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We present a method for generating 2-D unstructured triangular meshes that undergo
large deformations and topological changes in an automatic way. We employ a method
for detecting when topological changes are imminent via distance functions and shape
skeletons. When a change occurs, we use a level set method to guide the change of topol-
ogy of the domain mesh. This is followed by an optimization procedure, using a variational
formulation of active contours, that seeks to improve boundary mesh conformity to the
zero level contour of the level set function. Our method is advantageous for Arbitrary-
Lagrangian–Eulerian (ALE) type methods and directly allows for using a variational formu-
lation of the physics being modeled and simulated, including the ability to account for
important geometric information in the model (such as for surface tension driven flow).
Furthermore, the meshing procedure is not required at every time-step and the level set
update is only needed during a topological change. Hence, our method does not signifi-
cantly affect computational cost.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

Free boundary problems arise in many areas of mathematics, physics, and engineering. Understanding free surface
dynamics is important for applications such as coating flows [7], simulating water wave dynamics for computer graphics
[30], and surface tension/curvature driven flows in micro-fluidic devices such as Hele-Shaw flow [16,34,92,89]. Other exam-
ples involve fluid–structure interactions, such as polymer filaments in an active flow field [82], interaction of a lipid bio-
membrane with a surrounding fluid [99], and animal locomotion in a fluid medium [1].

However, in any application with a moving boundary, the deformation of the domain is the main obstacle in obtaining a
tractable physical model. In addition, some of these applications exhibit topological changes (i.e. pinching or joining of dis-
joint parts of the interface) and prove even more difficult to model. Examples of this are budding of lipid bio-membranes [6],
droplet pinching in an electro-wetting device [15,91], and many other types of fluid flow [25].

One of the difficulties in modeling a topological change is in handling the disparate length and time scales involved. For
example, a pinching droplet may have two macroscopic pieces connected through a thin microscopic neck that is collapsing.
And the time scale of the neck collapse may be quite small compared to the time scale of the bulk droplet motion. Further-
more, it is not clear how best to model the true physics when a topological change is occurring. Some asymptotic analysis of
. All rights reserved.
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the behavior of the Navier–Stokes equations has been done for axisymmetric fluid pinching [27,28]. But one can argue that a
continuum model is not adequate and a model which includes atomistic behavior is more correct. In [45,46] it was shown
that adding a stochastic component to the Navier–Stokes equations was effective in modeling the behavior of nano-fluids in
a non-vacuous environment when compared to a molecular dynamics simulation.

But some applications do not require a detailed understanding of the local behavior around a topological change. In the
electro-wetting device it is enough to only acknowledge the fact that a droplet has pinched or joined. In this spirit, the
remaining difficulty is in developing a simulation tool that can go through a topological change in a reasonable way, while
properly ‘‘piecing” together the continuum model that governs the rest of the behavior.

In this paper, we develop a method for generating explicit unstructured triangular meshes in 2-D that conform to a
smooth closed curve and can be used with Arbitrary-Lagrangian–Eulerian (ALE) methods. Furthermore, our method allows
for topological changes of the domain and can continue deforming automatically without user intervention. Moreover, it has
the potential for extension to 3-D tetrahedral meshes (see Section 6.5). Our method is targeted at variational problems where
accurate knowledge of the boundary is critical to obtaining a robust solution. For example, problems involving higher order
boundary information (i.e. surface tension flow, Willmore flow), optimization problems that require computation of surface
quantities (i.e. shape optimization), and many fluid–structure interaction problems fall into this group. In particular, the fi-
nite element method is a common tool used to solve these types of problems and we feel our method would be useful in
these areas.

1.2. Literature overview

One popular method for capturing free surface motion is the level set method [61,70], which advects a scalar field func-
tion whose zero level set represents the interface. Level set methods have the advantage of being completely Eulerian and
can automatically handle topological changes, though the physics underlying such changes is often not well resolved. In par-
ticular, level set methods require a small amount of diffusion to allow for topological changes to occur. This can cause prob-
lems with mass conservation and requires special handling [29,75] or refinement [52]. An alternative approach is to use the
coupled level set-volume of fluid (CLS-VOF) method to ensure mass conservation [80,81,86,87]. Another issue of the level set
method, for curvature driven flows, is they typically use an explicit calculation of the interface curvature which can create
numerical artifacts and noise. Other implicit surface methods include the phase field method [97,79], which uses a diffuse
interface model (as opposed to a sharp or explicit interface). Phase field methods have similar advantages and drawbacks as
the level set method.

Alternatively, one can use an explicit representation of the interface, such as an interface mesh or marker particles to
‘‘track” the interface. These are called front-tracking methods [35,85,18,2], some of which are designed to track shock fronts
in hyperbolic equations [49,50,93]. Furthermore, there exist numerical PDE techniques that can take advantage of the intrin-
sic representation of the interface [4,26,43]. However, the main disadvantage of these explicit surface representations is the
computational difficulty in handling large deformations of the mesh. In two dimensions, the mesh can be adjusted through
local re-meshing [76] or mesh smoothing [31], but can still be awkward. In three dimensions, it is not clear what the best
methods are for adjusting a mesh as it deforms.

There are a variety of mesh generation methods. Some take an optimization viewpoint [69,56,55] while others [13,14] use
a variational form to minimize the interpolation error to do local re-meshing. Some methods use specific tilings of 3-D space
[84] or marching cubes [51] or triangles [40]. Still others make use of implicit functions to create conforming meshes
[58,59,57,11,63,64,94] as well as adaptive methods to create meshes adapted to the local feature size [39,48]. Some of these
methods also include mesh smoothing operations (see [20,60,73,96,44] for more smoothing methods).

Currently, there exist some methods for taking explicit meshes through topological changes. Some use ‘‘surgery”
[22,23,17,12] to cut the mesh or use a pre-defined bridge [66] in 3-D. This is a viable option when the topological change
has a well-defined structure. But the general nature of topological changes is much more complicated, especially in 3-D.
For example, a thinning neck of fluid could become very flattened and pinch in the middle leading to a torus like structure
with one or many ‘‘handles”. In this case, it is not clear how to reconstruct the mesh without a guide or indication of the new
topological state of the domain.

Considering the trade-offs between implicit surface methods and explicit Lagrangian meshes, it is reasonable to suggest a
hybrid approach. This would combine the accuracy of the explicit mesh methods with the ease of topological transformation
of the level set method. One version of this is given by [5], which forms an explicit representation of the boundary at each
time step that is coupled with their level set method and is advantageous for tracking of surface characteristics, such as tex-
ture coordinates, for use in rendering fluid interfaces for computer graphics. But their method does not generate an interior
bulk mesh. Other relevant work includes [54], where they introduce the virtual node algorithm as a way of tracking topo-
logical changes of explicit triangular or tetrahedral meshes. However, their method is not concerned with the correct local
geometry, since they were mainly concerned with solving elasticity equations, as opposed to surface tension driven flow.

The method we develop takes inspiration from some of the ideas in the above references and combines them in a novel
way to generate meshes of arbitrary domains. In addition, we introduce a shape optimization approach for ensuring mesh
conformity. We emphasize that our re-meshing method does not need to be executed at every time step of the simulation.
The number of re-meshes only depends on the continuous deformation being approximated and the number of topological
changes.
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1.3. Algorithm overview

Our algorithm primarily consists of a special re-meshing routine that is embedded inside a time stepping loop. We make
extensive use of distance functions and shape skeletons to resolve the shape and topology of the domain when generating a
new mesh. We also use a shape optimization approach to ensure that the new mesh conforms to the boundary of the do-
main. Topological changes are implemented by locally diffusing the distance function in the neighborhood of the change.

The main point of our algorithm is to provide a way for generating meshes that can follow an arbitrarily complex defor-
mation and can continue through topological changes without having to specify the type of topological change, or specify geo-
metric details, or perform surgery on the mesh. Even if the physics of the topological change is well understood, it is not
necessarily clear what the mesh should be after the change. This is especially important in three-dimensions. Therefore, this
algorithm is an answer to the question of how to compute and mesh through a topological change, but not to the question of
modeling the physics of the change itself.

We highlight some aspects of the algorithm in the following list. Details of each item are given in the sections that follow.
Also, see the flowchart given in Fig. 1 for a high level summary.

