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ANALYSIS OF SHAPE OPTIMIZATION FOR MAGNETIC
MICROSWIMMERS∗

SHAWN W. WALKER† AND ERIC E. KEAVENY‡

Abstract. We analyze an infinite dimensional, geometrically constrained shape optimization
problem for magnetically driven microswimmers (locomotors) in three-dimensional (3-D) Stokes flow
and give a well-posed descent scheme for computing optimal shapes. The problem is inspired by
recent experimental work in this area. We show the existence of a minimizer of the optimization
problem using analytical tools for elastic rods that respect the excluded volume constraint. We derive
a variational gradient descent method for computing optimal locomotor shapes using the tools of
shape differential calculus. The descent direction is obtained by solving a saddle-point system, which
we prove is well-posed. We also introduce a finite element approximation of the gradient descent
method and prove its stability. We present numerical results illustrating our method and the effect
that finite aspect ratio and external cargo can have on the optimal shape. The 3-D Stokes equations
are solved by a boundary integral method.
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1. Introduction. Microorganisms swimming at low Reynolds number, where
fluid inertia is negligible, must use time-irreversible motions of their control surfaces
(e.g., their bodies or flagellum) in order to have a net translation after one stroke
[42, 54]. This is achieved by sperm and small nematodes by propagating bending
waves along the length of a flexible slender body, and bacteria that utilize rotating
helices whose shape couples the rotation and translation. The flow fields generated
by the motion of the control surfaces couple the motion of nearby bodies leading to
swarms that induce vigorous fluid mixing [17, 56, 57, 60], which can have a large effect
on the distribution of chemicals and nutrients within the fluid.

There has been a recent effort to develop microswimmers that mimic the low
Reynolds number swimming strategies employed by microorganisms. There are nu-
merous applications for these artificial systems, such as targeted drug delivery in the
human body, microsurgery, automated transport of cargo/payloads in microfluidic
chips, and filtering of toxic substances from polluted water streams. In addition,
these systems can help illuminate the basic mechanisms of micron-scale swimming.
Artificial swimmers based on flexible magnetic filaments [19, 37] that can be actu-
ated using applied magnetic fields or bimetallic synthetic nanorods [9, 50, 51, 64] that
propel themselves via a catalytic reaction have been the first of these devices. More
recently, researchers have developed swimmers based on a rigid corkscrew design that
contain magnetic material and can be rotated and directed in three dimensions us-
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ing applied magnetic fields. In [23], the authors constructed submicron scale helical
structures using a glass (SiO2) deposition process, whereas in [70] they built their
swimmer from a prestressed strip of a layered material attached to a magnetic body.
In both cases, these swimmers have been shown to be highly controllable and able
to execute complex swimming paths in all three spatial dimensions. To further the
design of the swimmers constructed in these studies, we pose an infinite dimensional
shape optimization problem to determine the swimmer shapes that deliver the high-
est speed for a given applied torque about the swimming direction, have the highest
speed for a given power output, or travel the greatest distance per rotation.

Optimization techniques have been used extensively to examine the hydrodynamic
efficiency and speed of locomotion gaits employed by microorganisms [2, 45, 53, 62, 65]
leading to the establishment of fundamental results regarding the optimal shapes of
the thin, high aspect ratio flagellar filaments utilized by sperm and bacteria. Us-
ing drag-based models, for example, Lighthill [44] showed that in two dimensions
an infinitely long, infinitely thin body propagating a saw-tooth wave with a slope of
42◦ maximizes hydrodynamic efficiency. Establishing similar results for the swimmer
shapes with finite length and attached payloads corresponding to those in [23, 70]
requires a more precise treatment of the hydrodynamic forces as well as a general
characterization of how variations in their geometry change cost functionals such as
speed or efficiency. We incorporate both of these necessary requirements into our
optimization approach by considering the exact Stokes flow on these bodies, posing
the optimization problem at the continuous level, and evaluating the variations in the
cost functionals using shape differential calculus. We analyze the infinite dimensional
optimization problem and establish the existence of a minimizer for functionals associ-
ated with maximizing swimmer speed, stroke efficiency, and hydrodynamic efficiency.
In addition, we present a variational descent method for this problem and show that
it and a discretization based on cubic splines are well-posed. To compute the cost
functionals and their variations, we employ a boundary integral formulation of Stokes
flow and discretize it to second-order using a collocation method [38]. The usage of
boundary integral formulations has been successfully employed in the optimization
of axisymmetric swimming bodies [3]. Our computational results show this approach
is equally successful for the optimization of more complex swimmer shapes directly
related to those fabricated in [23, 70].

