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Abstract: We present an approach to shape optimization problems that uses an unfitted finite element method

(FEM). The domain geometry is represented, and optimized, using a (discrete) level set function and we con-

sider objective functionals that are defined over bulk domains. For a discrete objective functional, defined in

the unfitted FEM framework, we show that the exact discrete shape derivative essentially matches the shape

derivative at the continuous level. In otherwords, our approach has the benefits of both optimize-then-discretize

and discretize-then-optimize approaches. Specifically, we establish the shape Fréchet differentiability of discrete

(unfitted) bulk shape functionals using both the perturbation of the identity approach and direct perturbation of

the level set representation. The latter approach is especially convenient for optimizing with respect to level set

functions. Moreover, our Fréchet differentiability results hold for any polynomial degree used for the discrete

level set representation of the domain. We illustrate our results with some numerical accuracy tests, a simple

model (geometric) problem with known exact solution, as well as shape optimization of structural designs.

Keywords: shape derivative; PDE constraint; unfitted finite element method; optimize-then-discretize;

discretize-then-optimize
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1 Introduction

Considerable work has been done on shape optimization with the following references giving a good overview

[1]–[6]. The main idea is to optimize (e.g. minimize) an objective functional over an admissible set of shapes

or domains. Typically, the objective functional depends on the solution of a partial differential equation (PDE)

over the domain to be optimized [7], [8], which gives a PDE-constrained, shape optimization problem. A classic

example is finding the shape of a rigid body in a fluid flow that has minimum drag (i.e. that minimizes the

viscous dissipation in the fluid velocity field around the body) [9]–[12]. Other applications can be found in image

processing [13], [14], microswimmers and fluids [15]–[17], and optimal (elastic) structures [18], [19].

For practical applications, one usually uses gradient-based optimization to find optimal shapes; thus, one

has to calculate shape derivatives to obtain effective descent directions [1]. For the continuous problem, one

can derive exact shape derivative formulas provided the domain and PDE-data are sufficiently smooth [20].

But these formulas depend on solutions of PDEs, which are almost never analytically tractable. Moreover, the

domain geometry must be represented in a way that can be easily varied for optimization purposes. Hence, for

real applications, numerical discretization of the PDE and geometry is necessary to make shape optimization

problems tractable. A variety of numerical methods may be used for shape optimization, though finite element

methods (FEM) are popular [21] because of their ability to handle complex geometry.

However, using FEMs with conforming meshes for the domain geometry introduces an issue for gradient-

based optimization methods. The discrete objective functional now depends on the mesh vertex positions in
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a non-obvious way [22] and can be complicated to differentiate [23], [24] or requires automatic differentiation

[25]. Essentially, the difficulty comes from the fact that perturbing the mesh (geometry) also perturbs the finite

element space used for computing the PDE solution. The approach just described is called the Discretize-then-

Optimize approach.

The alternative approach is calledOptimize-then-Discretize. In this case, one derives the exact shape deriva-

tive formulas at the continuous level, then simply replaces all quantities with their discrete approximation [26].

So, computing the derivative is more straightforward than the other approach. Unfortunately, it suffers from

inconsistent gradients, i.e. the discrete approximation of the shape derivative is not the exact derivative of the

discrete objective functional. Hence, a gradient-based optimization method that uses these derivatives may get

stuck and not reach a true optimum. In addition, one has to deform the mesh as the domain changes which

introduces some challenges, such as avoiding mesh degeneracies and general remeshing of the domain [26].

Despite this, some success is enjoyed by this approach [27], [28], but the issues remain. See [29], [30] for a detailed

discussion on the Optimize-then-Discretize versus Discretize-then-Optimize approaches.

Therefore, we propose an unfitted approach for shape optimization that avoids the above dichotomy. Our

method uses discrete level set functions to represent the domain and an unfitted FEM for solving the PDEs. We

show that, for bulk shape functionals, the exact, discrete shape derivative in terms of perturbing the domain’s

discrete level set function can be easily computed and, essentially, matches the continuous formula. Effectively,

we take the discretize-then-optimize approach, but show that the optimize-then-discretize approach yields the

same formula. Ergo, we gain the benefits of both approaches.

In ref. [31], they consider shape optimization with extended FEM and level sets and apply finite differences

(with respect to the level set) to the finite element stiffness matrix and load vector. However, this is a purely

discretize-then-optimize approach and the computed shape derivative is not easy to interpret. In ref. [32], they

consider shape optimization with multi-meshes and they describe a method of mappings approach that yields

a (seemingly) simple discrete shape derivative formula that is discretely consistent. However, they demonstrate

that applying their formula to a Poisson problem results in a complicated formula involving many jump terms

and special extension terms that are not easy to implement within their FEM framework. They then opt for

a Hadamard formulation of the shape derivative, which is the optimize-then-discretize approach and gives

gradients that are not consistent.

The closest reference to our work is [33], which derived similar level set shape derivative formulas to ours

(c.f. our Theorem 9 to [33, Thm5.1]). Nevertheless, there are twomain differenceswith ourwork: (i)we are able to

prove Fréchet differentiability of our formulas, whereas [33] only proves Gâteaux differentiability; (ii) we allow

for discrete level set functions of arbitrary polynomial degree, but [33] only considers piecewise linear level set

functions. We also emphasize that [33] assumes that the zero level set does not pass through any vertices of the

mesh, which is related to our Assumption 3. It is notable that [33] also considers boundary functionals, which

we do not, however the resulting discrete formulas are much more complicated than the continuous versions.

Some other related works are the following. In ref. [18], they apply cutFEM techniques and level sets to

shape optimization of elastic structures, but their formulation is of the optimize-then-discretize type only. In ref.

[34], they consider a Bernoulli free boundary problem, which can be posed as a shape optimization problem,

and its approximation by cutFEM. Moreover, they formally compute discrete shape derivatives in the Gâteaux

sense under some smoothness assumptions, including a boundary value correction method, and compare these

to using continuous derivative formulas. Numerical experiments show that the various derivative formulas

perform similarly with some issues of getting stuck on local minimizers.

Recently in ref. [23], they computed the exact shape and topological derivative of discrete shape functionals,

but their analysis was limited to piecewise linear level set functions. Our analysis allows for discrete level sets

of arbitrary polynomial degree and yields formulas that are easier to interpret than in ref. [23]. Furthermore,

[35], [36] presents theoretical tools for shape optimization of sets defined via intersection.

This paper is organized as follows. Section 2 presents a model problem, shape optimization with linear

elasticity as the PDE constraint, to illustrate our shape derivative technique. Next, in Section 3, the discretiza-

tion of the linear elasticity PDE is introduced along with an unfitted finite element framework and existence

and uniqueness is established. Section 4 discusses the shape derivative and establishes the shape Fréchet
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differentiability of discrete bulk shape functionals. Moreover, the shape derivative is connected to the level set

formulation and allows for direct perturbation of the level set function. In Section 5, the full shape optimiza-

tion algorithm is described within a level set framework that allows for directly updating the level set function.

Next, we give numerical results in Section 6 to demonstrate the method followed by some concluding remarks

in Section 7.

2 Model problem

We setup a classic example problem to illustrate our unfitted approach to shape optimization.

2.1 Linear elasticity

LetΩ ⊂ ℝd, for d = 2 or 3 with Lipschitz boundary 𝜕Ω ≡

(
Γ̂D ∪ ΓD

)
∪
(
Γ̂N ∪ ΓN

)
, where the partition is dis-

joint (see Section 3.1 for more details). We denote the outward normal of Ω by 𝝂. We consider the following

linear elasticity equations with displacement field u(x):

−∇ ⋅ 𝝈 = f , 𝝈 = 2𝜇𝜖(∇u)+ 𝜆tr(𝜖(∇u))I in Ω, u = 0 on Γ̂D ∪ ΓD, 𝝈𝝂 = gN on Γ̂N ∪ ΓN, (1)

where 𝜖(∇u) := 1

2
(∇u+∇uT ), 𝜇 and 𝜆 are Lamé parameters, and 𝝈 is the stress tensor. Additionally, f and

gN are body and surface force densities, respectively. The term ∇ ⋅ 𝝈 denotes taking the row-wise divergence

on 𝝈. An example of a 2-D elastic domain Ω is given in Figure 1. The typical physical example we consider is a

cantilever, with zero Dirichlet boundary conditions indicating that the cantilever is anchored along Γ̂D ∪ ΓD.

The weak formulation of (1) is as follows. First, define the linear and bilinear forms:

𝜒
(
Ω;𝒗

)
:=
(
f ,𝒗
)
Ω +

(
gN,𝒗

)
ΓN

∀𝒗 ∈ H1(Ω),

a
(
Ω;u,𝒗

)
:= 2𝜇

(
𝜖(∇u), 𝜖(∇𝒗)

)
Ω + 𝜆(∇ ⋅ u,∇ ⋅ 𝒗)Ω ∀u,𝒗 ∈ H1(Ω).

(2)

Then, we seek the unique solution u ∈ VD(Ω) :=
{
𝒗 ∈ H1(Ω):𝒗|Γ̂D∪ΓD

= 0

}
such that

a
(
Ω;u,𝒗

)
= 𝜒

(
Ω;𝒗

)
∀𝒗 ∈ VD(Ω). (3)

We will sometimes denote the solution to (3) by u(Ω) to emphasize the dependence of the solution on the

domainΩ.

2.2 Minimization problem

For any 𝒗 ∈ VD, let J
(
Ω;𝒗

)
be a shape (cost) functional. Furthermore, let be a set of admissible domains that

accounts for some boundary constraints, regularity properties, etc., and consider the following minimization

problem

J(Ωmin,u(Ωmin )) = min
Ω∈, u∈VD(Ω)

J
(
Ω;u

)
subject to u uniquely solving (3) on Ω. (4)

Figure 1: Diagram of the elasticity domain (cantilever) and design domain. The

outer design domain boundary 𝜕D̂ is indicated by the long and short dashed

line, where the short dashed lines correspond to Ω̄ ∩ Γ̂; the solid boundaries

indicate Γ. The cantilever is anchored on the left and is hanging out freely to the
right.
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If  has some compactness properties, such as enforcing a bounded Lipschitz constant on the domains, see

ref. [26], then existence of a minimizer can be shown. Note that, ultimately, we are after the derivative of the

reduced functional
(
Ω
)
:= J

(
Ω;u(Ω)

)
, whereu(Ω) solves (3). Indeed, we seek to compute the shape derivative

of 
(
Ω
)
, so that we can perform gradient based optimization (see Section 5.2). As an example shape functional,

we take J to be the sum of the so-called compliance functional 𝜒
(
Ω;u

)
, which is the work of the external forces

acting onΩ, plus a penalty term on the volume of the domain:

J
(
Ω;𝒗

)
= 𝜒

(
Ω;𝒗

)
+ a0|Ω|, a0 > 0. (5)

Nevertheless, our level set shape derivative formulas can be applied to other bulk shape functionals.

3 Unfitted discretization

Our shape derivative technique takes full advantage of the framework of unfitted FEM, which uses level sets

to represent the domain, as well as a Nitsche method and interface stabilization to yield a well-posed problem

[37]–[41]. This section describes our discretization of the forward problem (see also [42]).

3.1 Domain representation with level sets

Let 𝜙: D̂→ ℝ be a C1 level set function, with c−1 ⩾ |∇𝜙| ⩾ c > 0 on D̂, where D̂ ⊂ ℝd is a fixed, open, “hold-

all,” polygonal domain (e.g. a box) that we call the design domain. We represent the exact domain byΩ = {x ∈
D̂:𝜙(x) < 0} (see Figure 1), where the boundary ofΩ partitions as

𝜕Ω = Γ̂ ∪ Γ, Γ̂ := 𝜕D̂ ∩Ω, Γ :={x ∈ D̂:𝜙(x) = 0}, (6)

with further partitions of the Dirichlet and Neumann boundaries denoted Γ̂ = Γ̂D ∪ Γ̂N, Γ = ΓD ∪ ΓN. Essen-

tially, Γ is the free part of the domain that is being optimized. Note that 𝜙 ≠ 0 on Γ̂, except on Γ̂ ∩ Γ. Thus, we
have

𝜕Ω ≡

(
Γ̂D ∪ ΓD

)
∪
(
Γ̂N ∪ ΓN

)
≡

(
Γ̂D ∪ Γ̂N

)
⏟⏞⏞⏟⏞⏞⏟

=Γ̂

∪
(
ΓD ∪ ΓN

)
⏟⏞⏞⏟⏞⏞⏟

=Γ

, (7)

and similarly for the discrete boundaries (see below). The “hatted” boundaries will be inactive, while “unhatted”

are active.

The discrete domain is represented by a discrete version of 𝜙, denoted 𝜙h. To this end, let ̂ h = {T} be a
conforming shape regular mesh of D̂, where all T ∈ ̂ h are treated as open sets, and define the space

h =
{
𝜙h ∈ W 1,∞(D̂) ∣ 𝜙h|T ∈ W2,∞(T ) ∀T ∈ ̂ h

}
, (8)

with norm given by

‖𝜙h‖h
:= ‖𝜙h‖W1,∞(D̂)

+max
T∈̂ h

‖∇2𝜙h‖L∞(T ). (9)

Then, we let 𝜙h ∈ h and define the discrete domainΩh = {x ∈ D̂:𝜙h(x) < 0} with

𝜕Ωh = Γ̂h ∪ Γh, Γ̂h := 𝜕D̂ ∩Ωh, Γh :={x ∈ D̂:𝜙h(x) = 0}. (10)

Again, we assume c−1 ⩾ |∇𝜙h| ⩾ c > 0 a.e. to guaranteeΩh is well-defined and 𝜕Ωh has dimension d − 1. We

also have an analogous partitioning of the discrete boundaries as in (7), i.e.

𝜕Ωh ≡

(
Γ̂h,D ∪ Γh,D

)
∪
(
Γ̂h,N ∪ Γh,N

)
≡

(
Γ̂h,D ∪ Γ̂h,N

)
∪
(
Γh,D ∪ Γh,N

)
= Γ̂h ∪ Γh. (11)
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In practice, we take𝜙h ∈ Bh ⊂ h to be a finite element functionwhereBh is a fixed, background (Lagrange)

finite element space on D̂:

Bh =
{
𝒗h ∈ C0(D̂):𝒗h|T ∈ k(T ), ∀T ∈ ̂ h

}
for some k ⩾ 1. (12)

Using level sets to represent geometries has a long history [43], [44], with some recent work on level set functions

defined on unstructured meshes [45].