� Time step adaptation. The size of the time-steps dt during a simulation are controlled by the desired accuracy and the
amount of shear in the velocity field (see Section 2.2).
� Velocity extension. As the physical simulation of a moving domain progresses, the velocity on the domain boundary is

extended to the entire mesh in a smooth way and used for updating the domain (see Section 2.3). This is done to prevent
frequent re-meshing.
� Mesh smoothing. We use standard techniques to improve distorted elements (see Section 2.4).
� Re-meshing via the distance function. We develop an adaptive method for generation of unstructured triangular meshes

that uses the distance function (with respect to the domain boundary) and shape skeleton. We are able to generate well-
resolved and well shaped meshes by straightforward processing of the distance function and shape skeleton (see
Section 3.2).
� Ensure mesh conformity. We use a shape optimization approach to ensure that the generated mesh conforms to the

domain boundary (see Section 3.4).
� Detection of imminent topological changes. Any sufficiently ‘‘thin” region in the mesh is considered a topological change

and can be found by simple processing of the distance function and shape skeleton. These regions are used to help guide
mesh adaptation in those areas to ensure accurate resolution of the shape. See Section 4.1 for more discussion.
� Updating domain topology. This is achieved by locally diffusing the distance function in the thin regions only (see Sec-

tion 4), followed by our shape optimization approach to ensure mesh conformity.

1.4. Notational convention

We now introduce some notation that will be used throughout (see Fig. 2 and Table 1). Let C be the interface or manifold
between two distinct phases. We label the interior phase Xint and the exterior phase Xext. The whole domain is defined by
X :¼ Xint [Xext with outer boundary Cext.

In general, we denote a fixed triangulation by T with possible superscripts. For example, T int will denote a triangulation
of Xint. We denote distance functions by a Greek letter and specify the triangulation that they are defined on, e.g. /ðT Þ. The
Fig. 1. High level block diagram of a single time step with possible re-meshing and topological changes. The current (interior) domain boundary Ck � @Xk
int

and mesh T j have different indices because the mesh topology does not necessarily change at each time-step (i.e. only mesh vertices change). The physics
(e.g. velocity field, pressure, etc.. . .) is simulated with ðCk; T jÞ. Using a smooth update velocity, we obtain the domain shape at the next time index. Note that
the mesh topology does not change, though the vertex positions do change. If the element qualities are not bad and a topological change is not imminent,
then we proceed to the next time step. Otherwise, we execute the re-mesh routine. This generates a new mesh topology that geometrically conforms to the
boundary Ck+1. Note that Ck+1 also changes if a topological change occurs. Finally, we interpolate the solution variables from the old mesh topology T j to the
new topology T jþ1 and proceed to the next time step. Section 3 further describes the re-mesh routine.



Fig. 2. Continuous domain and discrete mesh with symbolic notation. The interior domain is Xint, the shaded region is Xext, with two-phase boundary
C :¼ Xint \Xext . The outer (continuous) boundary is denoted Cext. The entire domain is defined as X :¼ Xint [Xext . The discretization of the continuous
domain is represented as a set of interior triangles T int and exterior triangles T ext , with a set of mutual edges E representing the discretization of the
boundary C. The entire triangulation is given by T :¼ T int [ T ext. In our algorithm, we use the signed distance function / with respect to C and compute it
over the entire triangulation T [8]; this dependence is denoted by /ðT Þ. In this paper, we take / to be positive (negative) over the interior (exterior). The
zero level set of / corresponds exactly to the discrete representation of C because the triangulation is conforming.

Table 1
Symbol definitions.

Symbol Definition

X Entire continuous domain (both phases)
C Closed boundary C :¼ Xint \Xext Contained in X
T A triangulation of X

T old A previous triangulation of X

/ Distance function to C
VSk Vertices (in T old) that define shape skeleton
n Distance function to shape skeleton
G A new triangulation (default)
GðE : /Þ Mesh conforms to {/ = 0}
�smooth Smoothing parameter (see Section 3.2.3)
t Time
dtmax Maximum allowed time step
u Vector velocity
usmooth Smooth velocity extension
xdisplace Displacement function to deform mesh
D(u) Symmetrized gradient operator
e0 Artificial diffusion parameter
X Surface parameterization
J(C) Cost functional; see Eq. (10)
dJ(C,V) Shape derivative in direction V
I Contin. piecewise linear interpolation operatoreC Set of points given by E
Xint, Xext Interior, exterior domain
Cext External boundary Cext :¼ @X
T int , T ext Triangulation of interior, exterior phases

T init An initial triangulation

wtop Level-set function after topological change
Vthin Subset of VSk that represent thin regions
nthin Distance function to thin regions
E Set of edges contained in G
j Curvature
jP0 , jP1 FEM approximation of curvature
dt Time step
x Position coordinate
(u,v) u = (u,v)
m Outward normal vector
s Positively oriented tangent vector
dneck Minimum neck thickness
h Cut-off function (localizes diffusion)
rC Surface gradient operator
V Vector perturbation of surface
u Optimal descent direction
a Shape optimization step size
Ck Shape optimization iterate

6246 R.H. Nochetto, S.W. Walker / Journal of Computational Physics 229 (2010) 6243–6269



R.H. Nochetto, S.W. Walker / Journal of Computational Physics 229 (2010) 6243–6269 6247
symbol E will denote a set of edge segments (whose union is a closed manifold) that is shared by two separate triangulations,
for instance at the interface between T int and T ext. In other words, E will be the discrete representation of a two-phase inter-
face. Lastly, we let G denote a generic triangulation that is not fixed, meaning that G is in the process of being modified (i.e.
triangles are being added/removed, or adaptive refinement is currently running). Moreover, given a set of edge segments E
contained in G, we let GðE : /ðT ÞÞ denote the dependence of G on the distance function /, meaning that G has been deformed
so that E conforms to the zero level set {/ = 0}. This is important when we modify a generated mesh to conform to some zero
level set. If we just write G, this refers to the mesh in the default, unmodified state.

2. Basic concerns

We start by stating some basic ideas that are useful for any methods using ALE techniques.

2.1. Main cause of mesh distortion

Mesh distortion for a triangular mesh that is moving with a given velocity field (which comes from the physics being sim-
ulated) is directly due to gradients in the field (i.e. the velocity field has some shear component). This clearly happens when a
topological change is underway. In this section, we derive a basic estimate that relates the maximal time-step of a mesh up-
date (while preventing mesh inversion) to the gradient of the velocity.

A diagram of a single triangle in some triangulation is given in Fig. 3. The 2-D velocity field is assumed to be linear over the
triangle and is denoted by u = (u,v). For simplicity, we assume that v = 0 and that u at the points p1 and p2 is denoted by u1

and u2, respectively, and we assume that u1 > u2. The points p1 and p2 move with constant velocity u1 and u2 because we are
updating the triangle vertex positions by taking a discrete time-step. We want to estimate how large the time step must be
for the point p1 to cross over p2; this will invert the triangle. The relative distance between p1 and p2 (after moving one step)
is given by hmax � dt(u1 � u2), where dt is the time-step of the mesh update. Hence, if the relative distance becomes zero, then
dt is given by
Fig. 3.
compon
decreas
dt < 1=
1
dt
¼ u1 � u2

hmax
¼ @u
@x
:

A similar relation holds when looking for the time to cross-over of the points p3 and p4 with velocity (0,v),
1
dt
¼ @v
@y

:

Naturally, a conservative estimate for the maximal time-step that will not cause the triangle to invert is
dt <
Cs

jruj ; ð1Þ
for some positive constant 0 < Cs 6 1 (we use Cs :¼ 0.1). Of course, the triangle may be very distorted after updating. Further
consideration suggests that (1) should actually be
dt <
Cs

jDðuÞj ; DðuÞ :¼ ruþ ðruÞy

2
: ð2Þ
Note that D(u) = 0 for any rigid motion [83], which does not cause mesh distortion. The choice of Cs = 0.1 is conservative,
meaning that making Cs smaller would lead to unnecessarily small time steps (i.e. no parameter tuning is needed here).
A mesh triangle undergoing deformation. The velocity field over the triangle is labeled (u,v) and is linear over the triangle. The values of the x
ent of velocity are labeled u1 and u2 at the points p1 and p2, respectively (with u1 > u2). As p1 and p2 move in the x direction, their relative distance
es. The rate of decrease depends on @u

@x. This gives an estimate of the largest time step dt that can be taken before p1 and p2 cross-over, which is
@u
@x. Any larger time-step will cause the triangle to be inverted.
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2.2. Time-stepping

We adopt a simple method for adapting the time-step. First, the maximum time step dtmax is set by the desired accuracy.
Then, based on (2), we choose the current time step dt such that
dt :¼ min dtmax;
Cs

max
T
jDðuÞj

0
@

1
A; ð3Þ
where u is a piecewise linear approximation (over the triangulation) of the true velocity. If the true velocity is a Lipschitz
function, the estimate (3) is essentially independent of the triangulation as long as the velocity field is well resolved. Other-
wise, it depends on the triangle’s diameter, shape regularity, and the nature of the singularity in the derivative of the veloc-
ity. For example, suppose the true velocity has a

ffiffiffiffiffiffi
jxj

p
type singularity. Then one can show that dt K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diamðTÞ

p
, where T is a

triangle in the neighborhood of the singularity.