The paper is outlined as follows. Section 2 describes the physical model and shape
optimization problem. Section 3 states the equivalent weak formulation of the model.
In section 4, we prove the existence of a minimizer of the infinite dimensional loco-
motor shape optimization problem. Section 5 presents a variational descent method
for obtaining optimal locomotor centerline shapes using the tools of shape differential
calculus. This leads to a saddle-point system to solve for a descent direction at each
step of the optimization, which we show is well-posed. Section 6 describes the details
of a finite element approximation of the descent method, and we prove a stability
result when solving for a discrete shape descent direction. In section 7, we show some
numerical results to illustrate our method and give some discussion on the effects of
aspect ratio and external cargo size. Last, we include appendices as a convenient ref-
erence for the reader which contain some basic analysis results, derivations of adjoint
equations, and some facts from differential geometry of curves.

2. Problem description. We first introduce our representation of the swimmer
geometry, which captures the shapes realized in experiments and includes a meaningful
control over which to optimize. We state the functionals we intend on maximizing,
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(a) Curve parametrization; τ is the tangent
vector of X. The triplet {τ ,N1,N2} is an or-
thogonal frame.

(b) Example 3-D locomotor shape.

Fig. 2.1. Part (a) describes the curve parametrization that is used in (2.1). Part (b) shows an
example of a swimmer shape with circular cross section that varies in radius along the centerline.

such as speed and efficiency, and form a PDE model for the swimmer motion (in
a Stokesian fluid) induced by the application of time-dependent magnetic fields. In
addition, we describe the constraints implemented to maintain certain characteristics
(length, etc.) of the swimmer geometry throughout the optimization.

2.1. Surface parametrization. The fundamental object to be optimized is a
one-dimensional (1-D) curve in three dimensions denoted Σ ⊂ R3, which we param-
eterize by the vector function X : [−1, 1] → R3. The shape of Σ captures the basic
form of the locomotor. The three-dimensional (3-D) solid form of the locomotor is
defined through a surface parametrization attached to X. Essentially, we restrict the
shapes to long tube-like shapes very much in the spirit of the experimental results in
[23, 70]; see Figure 2.1. This still allows for a lot of flexibility in the shape and is still
practical for manufacturing purposes.

Let Γ be a closed manifold whose interior ΩB represents the rigid body of the
locomotor, i.e., Γ ≡ ∂ΩB. We define Γ uniquely in terms of X by the parametrization
Ψ : [−1, 1]× [0, 2π] → R3,

(2.1) Ψ(t, θ) = X(t)+ac(t, θ) [cos θN1(t) + sin θN2(t)] , −1 ≤ t ≤ 1, 0 ≤ θ ≤ 2π,

where X(t) parameterizes the 1-D curve Σ and θ is the azimuthal angle within a
planar cross-section of ΩB; a cross-section at X(t) is assumed to be orthogonal to
τ (t) (tangent vector). The radius of a cross-section located at X(t) is parameterized
in terms of θ by the given smooth function ac(t, θ) (i.e., ac(t, θ) models a variable
radius cross-section). The vectors {N1,N2} form a basis of the cotangent space of X
and are generated via parallel transport [5, 29].