3.2 Subdomains and meshes

For any given domain Ω (an open set with Lipschitz boundary), we approximate it by Ωh which will be deter-

mined from an approximated level set function (as noted in (10)). Note thatΩwill be changing due to shape opti-

mization iterations. Let 𝛿 > 0 be a layer thickness parameter (to be determined later) for extending domains,

i.e. define the open set

Ω𝛿 = E𝛿(Ω) :=
{
x ∈ D̂: dist

(
x,Ω

)
< 𝛿
}
, (13)

and Ωh,𝛿 = E𝛿(Ωh). Note that Ω0 ≡ Ω and Ωh,0 = Ωh. With this, we define the active mesh and corresponding

domain (see Figure 2):

𝛿 ≡ h,𝛿(Ωh ) = {T ∈ ̂ h:Ωh,𝛿 ∩ T ≠ ∅}, D𝛿 ≡ Dh,𝛿(Ωh ) = {x ∈ T: T ∈ h,𝛿(Ωh )}, (14)

where the discrete extended domainsD𝛿 are crude versions (caricatures) ofΩh,𝛿 .

Next, define the tubular (or shell region) that contains Γh (the active part):

Σ±
𝛿
≡ Σ±

h,𝛿
(Γh ) =

{
x ∈ D̂: dist

(
x,Γh

)
⩽ 𝛿
}
, Σ+

𝛿 ≡ Σ+
h,𝛿(Γh ) =

{
x ∈ D̂∖Ωh: dist

(
x,Γh

)
⩽ 𝛿
}
, (15)

i.e. the shell regions always contain the zero level set. The corresponding meshes are (see Figure 2):

Σ± ≡ Σ±
𝛿
(Γh ) =

{
T ∈ ̂ h: T ∩ Σ±

𝛿
≠ ∅

}
, Σ+ ≡ Σ+

𝛿
(Γh ) =

{
T ∈ ̂ h: T ∩ Σ+

𝛿 ≠ ∅
}
. (16)

Figure 2: Illustrations of subdomains, meshes, and facets. (a) The active mesh 𝛿 withΩh,𝛿 in red and 𝜕Ωh in thick black. (b) The shell

region Σ±
𝛿 is shown in red. (c) The selection of elements, Σ± , around the shell region Σ

±
𝛿 . (d) The facet selection Σ± is shown as a

collection of edges.
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For simplicity, we assume that ΓD and ΓN lie on disconnected parts of Γ so that we have a clear decomposi-

tion:
Σ±
h,𝛿
(Γh ) = Σ±

h,𝛿,D
(Γh,D) ∪ Σ±

h,𝛿,N
(Γh,N), Σ+

h,𝛿(Γh ) = Σ+
h,𝛿,D(Γh,D) ∪ Σ+

h,𝛿,N(Γh,N),

Σ±
𝛿
(Γh ) = Σ±

𝛿,D
∪ Σ±

𝛿,N
, Σ+

𝛿
(Γh ) = Σ+

𝛿,D
∪ Σ+

𝛿,N
.

(17)

Letting 𝜕h,𝛿 be the set of facets of the mesh h,𝛿 , we also define the set of shell facets (see Figure 2):

Σ± ≡ Σ±
𝛿
=
{
F ∈ 𝜕h,𝛿 : F = T1 ∩ T2 for some T1 ∈ h,𝛿 , T2 ∈ Σ± , such that T1 ≠ T2

}
, (18)

with the following decomposition: Σ±
𝛿
= Σ±

𝛿,D
∪ Σ±

𝛿,N
. Note that the facets on the boundary of Dh,𝛿 are not

included in (18).

3.3 The finite element scheme

The background finite element space is based on Bh with Dirichlet boundary conditions on Γ̂h,D built-in:

B̊h = Bh ∩
{
𝒗 ∈ H1(D̂):𝒗|Γ̂h,D = 0

}
. (19)

With this, we have the restricted finite element space onDh,𝛿 :

Vh ≡ Vh(Ωh ) =
{
𝒗h ∈ C0(Dh,𝛿 ):𝒗h = 𝒗̂h|Dh,𝛿

for some 𝒗̂h ∈ B̊h

}
, (20)

i.e. Vh = B̊h|Dh,𝛿
.

The unfitted approach [42] for (3) requires special facet stabilization terms to ensure that the method is

stable and that the condition number of the corresponding (finite dimensional) linear system does not depend

on how elements are cut by the boundary. Given a facet F = T1 ∩ T2, with T1 ≠ T2, let𝜔F = T1 ∪ T2 be the local

facet “patch.” For any u,𝒗 ∈ Bh, define the local stabilization form, known as the “direct” version of the ghost

penalty method as in ref. [41]: sh,F(u,𝒗) :=
(
u1 − u2,𝒗1 − 𝒗2

)
𝜔F
, where ui = 

(
u|Ti) (i = 1, 2), and similarly

for 𝒗i, where  :k(T )→ k(ℝd ) is the obvious extension of a polynomial on an element T to all of ℝd using

its analytic formula. For the analysis, we also define sh,F(u,𝒗) for arbitrary functions u,𝒗 ∈ L2(D̂). Set ui =

(
ΠTi

u|Ti) (i = 1, 2), whereΠTi
is the L2(Ti) projection onto k(Ti ).

The global stabilization form, for a set of facets  , is given by

sh( ;u,𝒗) :=
1

h2

∑
F∈

sh,F(u,𝒗), (21)

where sh( ;u,𝒗) ⩽
(
sh( ;u,u)

)1∕2(
sh( ;𝒗,𝒗)

)1∕2
follows because sh( ; ⋅, ⋅) can be viewed as an inner product.

Then, we introduce the following stabilized bilinear form:

ah
(
Ωh;u,𝒗

)
:= a

(
Ωh;u,𝒗

)
+ 𝛾ssh

(
Σ±

𝛿,D
;u,𝒗

)
+ 𝛾sh

2sh

(
Σ±

𝛿,N
;u,𝒗

)
, (22)

where 𝛾 s > 0.

Next, we introduce the Nitsche stabilization technique for handling boundary conditions in our unfitted

method. For all u,𝒗 ∈ Bh, define the following forms:

Ah
(
Ωh;u,𝒗

)
:= ah

(
Ωh;u,𝒗

)
− (𝝈(u)𝝂h,𝒗)Γh,D − (u,𝝈(𝒗)𝝂h )Γh,D

+ 𝛾Dh
−1b
(
Ωh;u,𝒗

)
+ 𝛾Nh(𝝈(u)𝝂h,𝝈(𝒗)𝝂h )Γh,N ,

b
(
Ωh;u,𝒗

)
:= 2𝜇(u,𝒗)Γh,D + 𝜆(u ⋅ 𝝂h,𝒗 ⋅ 𝝂h )Γh,D ,

𝜒h

(
Ωh;𝒗

)
:=𝜒

(
Ωh;𝒗

)
+ 𝛾Nh(gN,𝝈(𝒗)𝝂h )Γh,N ,

(23)

where 𝛾D > 0, 𝛾N ⩾ 0 are fixed coefficients. These forms are similarly defined on the exact domainΩ.
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Our unfitted numerical scheme is as follows. Find uh ∈ Vh(Ωh) such that

Ah
(
Ωh;uh,𝒗h

)
= 𝜒h

(
Ωh;𝒗h

)
∀𝒗h ∈ Vh(Ωh ), (24)

where the Dirichlet condition on Γh,D is only penalized here. This scheme is a slight variation of the unfitted

finite element method in ref. [42] (see also ref. [46]).

3.4 Error analysis of the forward problem

We give a brief overview of the error analysis for the approximation of (3) with (24). To this end, we define some

convenient norms:

‖𝒗‖2
ah
:= ah

(
Ωh;𝒗,𝒗

)
, ‖𝒗‖2

b
:= b

(
Ωh;𝒗,𝒗

)
,

|||𝒗|||2
h
:= ‖𝒗‖2

ah
+ h‖𝝈(𝒗)‖2

L2(Γh,D )
+ 𝛾Nh‖𝝈(𝒗)𝝂h‖2L2(Γh,N ) + h−1‖𝒗‖2

b

(25)

for all 𝒗 ∈ H2(D̂) ∪ Bh.

We first note the following coercivity result which can be found in refs. [42], [46] and references therein.

Proposition 1. The bilinear form Ah is continuous and, for sufficiently large 𝛾D, coercive. Specifically, we have

Ah
(
Ωh;u,𝒗

)
≲ |||u|||h|||𝒗|||h ∀ u,𝒗 ∈ Vh(Ωh ), |||𝒗|||2

h
≲ Ah

(
Ωh;𝒗,𝒗

)
∀ 𝒗 ∈ Vh(Ωh ).

Therefore, by Proposition 1, and since 𝜒h is a bounded linear functional, there exists a unique solution

uh ∈ Vh(Ωh) of (24) by the Lax-Milgram Theorem. Furthermore, we note that the conditioning of the stiffness

matrix corresponding to Ah is well behaved with respect to how the domain Ωh “cuts” the background mesh

̂ h [42].

3.4.1 Pseudo-Galerkin orthogonality

We recall that our bilinear form Ah
(
Ωh;u,𝒗

)
can be defined for functions u,𝒗 ∈ H1(Ωh). Moreover, we can

extend the exact solution u onΩ to an open neighborhoodD𝛿 that contains bothΩ andΩh using the following

bounded extension operator (see [47, Thm. 1.4.5]).

Theorem 1. Suppose thatΩ has a Lipschitz boundary and let 𝑣 ∈ Wk,p(Ω). Then, there is an extension mapping
E:Wk, p(Ω)→Wk, p(ℝd ) such that for all integers k ⩾ 0 and all 1 ⩽ p ⩽ ∞, that satisfies

E(𝑣)|Ω = 𝑣 and ‖E(𝑣)‖Wk, p(ℝd ) ⩽ C‖𝑣‖Wk, p(Ω),

where C is independent of 𝑣.

Now let u ∈ H1(Ω), with u = 0 on ΓD ∪ Γ̂D, solve (1) and assume u ≡ E(u) is extended to H1(D̂) using

Theorem 1. Then, u satisfies the following:

(
f ,𝒗
)
Ωh

= −(∇ ⋅ 𝝈(u),𝒗)Ωh
= −(𝝈(u)𝝂h,𝒗)𝜕Ωh

+ (𝝈(u),∇𝒗)Ωh

= −(𝝈(u)𝝂h,𝒗)Γh,D − (gN,𝒗)Γh,N + 2𝜇(𝜖(∇u), 𝜖(∇𝒗))Ωh
+ 𝜆(∇ ⋅ u,∇ ⋅ 𝒗)Ωh

,
(26)

where 𝒗 ∈ B̊h and 𝒗 = 0 on Γ̂h,D ≡ Γh,D.

The following proposition is used in the error analysis and in the analysis of shape derivatives on “cut”

subdomains in Section 4.3.1.

Proposition 2. Let R(a, t) :=a+ tY (a), for all t in a bounded, open interval I, and a.e. a ∈ ℝd, where Y ∈
[W 1,∞(ℝd )]d. Assume that ‖Y‖W1,∞ is sufficiently small so that for all t ∈ I, ∇aR(a, t) is a matrix with positive
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determinant and |∇aR(a, t)| = O(1), i.e.R(⋅, t):ℝd → ℝd is a differentiable homeomorphism for all t ∈ I. Let g ∈
L1(ℝd )anddefine q:ℝd × I → ℝ by q(a, t) = g ⚬R(a, t). Then, q ∈ L1(ℝd × I )and‖q‖L1(ℝd×I ) ⩽ C|I| ⋅ ‖g‖L1(ℝd ) for

some bounded constant C.

Proof. A standard application of measure theory. □

Corollary 1. Let R(a, t) have the same function defined in Proposition 2. Now let g ∈ H1(ℝd ) and let Γ ⊂ ℝd be

the Lipschitz boundary of a bounded setΩ, and define q:Γ × I → ℝ by q(a, t) = g ⚬R(a, t). Then, q ∈ L2(Γ × I)

and ‖q‖L2(Γ×I ) ⩽ C|I|1∕2‖g‖H1(ℝd ) for some bounded constant C.

The following assumptions and results are needed to derive the usual error estimates between our finite

element solution of (24) and the exact solution of (3). In doing this, we assume thatΩ is of class Cq+1, with q ⩾ 1.

For a typical cantilever (see Figure 1), this is not actually true because there are corners. It is possible to have a

more refined analysis that allows for piecewise smooth domains, but we do not pursue this here. We emphasize

that our discrete shape derivative formulas in Section 4 are not affected by the regularity of the exact solution.

Assumption 1. We assume that the exact domain Ω is of class Cq+1, with q ⩾ 1, that Ωh is the sub-zero level

set of a discrete level set function 𝜙h having polynomial degree q, and that Ωh approximates Ω to order q as

described in (27) and (28). We also define our finite element space Vh to contain piecewise polynomials of up to

order q and assume that gN ∈ Hq(D̂), f ∈ Hq−1(D̂).

Assumption 1 implies that the exact solution has regularity u ∈ Hq+1(Ω). So, by the extension operator in
Theorem 1, we consider u to be extended onto D̂ with u ∈ Hq+1(D̂).

The error analysis uses the approach in refs. [41], [48] where we have an approximation of the discrete

domainΩh, with the discrete level set function 𝜙h, satisfying dist(Ω, Ωh) ≲ hq+1, where q ⩾ 1 is the order of

the geometry approximation (i.e. q is the polynomial degree of 𝜙h). Additionally, we assume that there exists a

mapping𝚽 with the following properties:

𝚽(Ω) = Ωh, 𝚽(Ω𝛿 ) = Ωh,𝛿 , ‖𝚽− id‖L∞(Ω𝛿 )
≲ hq+1,

‖∇𝚽− I‖L∞(Ω𝛿 )
≲ hq, ‖det(∇𝚽)− 1‖L∞(Ω𝛿 )

≲ hq,
(27)

where𝚽 is a continuous well-defined map that is invertible for sufficiently small h. In addition, we have

‖𝝂 − 𝝂h‖L∞(Γh ) ≲ hq, (28)

where 𝝂 = ∇𝜙∕|∇𝜙| on Γ, 𝝂h = ∇𝜙h∕|∇𝜙h| on Γh. For surface elements, we note the following similar

estimate from [48]:

dSh(𝚽(a)) = 𝜇hdS(a), ‖𝜇h − 1‖L∞(Γh ) ≲ hq, (29)

where dSh (dS) represents the Lebesgue measure for Γh (Γ). We abuse notation and use dS for either Γ or Γh

depending on the context. The function 𝜇h is the Jacobian resulting from the change of variables for the surface

integral.

