h

) ∥y
n − yn ◦Φ∥L2(Ωn

h
)∥zh∥L6(Ωn

h
)

+ ∥ψ′′
c (c2y

n
h + (1− c2)yn)∥L3(Ωn

h
) ∥y

n
h − yn∥L2(Ωn

h
)∥zh∥L6(Ωn

h
)

≲hq
[
∥yn ◦Φ∥3

L6(Ωn
h

) + C
]
∥zh∥L2(Ωn

h
)

+ hq+1
∥∥∥(yn)2 + (yn ◦Φ)2 + C

∥∥∥
L3(Ωn

h
)
∥∇yn∥L2(Ωn

h
) ∥zh∥L6(Ωn

h
)

+
∥∥∥(ynh)2 + (yn)2 + C

∥∥∥
L3(Ωn

h
)
∥En∥L2(Ωn

h
)∥zh∥L6(Ωn

h
)

≲hq
[
∥yn∥3

L6(Ωn
h

) + C
]
∥zh∥L2(Ωn

h
)

+ hq+1
[
∥yn∥2

L6(Ωn
h

) + C
]
∥yn∥H1(Ωn

h
)∥zh∥L6(Ωn

h
)

+
[
∥ynh∥2

L6(Ωn
h

) + ∥yn∥2
L6(Ωn

h
) + C

] [
∥enh∥L2(Ωn

h
) + ∥en∥L2(Ωn

h
)
]
∥zh∥L6(Ωn

h
)

≲hq
[
∥yn∥3

H1(Ωn
h

) + C
]
∥zh∥L2(Ωn

h
)

+ hq+1
[
∥yn∥3

H1(Ωn
h

) + C
]
∥zh∥H1(Ωn

h
)

+
[
∥ynh∥2

H1(Ωn
h

) + ∥yn∥2
H1(Ωn

h
) + C

] [
∥enh∥L2(Ωn

h
) + hm+1∥yn∥Hm+1(Ωn

h
)
]
∥zh∥H1(Ωn

h
)

≲
[
hq + hm+1

] [
∥yn∥3

Hm+1(Ωn
h

) + C
]
∥zh∥H1(Ωn

h
)

+
[
∥ynh∥2

H1(Ωn
h

) + ∥yn∥2
H1(Ωn

h
) + C

]
∥enh∥L2(Ωn

h
)∥zh∥H1(Ωn

h
),

(10.73)

where in the last few lines we used Young’s inequality, the fact that ψc is a quartic polyno-

mial, the geometry approximation between Ωn and Ωn
h, and Corollary 4.13. For the other
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inequality, we have∣∣∣∣∣Eψe(enh) +
∫