The classic Frenet frame [16] is not satisfactory for our purposes. It can induce
undesirable twisting of the surface because the normal and binormal are linked to
the curvature and torsion. This is especially noticeable if the curve X has a small
amplitude undulation. The Frenet frame also requires X to be in C3([−1, 1]). For the
parallel transport frame, X is only required to be C2([−1, 1]), or even C1,1([−1, 1]).
Moreover, the effect of the torsion has been removed [5, 29], which reduces the twisting
of the surface. This is especially useful when discretizing the surface in our boundary
integral method [38, 40]. Removing the torsion prevents the grid from being distorted.
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In the case of a circular cross-section, ac is independent of θ. For our cases
(section 7), we use

(2.2) ac(t) = A
√
1− t2, −1 ≤ t ≤ 1,

where A > 0 is the maximum cross-section radius that occurs at the midpoint (i.e.,
t = 0). Note that Γ depends on the parametrization X through (2.1), i.e., the shape
of Γ will change if X is parameterized nonuniformly. So we require that X be an equal
arc-length parametrization.

Remark 1. Enforcing an equal arc-length parametrization is easily accomplished
by a Lagrange multiplier (see section 5.2.1). Moreover, making ac depend on the arc-
length function s(t) would further complicate the shape perturbation formula (B.18)
by introducing an additional term in the sensitivity analysis.

2.2. Magnetically driven objects in 3-D Stokes flow: PDE model. In the
experiments [23, 70], a rotating magnetic field is used to both actuate the swimmers
and control their swimming direction. Due to the presence of magnetic material in the
swimmer, the field exerts a torque on the swimmer that rotates it about its helical axis
while keeping this rotation aligned with a particular direction. We may capture these
effects without considering the magnetic field explicitly by requiring that the total
force on the swimmer be zero, the body rotate about the z-axis, and the z-component
of the torque have unit value. These conditions on the rigid body lead to the Stokes
flow problem [30, 40] in (2.3) that models the rigid swimmers in [23, 70].

Consider a rigid body (swimmer) ΩB ⊂ ΩALL ⊂ R3 with surface denoted Γ :=
∂ΩB, where ΩALL is a container (i.e., ball with large radius) with outer boundary
denoted ΓO := ∂ΩALL. Assume ΓO is far away from ΩB. We call Ω := ΩALL \ ΩB

the fluid domain in the container but outside the rigid body (i.e., ∂Ω = Γ∪ΓO). The
governing equations for the flow field (u, p) induced by the rigid body are given by
the Stokes equations (in strong form):

−∇ · σ = 0 in Ω,

∇ · u = 0 in Ω,

u = uB + ωB × (x− xc) on Γ (rigid motion),

u = 0 on ΓO

−
∫
ΓO

σν =

∫
Γ

σν = fB := 0 (net force)

−
∫
ΓO

x× (σν) =

∫
Γ

x× (σν) = τB (net torque),

(2.3)

where × denotes the cross-product of vectors in R3, ν is the normal vector on Γ and
points away from Ω, p is the pressure, u is the velocity, and xc is the center of mass
of ΩB (see (3.7)). The constant vectors uB, ωB, fB, τB ∈ R3 have the following form:

uB =

⎛⎝ uB,x (unknown)
uB,y (unknown)
uB,z (unknown)

⎞⎠ , ωB =

⎛⎝ 0
0

ωB,z (unknown)

⎞⎠ ,

fB =

⎛⎝ 0
0
0

⎞⎠ , τB =

⎛⎝ τB,x (unknown)
τB,y (unknown)
τB,z (given)

⎞⎠ ,

(2.4)
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where “unknown” indicates unknown quantities that are part of the PDE solution.
Thus, the translation uB is an unknown to solve for, ωB is constrained to only rotate
about ez, the net force is zero, and τB has a prescribed z-component but x and y
components are to be solved for. The Newtonian stress tensor σ is given by

σ = −pI+D(u), where D(u) := ∇u+ (∇u)T ,(2.5)

where superscript T denotes the matrix transpose. To ensure uniqueness, p is taken to
have mean value zero. A boundary integral version of this model is described in [38].