The following basic result is needed to deal with the boundary stabilization terms coming from Nitsche’s

method (see Proposition 4).

Proposition 3. AssumeΩ,Ωh satisfy the approximation properties (27)and (29). LetΘ ⊂ 𝜕ΩandΘh be its discrete

approximation. Suppose f ∈ H1(D̂) with f = 0 onΘ, and gh is a piecewise polynomial function over ̂ h. Then,

(
f , gh

)
Θh

≲ h(q+1)∕2‖ f ‖
H1(D̂)

⋅ ‖gh‖L2(Θh )
, (30)

(
f , gh

)
Θh

≲ hq+1‖∇ f ‖
H1(D̂)

⋅ ‖gh‖L2(Θh )
, if f ∈ H2(D̂). (31)
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Proof. We start with

(
f , gh

)
Θh

=
∫
Θh

f (x)gh(x)dS = ∫
Θ

( f ⚬𝚽)(gh ⚬𝚽)𝜇hdS = ∫
Θ

( f ⚬𝚽− f )(gh ⚬𝚽)𝜇hdS

≲
∫
Θ

||( f ⚬𝚽− f )(gh ⚬𝚽)||dS ≲ ‖ f ⚬𝚽− f ‖L2(Θ) ⋅ ‖gh ⚬𝚽‖L2(Θ),

(32)

and note that ‖gh ⚬𝚽‖L2(Θ) ≅ ‖gh‖L2(Θh )
. Next, we focus on the f term and use a refined trace estimate:

‖ f ⚬𝚽− f ‖2
L2(Θ)

⩽ ‖ f ⚬𝚽− f ‖2
L2(𝜕Ω)

≲ ‖ f ⚬𝚽− f ‖L2(Ω)‖ f ⚬𝚽− f ‖H1(Ω),

followed by

‖ f ⚬𝚽− f ‖L2(Ω) ≲

‖‖‖‖‖‖‖

1

∫
0

∇ f (id+ t(𝚽− id)) ⋅ (𝚽− id)dt

‖‖‖‖‖‖‖L2(Ω)

≲ hq+1
‖‖‖‖‖‖‖

1

∫
0

|∇ f (id+ t(𝚽− id))|dt
‖‖‖‖‖‖‖L2(Ω)

≲ hq+1‖∇ f ‖
L2(D̂)

,

where we used Proposition 2 to view ∇ f (id + t(𝚽 − id)) as a function in L2(D̂ × [0, 1]) and apply the

norm bound. Combining everything, we get (30).

Now, assume additional regularity of f , namely f ∈ H2(Ω), and reconsider the f term in (32):

‖ f ⚬𝚽− f ‖2
L2(Θ)

=
‖‖‖‖‖‖‖

1

∫
0

∇ f (id+ t(𝚽− id)) ⋅ (𝚽− id)dt

‖‖‖‖‖‖‖

2

L2(Θ)

≲ h2(q+1)
‖‖‖‖‖‖‖

1

∫
0

|∇ f (id+ t(𝚽− id))|dt
‖‖‖‖‖‖‖

2

L2(Θ)

≲ h2(q+1)
∫
Θ

1

∫
0

|∇ f (id+ t(𝚽− id))|2dtdS ≅ h2(q+1)‖∇ f ⚬R‖2
L2(Θ×[0,1]),

where R(a, t) = id(a) + t(𝚽(a) − id(a)). Then, we apply the trace inequality in Corollary 1 to obtain

‖ f ⚬𝚽− f ‖L2(Θ) ≲ hq+1‖∇ f ‖
H1(D̂)

,

and combine with (32) to get (31). □

Proposition 4. Let q ⩾ 1 be the order of approximation ofΩh and assumeΩ is Cq+1. Moreover, if q = 1, assume

the (extended) exact solution u is in H2(D̂) and gN ∈ H1(D̂); else, u ∈ H3(D̂) and gN ∈ H2(D̂). Then, for all

𝒗h ∈ Vh(Ωh), we have

𝛾Dh
−1b
(
Ωh;u,𝒗h

)
≲ hq‖u‖

H2(D̂)
‖𝒗h‖H1(Ωh )

,

−
(
u,𝝈(𝒗h )𝝂h

)
Γh,D

≲ hq+1∕2‖u‖
H2(D̂)

||||||𝒗h||||||h,
𝛾Nh
(
𝝈(u)𝝂h − gN,𝝈(𝒗h )𝝂h

)
Γh,N

≲ hq+1∕2
[‖u‖

Hmin{q,2}+1(D̂)
+ ‖gN‖Hmin{q,2}(D̂)

]||||||𝒗h||||||h.
(33)

Proof. The first two estimates in (33) are straightforward. The last estimate uses Proposition 3. □
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3.4.2 A priori estimate

Since (26) is satisfied for all 𝒗 ∈ H1(D̂), it follows that

Ah
(
Ωh;u,𝒗h

)
= 𝜒h

(
Ωh;𝒗h

)
−
(
u,𝝈(𝒗h )𝝂h

)
Γh,D

+ 𝛾Dh
−1b
(
Ωh;u,𝒗h

)
+ 𝛾Nh

(
𝝈(u)𝝂h,𝝈(𝒗h )𝝂h

)
Γh,N

− 𝛾Nh
(
gN,𝝈(𝒗h )𝝂h

)
Γh,N

+ 𝛾ssh

(
Σ±

𝛿,D
;u,𝒗h

)
+ 𝛾sh

2sh

(
Σ±

𝛿,N
;u,𝒗h

)
∀𝒗h ∈ Vh(Ωh ).

(34)

Then, subtracting (24) we get the following pseudo Galerkin orthogonality property ∀𝒗h ∈ Vh(Ωh):

Ah
(
Ωh;u− uh,𝒗h

)
= −

(
u,𝝈(𝒗h )𝝂h

)
Γh,D

+ 𝛾Dh
−1b
(
Ωh;u,𝒗h

)
+ 𝛾Nh

(
𝝈(u)𝝂h,𝝈(𝒗h )𝝂h

)
Γh,N

− 𝛾Nh
(
gN,𝝈(𝒗h )𝝂h

)
Γh,N

+ 𝛾ssh

(
Σ±

𝛿,D
;u,𝒗h

)
+ 𝛾sh

2sh

(
Σ±

𝛿,N
;u,𝒗h

)

≲ 𝛾ssh

(
Σ±

𝛿,D
;u,𝒗h

)
+ 𝛾sh

2sh

(
Σ±

𝛿,N
;u,𝒗h

)

+ hq
[‖u‖

Hmin{q,2}+1(D̂)
+ ‖gN‖Hmin{q,2}(D̂)

]||||||𝒗h||||||h,

(35)

wherewe have used (33) in the last line. From this, one can derive the following error estimate usingwell-known

techniques.

Theorem 2. Letu ∈ Hk+1(D̂) be the extended solution of (1) onΩ to D̂, and letuh ∈ Vh(Ωh) be the finite element

approximation defined in (24) with q = k ⩾ 1. Then, the following a priori estimates hold

‖u− uh‖L2(Ω) + h||||||u− uh
||||||h ≲ hk+1

[‖u‖Hk+1(Ω) + ‖gN‖Hmin{k,2}(D̂)

]
, (36)

where standard a priori estimates give ‖u‖Hk+1(Ω) ≲ ‖f‖Hk−1(Ω) + ‖gN‖Hk (Ω).

4 Unfitted shape derivatives

We start with a review of basic shape differentiability results [2], [20] based on vector displacements of the

domain. Next, we extend these shape derivatives to allow for perturbation of the domain by perturbing its level

set description. Then, we develop these results further to allow for shape functionals over domains that intersect

a fixed Lipschitz subset (i.e. an element of a finite element mesh).

4.1 Fréchet differentiability of shape functionals

We review the Fréchet Differentiability of Shape Functionals following [2], [26]. A classic approach to shape dif-

ferentiation uses a perturbation of the identity. LetU ∈ [W1,∞(ℝd )]d be a vector field and define the deformation

mapping as follows

𝚽U (a) := id(a)+ U(a) ∀a ∈ ℝd. (37)

This mapping induces a deformed domain ΩU :=𝚽U (Ω). For ‖U‖W1,∞ sufficiently small, if Ω is Lipschitz, then

ΩU will also be Lipschitz and homeomorphic toΩ [20]. We have the following definition [26, Defn. 4.1].

Definition 1. A shape functional J(Ω) is said to be shape differentiable at Ω if the mapping U ↦ J(ΩU ) from

[W 1,∞(ℝd )]d intoℝ, whereΩU = 𝚽U (Ω) using (37), is Fréchet differentiable at U = 0. The Fréchet derivative

of J atΩ is an operator in ([W 1,∞(ℝd )]d,ℝ), denoted J′(Ω)(⋅), and the following limit holds

lim‖U‖
W1,∞→0

| J(ΩU )− J(Ω)− J′(Ω)(U )|
‖U‖W1,∞

= 0. (38)
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We note a classic expansion of the determinant that is easily derived from [6, Lem. B.2].

Lemma 1. For any n × n matrix B, we have

det(I + B) = 1+ tr(B)+ 1

2

[
(tr(B))2 − tr

(
B2
)]
+ o(|B|2 ) as |B|→ 0. (39)

The next two lemmas are applications of results in refs. [2], [20]. We include the proof of Lemma 3 since we

build on it later when computing shape derivatives on “cut” elements.

Lemma 2. Given f ∈ L1(ℝd ) and U ∈ [W 1,∞(ℝd )]d we have that

lim‖U‖
W1,∞→0

∫
Ω

[
f (𝚽U(a))− f (a)

]
G(∇aU(a))da

‖U‖W1,∞
= 0, (40)

where G:ℝd×d → ℝ is continuous and |G(M)| ⩽ C|M| for all M ∈ ℝd×d, for some bounded constant C > 0.

Lemma 3. Given f ∈ W 1,1(ℝd ) and U ∈ [W 1,∞(ℝd )]d we have that

lim‖U‖
W1,∞→0

∫
Ω
f (𝚽U(a))− f (a)da− ∫

Ω
∇ f (a) ⋅ U(a)da

‖U‖W1,∞
= 0. (41)

Proof. By the fundamental theorem of calculus, we have

I0(U ) :=∫
Ω

f (𝚽U (a))− f (a)da−
∫
Ω

∇ f (a) ⋅ U(a)da =
∫
Ω

1

∫
0

[
∇ f (𝚽sU (a))−∇ f (a)

]
⋅ U(a)dsda, (42)

and note that by Proposition 2, ∇ f ⚬𝚽sU (a) can be viewed as function in L1(ℝd × [0, 1]), provided ‖U‖W1,∞ is

sufficiently small. Indeed, the entire integrand in the last integral of (42) is in L1(ℝd × [0, 1]).

Therefore, we can apply Fubini’s theorem:

|I0(U )|‖U‖W1,∞
= 1

‖U‖W1,∞

|||||||

1

∫
0

∫
Ω

[
∇ f (𝚽sU (a))−∇ f (a)

]
⋅ U(a)dads

|||||||
⩽

1

∫
0

∫
Ω

||∇ f (𝚽sU (a))−∇ f (a)||dads

⩽
1

∫
0

∫
Ω

||∇( f − fk )(𝚽sU (a))
||dads+

1

∫
0

∫
Ω

||∇( f − fk )(a)
||dads+

1

∫
0

∫
Ω

||∇ fk(𝚽sU (a))−∇ fk(a)
||dads,

(43)

where we introduced the sequence { fk} in C∞(ℝd ) such that fk → f in W 1,1 as k→∞. We apply a change of

variables to the first term:

1

∫
0

∫
Ω

||∇( f − fk )(𝚽sU (a))
||dads =

1

∫
0

∫

𝚽−1
sU
(Ω)

||∇( f − fk )(x)
|| det(∇𝚽−1

sU
(x))dxds ⩽ 𝛾0‖ f − fk‖W1,1(ℝd ), (44)

where 𝛾0 is a bounded constant when ‖U‖W1,∞(ℝd ) is sufficiently small. The last term in (43) is estimated with the

mean value theorem to give

1

∫
0

∫
Ω

||∇ fk(𝚽sU (a))−∇ fk(a)
||dads ⩽ Ck‖U‖L∞(ℝd ), (45)
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where Ck depends on ‖∇∇ fk‖L∞ . Thus,
lim‖U‖
W1,∞→0

|I0(U )|‖U‖W1,∞
⩽ (𝛾0 + 1)‖ f − fk‖W1,1(ℝd ), (46)

which holds for every k ⩾ 1. Taking k→∞ proves (41). □

The following result is an application of the results in refs. [2], [20], [26].

Theorem 3. For the shape functional J(Ω) := ∫Ω f (x)dx, with f ∈ W 1,1(ℝd ) andΩ Lipschitz, we have that J(Ω) is
shape differentiable atΩ (in the sense of Definition 1) with Fréchet derivative J′(Ω)(U) = ∫𝜕Ω f (a)U(a) ⋅ 𝝂(a)da
for all U ∈ [W 1,∞(ℝd )]d.

4.2 Connecting the domain perturbation with the level set perturbation

Our goal is to obtain a shape differentiation formula in terms of perturbations of the level set representation𝜙 of

Ω (see Section 3.1), since this is more convenient for the optimization algorithm. Direct optimization of the level

set function was also considered in ref. [49], which used finite differences and was an example of the optimize-

then-discretize approach. In ref. [50], they developed Gâteaux derivative formulas for direct perturbation of

smooth level set functions; similar considerations were also made in ref. [20].

4.2.1 The speed method

We review the velocity (speed) method for domain perturbations. Let V (x, t) be a d-dimensional, vector field

that is Lipschitz in x, for each t, and continuously differentiable in t for each x. For any given a ∈ ℝd, consider

the following ODE:

ẋ = V (x, t) ∀ t > 0, x(0) = a ∈ ℝd, (47)

with unique solution (see [51]) x(t) being the trajectory of a (material) point a moving with velocity V (x(t), t).