2.3. Smooth velocity extension

In lieu of Section 2.2, it is desirable to update the domain mesh with a velocity field that has minimal shear (i.e. with jruj
minimal). A simple way to do this is by harmonic extension. Let usmooth be a piecewise linear function over the triangulation
T which solves the standard weak formulation of the following vector Laplace equation
� Dusmooth ¼ 0; X;
usmooth ¼ u; C;
@usmooth

@m
¼ 0; Cext:

ð4Þ
where u is the true velocity field that comes from the physics of the problem. Solving the Laplacian guarantees that
jrusmoothjwill be minimized in the L2 sense [32], thus subjecting the mesh triangles to minimal distortion. Moreover, updat-
ing the shape with usmooth keeps the same shape evolution. It is not necessary to update the interior vertices of the mesh of X
with the true velocity. Hence, we take advantage of this freedom by using a smooth extension of the true velocity.

Of course, solving (4) will incur extra computational cost in addition to simulating the physics. However, we make the
following points: (1) if an iterative solver is used, it is not necessary to demand high accuracy in the solution because usmooth

plays no role in the physics; (2) if the mesh topology did not change from the previous time step, then the previous solution
of (4) can be used to ‘‘warm-start” the iterative solver and (3) it may be possible for the user to take advantage of a canned
solver/package for (4). Multilevel solvers are known to be quite efficient on unstructured grids [10,95]. Moreover, our mesh
generation method in Section 3 can be trivially modified to generate a set of nested meshes for use in a multigrid algorithm
[3,41,42,68].

2.4. Mesh smoothing

Local mesh smoothing is a useful tool for improving an existing mesh. Various techniques for improving a 2-D triangu-
lation exist, such as Laplace smoothing which averages the positions of mesh vertices based on its neighbors. In addition, one
can use an optimization method, such as in [31], which moves the vertices of the mesh in an attempt to optimize the local
quality metric of the triangulation [47]. One advantage of this method is that it is guaranteed not to invert elements and
produces well-shaped elements for the given mesh topology. Mesh smoothing is a supplementary tool that we use to pre-
vent frequent re-meshing.
3. Mesh generation

This section describes our re-meshing algorithm. For simplicity, we will consider problems where only an interior phase
is of interest, such as for fluid droplets in air. Thus the meshing of the exterior is not particularly critical. Our method can be
easily generalized to the case of an arbitrary domain that contains two (or more) phases of interest (see Section 6.3).

3.1. Approximating the shape skeleton

Suppose we have a domain X that contains an interior closed manifold C. Assume we have the signed distance function /
(to C) defined on all of X (recall Fig. 2). The shape skeleton is the locus of points wherer/ is discontinuous [71,77]. Knowing
the shape skeleton gives valuable information about the geometry and topology as well as potential locations of topological
changes.

Finding the skeleton on a discrete grid is straightforward when r / points in nearly opposite directions on either side of
the discontinuity. These points correspond directly to where a topological change may be imminent. Other points where
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changes inr/ are less abrupt are harder to detect, but less important for our purposes. Hence, we propose a method of esti-
mating the location of part of the shape skeleton that only corresponds to abrupt changes in r/.

Suppose we have a triangulation T old (of X) that conforms to the boundary C. We denote the piecewise linear signed dis-
tance function (to C) on T old by /ðT oldÞ. We use the method in [8] to compute / because it has no restriction on the trian-
gulation. Note that the zero level set of /ðT oldÞ exactly represents C because the mesh is conforming. Let VSk be the set of
vertices in T old that locate discontinuities in r / according to some tolerance. VSk is found by executing Algorithm 1.

Algorithm 1. Sweep edges and vertices of mesh

1: Set tolerance Sktol such that 0.0 < Sktol < 1.0. Default value: Sktol = 0.5.
2: Initialize VSk ¼ ;.
3: # PART 1
4: for all edges E in T do
5: For each E, compute:
EJ :¼ � r/þ
j r/þ j

� r/�
j r/� j

; �1 6 EJ 6 1; ð5Þ
where /+ and /- are evaluated on opposite sides of E.
6: if EJ > Sktol then
7: include the end points of E in VSk.
8: end if
9: end for
10: # PART 2
11: for all vertices v in T do
12: For each v, compute a local weighted average of r// jr/j at v by
AVE :¼ 1� 1
jxj

X
T�x

jTj r/
jr/j jT

�����
�����; 0 6 AVE 6 1; ð6Þ
where x is the local ‘‘star” of triangles that share v as a vertex.
13: if AVE > Sktol

14: include v in VSk.
15: end if
16: end for
17: Remove all vertices from VSk that lie on the manifold C.
18: return VSk.
Roughly speaking, Part 1 of Algorithm 1 looks for large jumps in r/ across mesh edges and Part 2 identifies vertices
where r/ points towards or away from the vertex. In most cases, Part 1 is enough. However, consider the case when C
is a circle, where the shape skeleton is just the center point. If a mesh vertex is perfectly aligned with the circle’s center, then
Part 1 would not detect it, but Part 2 would.

In subsequent sections, we use / and VSk to create a new mesh that is adaptively refined so that it can resolve the topol-
ogy and geometry of C. We emphasize that the complete shape skeleton can be complicated, i.e. lots of fingering due to small
undulations of the boundary. But we only need the extreme parts of the skeleton to correctly resolve the topology.

The choice of Sktol = 0.5 was dictated by numerical experiments and appeared to be relatively robust; recall that we only
need the abrupt changes inr/. Note: choosing Sktol close to 1 is too restrictive and would only detect the extreme changes in
r/.

3.2. Generate mesh

Before handling any topological changes, we must first generate a new well-shaped mesh that conforms to the current
manifold C.

3.2.1. Initial mesh
We start by creating an initial coarse mesh that contains C, followed by subsequent adaptive refinement to resolve the

geometry and topology of C. Define a domain X to be a rectangular box with dimensions chosen such that it contains C and
that dist (C,Cext) > Cbuffer diam (C) (default value: Cbuffer :¼ 0.3). The initial triangulation of X (denoted T init) is taken to be a
coarse cartesian like grid with a crisscross pattern (see Fig. 4, upper left corner). The choice of Cbuffer = 0.3 is not particularly
critical; it only needs to be sufficiently large to prevent potentially large deformations between C and Cext.



Fig. 4. Illustration of adaptive refinement. The bolded black curve corresponds to the zero level set of /ðT oldÞ. (1) Initial coarse mesh that covers the
interior manifold C with extra surrounding buffer region. (2) Resulting adaptively refined mesh that resolves the topology of C. (3) Zoom-in of
region that is close to a topological change. The dense refinement in between the two circles is due to the presence of the shape skeleton (not
shown) and the thinness there; see Sections 3.2.2 and 4.1.2. Extra refinement in narrow regions is useful for resolving topological changes. (4)
Another zoom-in.
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3.2.2. Adaptive refinement

Let / T old
� �

be the signed distance function (to C) on the old triangulation T old. Also, let n T old
� �

be the distance function

to the skeleton represented by the set of vertices VSk; we can compute this by the same method we used for / [8]. Our refine-
ment method is given in Algorithm 2. The idea is to adaptively refine the mesh until none of the triangles intersects both the
shape skeleton and the interface (see Fig. 4, lower left corner). It is guaranteed to terminate as long as dist ({/ = 0},
{n = 0}) > 0. This is the case as long as C approximates a smooth curve. The mesh G produced by this algorithm well resolves
the topology of C. Note that we need to interpolate / and n onto the mesh G in Algorithm 2.