2.3. Cost functionals. With the body shape described by (2.1), we seek to
determine the shape of the centerline of the swimmer’s tail that minimizes a notion
of cost. One relevant cost functional is uB · ez, i.e., maximize uB · ez for a given
τB · ez. This corresponds to finding the swimmer shape that maximizes the speed
of the swimmer in the direction of the fixed component of the applied torque. It
can also be thought of as determining the swimmer shape that provides the highest
value of the entry of the low Reynolds number mobility matrix [30, 40] that couples
the torque and translational velocity in the direction of the swimmer’s axis. Another
functional to consider is a measure of the hydrodynamic efficiency [13, 44], which is
the viscous dissipation required to pull the swimmer at its swimming speed relative
to the viscous dissipation associated with locomotion (i.e., the ratio of the “dead”
power to the swimming power). Maximizing efficiency corresponds to determining
the swimmer shape that gives the highest speed for a fixed input power.

We state these functionals more concretely in the following definitions.
Definition 2.1. Let M ∈ R3×3 be a positive semidefinite matrix. Define the

coupling of torque to speed as

(2.6) Jts(X) ≡ Jts(uB(X), τB(X)) = uB ·MτB =

∫
ΩB

u ·MτB

|ΩB|
for all (uB, τB) satisfying (2.3).

Recall that uB and τB are constant over ΩB. When M has all zero entries, except the
last diagonal entry is 1, then Jts reduces to Jts = (uB · ez)(τB · ez).

Definition 2.2. The total rate of viscous dissipation for a swimmer satisfying
(2.3) is given by

Jdiss(X) = Jdiss(X,u(X)) :=

∫
Γ

u · σν

=
1

2

∫
Ω

D(u) : D(u) = (ωB(X) · ez)(τB(X) · ez),
(2.7)

where we used (3.6) and u, ωB satisfy (2.3). Note that “ :” is the inner product of
two tensors.

Definition 2.3. We consider the notion of stroke efficiency for a swimmer,
which is a measure of how far one can go during one period of motion. Define

(2.8) Jeff(X) =
Jts(X)

Jdiss(X)
=

(uB(X) · ez)(τB(X) · ez)
(ωB(X) · ez)(τB(X) · ez) =

uB,z

ωB,z
,

which is the ratio of net translating swimming velocity to angular velocity. (Note that
uB,z is not the tangential velocity of the swimmer due to rotation.) Therefore, a more
efficient swimmer can move farther with fewer rotations.
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Remark 2. Another notion of efficiency is the hydrodynamic efficiency. Let
û solve the Stokes problem (2.3), except with the following Dirichlet condition for
velocity û = ez on Γ and û = 0 on ΓO. Then the viscous dissipation for this case is

Ĵdiss(X) = Ĵdiss(X, û(X)) :=

∫
Γ

û · σ̂ν =
1

2

∫
Ω

D(û) : D(û).

Then one can consider

(2.9) Ĵeff(X) =
u2
B,zĴdiss(X)

Jdiss(X)
,

which is essentially the ratio of the “dead” power to the swimming power [44, 13].
The factor u2

B,z is for appropriate scaling. It is also common to approximate (2.9) by
[44]

Ĵeff(X) ≈ (Jts(X))2

Jdiss(X)
.

Remark 3. For analyzing the infinite dimensional optimization problem (sec-
tion 4), we will consider the functionals (2.6) and (2.8). For the optimization algo-
rithm and results, we just consider (2.6). (Results on (2.8) will be reported in future
work.)

To fit with the language of minimizing, we let Jmag = −Jts or Jmag = −Jeff .
Hence, the statement of the optimization problem is to find the shape of the centerline
X such that Jmag is minimized subject to appropriate constraints (see section 2.4).

2.4. Constraints. Some constraints must be placed onX to ensure a meaningful
optimization problem. All of the constraints are geometric and are listed as follows:

• Non-self-intersecting: X must have bounded global radius of curvature (sec-
tions 4.2.2 and 4.2.4). Basically, we demand that the solid volume defined
by (2.1) does not intersect itself. This is the so-called excluded volume con-
straint.

• Local inextensibility: ‖X′(t)‖ = L/2, where L is the total length of the
centerline |X([−1, 1])| (section 5.2.1).