Indeed, V induces a deformation mapping through (47) in the following way. Let x(t; a) be the unique solution
of (47) (for a given a). Then,

𝚽t(a) := x(t;a) ∀ a ∈ ℝd, (48)

is the corresponding deformation mapping. Moreover, a Taylor expansion in t yields

𝚽t(a) = a+ tV (a, 0)+W (a, t) ∀ a ∈ ℝd, (49)

where |W (a, t)| = O(t2). With this, one can establish the Gâteaux shape differentiablity of our shape functional

J(Ω) = ∫Ω f (x) dx, for f ∈ W 1,1(ℝd ), with respect to V (x(0), 0) using classic techniques. In other words, setting

Ωt = 𝚽t(Ω), we have

dG J(Ω)(V ) := lim
t→0+

J(Ωt )− J(Ω)

t
=

∫
𝜕Ω

f (a)V (a, 0) ⋅ 𝝂(a)da, (50)

which, of course, agrees with the result in Theorem 3 if U(a) ≡ V (a, 0). The same result holds if the remainder

term in (49) is dropped.

4.2.2 Level set Gâteaux derivative

Now, we consider Ω to be defined by a level set function, 𝜙, i.e. Ω(𝜙) :={x ∈ ℝd ∣ 𝜙(x) < 0} (sub-zero level
set), where 𝜙 satisfies Definition 2 for some positive constants c0 and 𝛿0.

Definition 2. Let 𝜙 ∈ C0,1(ℝd;ℝ) and assume that Γ(𝜙) :={x ∈ ℝd ∣ 𝜙(x) = 0} is non-empty. We say that 𝜙 is

non-degenerate, with constants c0 > 0 and 𝛿0 > 0, if |∇𝜙(x)| ⩾ c0 for a.e. x ∈ ℝd such that dist(x,Γ(𝜙)) < 𝛿0.
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In addition, we take 𝜙 to be C2(ℝd ). By [20, Ch. 2, Thm. 4.2], Ω(𝜙) is a C2, open set, and 𝜕Ω(𝜙) ≡ Γ(𝜙), so
Ω(𝜙) is well-defined.

For the shape functional, J(Ω), we seek to compute the Gâteaux shape derivative with respect to 𝜙, i.e.

dG J(Ω(𝜙))(𝜂 ) := lim
t→0+

J(Ω(𝜙+ t𝜂 ))− J(Ω(𝜙))
t

(51)

for any 𝜂 ∈ C2(ℝd ). Define a perturbed level set function

𝜙̃(x, t) = 𝜙(x)+ t𝜂(x) ⇒ 𝜕t𝜙̃ = 𝜂, (52)

where t is the perturbation parameter; one can think of 𝜙̃ as a time-dependent level set function.

Set Ωt :=Ω(𝜙̃(⋅, t)) = {x ∈ ℝd ∣ 𝜙̃(x, t) < 0} and Γt := 𝜕Ωt = {x ∈ ℝd ∣ 𝜙̃(x, t) = 0}. Note that |∇𝜙̃(x, t)| ⩾
c0∕2 > 0 for all x in a neighborhood of Γt if t is sufficiently small. This ensures that Γt is (locally) a C

2 surface by

the implicit function theorem. Next, define a velocity field

V (x, t) = − ∇𝜙̃(x, t)
|∇𝜙̃(x, t)|2 𝜂(x), (53)

which satisfies the same conditions for V in (47), and let x(t) be the corresponding solution of (47). If a ∈ Γ0, we

have that 𝜙̃(x(t), t) = 0 for all t because

d

dt
𝜙̃(x(t), t) ≡ DV 𝜙̃(x, t)

||||x=x(t)

= 𝜕t𝜙̃(x, t)
|||x=x(t)

+
(
∇𝜙̃(x, t)|||x=x(t)

)
⋅ ẋ(t)

= 𝜂(x(t))+∇𝜙̃(x(t), t) ⋅ V (x(t), t) = 0,

(54)

and the fact that 𝜙̃(x(0), 0) = 0. Thus, V evolves the zero level set of 𝜙̃. Moreover, if𝚽t(a) is the induced map

from V , then the sub-zero level setΩt satisfiesΩt = 𝚽t(Ω0).

With this, one can compute (51) by using (50), i.e.

dG J(Ω(𝜙))(𝜂 ) = lim
t→0+

J(Ω(𝜙+ t𝜂 ))− J(Ω(𝜙))
t

= lim
t→0+

J(Ωt )− J(Ω0 )

t
=

∫
𝜕Ω

f (a)V (a, 0) ⋅ 𝝂(a)da

=
∫
𝜕Ω

f (a)

(
− ∇𝜙̃(a, 0)
|∇𝜙̃(a, 0)|2 𝜂(a)

)
⋅ 𝝂(a)da =

∫
𝜕Ω

f (a)

(
− 𝜂(a)
|∇𝜙(a)|

)
da,

(55)

where we used the fact that 𝝂 = ∇𝜙∕|∇𝜙| on 𝜕Ω and 𝜙̃(a, 0) = 𝜙(a). All of the above extends to having 𝜙, 𝜂

inW2,∞(ℝd ); in this case,Ω(𝜙) is a C1,1 domain [20, Ch. 5, Thm 4.3].

4.2.3 Level set Fréchet derivative

Our goal now is to extend this to computing the Fréchet shape derivative of J(Ω(𝜙)) with respect to 𝜙, which is
defined as follows.

Definition 3. Let Ω = Ω(𝜙) be the sub-zero level set of 𝜙 ∈  , such that |∇𝜙| ⩾ c0 > 0, for some positive

constant c0. A shape functional J(𝜙) ≡ J(Ω(𝜙)) is said to be level set shape Fréchet differentiable at 𝜙 if the

mapping 𝜂 ↦ J(Ω(𝜙 + 𝜂)) from  into ℝ is Fréchet differentiable at 𝜂 = 0. The Fréchet derivative of J(Ω(⋅)),
at 𝜙, is an operator in ( ,ℝ), denoted J′(Ω(𝜙))(⋅), and the following limit holds

lim‖𝜂‖→0

| J(Ω(𝜙+ 𝜂 ))− J(Ω(𝜙))− J′(Ω(𝜙))(𝜂 )|
‖𝜂‖ = 0. (56)

In this section, we use Definition 3 with  = W2,∞(ℝd ). Moreover, we shall prove that J(Ω) = ∫Ω f (x) dx

is level set shape Fréchet differentiable by using Theorem 3. To do this, we have to reconcile two different, but
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similar, notions of domain perturbation. The first is the perturbed domainΩ(𝜙 + 𝜂) and the second is through

a perturbation of the identity approach given by

𝚽𝜂(a) = a+ V𝜂(a) ∀ a ∈ ℝd, V𝜂(a) := − ∇𝜙(a)
|∇𝜙(a)|2 𝜂(a). (57)

Note the similarity with (49) and (53). Let𝚽t (different from𝚽𝜂) satisfy (47) with V given by (53), and note that

∇a𝚽t(a) uniquely satisfies the matrix valued ODE [20, Ch. 8]:

d

dt
M(a, t) = [∇xV (𝚽t(a), t)]M(a, t) ∀ t > 0, M(a, 0) = I ∀ a ∈ ℝd, (58)

which follows by the theory in ref. [51]. Furthermore, we have an explicit formula for∇a𝚽t(a):

∇a𝚽t(a) = exp

⎧⎪⎨⎪⎩

t

∫
0

∇xV (x(s;a), s) ds
⎫⎪⎬⎪⎭
=:A(t), (59)

where exp{⋅} is the matrix exponential.

Theorem 4. Let {𝜙k}k⩾1 be a sequence of smooth functions such that ‖𝜙k − 𝜙‖W2,∞ → 0 as k→∞. Assume

|∇𝜙| ⩾ c0 > 0 and |∇𝜂| ⩽ c0∕2, so that |∇(𝜙 + 𝜂)| ⩾ c0∕2. In addition, assume ‖𝜂‖W2,∞ ⩽ c1 for some fixed

constant c1. Set 𝚽̃ = 𝚽t|t=1. Then,
‖𝚽𝜂 − 𝚽̃‖L∞(ℝd ) ⩽ O

(‖𝜂‖L∞‖∇𝜂‖L∞),
‖∇𝚽𝜂 −∇𝚽̃‖L∞(ℝd ) ⩽ O

(‖𝜂‖2
W2,∞

)
+ q1‖𝜙k‖W3,∞‖𝜂‖2

L∞ + q2‖𝜙k − 𝜙‖W2,∞‖𝜂‖L∞ (60)

for all k ⩾ 1, for some bounded constants q1, q2.

Proof. Recall that𝚽t is defined in Section 4.2.1 and is different from𝚽𝜂 . For now, take a ∈ ℝd fixed and note

that the solution of (47) satisfies:

|x(t)− a| =
|||||||

t

∫
0

V (x(s), s) ds

|||||||
⩽ C
(‖𝜙‖W1,∞ + ‖𝜂‖W1,∞

)‖𝜂‖L∞ , 0 ⩽ t ⩽ 1, (61)

for some constant C depending on c0. We first estimate ‖𝚽𝜂 − 𝚽̃‖L∞(ℝd ) and we start with

V𝜂(a)− V (x(s), s) = −
[

∇𝜙(a)
|∇𝜙(a)|2 𝜂(a)−

∇[𝜙(x(s))+ s𝜂(x(s))]
|∇[𝜙(x(s))+ s𝜂(x(s))]|2 𝜂(x(s))

]

= T1 + T2 + T3, (62)

where

T1 =
1

|∇𝜙(a)|2
(
𝜂(a)∇𝜙(a)− 𝜂(x(s))∇𝜙(x(s))

)
,

T2 = − s

|∇𝜙(a)|2 𝜂(x(s))∇𝜂(x(s)),

T3 = 𝜂(x(s))∇[𝜙(x(s))+ s𝜂(x(s))]

(|∇[𝜙(x(s))+ s𝜂(x(s))]|2 − |∇𝜙(a)|2
|∇𝜙(a)|2|∇[𝜙(x(s))+ s𝜂(x(s))]|2

)
.

(63)

Next, we note the following basic estimates:

|∇𝜙(x(s))−∇𝜙(a)| = |∇2𝜙(x(𝜉 )) ⋅ (x(s)− a)| ⩽ C‖∇2𝜙‖L∞‖𝜂‖L∞ ,
|𝜂(x(s))− 𝜂(a)| ⩽ C‖∇𝜂‖L∞‖𝜂‖L∞ (64)
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for some bounded constant C. Using these estimates, it is easy to show that

|T1|, |T2|, |T3| ⩽ C‖𝜂‖L∞‖∇𝜂‖L∞ (65)

for some bounded constant C, which gives a bound for (62). Since x(1) ≡ 𝚽̃(a) = a+ ∫
1

0
V (x(s), s)ds, and awas

arbitrary, we get

‖𝚽𝜂 − 𝚽̃‖L∞(ℝd ) =
‖‖‖‖‖‖‖

1

∫
0

V𝜂(a)− V (x(s), s) ds

‖‖‖‖‖‖‖
⩽ C‖𝜂‖L∞‖∇𝜂‖L∞ . (66)

Next, using that V𝜂(a) ≡ V (a, 0), we estimate

∇V (x(s), s)A(s)−∇V (a, 0) = T4 + T5,

T4 :=
[
∇V (x(s), s)−∇V𝜂(a)

]
A(s),

T5 :=∇V𝜂(a)
[
A(s)− I

]
.

(67)

Estimating T4 is similar to estimating (63). We first note that |∇𝜂(x(s))−∇𝜂(a)| ⩽ C‖∇2𝜂‖L∞‖𝜂‖L∞ , for some
bounded constant C. Furthermore,

|∇2𝜙(x(s))−∇2𝜙(a)| ⩽ |∇2(𝜙− 𝜙k )(x(s))−∇2(𝜙− 𝜙k )(a)|+ |∇2𝜙k(x(s))−∇2𝜙k(a)|
⩽ 2‖𝜙− 𝜙k‖W2,∞ + |∇3𝜙k(x(𝜉 )) ⋅ (x(s)− a)|
⩽ 2‖𝜙− 𝜙k‖W2,∞ + C‖∇3𝜙k‖L∞‖𝜂‖L∞

(68)

for every k ⩾ 1. Next, by the properties of the matrix exponential, we have

|A(s)− I| ⩽
s

∫
0

||∇xV (x(𝜇;a), 𝜇)|| d𝜇|A|(s), |A|(s) = exp

⎧⎪⎨⎪⎩

s

∫
0

||∇xV (x(𝜇;a), 𝜇)||d𝜇
⎫⎪⎬⎪⎭
. (69)

Note that |A(s)| is uniformly bounded for all 0 ⩽ s ⩽ 1, and ||∇xV (x(𝜇;a), 𝜇)|| ⩽ C‖𝜂‖W1,∞ . Combining these

estimates, and the usual arguments, we have

|∇V (x(s), s)A(s)−∇V (a, 0)| ⩽ C
(‖𝜂‖2

W2,∞ + ‖𝜙− 𝜙k‖W2,∞‖𝜂‖L∞ + ‖∇3𝜙k‖L∞‖𝜂‖2L∞
)

(70)

for all 0 ⩽ s ⩽ 1. From this, we obtain the bound on ‖∇𝚽𝜂 −∇𝚽̃‖L∞ given in (60). □

Corollary 2. Assume the hypothesis of Theorem 4 holds. Then,

‖ det(∇𝚽𝜂 )− det(∇𝚽̃)‖L∞(ℝd ) ⩽ O
(‖𝜂‖2

W2,∞

)
+ q1‖𝜙k‖W3,∞‖𝜂‖2

L∞ + q2‖𝜙k − 𝜙‖W2,∞‖𝜂‖L∞ (71)

for all k ⩾ 1, for some bounded constants q1, q2.

Theorem 5. Assume 𝜙 ∈ W2,∞(ℝd ) and that it satisfies Definition 2 for some positive constants c0, 𝛿0. Let

Ω(𝜙 + 𝜂) be the sub-zero level set of 𝜙 + 𝜂. For the shape functional J(Ω) := ∫Ω f (x)dx with f ∈ W 1,1(ℝd ) we

have that J(Ω) is level set shape differentiable atΩ (in the sense of Definition 3 with  = W2,∞(ℝd )) with Fréchet

derivative J′(Ω)(𝜂 ) = ∫𝜕Ω f (a)
(
−𝜂(a)|∇𝜙(a)|−1)da for all 𝜂 ∈ W2,∞(ℝd ).