Ωn
h

ψ′
e(enh)enhdx

∣∣∣∣∣
=
∣∣∣∣∣
∫

Ωn
h

ψ′
e(ynh)enhdx−

∫
Ωn
ψ′
e(yn)(enh)ℓdx +

∫
Ωn
h

ψ′
e(enh)enhdx

∣∣∣∣∣
=
∣∣∣∣∣
∫

Ωn
h

ψ′
e(ynh)enh − ψ′

e(yn ◦Φ)enh det(∇Φ)dx +
∫

Ωn
h

ψ′
e(enh)enhdx

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Ωn
h

ψ′
e(yn ◦Φ)enh [det(∇Φ)− 1] dx

∣∣∣∣∣+
∣∣∣∣∣
∫

Ωn
h

[ψ′
e(ynh)− ψ′

e(yn ◦Φ) + ψ′
e(enh)] enhdx

∣∣∣∣∣
≲hq

∫
Ωn
h

|ψ′
e(yn ◦Φ)enh| dx +

∣∣∣∣∣
∫

Ωn
h

[ψ′
e(ynI )− ψ′

e(yn ◦Φ)] enhdx
∣∣∣∣∣

≲hq
∫

Ωn
h

|ψ′
e(yn ◦Φ)enh| dx +

∣∣∣∣∣
∫

Ωn
h

[ψ′
e(yn)− ψ′

e(yn ◦Φ)] enhdx
∣∣∣∣∣+

∣∣∣∣∣
∫

Ωn
h

[ψ′
e(ynI )− ψ′

e(yn)] enhdx
∣∣∣∣∣

≲hq
∫

Ωn
h

|ψ′
e(yn ◦Φ)enh| dx +

∣∣∣∣∣
∫

Ωn
h

βψ(yn − yn ◦Φ)enhdx
∣∣∣∣∣+

∣∣∣∣∣
∫

Ωn
h

ψ′
e(en)enhdx

∣∣∣∣∣ ,
(10.74)

where we have used the fact that ψe is quadratic and ψ′′
e = βψ. Now, we use Lemma 10.6

to get the second assertion in (10.70):∣∣∣∣∣Eψe(enh) +
∫

Ωn
h

ψ′
e(enh)enhdS

∣∣∣∣∣
≲hq∥yn ◦Φ∥L2(Ωn

h
)∥enh∥L2(Ωn

h
) + βψh

q+1∥∇yn∥L2(Ωn
h

)∥enh∥L2(Ωn
h

) + ∥en∥L2(Ωn
h

)∥enh∥L2(Ωn
h

)

≲hq∥yn∥H1(Ωn
h

)∥enh∥L2(Ωn
h

) + hm+1∥yn∥Hm+1(Ωn
h

)∥enh∥L2(Ωn
h

)

≲
[
hq + hm+1

]
∥yn∥Hm+1(Ωn

h
)∥enh∥L2(Ωn

h
).
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Lemma 10.12. Assume yn ∈ Hm+1(Ω) for m ≥ 1. Then, we have the following estimates:

|Eϕc(zh)| :=
∣∣∣∣∣
∫

Γn
h

ϕ′
c(ynh)zhdS −

∫
Γn
ϕ′
c(yn)zℓhdS

∣∣∣∣∣
≲ [hq + hm] ∥yn∥Hm+1(Ωn

h
)∥zh∥H1(Ωn

h
) + ∥enh∥H1(Ωn

h
) ∥zh∥L2(Γn

h
),∣∣∣∣∣Eϕe(enh) +

∫
Γn
h

ϕ′
e(enh)enhdS

∣∣∣∣∣ :=
∣∣∣∣∣
∫

Γn
h

ϕ′
e(ynh)zhdS −

∫
Γn
ϕ′
e(yn)zℓhdS +

∫
Γn
h

ϕ′
e(enh)enhdS

∣∣∣∣∣
≲ [hq + hm] ∥yn∥Hm+1(Ωn

h
)∥enh∥H1(Ωn

h
).

(10.75)

This results in the following estimate:∣∣∣∣∣Eϕ(enh) +
∫

Γn
h

ϕ′
e(enh)enhdS

∣∣∣∣∣
≲ [hq + hm] ∥yn∥Hm+1(Ωn

h
)∥enh∥H1(Ωn

h
) + ∥enh∥H1(Ωn

h
) ∥e

n
h∥L2(Γn

h
).

(10.76)

Proof. Using a change of variables, we have the following:

∫
Γn
ϕ′
c(yn)zℓhdS =

∫
Γn
h

ϕ′
c(yn ◦Φ)zhµhdS.