Note that a constant volume constraint is effectively imposed because we enforce
inextensibility of X, assume a known surface parametrization (2.1) (recall ac), and
require the locomotor shape to avoid self-intersections. Of course, we could consider
additional constraints (see section 5.2.2), but the above constraints are the most
important for the mathematical analysis in section 4.

3. Weak formulation. We recall some standard notation, give the weak for-
mulation of (2.3), and note some basic estimates.

3.1. Notation. We adopt the following Sobolev space notation:

Lp(D) =

{
f : D → R :

∫
D

|f |p < ∞
}
,

Hk(D) =

{
f : D → R :

∫
D

|∂αf |2 < ∞, |α| ≤ k

}
,

(3.1)

where α is a multiindex and D is an open set in Rn for n = 1, 2, or 3. If E is a function
space, then E∗ denotes the dual space of E (i.e., the set of functionals defined on E).
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3.2. Function spaces. To facilitate proving that there is a minimizer, we rewrite
(2.3) into a weak formulation. The velocity and pressure spaces are defined as

V ≡ V(X)(3.2)

= {v ∈ H1(Ω) : v = vB + ϑB × (x − xc) on Γ,vB,ϑB ∈ R3,v = 0 on ΓO}
V0 ≡ V0(X)(3.3)

= {v ∈ V : v = vB + ϑB × (x− xc) on Γ,vB ∈ R3,ϑB = (0, 0, a), a ∈ R},
Q =

{
q ∈ L2(Ω) :

∫
Ω

q = 0

}
,(3.4)

all of which clearly depend on X (the parametrization of Σ).

3.3. Weak form. The weak formulation is derived by multiplying the first equa-
tion in (2.3) by a test function v in V0 and integrating by parts, i.e.,∫

Ω

σ : ∇v =

∫
Γ

σν · v = vB ·
∫
Γ

σν + ϑB ×
∫
Γ

(x− xc) · σν

= ϑB ·
∫
Γ

(x− xc)× σν = ϑB ·
∫
Γ

x× σν − ϑB ·
(
xc ×

∫
Γ

σν

)
= ϑB · τB,

(3.5)

where we used the net force and torque conditions. Hence, we obtain the following.
Variational Formulation 3.1. Let Ω be a Lipschitz domain. Then there

exists a unique solution [21, 59, 66] u in V0 and p in Q such that∫
Ω

σ : ∇v ≡
∫
Ω

D(u) : ∇v −
∫
Ω

p∇ · v = (ϑB · ez)τB,z,∫
Ω

q∇ · u = 0

(3.6)

for all v in V0 and q in Q, where τB,z is a given number. Moreover, if ∂Ω is C2, then
u is H2(Ω) ∩ V0 and p is H1(Ω) ∩Q (see [59, 66]).

3.4. Basic estimates.

3.4.1. Domain geometry. We note some facts related to the geometry of ΩB,
which are useful in the analysis in section 4. Let xc and xg denote the center of mass
and geometric center, respectively, i.e.,

(3.7) xc =

∫
ΩB

x

|ΩB| , xg =

∫
Γ
x

|Γ| , where |ΩB| =
∫
ΩB

1, |Γ| =
∫
Γ

1,

where we have dropped the integral measure dx, dS(x) for convenience. Furthermore,
we will sometimes denote the dependence of ΩB on X by writing ΩB(X).

Next, we assume that ΩALL is an open ball with large radius r0 centered at
the origin that strictly contains the locomotor ΩB(X), i.e., ΩB ⊂⊂ ΩALL. The fluid
domain is denoted Ω and defined by Ω := ΩALL\ΩB. Moreover, we assume throughout
that ΩB, ΩALL satisfy

(3.8)
1

2
|ΩALL| ≤ |Ω| ≤ |ΩALL|,
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which is trivial to guarantee by taking r0 sufficiently large. Furthermore, by the
parametrization (2.1), there exists a constant Cac > 1 depending only on ac such that

1

Cac

|Γ| ≤ |ΩB| ≤ Cac |Γ|,
1

Cac

|Σ| ≤ |ΩB| ≤ Cac |Σ|,(3.9)

provided that Γ = ∂ΩB does not intersect itself (section 4.2 and Lemma 4.3). We
further note that Γ is at least uniformly Lipschitz continuous (i.e., C0,1([−1, 1])),
provided X is at least C1,1([−1, 1]).