Proof. First note thatΩ(𝜙+ 𝜂 ) = Ω1 = 𝚽1(Ω0 ) ≡ 𝚽̃(Ω) andΩ(𝜙) = Ω0 ≡ Ω. In addition,

J′(Ω(𝜙))(𝜂 ) =
∫

𝜕Ω(𝜙)

f (a)

(
− 𝜂(a)
|∇𝜙(a)|

)
da =

∫
𝜕Ω

f (a)V𝜂(a) ⋅ 𝝂 da = J′(Ω)(V𝜂 ),
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where V𝜂 is given by (57). Now, note that

J(Ω(𝜙+ 𝜂 )) =
∫

𝚽̃(Ω)

f (x)dx −
∫

𝚽𝜂 (Ω)

f (x)dx +
∫

𝚽𝜂 (Ω)

f (x)dx

⏟⏞⏞⏞⏟⏞⏞⏞⏟
= J(ΩV𝜂

)

=
∫
Ω

f (𝚽̃(a)) det(∇a𝚽̃(a))da−
∫
Ω

f (𝚽𝜂(a)) det(∇a𝚽𝜂(a))da

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=T6

+ J(ΩV𝜂
).

(72)

By the fundamental theorem of calculus, we have

f (𝚽̃(a))− f (𝚽𝜂(a)) =
1

∫
0

∇ f
(
s𝚽̃(a)+ (1− s)𝚽𝜂(a)

)
⋅
(
𝚽̃(a)−𝚽𝜂(a)

)
ds, (73)

and so

|T6| ⩽ ∫
Ω

(
f (𝚽̃(a))− f (𝚽𝜂(a))

)
det(∇a𝚽̃(a))da+

∫
Ω

f (𝚽𝜂(a))
(
det(∇a𝚽̃(a))− det(∇a𝚽𝜂(a))

)
da

⩽ C‖ f ‖W1,1(ℝd )‖∇𝜂‖2L∞ + C‖ f ‖L1(ℝd )

(‖𝜂‖2
W2,∞ + ‖𝜙k‖W3,∞‖𝜂‖2

L∞ + ‖𝜙k − 𝜙‖W2,∞‖𝜂‖L∞
)
,

(74)

where we used Theorem 4 and Corollary 2. Therefore,

J(Ω(𝜙+ 𝜂 ))− J(Ω(𝜙))− J′(Ω(𝜙))(𝜂 ) = T6 + J(ΩV𝜂
)− J(Ω)− J′(Ω)(V𝜂 ), (75)

and since ‖V𝜂‖W1,∞ ⩽ C𝜂‖𝜂‖W1,∞ , for all k ⩾ 1, we obtain

lim‖𝜂‖
W2,∞→0

| J(Ω(𝜙+ 𝜂 ))− J(Ω(𝜙))− J′(Ω(𝜙))(𝜂 )|
‖𝜂‖W2,∞

⩽ C‖𝜙k − 𝜙‖W2,∞ + C𝜂 lim‖V𝜂‖W1,∞→0

| J(ΩV𝜂
)− J(Ω)− J′(Ω)(V𝜂 )|
‖V𝜂‖W1,∞

⩽ C‖𝜙k − 𝜙‖W2,∞ ,

(76)

where we used Theorem 3. Taking k→∞ proves the result. □

4.3 Shape differentiability on a cut subdomain

We now extend the above formula to computing shape derivatives whenΩ is “cut” by another fixed domain. In

other words, consider the shape functional:

JT (Ω) =
∫
T∩Ω

f (x) dx, (77)

where, again, f ∈ W 1,1(ℝd ) and T is a fixed, bounded Lipschitz domain with piecewise smooth boundary. We

seek to prove that (77) is Fréchet differentiablewith respect toΩ keepingT fixed. In Section 4.4,T will correspond

to an element in the mesh.

We start by introducing a smooth regularization 𝜌𝜖 of the characteristic function 𝜒T with 𝜖 > 0, that

satisfies the following properties:

𝜌𝜖(x)→ 𝜒T (x) ∀ x ∉ 𝜕T, ‖𝜌𝜖 − 𝜒T‖L1(ℝd ) → 0 as 𝜖 → 0. (78)
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With this, we define

J𝜖
T
(Ω) =

∫
Ω

𝜌𝜖(x) f (x) dx ⇒ lim
𝜖→0

J𝜖
T
(Ω) =

∫
Ω

𝜒T (x) f (x) dx = JT (Ω). (79)

The following assumption is crucial.

Assumption 2. Assume that 𝜕Ω∩ 𝜕T has vanishing ℝd−1 Lebesgue measure.

Under Assumption 2, we have that

𝜒𝜕Ω(x)𝜌𝜖(x)→ 𝜒𝜕Ω∩T (x) for a.e. x ∈ 𝜕Ω as 𝜖 → 0, (80)

and also

lim
𝜖→0∫

𝜕Ω

𝜌𝜖(x)g(x) dS(x) = ∫
𝜕Ω∩T

g(x) dS(x) ∀ g ∈ L1(𝜕Ω). (81)

4.3.1 Fréchet differentiability on a cut subdomain

Wefirst show the Fréchet differentiability of the shape functional for standard domain perturbations (analogous

to Section 4.1). Throughout this subsection, we assumeΩ is Lipschitz. We start with the following lemmas.

Lemma 4. Given f ∈ L1(ℝd ) and U ∈ [W 1,∞(ℝd )]d we have that

lim‖U‖
W1,∞→0

∫
Ω

[
f (𝚽U(a))𝜒T (𝚽U(a))− f (a)𝜒T (a)

]
G(∇aU(a))da

‖U‖W1,∞
= 0, (82)

where G:ℝd×d → ℝ is continuous and |G(M)| ⩽ C|M| for all M ∈ ℝd×d, for some bounded constant C > 0.

Proof. Since 𝜒T ∈ L∞(ℝd ), then f ⋅ 𝜒T ∈ L1(ℝd ). Thus, the result follows from Lemma 2. □

Lemma 5. Given f ∈ W 1,1(ℝd ) and U ∈ [W 1,∞(ℝd )]d we have that

lim‖U‖
W1,∞→0

lim
𝜖→0

∫
Ω
f (𝚽U(a))𝜌𝜖(𝚽U(a))− f (a)𝜌𝜖(a)da− ∫

Ω
∇[ f (a)𝜌𝜖(a)] ⋅ U(a)da

‖U‖W1,∞
= 0, (83)

provided Assumption 2 holds.

Proof. Let 𝜖 > 0 be fixed and start by expanding the numerator in (83), i.e.

I𝜖(U ) :=∫
Ω

f (𝚽U (a))𝜌𝜖(𝚽U (a))− f (a)𝜌𝜖(a)da−
∫
Ω

∇[ f (a)𝜌𝜖(a)] ⋅ U(a)da

=
∫
Ω

1

∫
0

[
∇
[
f (𝚽sU (a))𝜌𝜖(𝚽sU (a))

]
−∇[ f (a)𝜌𝜖(a)]

]
⋅ U(a)dsda,

(84)
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where we used the fundamental theorem of calculus. Expanding further, we get

I𝜖(U ) = ∫
Ω

1

∫
0

[
∇
[
f (𝚽sU (a))𝜌𝜖(𝚽sU (a))

]
−∇[ f (𝚽sU (a))𝜌𝜖(a)]

]
⋅ U(a)dsda

+
∫
Ω

1

∫
0

[
𝜌𝜖(a)

(
∇ f (𝚽sU (a))−∇ f (a)

)]
⋅ U(a)dsda+

∫
Ω

1

∫
0

∇ ⋅
[
𝜌𝜖(a)

(
f (𝚽sU (a))− f (a)

)
U(a)

]
dsda

−
∫
Ω

1

∫
0

𝜌𝜖(a)∇ ⋅
[(
f (𝚽sU (a))− f (a)

)
U(a)

]
dsda=:A1𝜖 + A2𝜖 + A3𝜖 − A4𝜖 .

(85)

Next, estimateA2𝜖 . By the Lebesgue dominated convergence theorem and Fubini’s theorem (using Proposition 2),

lim
𝜖→0

|A2𝜖|‖U‖W1,∞
= 1

‖U‖W1,∞

|||||||∫Ω
𝜒T (a)

1

∫
0

(
∇ f (𝚽sU (a))−∇ f (a)

)
⋅ U(a)dsda

|||||||
⩽ 1

‖U‖W1,∞

1

∫
0

∫
Ω∩T

||∇ f (𝚽sU (a))−∇ f (a)||dads ⋅ ‖U‖L∞ ⩽
1

∫
0

∫
Ω

||∇ f (𝚽sU (a))−∇ f (a)||dads.
(86)

We then have

lim‖U‖
W1,∞→0

lim
𝜖→0

|A2𝜖|‖U‖W1,∞
= 0 (87)

by a similar proof as in Lemma 3. For A3𝜖 , we apply the divergence theorem:

lim
𝜖→0

A3𝜖 = lim
𝜖→0

1

∫
0

∫
𝜕Ω

𝜌𝜖(a)
(
f (𝚽sU (a))− f (a)

)
U(a) ⋅ 𝝂(a)dS(a)ds

=
∫
𝜕Ω

𝜒T (a)

1

∫
0

(
f (𝚽sU (a))− f (a)

)
U(a) ⋅ 𝝂(a)dsdS(a).

(88)

Then,

lim‖U‖
W1,∞→0

lim
𝜖→0

|A3𝜖|‖U‖W1,∞
⩽ lim‖U‖

W1,∞→0

1

∫
0

∫
𝜕Ω

|| f (𝚽sU (a))− f (a)||dS(a)ds = 0 (89)

by a similar argument as for A2𝜖 and using a trace theorem. As for A
4
𝜖 , we have

lim
𝜖→0

A4𝜖 = ∫
Ω

𝜒T (a)

1

∫
0

∇ ⋅
[(
f (𝚽sU (a))− f (a)

)
U(a)

]
dsda, (90)
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and so

lim‖U‖
W1,∞→0

lim
𝜖→0

|A4𝜖|‖U‖W1,∞
⩽ lim‖U‖

W1,∞→0

1

‖U‖W1,∞

1

∫
0

∫
Ω∩T

∇ ⋅
[(
f (𝚽sU (a))− f (a)

)
U(a)

]
dads

⩽ lim‖U‖
W1,∞→0

1

∫
0

∫
Ω

|||∇
(
f (𝚽sU (a))− f (a)

)|||dads+
1

∫
0

∫
Ω

|| f (𝚽sU (a))− f (a)||dads

⩽ 𝛾1‖ f − fk‖W1,1(ℝd )

(91)

for all k ⩾ 1 by a similar proof as in Lemma 3. Thus,

lim‖U‖
W1,∞→0

lim
𝜖→0

|A4𝜖|‖U‖W1,∞
= 0.

Now, we expand A1𝜖 :

A1𝜖 =
1

∫
0

∫
Ω

U(a) ⋅∇ f (𝚽sU (a))
(
𝜌𝜖(𝚽sU (a))− 𝜌𝜖(a)

)
dads

+
1

∫
0

∫
Ω

∇ ⋅
[
f (𝚽sU (a))

(
𝜌𝜖(𝚽sU (a))− 𝜌𝜖(a)

)
U(a)

]
dads

−
1

∫
0

∫
Ω

(
𝜌𝜖(𝚽sU (a))− 𝜌𝜖(a)

)
∇ ⋅
[
f (𝚽sU (a))U(a)

]
dads=:B1𝜖 + B2𝜖 − B3𝜖 .

(92)

By the Lebesgue dominated convergence theorem,

lim
𝜖→0

|B1𝜖|‖U‖W1,∞
⩽

1

∫
0

∫
Ω

|∇ f (𝚽sU (a))|||𝜒T (𝚽sU (a))− 𝜒T (a)
||dads. (93)

For each fixed U and s ∈ [0, 1], let Es =
{
a ∈ ℝd ∣ ||𝜒T (𝚽sU (a))− 𝜒T (a)

|| = 1
}
, and note that||𝜒T (𝚽sU (a))− 𝜒T (a)

|| = 0 on ℝd∖Es. Note that 𝜒T ⚬𝚽sU = 𝜒
T̃
, i.e. is the characteristic function of T̃ = 𝚽−1

sU
(T ).

A simple argument gives that Es ⊂ Ẽ := (T∖T̃ ) ∪ (T̃∖T ). Set 𝛿 = s‖U‖L∞ . Clearly, dist(x, 𝜕T) ⩽ 𝛿 for all x ∈
T̃∖T . Moreover, let x ∈ T∖T̃ , so it has a pre-image a ∉ T with x = 𝚽sU (a). Since |x − a| ⩽ 𝛿, and the line

segment with endpoints x, a intersects 𝜕T , then dist(x, 𝜕T) ⩽ 𝛿, which holds for all x ∈ T∖T̃ . Therefore, by
symmetry, we have dist(x, 𝜕T) ⩽ 𝛿 for all x ∈ Ẽ.

Let 𝜔T be the signed distance function to 𝜕T that is negative inside T . Since 𝜕T is Lipschitz and piecewise

smooth, the level sets {𝜔T = c} are Lipschitz and piecewise smooth for all |c| sufficiently small. Clearly,

Ẽ ⊂ S̃𝛿 :={𝜔T ⩾ −𝛿} ∩ {𝜔T ⩽ 𝛿} ≡ {𝜔T ⩾ −𝛿}∖{𝜔T > 𝛿}.

Since the level sets are Lipschitz and piecewise smooth, one can show that |̃S𝛿| ⩽ 𝛿C0, where C0 is a bounded

constant depending on the perimeter of 𝜕T . Indeed, by the monotone convergence theorem, 𝜒
S̃𝛿
→ 𝜒𝜕T as

‖U‖W1,∞ → 0.
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Returning to (93), we find that

lim
𝜖→0

|B1𝜖|‖U‖W1,∞
⩽ 𝛾2‖ f − fk‖W1,1 +max

0⩽s⩽1
‖∇ fk ⚬𝚽sU‖L∞

1

∫
0

∫
Es

1dads

⩽ 𝛾2‖ f − fk‖W1,1 + Lk

1

∫
0

∫

S̃𝛿

1dads ⩽ 𝛾2‖ f − fk‖W1,1 + LkC0‖U‖L∞ .
(94)

As before, we get

lim‖U‖
W1,∞→0

lim
𝜖→0

|B1𝜖|‖U‖W1,∞
= 0, lim‖U‖

W1,∞→0
lim
𝜖→0

|B3𝜖|‖U‖W1,∞
= 0,

where the B3𝜖 term follows similarly.