Now using the fundamental theorem of calculus for line integrals and some standard tech-

niques we get

|Eϕc(zh)|

=
∣∣∣∣∣
∫

Γn
h

ϕ′
c(ynh)zhdS −

∫
Γn
ϕ′
c(yn)zℓhdS

∣∣∣∣∣
=
∣∣∣∣∣
∫

Γn
h

ϕ′
c(ynh)zhdS −

∫
Γn
h

ϕ′
c(yn ◦Φ)zhµhdS

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Γn
h

ϕ′
c(yn ◦Φ)zh [µh − 1] dS

∣∣∣∣∣+
∣∣∣∣∣
∫

Γn
h

[ϕ′
c(ynh)− ϕ′

c(yn ◦Φ)] zhdS
∣∣∣∣∣

≲hq
∫

Γn
h

|ϕ′
c(yn ◦Φ)zh| dS +

∣∣∣∣∣
∫

Γn
h

[ϕ′
c(yn)− ϕ′

c(yn ◦Φ)] zhdS
∣∣∣∣∣+

∣∣∣∣∣
∫

Γn
h

[ϕ′
c(ynh)− ϕ′

c(yn)] zhdS
∣∣∣∣∣

≲hq
∫

Γn
h

|ϕ′
c(yn ◦Φ)zh| dS +

∣∣∣∣∣
∫

Γn
h

(yn − yn ◦Φ)zhdS
∣∣∣∣∣+

∣∣∣∣∣
∫

Γn
h

(ynh − yn)zhdS
∣∣∣∣∣ ,

(10.77)
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where we have used the geometry approximation and the fact that ϕ has quadratic growth

and satisfies (9.11). Next, we use Hölder’s inequality on all three terms. Due to a trace

theorem we have that zh ∈ H1(Ωn
h) =⇒ zh ∈ L4(Γnh) for Ωn

h ⊂ R3. So,

|Eϕc(zh)|

≲hq∥ϕ′
c(yn ◦Φ)∥L2(Γn

h
)∥zh∥L2(Γn

h
)

+ hq+1∥∇yn∥L2(Γn
h

)∥zh∥L2(Γn
h

) + ∥ynh − yn∥L2(Γn
h

)∥zh∥L2(Γn
h

)

≲hq∥yn ◦Φ∥L2(Γn
h

)∥zh∥L2(Γn
h

)

+ hq+1 ∥∇yn∥L2(Γn
h

) ∥zh∥L2(Γn
h

) + ∥En∥L2(Γn
h

) ∥zh∥L2(Γn
h

)

≲hq∥yn∥H1(Ωn
h

)∥zh∥H1(Ωn
h

)

+ hq+1 ∥yn∥H2(Ωn
h

) ∥zh∥H1(Ωn
h

) +
[
∥enh∥H1(Ωn

h
) + ∥en∥H1(Ωn

h
)

]
∥zh∥L2(Γn

h
)

≲hq∥yn∥H2(Ωn
h

)∥zh∥H1(Ωn
h

) + hm∥yn∥Hm+1(Ωn
h

)∥zh∥H1(Ωn
h

) + ∥enh∥H1(Ωn
h

) ∥zh∥L2(Γn
h

)

≲ [hq + hm] ∥yn∥Hm+1(Ωn
h

)∥zh∥H1(Ωn
h

) + ∥enh∥H1(Ωn
h

) ∥zh∥L2(Γn
h

),

(10.78)

where we have used Lemma 10.6, the fact that ϕ has quadratic growth, the geometry ap-
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proximation between Ωn and Ωn
h, and Corollary 4.13. For the other inequality, we have∣∣∣∣∣Eϕe(enh) +