Algorithm 2. Adaptive refinement

1: Initialize triangulation G :¼ T init. Set Cadapt to be a constant such that 0.0 < Cadapt 6 2.0.
Default value: Cadapt = 2.0.

2: loop
3: Initialize M¼ ;.
4: for all triangles T in G do
5: Estimate triangle diameter: let LT be the length of the longest edge of T.
6: if LT P CadaptminT/ and LT P Cadapt min

T
n then

7: include T in M.
8: end if
9: end for
10: if M – ; then
11: Execute the longest edge bisection routine [67] on G with the marking M.
12: else
13: Exit loop.
14: end if
15: end loop
16: return G.



The choice of Cadapt = 2.0 is not critical and was found to work for a wide range of test cases. Choosing Cadapt smaller only
leads to excessive refinement near the interface C. Ergo, for most applications, C = 2.0 should be sufficient.
adapt

3.2.3. Refine by curvature
In order to ensure that G resolves the geometry of C, we further refine it using the curvature of C as a guide. To facilitate

this, we must estimate the curvature of C on the old mesh T old. One method involves computing second derivatives of the
distance function /. However, we computed / as a piecewise linear function over T old, so second derivatives would not
make sense.

But we do have an explicit mesh for the manifold C, which we can use directly. Let m be the piecewise constant normal
vector of the polygonal boundary C and xi be the position of a vertex of C. Then we define a continuous piecewise linear
approximation m̂ of the normal vector by solving the following variational problem for all continuous piecewise linear vector
functions v on C:
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�smooth

Z
C
rCg � rCv þ

Z
C
g � v ¼

Z
C
m � v; ) m̂ðxiÞ :¼ gðxiÞ

jgðxiÞj
ð7Þ
i.e. (7) is a smoothed L2 (C) projection with a re-normalization to ensure unit length. With this, we can compute a piecewise
constant approximation of the curvature via jP0 :¼ rC � m̂ ¼ ð@sm̂Þ � s, where @s is the tangential derivative. The smoothing
parameter �smooth is used to prevent over-estimating the curvature in the case where the mesh is under resolved. In our com-
putations, we take �smooth = 10�6.

In Algorithm 3, we need to interpolate the manifold curvature onto nearby triangles. Therefore, for convenience, we de-
fine a continuous piecewise linear approximation jP1 of jP0 by a standard L2 projection, i.e. solve
Z

C
jP1l ¼

Z
C
ðrC � m̂Þl ð8Þ
for all continuous piecewise linear functions l on C. This gives an estimate of the curvature at the vertices of C. We then
define an extension jextend of jP1 to the entire triangulation T old by solving a scalar Laplace problem just like (4), except
the boundary data is given by jP1 . For efficiency, one only needs to extend the curvature to a narrow band of triangles in
the neighborhood of C.

The purpose of Algorithm 3 is to ensure that all triangles close to C are small enough to resolve the curvature of C. This
allows for better approximation of C in Section 3.4. The choice of CR = 0.2 is conservative and works well for our test cases.
Setting CR to a smaller value just gives more refinement near the interface C.

Algorithm 3. Refine for curvature

1: Initialize triangulation G with result from Algorithm 2. Set CR to be a constant such that 0.0 < CR 6 0.3.
Default value: CR = 0.2.

2: loop
3: Initialize M¼ ;.
4: for all triangles T in G do
5: Estimate triangle diameter: let LT be the length of the longest edge of T.
6: Estimate minimum radius of curvature near T: R minðTÞ :¼ 1=max

T
jextend.

7: if LT P min
T

/ and LT P CR Rmin(T) then

8: include T in M.
9: end if
10: end for
11: if M – ; then
12: Execute the longest edge bisection routine [67] on G with the marking M.
13: else
14: Exit loop.
15: end if
16: end loop
17: return G.
3.3. Select candidate manifold

Now that we have a new well-shaped mesh G, we must deform it so that it conforms to the zero level set of /ðT oldÞ. In
other words, we want G to conform to C. To do this, we must first select a candidate manifold that is embedded in G as a
closed set of edge segments. We do this by choosing a subset of triangles in G to be the interior phase; the embedded man-
ifold is just the outer boundary of the interior triangles. Finding a ‘‘good” selection of triangles to be in the interior phase is
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non-trivial because the discrete nature of the mesh will introduce an aliasing effect. This section describes how we handle
this and takes inspiration from [11]. We emphasize that this procedure is the only part of our algorithm that does not extend
to 3-D (see Section 6.5 for some discussion).

The background reference mesh G comes from adaptively refining, via longest edge bisection, an initial uniform crisscross
mesh (recall previous sections). As a result, all triangles in G are self-similar isosceles right triangles; note that no mesh
smoothing has been used at this stage of the algorithm. Thus, we will take advantage of this property. Let T int be the set
of triangles such that
T int :¼ fT 2 G : /ðT oldÞjxcðTÞ P 0g; ð9Þ
i.e. we evaluate the signed distance at the barycenter xc of T and if it is non-negative, we say it belongs to the interior phase.
However, cutting the mesh like this can lead to an irregular (initial) manifold shape because of aliasing effects. Thus, we de-
fine E to be the boundary of T int and proceed to modify the set T int by performing local operations based on the shape of E.

First we check if any pairs of adjacent edges of E shares the same triangle. If so, then that triangle will become crushed
when we enforce mesh conformity (see Section 3.4). We avoid this by adding (or removing) the offending triangle to (or
from) the set T int and updating E accordingly. However, this may not be enough.

The next part of our selection process takes advantage of the crisscross nature of the mesh. From this, it can be seen that
the angle between two adjacent edge segments in E is either 45�, 90�, 135�, or 180�. Hence, we loop through each vertex of E,
check the angle there, and adjust T int and E accordingly. We summarize these checks in the following list (see Algorithm 4
for a full description).

1. If the angle is 45�, then the two adjacent edge segments must share the same exterior (or interior) triangle. In this case,
we simply add (or remove) the shared triangle to (from) the set T int and adjust E.

2. If the angle is 90�, then three different cases can arise. We adjust T int by following the method described in Fig. 5.
3. If the angle is 135� or 180�, then nothing needs to be done. The discrete manifold is already well-shaped.

We consider the above method a single pass through the mesh to adjust T int. We then loop this entire procedure until the
set T int no longer changes. Typically, only one pass is needed with an additional pass to check for consistency. Note that one
can check the topology of E directly and compare it to the topology of the boundary C in the old mesh T old to ensure they are
the same.

Upon completion of Algorithm 4, the topology of G and E becomes fixed for the remainder of this section. Also, recall our
notation from Section 1.4 and note that G ¼ GðE : ;Þ denotes the default geometry of the mesh G, i.e. we have not deformed
the mesh to conform to anything, yet.

Algorithm 4. Select candidate manifold

1: Interpolate the value of / T old
� �

at the barycenter of all triangles in G. Initialize T int to be the set of triangles with /

P 0 at their barycenter. This induces a closed manifold consisting of the set of edge segments E that is the outer

boundary of the triangles T int contained in G.

2: while the set T int was updated do

3: If any two adjacent edge segments in E share the same exterior triangle Text, then we add Text to the set T int. We

check all pairs of adjacent edge segments and update T int and E.

4: If any two adjacent edge segments in E share the same interior triangle Tint, then we remove Tint from the set T int.

We check all pairs of adjacent edge segments and update T int and E.
5: for all vertices v in E do

6: If two edge segments that share v have an angle of 90� or less, and the corner points toward the interior phase,

then execute the procedure described in Fig. 5 (i.e. add triangles to T int). Update T int and E.
7: end for
8: for all vertices v in E do

9: If two edge segments that share v have an angle of 90� or less, and the corner points toward the exterior phase,

then execute the procedure described in Fig. 5 (i.e. remove triangles from T int). Update T int and E.
10: end for
11: end while

12: return T int; E. E now has a fixed topology.
3.4. Active contours for mesh conformity

For notational convenience, let eC be the continuous manifold defined by the discrete mesh E. Clearly, eC approximates the
original manifold C but is ‘‘jagged” and will not necessarily conform to C. Since we have the boundary C captured exactly as



Fig. 5. Description of adding and removing triangles for candidate manifold selection (only addition is shown here). Bold directed arrows show the oriented
manifold edge segments for the current set of interior triangles T int . The diagram shows three cases where the candidate manifold has a corner pointing
inward (90� angle) due to our initial selection (Section 3.3) of interior triangles T int; this is an example of aliasing. Cases 1 and 2 are a problem because of the
mesh conformity phase (see Section 3.4), which will crush the shaded triangles when the manifold is made to conform to the zero level set. Thus, we add the
shaded triangles to the set T int which makes the manifold more regular and avoids crushing triangles. If we ignore case 3, triangles T1 and T2 will not be
crushed during the mesh conformity phase, however there will be a moderate amount of mesh distortion. So to improve the mesh quality, we do an edge
swap and include the new T1 triangle which makes the manifold boundary shape more regular. When the corner is pointing outward, the process is the same
except the triangles are removed from the set T int (instead of included). If the corner angle is 45�, then only case 1 can occur.
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the zero level set of /ðT oldÞ, we can adjust eC by solving a minimization problem. This can be done for higher dimension sur-
faces, which makes this approach attractive. Thus, in the following discussion, we consider a general surface (i.e. a 1-D curve
or 2-D surface).