For B2𝜖 , we have by the Divergence thm. and the Lebesgue dominated convergence thm.,

lim
𝜖→0

|B2𝜖|‖U‖W1,∞
⩽

1

∫
0

∫
𝜕Ω

| f (𝚽sU (a))|||𝜒T (𝚽sU (a))− 𝜒T (a)
||dS(a)ds. (95)

Similar to (94), we get

lim
𝜖→0

|B2𝜖|‖U‖W1,∞
⩽ 𝛾3‖ f − fk‖W1,1 +max

0⩽s⩽1
‖|∇ fk ⚬𝚽sU‖L∞

1

∫
0

∫
Es∩𝜕Ω

1dS(a)ds

⩽ 𝛾3‖ f − fk‖W1,1 + Lk

1

∫
0

∫

S̃𝛿∩𝜕Ω

1dS(a)ds,

(96)

and note that, by the monotone convergence theorem, 𝜒
S̃𝛿∩𝜕Ω → 𝜒𝜕T∩𝜕Ω as ‖U‖W1,∞ → 0, which yields

lim‖U‖
W1,∞→0

lim
𝜖→0

|B2𝜖|‖U‖W1,∞
⩽ 𝛾3‖ f − fk‖W1,1 + Lk|𝜕T ∩ 𝜕Ω|d−1, (97)

where |𝜕T ∩ 𝜕Ω|d−1 is the ℝd−1 Lebesgue measure of 𝜕T ∩ 𝜕Ω. Invoking Assumption 2, and taking the limit in
k, we obtain

lim‖U‖
W1,∞→0

lim
𝜖→0

|B2𝜖|‖U‖W1,∞
= 0.

The proof of (83) is complete. □

Theorem 6. Given the shape functional JT (Ω) := ∫Ω∩T f (x)dx with f ∈ W 1,1(ℝd ) we have that JT (Ω) is shape
differentiable at Ω (in the sense of Definition 1) with Fréchet derivative J′

T
(Ω)(U) = ∫𝜕Ω∩T f (a)U(a) ⋅ 𝝂(a)dS(a)

for all U ∈ [W 1,∞(ℝd )]d, provided Assumption 2 holds.

Proof. Set AT (U ) := J′
T
(Ω)(U ), let 𝜖 > 0 be fixed, and define A𝜖

T
(U ) = ∫𝜕Ω𝜌𝜖(a) f (a)U(a) ⋅ 𝝂(a)dS(a), where

A𝜖
T
(U )→ AT (U ) by (81). Using (39), we have



J. T. Shahan and S. W. Walker: Exact shape derivatives with unfitted FEM — 21

J𝜖
T
(ΩU )− J𝜖

T
(Ω) =

∫
Ω

𝜌𝜖(𝚽U (a)) f (𝚽U (a)) det(I +∇aU(a))da−
∫
Ω

𝜌𝜖(a) f (a)da

=
∫
Ω

𝜌𝜖(𝚽U (a)) f (𝚽U (a))− 𝜌𝜖(a) f (a)da+
∫
Ω

𝜌𝜖(𝚽U (a)) f (𝚽U (a))tr(∇aU(a))da

+
∫
Ω

𝜌𝜖(𝚽U (a)) f (𝚽U (a))O(|∇aU(a)|2 )da.

(98)

Continuing, we get

J𝜖
T
(ΩU )− J𝜖

T
(Ω) =

∫
Ω

𝜌𝜖(𝚽U (a)) f (𝚽U (a))− 𝜌𝜖(a) f (a)da−
∫
Ω

∇a

(
𝜌𝜖(a) f (a)

)
⋅ U(a)da

+
∫
Ω

[
𝜌𝜖(𝚽U (a)) f (𝚽U (a))− 𝜌𝜖(a) f (a)

]
∇a ⋅ U(a)da

+
∫
Ω

[
𝜌𝜖(a) f (a)∇a ⋅ U(a)+∇a

(
𝜌𝜖(a) f (a)

)
⋅ U(a)

]
da

+
∫
Ω

𝜌𝜖(𝚽U (a)) f (𝚽U (a))O(|∇aU(a)|2 )da.

(99)

By Gauss’ divergence theorem, we arrive at

J𝜖
T
(ΩU )− J𝜖

T
(Ω)− A𝜖

T
(U ) =

∫
Ω

𝜌𝜖(𝚽U (a)) f (𝚽U (a))− 𝜌𝜖(a) f (a)da−
∫
Ω

∇a

(
𝜌𝜖(a) f (a)

)
⋅ U(a)da

+
∫
Ω

[
𝜌𝜖(𝚽U (a)) f (𝚽U (a))− 𝜌𝜖(a) f (a)

]
∇a ⋅ U(a)da

+
∫
Ω

𝜌𝜖(𝚽U (a)) f (𝚽U (a))O(|∇aU(a)|2 )da.

(100)

Then, by Lemmas 4 and 5, we find that

lim‖U‖
W1,∞→0

JT (ΩU )− JT (Ω)− J′
T
(Ω)(U )

‖U‖W1,∞
= lim‖U‖

W1,∞→0
lim
𝜖→0

J𝜖
T
(ΩU )− J𝜖

T
(Ω)− A𝜖

T
(U )

‖U‖W1,∞
= 0, (101)

which proves the assertion. □

4.3.2 Level set Fréchet differentiability on a cut subdomain

We now prove the cut version of Theorem 5.

Theorem 7. Adopt the hypothesis of Theorem 6 with the additional regularity that f ∈ Lp(ℝd ) for some p > 2.

Assume 𝜙 ∈ W2,∞(ℝd ) and that it satisfies Definition 2 for some positive constants c0, 𝛿0. Let Ω(𝜙+ 𝜂) be the

sub-zero level set of 𝜙+ 𝜂. Then, JT (Ω) is level set shape differentiable at Ω (in the sense of Definition 3) with

Fréchet derivative J′
T
(Ω)(𝜂 ) = ∫𝜕Ω∩T f (a)

(
−𝜂(a)|∇𝜙(a)|−1)da for all 𝜂 ∈ [W2,∞(ℝd )]d.

Proof. First note thatΩ(𝜙+ 𝜂 ) = Ω1 = 𝚽1(Ω0 ) ≡ 𝚽̃(Ω) andΩ(𝜙) = Ω0 ≡ Ω. In addition,

J′
T
(Ω(𝜙))(𝜂 ) =

∫𝜕Ω(𝜙)∩T
f (a)

(
− 𝜂(a)
|∇𝜙(a)|

)
da =

∫𝜕Ω∩T
f (a)V𝜂(a) ⋅ 𝝂 da = J′

T
(Ω)(V𝜂 ),
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where V𝜂 is given by (57). Now, note that

JT (Ω(𝜙+ 𝜂 )) =
∫𝚽̃(Ω)∩T

f (x)dx −
∫𝚽𝜂 (Ω)∩T

f (x)dx +
∫𝚽𝜂 (Ω)∩T

f (x)dx

= lim
𝜖→0 ∫𝚽̃(Ω)

f (x)𝜌𝜖(x)dx − ∫𝚽𝜂 (Ω)

f (x)𝜌𝜖(x)dx + JT (ΩV𝜂
)

= lim
𝜖→0 ∫Ω

f (𝚽̃(a))𝜌𝜖(𝚽̃(a)) det(∇a𝚽̃(a))da−
∫Ω

f (𝚽𝜂(a))𝜌𝜖(𝚽𝜂(a)) det(∇a𝚽𝜂(a))da

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=Z𝜖

+ JT (ΩV𝜂
).

(102)

Next, we split the Z𝜖 term as Z𝜖 = Q1
𝜖 + Q2

𝜖 , where

Q1
𝜖 = ∫Ω

(
f (𝚽̃(a))− f (𝚽𝜂(a))

)
𝜌𝜖(𝚽̃(a)) det(∇a𝚽̃(a))da

+
∫Ω

f (𝚽𝜂(a))𝜌𝜖(𝚽𝜂(a))
(
det(∇a𝚽̃(a))− det(∇a𝚽𝜂(a))

)
da,

Q2
𝜖 = ∫Ω

(
𝜌𝜖(𝚽̃(a))− 𝜌𝜖(𝚽𝜂(a))

)
f (𝚽𝜂(a)) det(∇a𝚽̃(a))da.

(103)

Estimating Q1
𝜖 is similar to (74), i.e. we have

lim
𝜖→0
|Q1

𝜖| ⩽ C‖ f ‖W1,1(ℝd )‖∇𝜂‖2L∞ + C‖ f ‖L1(ℝd )

(‖𝜂‖2
W2,∞ + ‖𝜙k‖W3,∞‖𝜂‖2

L∞ + ‖𝜙k − 𝜙‖W2,∞‖𝜂‖L∞
)
. (104)

For Q2
𝜖 , we follow a similar argument to estimating (93). By the Lebesgue dominated convergence theorem,

lim
𝜖→0
|Q2

𝜖| ⩽ C
∫Ω
| f (𝚽𝜂(a))||||𝜒T (𝚽̃(a))− 𝜒T (𝚽𝜂(a))

|||da. (105)

For each fixed 𝜂, let E =
{
a ∈ ℝd ∣ |||𝜒T (𝚽̃(a))− 𝜒T (𝚽𝜂(a))

||| = 1
}
. Similar to the proof of (94), we find that

|E| ⩽ C‖𝜂‖2
W1,∞ for a uniform constant C (recall Theorem 4). Therefore, with p−1 + q−1 = 1, we find

lim
𝜖→0
|Q2

𝜖| ⩽ C‖ f ‖L p‖𝜒E‖Lq = C‖ f ‖L p |E|1∕q ⩽ C‖ f ‖L p |E|𝛾0+1∕2 ⩽ C‖ f ‖L p‖𝜂‖1+2𝛾0
W1,∞ , (106)

where 𝛾0 > 0 and we used the extra regularity of f .

Therefore,

JT (Ω(𝜙+ 𝜂 ))− JT (Ω(𝜙))− J′
T
(Ω(𝜙))(𝜂 ) = lim

𝜖→0
Z𝜖 + JT (ΩV𝜂

)− JT (Ω)− J′
T
(Ω)(V𝜂 ), (107)

and since ‖V𝜂‖W1,∞ ⩽ C𝜂‖𝜂‖W1,∞ for all k ⩾ 1, we obtain

lim‖𝜂‖
W2,∞→0

| JT (Ω(𝜙+ 𝜂 ))− JT (Ω(𝜙))− J′
T
(Ω(𝜙))(𝜂 )|

‖𝜂‖W2,∞

⩽ C‖𝜙k − 𝜙‖W2,∞ + C𝜂 lim‖V𝜂‖W1,∞→0

| JT (ΩV𝜂
)− JT (Ω)− J′

T
(Ω)(V𝜂 )|

‖V𝜂‖W1,∞
⩽ C‖𝜙k − 𝜙‖W2,∞ ,

(108)

where we used Theorem 6. Taking k→∞ proves the result. □
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4.4 Shape Fréchet differentiability over a mesh

We now consider piecewise defined functions over the mesh ̂ h. In particular, on ̂ h, define:

h =
{
𝑤h ∈ L1(D̂) ∣ 𝑤h|T ∈ W 1,1(T ) ∀T ∈ ̂ h

}
, (109)

with norm given by

‖𝑤h‖h
:= ‖𝑤h‖L1(D̂)

+
∑
T∈̂ h

‖∇𝑤h‖L1(T ). (110)

By using the previous results, we can generalize Theorem 3 to allow for functions inh. To this end, we need a

global mesh version of Assumption 2.

Assumption 3. Assume that 𝜕Ω∩ 𝜕T has vanishing ℝd−1 Lebesgue measure for all T ∈ ̂ h.

Theorem 8. For the shape functional J(Ω) := ∫Ω fh(x)dx with fh ∈ h we have that J(Ω) is shape differen-
tiable at Ω (in the sense of Definition 1) with Fréchet derivative J′(Ω)(U) = ∫𝜕Ω fh(a)U(a) ⋅ 𝝂(a)da for all U ∈
[W 1,∞(ℝd )]d, provided Assumption 3 holds.

Proof. First, note that fh|T ∈ W 1,1(T) for all T ∈ ̂ h. Let fT :ℝd → ℝ be a bounded extension of fh|T toW 1,1(ℝd ),

for all T ∈ ̂ h. Then,

J(ΩU )− J(Ω)− J′(Ω)(U ) =
∑
T∈̂ h

JT (ΩU )− JT (Ω)− J′
T
(Ω)(U ),

where

JT (Ω) =
∫
Ω∩T

fT (a)da, J′
T
(Ω)(U ) =

∫
𝜕Ω∩T

fT (a)U(a) ⋅ 𝝂(a)da. (111)

For each term in the sum, one can apply Theorem 6. Since the sum is finite, we easily obtain the Fréchet shape

differentiability of J(Ω). □

Next, we consider domains defined using the space h given in Section 3.1. Thus, letΩ(𝜙h) be the sub-zero

level set of 𝜙h, where 𝜙h ∈ h and satisfies Definition 2 for some positive constants c0, 𝛿0. We will show that

J(Ω(𝜙h)) is level set shape Fréchet differentiable in the sense of Definition 3 with  = h.

Theorem 9. Assume 𝜙h ∈ h satisfies Definition 2 for some positive constants c0, 𝛿0. For the shape func-

tional J(Ω(𝜙h )) := ∫Ω(𝜙h )
fh(x)dx with fh ∈ h ∩ Lp(D̂) for some p>2, we have that J(Ω(𝜙h)) is level set shape

differentiable at Ω(𝜙h) (in the sense of Definition 3 with  = h) with Fréchet derivative J′(Ω(𝜙h ))(𝜂h ) =
∫𝜕Ω(𝜙h )

fh(a)
(
−𝜂h(a)|∇𝜙h(a)|−1)da for all 𝜂h ∈ h, provided Assumption 3 holds.

Proof. We proceed similarly to the proof of Theorem 8. Let fT :ℝd → ℝ be a bounded extension of fh|T to

W 1,1(ℝd ), for all T ∈ ̂ h. Moreover, let 𝜙T :ℝd → ℝ be a bounded extension of 𝜙h|T toW2,∞(ℝd ), for all T ∈ ̂ h;

similarly, do a piecewise extension for 𝜂h to {𝜂T} ⊂ W2,∞(ℝd ). See [52, Sec. VI.3.1] for details of the extension.