∫
Γn
h

ϕ′
e(enh)enhdS

∣∣∣∣∣
=
∣∣∣∣∣
∫

Γn
h

ϕ′
e(ynh)enhdS −

∫
Γn
ϕ′
e(yn)(enh)ℓdS +

∫
Γn
h

ϕ′
e(enh)enhdS

∣∣∣∣∣
=
∣∣∣∣∣
∫

Γn
h

ϕ′
e(ynh)enh − ϕ′

e(yn ◦Φ)enhµhdS +
∫

Γn
h

ϕ′
e(enh)enhdS

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Γn
h

ϕ′
e(yn ◦Φ)enh [µh − 1] dS

∣∣∣∣∣+
∣∣∣∣∣
∫

Γn
h

[ϕ′
e(ynh)− ϕ′

e(yn ◦Φ) + ϕ′
e(enh)] enhdS

∣∣∣∣∣
≲hq

∫
Γn
h

|ϕ′
e(yn ◦Φ)enh| dS +

∣∣∣∣∣
∫

Γn
h

[ϕ′
e(ynI )− ϕ′

e(yn ◦Φ)] enhdS
∣∣∣∣∣

≲hq
∫

Γn
h

|ϕ′
e(yn ◦Φ)enh| dS +

∣∣∣∣∣
∫

Γn
h

[ϕ′
e(yn)− ϕ′

e(yn ◦Φ)] enhdS
∣∣∣∣∣+

∣∣∣∣∣
∫

Γn
h

[ϕ′
e(ynI )− ϕ′

e(yn)] enhdS
∣∣∣∣∣

≲hq
∫

Γn
h

|ϕ′
e(yn ◦Φ)enh| dS +

∣∣∣∣∣
∫

Γn
h

βϕ(yn − yn ◦Φ)enhdS
∣∣∣∣∣+

∣∣∣∣∣
∫

Γn
h

ϕ′
e(en)enhdS

∣∣∣∣∣ ,
(10.79)

where we have used the fact that ϕe is quadratic and ϕ′′
e = βϕ. Now, we use (9.11) and

Lemma 10.6 to get the second assertion in (10.75):∣∣∣∣∣Eϕe(enh) +
∫

Γn
h

ϕ′
e(enh)enhdS

∣∣∣∣∣
≲hq∥yn ◦Φ∥L2(Γn

h
)∥enh∥L2(Γn

h
) + βϕh

q+1∥∇yn∥L2(Γn
h

)∥enh∥L2(Γn
h

) + ∥en∥L2(Γn
h

)∥enh∥L2(Γn
h

)

≲hq∥yn∥H2(Ωn
h

)∥enh∥L2(Γn
h

) + hm∥yn∥Hm+1(Ωn
h

)∥enh∥L2(Γn
h

)

≲ [hq + hm] ∥yn∥Hm+1(Ωn
h

)∥enh∥H1(Ωn
h

),

The goal is to prove the following consistency estimate using similar techniques as

Theorem 10.5. One needs to deal with the nonlinearities using convex splitting in order to

obtain this estimate.

Theorem 10.13 (Consistency Estimate). Assume yn ∈ W 2,∞(C) ∩ L∞([0, T ];Hm+1(Ω(t)))
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and ∂tyn ∈ L∞([0, T ];Hm(Ω(t))). Then, we have the following:

∥Ek∥2
L2(Ωk

h
) + α

4 δt
k∑

n=1

[
∥∇En∥2

L2(Ωn
h

) + γssh(FnΣ±
δ

;En,En)
]

≲ exp
((
C2 + ζ ′′

h + C4

2

)
tk

)
R(y)

(
δt2 + h2q + h2mK

)
,

(10.80)

where C1 and C2 are constants that depend on the estimates of the extension operator, and

R(y) = supt∈[0,T ]

[
∥y∥6

Hm+1(Ω(t)) + ∥yt∥2
Hm(Ω(t)) + C

]
+ ∥y∥2

W 2,∞(Q).

Proof. Recall (10.53) and test with zh = 2δtenh

2
∫

Ωn
h

(enh − en−1
h )enhdx + 2δtanh (enh, enh) + 2γsδtsh(FnΣ±

δ
; enh, enh)

= EI(2δtenh) + E0(2δtenh) + Eψ(2δtenh) + Eϕ(2δtenh),
(10.81)

and note that we have the following relation:

2
∫

Ωn
h

(enh − en−1
h )enhdx =

∫
Ωn
h

2(enh)2 − 2enhen−1
h + (en−1

h )2 − (en−1
h )2dx

= ∥enh∥2
L2(Ωn

h
) − ∥en−1

h ∥2
L2(Ωn

h
) + ∥enh − en−1

h ∥2
L2(Ωn

h
)

≥ ∥enh∥2
L2(Ωn

h
) − ∥en−1

h ∥2
L2(Ωn

h
).