3.4.1. Shape optimization problem
For the moment, we abuse notation and let C be some arbitrary surface (not necessarily the manifold in question). We

define an energy functional (dependent on C) to be minimized:
JðCÞ ¼ 1
2

Z
C

/2: ð10Þ
With this, we want to find a new surface C* that minimizes J:
C� ¼ arg min
C

JðCÞ: ð11Þ
Clearly, the minimum solution is a surface that lies along the zero level set of /.

3.4.2. Gradient flow
We find the surface that minimizes the functional (10) by defining an L2 gradient flow [24,23]. This is a gradient descent

method that seeks to move the surface in a direction that is guaranteed to minimize the cost J. We first give a short proof for
the shape derivative of boundary functionals [19,78,65].

Lemma 1 (Shape Derivative). Suppose f is a fixed smooth function on Rn and let C be a smooth closed manifold of dimension
n � 1. Let V be a smooth vector field defined on Rn that induces a flow such that points x in C move with the field V (x). Then, for
the functional Q :¼

R
C f , we have that the shape derivative of Q in the direction V is
dQðC; VÞ :¼
Z

C
rf � V þ f ½rCX � rCV�; ð12Þ
where rC is the surface gradient operator on C and X is the identity map on C.
Proof. We begin with a standard result from the shape derivative literature [19,78,65]
dQðC; VÞ :¼
Z

C
ðV � mÞðm � rf Þ þ f ðjm � VÞ; ð13Þ
which we will further manipulate. Using the fact that jm = �DCX (where DC is the surface Laplacian), we have
dQðC; VÞ ¼
Z

C
ðV � mÞðm � rf Þ � DCX � ðf VÞ;

integrate by parts !¼
Z

C
V � ½m 	 m�rf þrCX � rCðf VÞ:

ð14Þ
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Since rCX = I � m 	 m (i.e. the projection onto the tangent space of the manifold C), we re-write (14) as
dQðC; VÞ ¼
Z

C
V � ½m 	 m�rf þ f ½rCX � rCV� þ V � ½rCX�rCf

¼
Z

C
V � ½m 	 m�rf þ f ½rCX � rCV� þ V � ½I� m 	 m�rf ¼

Z
C
rf � V þ f rCX � rCV½ �; ð15Þ
which gives the assertion. h

Therefore, by (12), the first variation with respect to shape perturbations of the functional J (10) is
dJðC; VÞ ¼
Z

C
/r/ � V þ 1

2

Z
C

/2rCX � rCV; ð16Þ
where V is a vector perturbation of C. A more detailed derivation of (16) can be found in [88].
A simple gradient flow follows by first defining a vector velocity u on the surface C by
Z

C
u � V ¼ �dJðC; VÞ ð17Þ
for all perturbations V 2 C1(C). We then define a flow by
d
dt

Xð�; tÞ ¼ uð�Þ; Xð�; tÞ ¼ CðtÞ; ð18Þ
which means the surface C will move with the velocity u.

3.4.3. Semi-implicit time discretization
We solve the gradient flow problem by using a semi-implicit time-discretization. This is done by setting u to uk+1 in (17)

and using a backward Euler method for (18). Combining with Eq. (16) gives
Z
Ck

ukþ1 � V ¼ �
Z

Ck
/r/ � V � 1

2

Z
Ck

/2rCk Xkþ1 � rCk V;

Xkþ1 ¼ Xk þ aukþ1;

ð19Þ
where the superscript is the iteration index and a is the step size to use in updating Ck. Rearranging gives the following var-
iational formulation: given Xk and /, find uk+1 2 H1(C) such that
Z

Ck
ukþ1 � V þ a

Z
Ck

1
2

/2rCkukþ1 � rCk V ¼ �
Z

Ck
/r/ � V � 1

2

Z
Ck

/2rCk � V ð20Þ
for all V 2 H1(C). Note that we used the identity rCk Xk � rCk V ¼ rCk � V. Given the solution uk+1, the new position Ck+1 is
obtained by the discrete update in Eq. (19). This process is then iterated until the sequence of surfaces {Ck} reaches a min-
imum of (10). This minimization process is quite general and can be applied to the discrete manifold E.

3.4.4. Finite element discretization
For computational purposes, we discretize uk+1 and V in Eq. (20) with piecewise linear ‘‘hat” functions over the polygonal

boundary Ck at each iteration index k. We then use a finite element implementation of Eq. (20) to solve for uk+1, where the
integrals are computed over Ck. The initial condition C0 :¼ eC is given by the closed manifold of edge segments E resulting
from Algorithm 4.

We also require interpolation of / and r/ with normalization. Let I k be the continuous piecewise linear interpolant de-
fined on Ck. Then we define the interpolation of /, r/ (with normalization) by
I k/ðxÞ ¼ /ðT oldÞðxÞ
jr/ðT oldÞðxÞj

;

I kr/ðxÞ ¼ r/ðT oldÞðxÞ
jr/ðT oldÞðxÞj

ð21Þ
for all vertices x of the polygon Ck. Note that we interpolate the value of / and r/ from the old mesh T old. Therefore, for
convenience in computing the integrals in (20), we use the interpolant (21).

The purpose of the normalization is to act as a pre-conditioner when / is far from being a distance function. When / is a
distance function, then jr/j = 1 and (21) reduces to standard linear interpolation. Otherwise, / may have a small slope in
some regions, which can affect the speed of convergence of our shape optimization method. This normalization procedure
avoids that. See Section 4.3, for more discussion.

We used a step size a = 1.0 and checked convergence of our optimization method by evaluating kI k/kL1ðCkÞ. Typically,
about 10 to 30 iterations are needed to achieve kI k/kL1ðCkÞ < 10�15; the actual number depends on how well the initial guess
C0 :¼ eC approximates C. Then we define Cnew to be the converged shape.



Fig. 6. Illustration of ensuring mesh conformity. The bolded black curve corresponds to the discrete manifold E. Plots 1, 2, and 3 show different zoom-in
levels of the mesh G; (A) is before conformity and (B) is after. The dashed curve in three shows the zero level set of /ðT oldÞ. In 3(B), the discrete manifold E
clearly overlaps the dashed curve. In addition to the gradient flow method in Section 3.4.2, we also perform a few sweeps of standard mesh optimization
(see Section 2.4). We denote the resulting conformed mesh by GðE : /ðT oldÞÞ.
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3.4.5. Final mesh conformity phase
In computing the final shape Cnew, we ignored the interior and exterior mesh vertices that are not part of the manifold E.

We use a similar technique as in Section 2.3 to smoothly deform the remaining vertex positions into place. Let D be the net
displacement in moving eC to Cnew. We then solve a vector Laplace problem on the mesh GðE : ;Þ:
� Dxdisplace ¼ 0; X;

xdisplace ¼ D; eC;
@xdisplace

@m
¼ 0; C ext;

ð22Þ
where xdisplace is a displacement function for all points in the triangulation G. Now we define the new deformed mesh
GðE : /ðT oldÞÞ by adding xdisplace to all the vertex positions in GðE : ;Þ. In our implementation, we divide the total displacement
into five incremental steps and use multiple solves of (22) to displace the vertices. This is necessary for smoothly deforming
the mesh (see Fig. 6). In addition to the smoothed deformation, we also run a few sweeps of standard mesh optimization (see
Section 2.4) on the mesh GðE : /ðT oldÞÞ while keeping the manifold vertices fixed.