3.4.2. A priori estimates. In order to show the existence of a minimizer of the
optimization problem (section 4), we need the following uniform a priori estimates.

Lemma 3.1 (Korn’s inequality). Let Ω = ΩALL \ ΩB be a Lipschitz continuous
bounded domain. Then there is a constant C > 0 such that

(3.10) C‖v‖2H1(Ω) ≤
1

2

∫
Ω

D(v) : D(v) for all v ∈ V.

Proof. Recall that v = 0 on ΓO. See [20] for the rest.
Lemma 3.2. Let (u, p) be a solution of (3.6). Then there are constants C1, C2,

and C3 that only depend on |Σ|, |ΩALL|, and ac such that

(3.11)
1

C1
|τB,z| ≤ ‖u‖H1(Ω) ≤ C1|τB,z|, ‖p‖L2(Ω) ≤ C2|τB,z|,

and moreover

(3.12) |uB|+ |ωB,z|+ |τB,x|+ |τB,y| ≤ C3|τB,z|.
Proof. See Appendix A.

4. Existence of a minimizer. We show that a minimizer of the infinite di-
mensional (PDE-constrained) shape optimization problem does exist (with suitable
constraints). The most critical part is in defining the admissible set of shapes, which
takes advantage of some tools coming from the study of self-contact of curves [26].
Some related examples of optimization in fluids can be found in [28, 35, 53].

4.1. Uniform boundedness. For the existence proof, it is important that Jts
and Jeff are uniformly bounded in some sense, which is the purpose of the following
proposition.

Proposition 4.1. The functionals defined by (2.6) and (2.8) satisfy

(4.1) −C1|τB,z|2 ≤ Jts ≤ C1|τB,z|2, −C2 ≤ Jeff ≤ C2

for suitable constants C1 and C2, depending only on |Σ|, ΩALL, and ac (cross-section
radius of locomotor).

Proof. Clearly, by (3.12), we have

(4.2) |Jts| = |uB ·MτB| ≤ ‖M‖ |uB| |τB| ≤ c1‖M‖|τB,z|2 = C1|τB,z|2,
where ‖M‖ is the max norm of the matrix M and c1 is a constant depending only on
|Σ|, ΩALL, and ac. Next, by (3.10) and (3.11), we get

(4.3) |τB,z|2 ≤ c2‖u‖2H1(Ω) ≤ c3|Jdiss|.
Thus,

(4.4) |Jeff | =
∣∣∣∣uB,zτB,z

Jdiss

∣∣∣∣ ≤ c3c6
τ2B,z

τ2B,z

= C2,

where we again used (3.12); this gives the assertion.
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4.2. Admissible shapes. In order to have a well-posed optimization problem,
a suitable admissible set must be defined for the set of controls. Hence, we must
define an admissible set X for the base parametrization X. The main virtue of this
set will be to ensure that (2.1) gives a well-defined surface Γ, i.e., a surface that is
non-self-intersecting.

4.2.1. Curve parametrization. To do this, we use a few concepts from [26]
that relate to self-contact of elastic curves and rods. Let G be the set of continuous
maps γ : [−1, 1] → R3 (3-D curves) that have a Lipschitz continuous equal arc-length
parametrization Xγ : [−1, 1] → R3, such that ‖X′

γ(t)‖ = L/2 for almost all t in
[−1, 1], where L is the total length of the parameterized curve, i.e., L = |X([−1, 1])|.
Note that we sometimes drop the γ subscript notation and identify γ with Xγ .

Remark 4. We point out that maps γ in W 1,q([−1, 1],R3) for 1 ≤ q ≤ ∞ are
also in G. This is because W 1,q([−1, 1],R3) is a subset of the functions of bounded
variation, and one can always find a Lipschitz continuous arc-length parametrization
in this case [24, p. 255], [26].