We also use a lower bound on anh (·, ·) (which follows from Lemma 10.4):

anh (enh, enh) +
∫

Ωn
h

ψ′
e(enh)enhdx +

∫
Γn
h

ϕ′
e(enh)enhdS ≥

α

2 ∥∇e
n
h∥2

L2(Ωn
h

) − ζ ′
h∥enh∥2

L2(Ωn
h

).

Then, we get the following:

(1− 2ζ ′
hδt)∥enh∥2

L2(Ωn
h

) + αδt∥∇enh∥2
L2(Ωn

h
) + 2γsδtsh(FnΣ±

δ
; enh, enh) ≤ En + ∥en−1

h ∥2
L2(Ωn

h
),

(10.82)

where En = 2δt
[
EI(enh) + E0(enh) + Eψ(enh) +

∫
Ωn
h
ψ′
e(enh)enhdx + Eϕ(enh) +

∫
Γn
h
ϕ′
e(enh)enhdS

]
contains the error terms. Next, using Lemmas 5.5 and 5.7 from [50], we get the following
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estimates for ∥en−1
h ∥2

L2(Ωn
h

) that hold for all 0 ≤ n ≤ N for constants C1, C2, C3 that do not

depend on n:

∥e0
h∥2

L2(Ω1
h

) ≤ ∥e
0
h∥2

L2(Oδ(Ω0
h

) ≤ C1∥e0
h∥2

L2(Ω0
h

) + C1Kh
2sh(F0

Σ±
δ

; e0
h, e

0
h),

∥en−1
h ∥2

L2(Ωn
h

) ≤ ∥en−1
h ∥2

L2(Oδ(Ωn−1
h

)

≤ (1 + C2δt)∥en−1
h ∥2

L2(Ωn−1
h

) + α

2 δt∥∇e
n−1
h ∥2

L2(Ωn−1
h

) + C3δtKsh(Fn−1
Σ±
δ

; en−1
h , en−1

h ).

(10.83)

Now, by summing up (10.82) over n = 1, ..., k, we get the following:

(1− 2δtζ ′
h)

k∑
n=1
∥enh∥2

L2(Ωn
h

) + αδt
k∑

n=1
∥∇enh∥2

L2(Ωn
h

) + 2δtγs

k∑
n=1

sh(FnΣ±
δ

; enh, enh)

≤
k∑

n=1
En +

k∑
n=1
∥en−1

h ∥2
L2(Ωn

h
).

(10.84)

Then, by applying (10.83) and choosing γs ≥ C3K, we get

(1− 2δtζ ′
h) ∥ekh∥2

L2(Ωk) + α

2 δt
k∑

n=1
∥∇enh∥2

L2(Ωn
h

) + δtγs

k∑
n=1

sh(FnΣ±
δ

; enh, enh)

≤
k∑

n=1
En + C1∥e0

h∥2
L2(Ωh0) + C1Kh

2sh(F0
Σ±
δ

; e0
h, e

0
h) + δt

k∑
n=2

(C2 + 2ζ ′
h)∥en−1

h ∥2
L2(Ωn−1

h
).