There is no guarantee that the above method will not create inverted triangles (mesh entanglement). Therefore, we in-
clude a check for mesh inversion in our code. This never happened in the test cases we ran. In fact, one of the main reasons
for the manifold selection algorithm in Section 3.3 is to help prevent mesh entanglement.

If no topological changes are imminent, the mesh GðE : /ðT oldÞÞ is the final output of the overall algorithm and is returned
to the main simulation for the next time step.

4. Topological changes

Only a relatively small amount of work remains to account for topological changes of the interior manifold C. This is
achieved by diffusing the distance function in the local region of the topological change. The details now follow.

4.1. Topological change detection

The detection of topological changes can be complicated. Essentially, one must look for regions where ‘‘disjoint” parts of
the boundary are close and collapsing together. Detecting ‘‘closeness” is a common problem in computer graphics and collision
detection, where the closest point transform or fast marching methods are used [9,53]. The determination of whether bound-
aries are collapsing depends on the nature of the velocity field coming from the physics. This can be especially difficult if the
velocity field is becoming asymptotically slow near the point of pinch-off, as in a fluid droplet. Therefore, to avoid this dif-
ficulty, we assume the following hypothesis:
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� If any region of the domain is sufficiently ‘‘thin” (i.e. has a thickness less than dneck, a user specified tolerance), then a
topological change is assumed to be occurring. In other words, dneck acts as a resolution scale.

4.1.1. Locating thin regions
Deciding if there are thin regions in the shape of C is straightforward. We simply evaluate j/j at all vertices in VSk (shape

skeleton). If any vertex in the skeleton has a distance that is smaller than dneck/2, then it is flagged as a ‘‘thin” vertex. We
denote the set of thin vertices by Vthin � VSk. If Vthin ¼ ;, then there are no imminent topological changes. Otherwise, we con-
tinue with the rest of this section.

4.1.2. Extra refinement near thin regions
We execute the change by solving a heat equation (discussed in the next section), which means we need an accurate solu-

tion near the thin regions. This requires the triangles in the thin regions to be sufficiently dense. We achieve this by adding an
additional refinement step to the method described in Section 3. Algorithm 5 basically performs extra local refinement near
the thin regions and is slightly graded (see Fig. 4, lower left corner). This requires us to compute the distance to the vertices in
Vthin. Let nthinðT oldÞ denote this distance function, which is interpolated onto the new mesh G when we execute Algorithm 5.

Algorithm 5. Extra refinement of thin regions

1: Set Aouter, Ainner, and Binner to be constants such that 0 < Ainner 6 Aouter 6 1 and 0 < Binner 6 0.5.
Default values: Aouter = 0.4, Ainner = 0.1, and Binner = 0.2.

2: Initialize triangulation G with result from Algorithm 3.
3: loop
4: Initialize M¼ ;.
5: for all triangles T in G do
6: Estimate triangle diameter: let LT be the length of the longest edge of T.
7: # create an inner and outer region, such that the inner region is more refined.
8: if (minTnthin 6 dneck and LT P Aouterdneck) OR (minT nthin 6 Binnerdneck and LT P Ainnerdneck)
9: include T in M.
10: end if
11: end for
12: if M– ; do
13: Execute the longest edge bisection routine [67] on G with the marking M.
14: else
15: Exit loop.
16: end if
17: end loop
18: return G.

If we ignore Algorithm 5, the rest of our method still works. The extra refinement just gives better resolution of the shape
after the topological change. Our choice of Aouter, Ainner, and Binner is not very critical, but seemed to work well for the test
cases we tried.

Remark 1. The output of Algorithm 5 is the base mesh G. We then proceed just as before with the manifold selection method

in Section 3.3 to find E. And just as before, we create a deformed mesh G E : / T old
� �� �

that conforms to the zero level set of /

before the topological change (recall Section 3.4). We use G E : / T old
� �� �

in Section 4.2.3 for re-computing the distance

function and for diffusing the distance function to simulate a topological change. This was done to ensure an adequate mesh
for resolving the topological change.
4.2. Obtain new domain topology

4.2.1. Level-set method
An alternative to front-tracking of explicit boundaries is to use a level set method [61,70]. In this case, the boundaries are

represented implicitly as the zero level set of some scalar function w. The evolution of the boundaries is captured by solving
the following hyperbolic equation
@twðx; tÞ þ uðxÞ � rwðx; tÞ ¼ 0 for all x and all t > 0;
wðx;0Þ ¼ w0ðxÞ;

ð23Þ
where u is the velocity field that moves the boundaries and w0 is usually taken to be the distance function to the two-phase
boundary. The main advantage of level set methods is that they handle topological changes automatically. There is no
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explicit decision needed to determine when a topological change happens nor how it happens or how the local geometry
should look. It is this aspect that we wish to take advantage of in our method.

4.2.2. Viscosity solution
Eq. (23) is linear and well-posed as long as the velocity u is smooth [98]. In order to have two boundaries (i.e. curves de-

fined by the zero level set of w) touch in finite time, it is necessary to have a velocity field that is not Lipschitz [5] (this fol-
lows from standard uniqueness theorems for ODE’s). But in this case, the solvability of (23) is questionable, especially in the
case of a topological change. To address this, we add a small diffusion term:
@twþ u � rw ¼ e0Dw: ð24Þ
This guarantees that the equation is well-posed. In effect, we obtain the ‘‘viscosity” solution [32] of (23) which allows for
splitting and reconnection of implicitly defined boundaries.

4.2.3. Computing new topology by diffusion
First we compute the signed distance function /ðGðE : /ðT oldÞÞÞ on the new mesh that was just created (recall Remark 1 in

Section 4.1.2). Then we get the new topology of C by locally diffusing /, which we do in two steps. First, we solve one time
step of the following time-discrete heat equation with small parameter e0 and some step size dt, i.e. compute w such that
w� dte0Dw ¼ /; ð25Þ
where / is the initial condition. We omit the convective part that appears in (24) for the following reason. The term u � rw is
only needed to capture the motion of the interface. But at this stage of our algorithm, the domain motion has already been
accounted for earlier in the time-stepping method (see Fig. 1). If we did include the convective part, we would need to solve
the full physics again, which would complicate our method. In fact, later we show that the product dte0 is independent of dt
(see (28)). The zero level set of w captures the topological change of the zero level set of /. This is an artificial step, but is in
the spirit of viscosity solutions which allows colliding fronts (level sets) to merge and reconnect.

Solving (25) globally diffuses the level set, which is undesirable. We make the diffusion local by performing a simple pro-
cedure. Let h:[0,1) ? [0,1] be a cut-off function defined by:
hðsÞ ¼
1; 0 6 s 6 dneck;

cos p
2

s�dneck
dneck

� �
þ 1

h i.
2; dneck < s < 3d neck;

0; 3dneck 6 s:

8>><
>>: ð26Þ
Next we define a new level set function that is only locally diffused
wtopðxÞ ¼ hðnthinðxÞÞwþ 1� hðnthinðxÞÞ½ �/ for all x inX: ð27Þ
Eq. (27) smoothly localizes the diffusion of the level set function. Thus, only regions of topological change are affected.
The parameter e0 must be chosen to guarantee that thin regions will connect or pinch-off. A classical result on the diffu-

sion length [62] indicates that e0 should satisfy
ffiffiffiffiffiffiffiffiffi
dte0
p


 O dneckð Þ. Hence, we set the diffusion parameter as
1
2

d2
neck

dt
6 e0 6

d2
neck

dt
; ð28Þ
The addition of the diffusion term is directly analogous to artificial viscosity methods used for solving hyperbolic equations,
which adds a small amount of diffusion on the order of the mesh size. In our computations, dt plays no role because of can-
celation in (25), so we set dt = 1 (in this section) and e0 ¼ 0:7d2

neck. The exact choice of e0 is not very critical, as long as (28) is
satisfied.

4.2.4. Finite element discretization
We use a standard finite element approximation of (25) when solving for the new topology. Specifically, w and / are rep-

resented as piecewise linear functions over the triangulation G E : / T old
� �� �

which gives a standard well-posed system that
can be solved by many techniques.

A simple way to reduce computational cost is to only solve (25) locally by limiting the computational domain to a neigh-
borhood of Vthin. The solution procedure does not change, except a Neumann condition is applied on the outer boundary of
the small computational domain. This is easily implemented if an iterative method is used to solve (25).