Then,

J(Ω(𝜙h + 𝜂h ))− J(Ω(𝜙h ))− J′(Ω(𝜙h ))(𝜂h ) =
∑
T∈̂ h

JT (Ω(𝜙T + 𝜂T ))− JT (Ω(𝜙T ))− J′
T
(Ω(𝜙T ))(𝜂T ),

where

JT (Ω(𝜙T )) = ∫
Ω(𝜙T )∩T

fT (a)da, J′
T
(Ω(𝜙T ))(𝜂T ) = ∫

𝜕Ω(𝜙T )∩T

fT (a)

(
− 𝜂T|∇𝜙T (a)|

)
da. (112)
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For each term in the sum, one can apply Theorem 7. Since the sum is finite, we easily obtain the Fréchet shape

differentiability of J(Ω(𝜙h)). □

4.5 When the boundary intersects a facet

We now consider the case where Assumption 3 is violated. Suppose the violation happens on a single facet F =
T+ ∩ T− where E := 𝜕Ω∩ 𝜕T ⊂ F with |E|d−1 > 0. Since Ω is C1,1, then |𝝂 ⋅ n| = 1 on E where n is the outer

normal of 𝜕T+. Then, one can obtain the following modification of Theorem 8:

J′(Ω)(U ) =
∫
𝜕Ω∖E

fhU ⋅ 𝝂dS +
∫
E

[
fh,+

(
1− sign(U ⋅ n)

2

)
+ fh,−

(
1+ sgn(U ⋅ n)

2

)]
U ⋅ n dS, (113)

where fh,± is the restriction of fh fromT±. Note that (113) is not a Fréchet derivative, or even aGâteauxderivative,

because (113) is not linear in U ; hence, we refer to (113) as the first variation of J(Ω). If fh is continuous across
the mesh, then (113) reduces the Fréchet derivative in Theorem 8.

The corresponding modification of Theorem 9 is given by

J′(Ω(𝜙h ))(𝜂h ) = −
∫
𝜕Ω∖E

fh
𝜂h|∇𝜙h|dS

−
∫
E

[
fh,+|∇𝜙h,+|

(
1+ sgn(𝜂h(∇𝜙h ⋅ n))

2

)
+ fh,−|∇𝜙h,−|

(
1− sgn(𝜂h(∇𝜙h ⋅ n))

2

)]
𝜂h dS,

(114)

where we have assumed that sgn(∇𝜙h,+ ⋅ n) = sgn(∇𝜙h,− ⋅ n) on E with 𝜙h,± denoting the restriction of 𝜙h

from T±. If fh and∇𝜙h are continuous across the mesh, then (114) reduces the Fréchet derivative in Theorem 9.

We discuss the effects on the numerics of the domain boundary lying along a mesh facet in Section 6.3.

5 Unfitted shape optimization

We consider a discrete form of the optimization problem discussed in Section 2.2 using the unfitted formulation

in (24). Furthermore, we develop a gradient-descent optimization method to find discrete minimizers using the

level set shape derivative formulas derived earlier.

5.1 Admissible set

The domain Ωh is parameterized by a level set function 𝜙h ∈ Bh. Thus, in principle, we seek to minimize a

shape functional J(Ωh) over the set of admissible shapes

̃h =
{
𝜑h ∈ Bh ∣ c−1 ⩾ |∇𝜑h| ⩾ c

}
(115)

for some suitable constant c > 0, where the inequality constraints are needed to ensure the domain does not

degenerate. Unfortunately, ̃h is not a convex set.

Therefore, we define a localized admissible set, that is convex, in order to pose a well-definedminimization

problem. Suppose we have a given domainΩh that is represented through the level set function𝜙h ∈ ̃h. Next,

define the convex set

(Σ) = {𝜑h ∈ Bh ∣ |∇𝜑h| ⩽ c∕2, 𝜑h|Σ = 0}, (116)

where Σ ⊂ 𝜕D̂, which may be empty, is used to impose additional design constraints in our optimization (see

Figure 4 for an example). Now, define the local admissible set h(𝜙h,Σ) = {𝜙h} + (Σ), where 𝜙h is a given

reference level set function, and note that any 𝜓h ∈ h(𝜙h,Σ) satisfies 𝜓h = 𝜙h + 𝜑h, for some 𝜑h ∈ (Σ)
and

|∇𝜙h +∇𝜑h| ⩾ |||∇𝜙h|− |∇𝜑h||| = |∇𝜙h|− |∇𝜑h| ⩾ c − c∕2 > c∕2 > 0.
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Ergo, any 𝜓h ∈ h(𝜙h,Σ) parameterizes a well-defined domain as its sub-zero level set. In our computations,
we iteratively update the convex seth(⋅,Σ) in our gradient descent procedure (see Section 5.4).

In practice, we donot allow |∇𝜙h| to become close to 0 during the optimization. In fact, we strive tomaintain|∇𝜙h| ≈ 1 or at least |∇𝜙h| ⩾ 1

2
. Then, the constraint in (116) corresponds to |∇𝜑h| ⩽ 1∕4. During the optimiza-

tion, we periodically reinitialize𝜙h so that it is close to a signed distance function having the same zero level set

as before (see Section 5.4).

5.2 Discrete optimization problem

For any 𝒗h ∈ Vh(Ωh(𝜙h)), let J
(
𝜙h;𝒗h

)
≡ J
(
Ωh(𝜙h );𝒗h

)
be the shape (cost) functional in (5). For a given ref-

erence domain Ωh(𝜙̂h ), with reference level set function 𝜙̂h, consider the following minimization problem

J
(
𝜙h,min;uh(𝜙h,min )

)
= min

𝜙h∈h(𝜙̂h,Σ),
uh∈Vh(Ωh(𝜙h ))

J
(
𝜙h;uh

)
subject to uh solving (24) on Ωh(𝜙h ),

(117)

where uh(𝜙h) ≡ uh(Ωh(𝜙h)). Since Bh is finite dimensional, h(𝜙̂h,Σ) effectively enforces a bounded Lipschitz
constant on the domains it contains; thus,h(𝜙̂h,Σ) has enough compactness to ensure existence of aminimizer
(see [26]).

We rewrite the minimization problem using a Lagrangian to free the PDE-constraint, i.e. for any 𝜙h ∈
h(𝜙̂h,Σ), define

L
(
𝜙h;𝒗h,qh

)
:= J

(
𝜙h;𝒗h

)
− Ah

(
Ωh(𝜙h );𝒗h,qh

)
+ 𝜒h

(
Ωh(𝜙h );qh

)
∀ 𝒗h,qh ∈ Bh, (118)

and note that by (24) the following property holds

J
(
𝜙h;uh(𝜙h )

)
= L
(
𝜙h;uh(𝜙h ),qh

)
∀qh ∈ Vh(Ωh(𝜙h )) (119)

for any 𝜙h ∈ ̃h. The Lagrangian framework allows us to characterize the minimizer in (117) as a saddle-point,

i.e.
L
(
𝜙̄h; ūh, p̄h

)
= min

𝜙h∈h(𝜙̂h,Σ),
uh∈Vh(Ωh(𝜙h ))

max
qh∈Vh(Ωh(𝜙h ))

L
(
𝜙h;uh,qh

)
(120)

for some 𝜙̄h = 𝜙̂h + q̄h with q̄h ∈ (Σ), ūh ∈ Vh(Ω̄h ), and p̄h ∈ Vh(Ω̄h ), where Ω̄h ≡ Ω̄h(𝜙̄h ). Since L is Fréchet

differentiable, with 𝛿aL
(
Ω;𝒗,q

)
(⋅) denoting the Fréchet derivativewith respect to the argument a, the following

first order conditions must hold for ūh and p̄h:

𝛿qhL
(
𝜙̄h; ūh, p̄h

)
(zh ) = 0, 𝛿

𝒗h
L
(
𝜙̄h; ūh, p̄h

)
(𝒘h ) = 0 ∀ zh,𝒘h ∈ Vh(Ω̄h ), (121)

which implies that ūh and p̄h solve the following variational problems

Ah

(
Ω̄h(𝜙̄h ); ūh,𝒗h

)
= 𝜒h

(
Ω̄h(𝜙̄h );𝒗h

)
∀𝒗h ∈ Vh(Ω̄h ),

Ah

(
Ω̄h(𝜙̄h );𝒘h, p̄h

)
= 𝛿

𝒗h
J
(
𝜙̄h; ūh

)
(𝒘h ) ∀𝒘h ∈ Vh(Ω̄h ).

(122)

Thus, 𝜙̄h = 𝜙h,min, Ω̄h = Ωh,min, ūh = uh(𝜙h,min ) solves (24) on Ωh, min, and p̄h = ph(𝜙h,min ) solves an adjoint

problem. In addition, we have the following first order condition for 𝜙̄h:

L′
(
𝜙̄h; ūh, p̄h

)
(rh − q̄h ) ⩾ 0 ∀ rh ∈ (Σ). (123)
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5.3 Reduced gradient

Note that, ultimately,we are after the derivative of the reduced functional
(
𝜙h

)
:= J

(
𝜙h;uh(𝜙h )

)
in (119), i.e. we

seek to compute the level set shape derivative  ′(𝜙h

)
(𝜂h ) ≡ J′

(
𝜙h;u(𝜙h )

)
(𝜂h ), so that we can perform gradient

based optimization. This is given by the Correa-Seeger theorem [20, pg. 427]:

 ′(𝜙h

)
(𝜂h ) = L′

(
𝜙h; ūh(𝜙h ), p̄h(𝜙h )

)
(𝜂h ) ∀ 𝜂h ∈ Bh (124)

for any 𝜙h ∈ ̃h. In our case, because of (5), the problem is self-adjoint and p̄h = ūh.

We now apply our results from Section 4.4 to compute (124). However, our formulas only consider bulk func-

tionals (not boundary functionals). Thus, we restrict our problem by taking 𝛾N = 0, ΓD = ∅, and gN ≠ 0 only

within Σ ⊂ 𝜕D̂. This allows us to avoid differentiating any boundary integrals (see discussion in Section 7). In

addition, for convenience, we take f = 0, which implies that 𝜒h

(
Ωh;𝒗h

)
is independent of any shape pertur-

bations in (Σ).
Evaluating the Fréchet derivatives, we obtain for all 𝜙h ∈ ̃h that

𝜒 ′
h

(
Ωh(𝜙h );𝒗h

)
(𝜂h ) = 0, J′

(
Ωh(𝜙h );𝒗h

)
(𝜂h ) = −a0 ∫

Γh(𝜙h )

𝜂h|∇𝜙h|dS(x),

A′
h

(
Ωh(𝜙h );uh,𝒗h

)
(𝜂h ) = −

∫
Γh(𝜙h )

(
2𝜇𝜺(∇uh ) : 𝜺(∇𝒗h )+ 𝜆(∇ ⋅ uh )(∇ ⋅ 𝒗h )

) 𝜂h|∇𝜙h|dS(x)
(125)

for all uh,𝒗h ∈ Vh(Ωh(𝜙h)), and all 𝜂h ∈ Bh; recall that a0 > 0 is a volume penalty parameter. Note that the

facet stabilization terms in (22) do not contribute anything because we take the facet patch selections to be fixed

and independent of the perturbation 𝜂h. Hence, since p̄h = ūh, (124) reduces to

 ′(𝜙h

)
(𝜂h ) = L′

(
𝜙h; ūh, p̄h

)
(𝜂h ) = ∫

Γh(𝜙h )

(
2𝜇|𝜺(∇ūh )|2 + 𝜆(∇ ⋅ ūh )

2 − a0
) 𝜂h|∇𝜙h|dS(x). (126)

Implementing (126) is straightforwardwithin anunfittedfinite element software, e.g.ngsolve [53],ngsxfem
[54], provided Assumption 3 holds. Otherwise, we need to compute (114), which can be problematic. Fortunately,

since 𝜙h is a piecewise polynomial, the set E in (114) must equal the entire facet F, which delivers some simpli-

fication. But (114) is still non-linear in the perturbation 𝜂h. In our computations, we simply choose a side of F,

either T+ or T−, which is automatically done by ngsxfem because the domain boundary is never allowed to fall
exactly on a mesh facet. See Section 6.3 for more discussion on this, as well as Figure 3.

Figure 3: Superellipse (p = 4) shape optimization results. Background grid of the design domain is shown along with the exact

interface in blue and the numerical interface in red. (a) Polynomial degree k = 1. (b) Polynomial degree k = 2. (c) Polynomial degree

k = 3.
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5.4 Shape optimization algorithm

Our algorithm is essentially gradient descent. Let B
(
𝜔h, 𝜂h

)
be a bilinear form defined for all 𝜔h, 𝜂h in Bh; for

example, we may take B
(
𝜔h, 𝜂h

)
=
(
𝜔h, 𝜂h

)
H1(D̂)

. Moreover, we introduce the following restricted finite ele-

ment space Qh = {𝜑h ∈ Bh ∣ 𝜑h|Σ = 0}. Then, given a current domain Ωh(𝜙h), we find a descent direction

𝛿𝜙h ∈ Qh that satisfies

B
(
𝛿𝜙h, 𝜂h

)
= − ′(𝜙h

)
(𝜂h ) ∀ 𝜂h ∈ Qh. (127)

We then update 𝜙h by 𝜙h ← 𝜙h + 𝛼𝛿𝜙h, where 𝛼 > 0 is a step-size determined through a back-tracking line

search. Note that the choice of the facet patches for stabilization stays fixed during the line search.

Asmentioned earlier in Section 5.1, wewant the level set function𝜙h to satisfy |∇𝜙h| ≈ 1 or at least |∇𝜙h| ⩾
1

2
. To satisfy this requirement, we start with an initial level set function which is the signed distance function

for our initial shape, hence |∇𝜙h| = 1 almost everywhere. The shape optimization algorithm however does

not preserve this property and over many iterations we may no longer have |∇𝜙h| ≈ 1. To remedy this, we

reinitialize 𝜙h to that of a signed distance function after a set number of iterations.

Several methods for level set reinitialization on unstructured grids exist, such as the DRLSE algorithm [55],

in which the reinitialization involves solving a fully explicit difference scheme. Other methods include [56],

which use local projections and [57], which uses a fixed-point method.