For convenience of the reader, we list some results from [26], but we deviate
slightly in that our curves are not closed loops. However, the results we use are still
true with a suitable modification [26]. The concept of tubular neighborhood will be
useful. Define

Br(Σ) = {x ∈ R3 : dist(x,Σ) < r},(4.5)

where Σ is any set in R3, r > 0, and Br(Σ) is an open set containing Σ. The solid
region Br(Σ) is said to be non-self-intersecting if the closest-point projection map
ΠΣ : Br(Σ) → Σ is single-valued and continuous.

4.2.2. Global radius of curvature. Next, let R(x,y, z) ≥ 0 be the radius of
the smallest circle containing x, y, and z. When x, y, z are noncollinear (and distinct)

we have R(x,y, z) = |x−y|
|2 sin[∠(x−z,y−z)]| , where ∠(a,b) is the positive measure of the

angle made by the vectors a, b (see [26] for more details). Now we define the global
radius of curvature functions.

Definition 4.1. Let γ be in G with an equal arc-length parametrization X defined
on [−1, 1], and assume that |X([−1, 1])| > 0. Then the global radius of curvature of γ
at the point X(t0) (for t0 in [−1, 1]) is given by

ρglobal(γ, t0) := inf{R(X(t0),X(t),X(t′)) : t, t′ ∈ [−1, 1], and t �= t0, t
′ �= t0, t �= t′},

(4.6)

and denote its infimum by

Rglobal(γ) := inf
−1≤t0≤1

ρglobal(γ, t0).(4.7)

From [26], we have the following.
Lemma 4.1. Suppose γ in G with equal arc-length parametrization X. Assume

γ has a double point, i.e., t, t′ in [−1, 1] such that t �= t′ but X(t) = X(t′). Then,
ρglobal(γ, t) = ρglobal(γ, t

′) = 0. If Rglobal(γ) > 0, then γ is simple (i.e., has no
self-intersection).

4.2.3. Some analysis results. The following regularity result [26] is also useful.
Lemma 4.2. Let γ be in G with equal arc-length parametrization X. Assume

Rglobal(γ) ≥ d for some constant d > 0. Then X′ is Lipschitz continuous, i.e., X is
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C1,1([−1, 1]) (or W 2,∞([−1, 1])) and

(4.8) ‖X′(t1)−X′(t2)‖ ≤ d−1|t1 − t2| for all t1, t2 ∈ [−1, 1].

We will also need a slight modification of two lemmas from [26], which are essential
for defining the admissible set of shapes for ΩB.

Lemma 4.3 (non-self-intersection). Let γ be in G and assume Rglobal(γ) ≥ d
for some given constant d > 0. Take X : [−1, 1] → R3 to be the equal arc-length
parametrization of γ and assume that ‖X(−1) − X(1)‖ ≥ 2d, which implies that
L ≥ 2d. Then

• diam(X([−1, 1])) ≥ 2d,
• Bd(X([−1, 1])) does not self-intersect.

The second item is the so-called excluded volume constraint.
Lemma 4.4 (weak closure). Let {γn} ⊂ W 1,q([−1, 1],R3), q ∈ (1,∞], be a

sequence of maps with equal arc-length parametrizations Xγn : [−1, 1] → R3. Suppose
γn ⇀ γ ∈ W 1,q([−1, 1],R3) and

Rglobal(γn) ≥ d, ‖Xγn(−1)−Xγn(1)‖ ≥ 2d, for all n ≥ 1

for some constant d > 0. Then

(4.9) Rglobal(γ) ≥ d, ‖Xγ(−1)−Xγ(1)‖ ≥ 2d.

Remark 5. The modification ‖X(−1)−X(1)‖ ≥ 2d is to prevent a pathological
case and ensure that Bd(X([−1, 1])) does not self-intersect. Consider a perfect circular
arc defined by

(4.10) X(t) = (sin ((1− ε)πt), cos ((1− ε)πt), 0) for t ∈ [−1, 1],

where ε > 0 is small. Computing the global radius of curvature gives Rglobal(γ) = 1
for all ε > 0, yet it is clear that B1(X([−1, 1])) does intersect itself. Moreover, if ε = 0,
then X(−1) = X(1), and it follows from Definition 4.1 that Rglobal(γ) = 0. This issue
was avoided in [26] by considering only closed curves. The proofs of Lemmas 4.3 and
4.4 are a straightforward modification of that in [26].