4.3. Rerun mesh conformity phase

We must conform the original, adaptively refined mesh G to the new zero level set of wtop (see Eq. (27)), which is defined

on the previously deformed mesh G E : / T old
� �� �

(recall Remark 1). We do this by first selecting a new candidate manifold

Etop by running Algorithm 4 except with wtop rather than / T old
� �

. This is then followed by the method described in Sec-

tion 3.4 for ensuring mesh conformity, i.e. this generates the mesh G Etop : wtop

� �
which is the final output of our algorithm.



Fig. 7. Initial circular domain (first frame) and subsequent deformation with topological change. Only the interior mesh is shown. Outer box is a unit
square. Eventually, the domain becomes very thin in the center and a topological change is executed.

Fig. 8. Zoom-in of the pinching region in Fig. 7 (dneck = 5 � 10�3). All of the triangles that were in the pinching region become part of the exterior
triangulation (not shown). Multiple topological changes happen because of the thinness of the filament. Note that the axis limits are not the same in all
frames.
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We now discuss the reason for the pre-conditioning step in (21). Because the level set update (25) is a time-discrete heat
equation, it acts to smooth the initial data and drive it towards a constant value (when Neumann boundary conditions are
used). This causes wtop to be relatively flat in the region of topological change compared to the initial condition which was a
distance function. Ergo, the / andr/ terms that appear in (20) would give weak forcing for moving the manifold. Therefore,
without the normalization in (21), the active contour algorithm would take many more iterations to converge.

5. Numerical experiments

We present three simulations to demonstrate the method described in Section 1.3. The first simulation contains no phys-
ics and consists of a mesh that is moving with a prescribed velocity field. The second simulation comes from an application
known as electro-wetting [15,16,91], which consists of a Hele-Shaw cell [74,37] with the ability to modify surface tension
effects through electric fields. These devices are capable of splitting and merging droplets and have potential applications
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Fig. 9. Plots of triangle qualities versus simulation time (Section 5.1). Triangle qualities (of the entire mesh) were computed using the formulas given in
[47]. Here, we plot the mean, standard deviation, and worst case triangle quality at each time-step of the simulation. The quality measure ranges from 1.0 to
1, where 1.0 is the best and corresponds to an equilateral triangle. Note that the isosceles right triangles that make up the generated meshes before
ensuring mesh conformity have a quality measure of approximately 1.1547.

Fig. 10. EWOD driven droplet motion; only the interior mesh is shown. Plot box has units of 1 � 0.5. The droplet starts in a circular shape and is pulled apart
because the left and right electrodes are turned on. Eventually, the droplet pinches in two places (symmetrically) resulting in an elongated satellite droplet.
The time-scale of relaxation of the satellite droplet is very fast (see Fig. 11).
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for ‘‘lab-on-a-chip” devices [33,38]. The third simulation demonstrates reconnection of droplets in a Hele-Shaw cell due so-
lely to surface tension (no electro-forcing).

Remark 2. In all experiments, the mesh quality [47] was maintained within the following criteria. The worst quality value
for any triangle must be less than 2.5 and no more than 5% of all triangles can have a quality above 2.0. Note that the quality
metric in [47] is scale invariant and is defined so that an equilateral triangle has quality 1.0, and any other triangle shape has
a higher value (worse quality).
t=0.29349t=0.29342t=0.29333

t=0.29304t=0.29280t=0.29255

t=0.29217t=0.29193t=0.27973

Fig. 11. Zoom-in of satellite droplet relaxation. Plot box has units of 0.24 � 0.1. The droplet begins elongated and rapidly collapses together. The ‘‘dumbbell”
shape arises because the velocity at the ends is extremely large, while the velocity in the central region is almost zero. Thus the end pieces of fluid overtake
the more quiescent region, which causes the shape to ‘‘bunch up” at the ends. Evolution continues in Fig. 12.
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Fig. 12. Zoom-in of satellite droplet relaxation; continued from Fig. 11. Plot box has units of 0.08 � 0.08. Evolution continues in Fig. 13.
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Fig. 13. Zoom-in of satellite droplet relaxation; continued from Fig. 12. Plot box has units of 0.08 � 0.08. The droplet comes to rest at a position that is not
symmetric (i.e. not at (0.5,0.5)). This is because the PDE solution inside the satellite droplet requires more resolution. The velocity field is very large
(initially) at the ends of the satellite drop, is near zero in the center, and rapidly changes in a small region. Thus, a highly refined mesh, in the interior of the
droplet, is needed to resolve the dynamics. However, our main point here is to demonstrate the ability of our method to handle the extreme deformations
exhibited by topological changes.
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Fig. 14. Plots of triangle qualities versus simulation time (Section 5.2.3). Same format as in Fig. 9.
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If this criteria is violated, then we perform 4 sweeps of mesh optimization [31] in an attempt to satisfy the criteria. If
the criteria is still violated, then we re-mesh via our mesh generation algorithm (Section 3). Recall the block diagram in
Fig. 1.
5.1. Rotating vortices

In this simulation, we prescribe a velocity field u = (u,v) of the form
Fig. 15.
station
regions
(see Fig
uðx; yÞ ¼ sinð2pxÞ cosð2pyÞ;
vðx; yÞ ¼ � cosð2pxÞ sinð2pyÞ;
which is a two-by-two array of counter-rotating vortices, and the divergence of u is zero. The initial domain shape is a circle
inside a unit square, shown in Fig. 7; the initial mesh was generated by the commercial package ‘‘MeshGen”. The vertices of
the boundary move with the given velocity field and the rest of the vertices move by extending the vector velocity on the
boundary using a Laplace solve (see Eq. (4)). The mesh undergoes severe deformation due to the counter-rotating vortices,
though the vector Laplace solve does limit the amount of mesh distortion. As the domain becomes thin in the middle, and
reaches a minimum thickness of dneck = 5 � 10�3, the topological change routine is executed (in addition to our general re-
meshing algorithm).

In Fig. 8, we show a closeup of the pinching region depicted in Fig. 7. Of course, the dynamics of the flow after the pinch do
not change since the velocity field is prescribed.

The extreme deformation shown by this example demonstrates the ability of our method to compensate for mesh distor-
tion and detect thin regions. The optimization of the mesh boundary is also satisfactory. In Fig. 9, we show triangle quality
Droplet motion by surface tension; only the interior mesh is shown. Plot box has units of 1 � 1. As the left droplet unbends, it comes closer to the
ary drop on the right. Eventually, the droplets connect when the spacing between them drops below dneck = 2 � 10�3. This creates two high curvature
(symmetric with respect to the midline of the plot box) on the top and bottom of the reconnection region. The time-scale of relaxation is very fast
s. 16 and 17).
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statistics as the domain deforms in time. The large jumps in the curves correspond to re-meshing the domain. The smaller
jumps happen when the mesh vertex positions are optimized (see Section 2.4) to improve quality (i.e. no changes in mesh
topology).

5.2. EWOD driven droplets

5.2.1. Summary of model
Next, we use a simulation of an Electro-Wetting On Dielectric (EWOD) device to drive the motion of a water droplet to a

topological change (droplet pinching). The device consists of two parallel plates very close together with a water droplet
squashed in between with air surrounding it, hence the problem is effectively 2-D Hele-Shaw flow with surface tension.
A 3 � 3 array of square electrodes is embedded in the bottom plate, which are used for applying voltages that can change
the effective surface tension locally [72]. This allows for the ability to force a circular droplet to pinch-off. The governing
equations are given by
b1
@u
@t
þ b2uþrp ¼ 0; in X;

r � u ¼ 0; in X;

p� ðjþ EÞ ¼ 0; on C;

ð29Þ
where b1 and b2 are non-dimensional parameters, j is the curvature of C, and E is a given forcing function that comes from
the electric field. Here, X is the interior domain and C is the manifold between the interior and exterior phases. Note the
presence of the inertial term @u/@t. The interface equation of motion is given by
Fig. 16. Zoom-in of sharp reconnection region relaxing (top). Plot box has units of 0.2 � 0.2.
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Fig. 18. Plots of triangle qualities versus simulation time (Section 5.2.4). Same format as in Fig. 9.

Fig. 17. Zoom-in of sharp reconnection region relaxing (bottom). Plot box has units of 0.2 � 0.2.
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@tx ¼ uðx; tÞ for all x in C: ð30Þ
For more details about the model and numerical method, see [89,91,90,92].
5.2.2. Wait period for topological changes
For the droplet flow experiments, we define a ‘‘wait” period for topological changes to happen. In fluid pinching, it is likely

that a thin ‘‘spike” will be present after the pinch-off has occurred. Which means that our method of detecting topological
changes could trigger another change immediately after because of the thin region near the sharp corner. In fact, this may
cause a sequence of topological changes that can ‘‘eat” the spike away. This is undesirable in some cases, because the natural
dynamics may resolve the spike naturally without any extra topological changes occurring.