In our algorithm, we compute the signed distance function directly by sampling the boundary, comput-

ing the signed distance using a sample from the entire mesh, and then computing a regularized least squares

problem. One can also use the method in ref. [58].

6 Numerical results

We present some numerical tests to confirm the accuracy of our shape derivative formulation. Next, we solve a

pure geometric shape optimization problem (no PDE constraint) using the algorithm in Section 5.4. Finally, we

solve a shape optimization problem under the linear elasticity PDE constraint described in Section 2. All numeri-

cal tests were preformed using the NGSolve library [53] with the add-on package ngsxfem [54] for implementing
the unfitted scheme. Note that the order of the geometry approximation matches the order of the finite element

space used to solve a PDE constraint (when present).

6.1 First order accuracy test

For some fixed initial shape, given by𝜙h, we define a perturbation 𝜂h and compare our shape derivative formula

with a finite difference approximation:

J′
FD
(𝜙h )(𝜂h ) =

J(𝜙h + 𝜖𝜂h )− J(𝜙h )

𝜖

for a sequence of decreasing 𝜖. The design domain is defined to be D̂ := (0.0, 2.0) × (0.0, 1.0) and the ini-

tial shape is Ω := D̂∖Br(x0 ), where Br(x0) is the ball of radius r centered at x0 with r = 0.2 and x0 =
(0.3, 0.3). Here, the exact level set representation of Ω is 𝜙(x) = r − |x − x0| and the exact perturbation is

𝜂(x) = sin(3.3x + 2.5y). The cost functional J
(
Ω; ūh

)
is (5), where ūh solves (24) on Ω(𝜙h). All elasticity and

numerical parameters are the same as those used in Section 6.4. The exact shape derivative J′
exact

(𝜙h )(𝜂h ) is

given by (126).

We use degree k = 1 for Bh and set 𝜙h = Ih𝜙 and 𝜂h = Ih𝜂, where Ih is the standard nodal interpolant

for Bh. In doing the comparison, we compute the following

𝜁 (𝜖 ) =
||| J′exact − J′

FD

|||
𝜖

.
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Table 1: Shape derivative test accuracy results.

𝝐 J(𝝓h) J(𝝓h + 𝝐𝜼h) J′
exact

J′
FD

𝜻

1.0E-01 0.75860 0.95387 0.38283 1.95275 15.69922

1.0E-03 0.75860 0.75899 0.38283 0.38804 5.21949

1.0E-05 0.75860 0.75860 0.38283 0.38287 4.94585

1.0E-07 0.75860 0.75860 0.38283 0.38283 6.47544

Table 2: Translation test accuracy results.

t J(𝝓h(⋅, t)) J(𝝓h(⋅, t)+ 𝝐𝜼h(⋅)) J′
exact

J′
FD

𝜻

0.00 0.75860 0.75860 0.38283 0.38283 6.47544

0.05 0.74186 0.74186 0.13959 0.13959 12.51948

0.10 0.73253 0.73253 0.03503 0.03503 3.21555

0.15 0.72807 0.72807 0.02159 0.02159 4.34587

0.20 0.72670 0.72670 0.05205 0.05205 0.03602

The finite difference approximation is a first order accurate approximation of the exact formula, so if 𝜁 remains

bounded as 𝜖 → 0, then first order accuracy is confirmed; see Table 1. Note that taking 𝜖 smaller than 10−7 leads

to a loss of accuracy because of round-off errors.

6.2 Translation test

This is a similar test as in the previous section, except we translate the hole with a given velocity. Specifically, we

define Ω(t) := D̂∖Br(x(t)), where x(t) = x0 + t𝒗 with x0 = (0.3, 0.3), 𝒗 = (2.0, 1.0), r = 0.2, and set 𝜙(x, t) to

be the signed distance function ofΩ(t). We again choose the compliance functional with the same parameters,

and set 𝜂(x) = sin(3.3x + 2.5y) as our perturbation and fix 𝜖 = 10−7. We use degree k = 1 for Bh and set

𝜙h(x, t) = Ih𝜙(x, t) and 𝜂h(x) = Ih𝜂(x). Table 2 gives the results.

6.3 Geometric problem

Consider the following purely geometric shape optimization problem. Let u = u(x, y) be given by

u(x, y) = 1

p

(
1

𝛼
x p + 1

𝛽
yp
)

⇒ ∇u =
(
1

𝛼
x p−1,

1

𝛽
yp−1

)
, |∇u|2 =

(
x p−1

𝛼

)2

+
(
yp−1

𝛽

)2

(128)

for any 𝛼, 𝛽 > 0 and p ⩾ 2. Next, let 𝜆 > 0 and A0 > 0 be given, and define the following shape functional:

J(Ω) =
∫Ω
|∇u|2 dA− 𝜆

(|Ω|− A0
)
, (129)

and note that u does not depend onΩ. Standard shape differentiation yields

𝛿 J(Ω;U ) =
∫𝜕Ω

(|∇u|2 − 𝜆
)
U ⋅ 𝝂 dS (130)

for all smooth U . For any critical point Ω∗
of (129), we have 𝛿J(Ω∗; U) = 0 for all smooth U , which yields the

optimality conditions:

|∇u(x, y)|2 = 𝜆 ∀ (x, y) ∈ 𝜕Ω∗, |Ω∗| = A0 ⇒

(
x p−1

𝛼
√
𝜆

)2

+
(
yp−1

𝛽
√
𝜆

)2

= 1, (131)
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which means 𝜕Ω∗
is a superellipse depending on 𝜆. Furthermore, the area constraint determines a unique

relationship between 𝜆 and A0 through the following relation from [59]:

4(𝛼𝛽𝜆)
1

p−1

(
Γ
(
1+ 1

2 p−2

))2
Γ
(
1+ 1

p−1

) = A0, (132)

where Γ represents the Gamma function.

In our numerical test, we take 𝛼 = 1, 𝛽 = 2, 𝜆 = 0.18, and p = 4. The design domain is D̂ := (−1.0, 1.0) ×
(−1.1, 1.1) and the initial guess for the optimal shape is a disk of radius 0.5 centered at the origin. We use

k = 1, 2, 3 for Bh in the level set approximation𝜙h. See Table 3 for a list of converged J and J
′ values for different

mesh sizes.

The computed values of J′ are the vector 2-norm of the coefficients of the basis representation of the linear

form: J′(𝜙h )(𝜂h ) =
(
(|∇u|2 − 𝜆)|∇𝜙h|−1, 𝜂h)𝜕Ωh(𝜙h )

. Since p = 4, the superellipse can be represented exactly

by a discrete level set function using degree 6 piecewise polynomials. Thus, we computed the exact value of the

cost at the minimizer, which is Jexact = −0.3702425373188486 and we confirmed that | J′
exact
| = 3.3 ⋅ 10−18.

The ngsxfem add-on package to NGSolve uses an isoparametric mapping for implementing higher order

unfitted schemes. But this is technically outside of our theory becausewe assume exact integration on the higher

order interface without invoking an isoparametric map. On the other hand, ngsxfem provides an alternative

method for integrating with higher order interfaces that uses subdivision of the underlying mesh. Essentially,

with enough subdivision levels, one can get a sufficiently accurate approximation of the various integrals, which

is the approach we use in this superellipse experiment.

Figure 3 shows plots of the numerical minimizers compared against the exact minimizer. We now discuss

the practical issue of when the discrete boundary, 𝜕Ωh, lies along a mesh facet (recall Section 4.5). First, note

that if 𝜕Ωh has a non-trivial intersection with a facet F, then it must lie along the entire facet, because 𝜕Ωh is

represented by piecewise polynomials. Moreover, the ngsxfem package avoids these ambiguous situations by
adding a small number, e.g. 10−14, to the nodal values of the level set function𝜙h that lie along the facet. In effect,

this forces the derivative formula (114) to “choose a side.”

Nevertheless, when the boundary does lie along a facet, the derivative of the cost is discontinuous at that

facet. The practical effect on the optimization is that the numerical interface, 𝜕Ωh, can be “faceted.” In Figure 3a,

aside from the rounded corners where the numerical minimizer (red) deviates from the exact minimizer (blue),

we see that the red interface (mostly) follows the mesh facets along the nearly straight portions of the interface.

The exact interface, for the most part, does not lie along any mesh facets. This is particularly noticeable at the

top of Figure 3a.

It is not surprising that the exact discrete minimizer has somemesh dependence. In these experiments, and

others we have run, this effect is fairly mild. Moreover, this faceting effect is significantly reduced when using

higher order methods, as Figure 3b and c indicates.

Table 3: Superellipse (p = 4) shape optimization results. The degree of Bh is k. The stopping criteria for each simulation was when the

difference in J between successive iterations was less than 10−8.

max h
k = 1 k = 2 k = 3

| J− Jexact| | J′| | J− Jexact| | J′| | J− Jexact| | J′|
0.1 1.1700e-03 1.7223e-02 3.6038E-05 1.5115E-06 1.9625E-07 9.0576E-08

0.05 7.3293E-04 5.0726E-03 4.8018E-06 3.7531E-07 9.5482E-09 4.3523E-08

0.025 1.7098E-04 2.2085E-03 2.0907E-07 1.2123E-07 1.9605E-10 1.6617E-08

0.0125 5.7855E-05 7.8292E-04 9.4514E-08 7.6382E-08 5.7451E-11 1.5158E-08
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6.4 Shape optimization elasticity

We solve the shape optimization problem in (117), with the compliance shape functional (5), using our unfitted

FEM framework. The material parameters are 𝜆 = 0, 𝜇 = 5, and the area penalization is a0 = 0.3. Moreover,

we choose the facet stabilization parameter 𝛾 s = 2 with layer thickness parameter 𝛿 = h, and choose Nitsche

stabilization parameters 𝛾D = 10𝜇 and 𝛾N = 0.

We mimic the setup of [18] in order to compare our results. The design domain is D̂ := (0.0, 2.0) × (0.0, 1.0)

and the initial shape is depicted in Figure 4 (left), where the 10 (smaller) holes have a radius of 0.1, while the

two “holes” centered at the top right and bottom right corners have radius 0.25. Furthermore, ΓD = ∅ and Γ̂D

consists of the line segment between (0.0, 0.0) and (0.0, 0.15) and a second line segment between (0.0, 1.0) and

(0.0, 0.85). Also, gN = (0.0,−1.0) on the line segment between (2.0, 0.4) and (2.0, 0.6), which is contained in Γ̂N,

and gN = (0, 0) everywhere else. Figure 5 shows the initial domain shape for the optimization. We used a mesh

size of h = 0.02.

Note that the level set function is constrained to not change along Σ ⊂ 𝜕D̂ as depicted in Figure 4 (right).

This is to ensure the feasibility of the resulting shape. During the shape optimization process, we choose an

initial step size of 0.4, and do a backtracking line search to determine the update of the shape.

The resulting optimal shapes for both piecewise linear and piecewise quadratic Bh are nearly identical (see

Figure 6). The optimization history is given in Figure 7. The optimization for degree k = 2 used the isoparametric

mapping approach in ngsxfem because the subdivisionmethodwould have been prohibitively expensive. Since
the mesh size was h = 0.02, the isoparametric mapping was only a small perturbation from a linear triangle

element. Nevertheless, this does induce a small error in our shape derivative, which introduces a small error

when computing a descent direction. This is evidenced by the red curve in Figure 7a stopping at iteration index

≈340.
Figure 8 shows the accepted step size 𝛼 versus iteration index. For degree k = 1, the step sizes do not get

excessively small; toward the end of the optimization 𝛼 = 0.025. The same holds for degree k = 2, though it

does prematurely stop at index ≈340 as discussed earlier.
We also performed a numerical optimization (not shown) with 𝜇 = 3.846 ⋅ 103 and 𝜆 = 5.769 ⋅ 103 chosen

to model a slightly incompressible material. The optimization performed similarly with reasonable step sizes

and optimized shapes.

Figure 4: Left: initial shape for optimization algorithm.

Right: level set function constraint set Σ ⊂ 𝜕D̂ denoted by

solid lines.

Figure 5: Initial shape for the optimization algorithm. (a) The initial guess and an exaggerated displacement of the cantilever is shown.

(b) Same initial shape, but with the mesh shown.
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Figure 6: Resulting optimal shapes using degree k = 1 and k = 2 for Bh. (a) Optimal shape (exaggerated displacement) with degree

k = 1. (b) Optimal shape (exaggerated displacement) with degree k = 2.

Figure 7: Optimization history. Blue indicates degree k = 1 for Bh; red indicates degree k = 2. (a) Cost J versus iteration index. (b)

Norm of | J′| versus iteration index.

Figure 8: Accepted step size versus iteration index. The maximum step size allowed was 𝛼 = 0.4. (a) Degree k = 1 for Bh. (b) Degree

k = 2 for Bh.

7 Conclusion

We presented a numerical shape optimization technique that takes advantage of unfitted finite element meth-

ods. We showed how to compute the exact discrete shape derivative of bulk shape functionals, under mild

assumptions, and establish the Fréchet differentiability of discrete bulk shape functionals. This is done using

both the perturbation of the identity approach, as well as direct perturbation of the level set representation of

the domain. Our formulation allows for including a discrete PDE constraint and our discrete derivative mimics

the shape derivative formula from the continuous problem. In other words, our method enjoys advantages of

both the discretize-then-optimize and optimize-then-discretize philosophies.
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We illustrated our method by considering the shape optimization of an elastic body. Specifically, we used a

Lagrangian approach to deal with the linear elasticity PDE constraint. Furthermore, our level set based shape

derivative approach allowed for directly optimizing the level set representation of the domain. No ad-hoc exten-

sion velocities were needed to update the level set function. Our numerical results demonstrated the effective-

ness of our approach. For instance, the step sizes chosen by our gradient descent method are not excessively

small, which can happen with some optimize-then-discretize approaches.

Our method can be easily applied to a two-phase material problem, such as an elastic body with a fixed

shape but with two different material regions, Ω1 and Ω2, inside. In this case, the level set function marks one

of the phases, say Ω1, and the weak formulation involves a sum over the two sub-domains. As long as there is

no boundary integral over 𝜕Ω1 ∩ 𝜕Ω2 in the weak form, our methodology can be applied.

A point of future work is to extend ourmethod to handle boundary functionals. Most likely, this will require

some kind of regularization of the cost functional. Another area to investigate is the connection of our method

to time-dependent problems, i.e. to extend our approach to solving PDEs in time-dependent geometries, as well

as shape optimization with time-varying shape constraints.
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