(10.85)

Now, by using the two estimates of the double well potentials from Lemmas 10.11 and

10.12 and Lemmas 10.9 and 10.10 with a weighted Young’s inequality, we have the fol-

lowing estimate of
k∑

n=1
En:

k∑
n=1
En ≤ Cδt

[
δt2 + h2q + h2mK

]
R(y) + δt

2

k∑
n=1

[
C4∥enh∥2

L2(Ωn
h

) + α

2 ∥∇e
n
h∥2

L2(Ωn
h

) + γssh(enh, enh)
]
,

(10.86)

where C4 is independent of h and δt and depends on the weighting of the Young’s inequal-

ities and R(y) = supt∈[0,T ]

[
∥y∥6

Hm+1(Ω(t)) + ∥yt∥2
Hm(Ω(t)) + C

]
+ ∥y∥2

W 2,∞(Q). Then, by choos-
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ing δtζ ′
h <

1
4 , substituting (10.86), and noting that e0

h = 0 on Oδ(Ωn
h), we have

∥ekh∥2
L2(Ωk) + α

2 δt
k∑

n=1
∥∇enh∥2

L2(Ωn
h

) + δtγs

k∑
n=1

sh(FnΣ±
δ

; enh, enh)

≤ Cδt
[
δt2 + h2q + h2m

]
R(y) + δt

k∑
n=2

(
C2 + 2ζ ′

h + C4

2

)
∥en−1

h ∥2
L2(Ωn−1

h
).

(10.87)

Now, by the discrete Gronwall inequality stated in Lemma 1 of the appendix, we get the

following:

∥ekh∥2
L2(Ωk) + α

2 δt
k∑

n=1
∥∇enh∥2

L2(Ωn
h

) + δtγs

k∑
n=1

sh(FnΣ±
δ

; enh, enh)

≲ exp
((
C2 + ζ ′′

h + C4

2

)
tk

)
R(y)

(
δt2 + h2q + h2mK

)
.

(10.88)

Then, by using a triangle inequality with a standard interpolation result we get

∥Ek∥2
L2(Ωk) + α

2 δt
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n=1
∥∇En∥2
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h

) + δtγs
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n=1

sh(FnΣ±
δ

;En,En)

≲ exp
((
C2 + ζ ′′

h + C4

2

)
tk
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R(y)

(
δt2 + h2q + h2mK

)
+ ∥ek∥2
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2 δt
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n=1
∥∇en∥2

L2(Ωn
h

) + δtγs

k∑
n=1

sh(FnΣ±
δ

; en, en)

≲ exp
((
C2 + ζ ′′

h + C4

2

)
tk

)
R(y)

(
δt2 + h2q + h2mK

)
+ sup

t∈[0,T ]
∥y∥2

Hm+1(Ω(t))h
2mK

≲ exp
((
C2 + ζ ′′

h + C4

2

)
tk

)
R(y)

(
δt2 + h2q + h2mK

)
.

(10.89)

Hence, with this theorem, the unfitted finite element scheme is consistent for the

Allen–Cahn problem with the nonlinear double well potentials.
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Chapter 11. Remarks on an Unfitted Method for Allen–Cahn

In Chapter 9, we provided a brief overview of the Landau–de Gennes model along

with some basic theory. We also introduced the Beris–Edwards system for the Landau–

de Gennes model so that we can consider time-dependent domains. Our current work as-

sumes a prescribed motion of the domain, but we aim to relax this assumption in future

research.

Lastly, in Chapter 10, we established a consistency estimate for a modified Allen–

Cahn equation which can be extended to the Landau–de Gennes model. The analysis for

the Landau–de Gennes model with an unfitted framework should follow very similarly

since they share the same type of nonlinearities (i.e. they both have double well poten-

tials). Note that some additional terms need to be accounted for when incorporating the

(half) Beris–Edwards system, namely the term B (∇v, Q) in (9.27). But this can be easily

dealt with under the assumption of a prescribed motion of the domain, i.e for a given v.
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Appendix

The following lemma from [72] is needed in the analysis of the Allen–Cahn problem

in Chapter 10

Lemma 1. (Discrete Grönwall Inequality) Let uk satisfy

un ≤ αn +
n−1∑
k=0

βkuk, ∀n ≥ 0, (1)

where αn is nondecreasing and βn ≥ 0. Then it follows that

un ≤ αn exp
(
n−1∑
k=0

βk

)
. (2)
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