Therefore, in these experiments, we define a wait period of Twait :¼ 10�3. If a topological change is executed, then for the
next Twait seconds (non-dimensional), topological changes are not allowed to occur. General re-meshing is still allowed. We
do this so that the natural dynamics of the flow can have a chance to smooth out the domain.
5.2.3. A pinching droplet
Fig. 10 shows a droplet overlaying a 3 � 3 grid of square electrodes. The voltage is actuated on the left and right electrodes

which causes the droplet to be pulled apart. Eventually, the droplet develops a thin neck which pinches off at two separate
regions when the thickness drops below dneck = 5 � 10�4. This type of pinching singularity in Hele-Shaw flow was shown in
[74,37,36].

Immediately after the pinch-off, the time-scale becomes extremely small. This is due to the large curvature that is present
at the end points of the elongated satellite droplet. As the flow progresses, the satellite droplet takes on a ‘‘dumbbell” shape.
This is reasonable given that the velocity field is mostly concentrated at the end points and is negligible everywhere else.
Essentially, the end regions overtake the stationary part of the droplet. See Fig. 11.

A closeup of the satellite droplet evolution is shown in Figs. 12 and 13. The bulging ends of the droplet slam into each
other which causes the droplet to elongate in the vertical direction and stretch into another dumbbell shape. This happens
because of the inertial term in (29). The droplet continues to oscillate with decreasing amplitude until it relaxes to a circular
shape (Fig. 13). Despite the extreme deformation, our algorithm is able to capture this evolution. Fig. 14 shows triangle qual-
ity statistics as the domain deforms in time.
5.2.4. Joining of droplets by surface tension
In this last experiment, we use the EWOD simulation without any electrical forcing (i.e. E = 0). Hence, the flow is purely

due to surface tension. This example shows how our method handles connecting or joining droplets. Fig. 15 shows two drop-
lets, one circular and the other elongated and bent, that eventually coalesce. The bent droplet relaxes and develops an ‘‘air”
gap with the smaller drop. The reconnection takes place when the gap drops below dneck = 2 � 10�3. As the droplet relaxes,
the large curvature regions get smoothed out.

After the reconnection, the time-scale becomes very small because of the large curvature near the cusp like regions. Sim-
ilarly to the previous case, the instantaneous flow is highly localized near the region of reconnection and negligible every-
where else. A zoom-in of this flow is given in Figs. 16 and 17. In both figures, we get a ‘‘mushroom” like shape as the high
curvature region smooths out. This is essentially the same effect observed in the dumbbell shape of Fig. 11. Fig. 18 shows
triangle quality statistics as the domain deforms in time.
6. Conclusions

We have presented a method for mesh generation of 2-D domains undergoing large deformations and topological
changes. The method uses a level set formulation to indicate how the topology changes, and is only used during the
time-step of the topological change. In addition, an active contour method using a shape optimization technique is used
to improve boundary mesh conformity to the zero level contour of the level set function. Topological changes happen when
narrow regions of the domain become thinner than the user specified tolerance dneck. All simulations were implemented
within the MATLAB/C++ toolbox FELICITY (Finite ELement Implementation and Computational Interface Tool for You) devel-
oped by the second author.
6.1. Mass preservation during topological changes

Our method for allowing topological changes is essentially a level set method with a small amount of diffusion added.
Hence, mass may not be conserved during a pinching or reconnection event. The amount of mass loss or gain is directly con-
trolled by the user specified tolerance dneck, so can be tuned if desired. Moreover, the loss or gain only happens during a topo-
logical event. The rest of the time, our method is just front-tracking. Preserving mass at all times is a desirable property and
the subject of future work.
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6.2. How to start the algorithm

One issue with our method is that it requires a global inside and outside mesh that conforms to the initial boundary. This
can be inconvenient if only a polygonal representation of the boundary is available. We basically need a reference mesh in
order to compute the distance function to the boundary which is then used in our mesh generation algorithm.

One solution would be the following. Start with a coarse reference mesh and adaptively refine all triangles that intersect
the manifold, and continue until some minimum feature size is reached. Next, the distance function could be computed in a
narrow band around the boundary then extended by the method in [8]. This would give a distance function whose zero level
set approximates the boundary to within the desired feature size. One could then use this distance function in our active
contour routine for generating a conforming mesh. Unfortunately, this would most likely be more expensive than the meth-
od we describe in this paper if the minimum feature size is very small in order to account for some regions of high curvature.
But this would only be done once and could be considered as a form of pre-processing. In the case where the initial manifold
is known as the level set of some function, then one can take advantage of this directly.

6.3. Handling exterior and interior phases

We focused on the case where the exterior phase was not important, hence the mesh of the exterior (particularly of Cext)
was not important. Examples where it is important are: flow of gas bubbles through a liquid phase inside a closed box, multi-
ple materials that deform in a problem of elasticity, etc.. . .Handling these cases is a straightforward extension of what we
have described. If the enclosing ‘‘box” (denoted Cbox) is rectangular, then one can easily modify the initial triangulation
T init to be the box (i.e. Cext = Cbox, recall Section 3.2.1). Otherwise, one must first cover the enclosing container with a rect-
angular shaped initial mesh (with a sufficiently large surrounding buffer region).

Then we generate a mesh G that resolves the two-phase manifold C and the enclosing shape Cbox. Next, candidate man-
ifolds must be found that approximate C and Cbox. Finally, during the mesh conformity phase, the mesh is deformed so as to
conform to both C and Cbox simultaneously.

In fact, this can be generalized further to include any number of internal boundaries that may or may not be interacting. If
they do interact, then care must be taken in defining what a topological change is and how they occur.

6.4. Remove wait period

The need for a wait period Twait in Section 5.2.2 is due to the way that we characterize a topological change, i.e. we only
view thinness as an indicator. This can be overcome if we include some other information, such as the nature of the flow field
in a thin region. Likewise, processing the shape skeleton better may help identify the correct regions of topological change
[71,77]. This will be a point of future work.

6.5. Generalize to 3-D

Our method mostly generalizes to 3-D. Our shape skeleton computation can be directly extended to tetrahedral meshes in
3-D or one could possibly use the variational approach in [71,77] to approximate a smoothed skeleton. In general, our phi-
losophy is that PDE based/variational methods can be quite effective for discrete mesh generation. But a mesh, no matter
how refined it is, is an inherently discrete structure and any algorithm for mesh generation must deal with that, which
our candidate manifold selection does (see Section 3.3). However, this method does not generalize to 3-D. On the other hand,
we think the method in [11] could be adapted to our needs for 3-D tetrahedral meshes.

Estimating the curvature in 3-D will require a slightly different method than computingrC�m, because that only gives the
total curvature. Instead, we will need to estimaterCm (i.e. the second fundamental form [21]). The largest eigenvalue of the
3 � 3 matrix rCm corresponds to the largest principle curvature of the surface and can be used for refining by curvature in
Algorithm 3. Estimating rC m can be done by a similar method as given in (8) of Section 3.2.3.

More improvements could be made, including having a method to adapt the mesh boundary (in some sense) when doing
the shape optimization/smoothing step. One criteria could be to maximize the shape regularity of the boundary mesh (while
smoothing), which is especially important for using our method in 3-D.

6.6. Meshing domains with corners

Lastly, we mention the possibility of extending our method to handle manifolds with corners (in 2-D). If the corners are
specified, then one can add another stage for ensuring conformity that occurs before the main phase given in Section 3.4. The
initial stage would deform the mesh so that appropriately chosen points in the manifold E are made to conform to the corner
points. This can be done by computing distance functions to each individual corner. Next, note that the corner points would
automatically partition the 1-D manifold into disjoint connected segments. Thus, the active contour phase would consist of
optimizing each individual segment so as to conform to the whole shape. The final mesh conformity phase described in Sec-
tion 3.4.5 would remain the same.
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However, corners can be complicated in 3-D [69] and would require multiple phases to handle the corner tip, followed by
the corner edges, and finally the remaining patches of smooth surface. Of course, the shape regularity of the mesh will be
limited by the angle of the corners.
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