4.2.4. Admissible parametrizations and locomotor shapes. Define the set
of admissible parametrizations X

X (d, L) = {X : [−1, 1] → R3 ∈ G : ‖X(t)‖≤ r0/2, ‖X′(t)‖=L/2, for all t∈ [−1, 1],

Rglobal(X)≥ d, ‖X(−1)−X(1)‖ ≥ 2d}

(4.11)

for any fixed “thickness” constant d > 0 and specified length L ≥ 2d > 0. (Note that
X is not a convex set.) For compatibility reasons, we choose r0 such that r0 � d,
r0 � A = maxt,θ |ac(t, θ)|, and d > A. Note that because we impose an equal arc-
length parametrization, we have by Lemma 4.2 that X (d, L) ⊂ C1,1([−1, 1]). Recall
that Ψ is uniquely determined given any X in X . Ergo, X is equivalent to the
admissible shape set O
(4.12)

O = {ΩB ⊂ ΩALL : Γ ≡ ∂ΩB is parameterized by Ψ(X), where X ∈ X (d, L)} .
Thus, since d > A, any ΩB in O is non-self-intersecting (by Lemma 4.3), so all shapes
in O are well defined. Also note that all ΩB in O are at least Lipschitz continuous.
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The condition ‖X(−1) −X(1)‖ ≥ 2d is important here, because it ensures that
shapes in O do not have cusp like regions (e.g., if the endpoints of Σ were touching;
see Remark 5). The constraint ‖X(t)‖ ≤ r0/2 prevents any contact of the swimmer
with the outer boundary ΓO.

4.3. Formal optimization statement. The formal statement of the optimiza-
tion problem is that we want to find the shape of the centerline Σ ≡ X([−1, 1]) such
that Jmag is minimized over the admissible set O. More precisely, the minimization
problem is the following: find an optimal pair (X∗,u∗(X∗)) such that

(4.13) Jmag

(
X∗,u∗(X∗)

)
= min

ΩB(X)∈O
Jmag

(
X,u(X)

)
,

where Jmag = −Jts or Jmag = −Jeff and (X,u(X)) solves (2.3) for a particular shape
ΩB(X). Again, the set O is general in that we are not restricting the optimization to
a small set of parameters.

We introduce the admissibility set of controls and velocities

V = {(X,u(X)) ∈ X (d, L)× V0(X) : Jmag(X,u(X)) < ∞, where there is a p ∈ Q

such that (u, p) is a solution of (3.6)}.

(4.14)

Then the extremal problem (4.13) can be restated as

(4.15) Jmag

(
X∗,u∗(X∗)

)
= min

(X,u(X))∈V
Jmag

(
X,u(X)

)
.

4.4. Convergence of domains. We now clarify notions of convergence of a
sequence of functions {un} when the domain itself (Ωn) is also changing [28]. First,
we use the fact that the domain shape ΩB (and also Ω) is directly parameterized in
terms of X to define domain convergence.

Definition 4.2. Let {Xn} be a sequence in X (d, L) for some d > A = maxt,θ
|ac(t, θ)| and L > 0 satisfying L ≥ 2d. For each Xn in X , let ΩB,n be in O such that
ΩB,n = ΩB(Xn). Let Ωn := Ω(Xn) = ΩALL \ ΩB,n. Then we define the convergence
of ΩB,n to ΩB(X) by

(4.16) ΩB,n → ΩB(X) ⇐⇒ ‖Xn −X‖L∞([−1,1]) = max
−1≤t≤1

|Xn(t)−X(t)| → 0.

Note that ΩB(X) in O is well defined by Lemmas 4.3 and 4.4. Convergence of Ωn is
similarly defined.

Next, we must extend functions defined on Ωn to ΩALL in order to make clear the
statement “un → u.” The following theorem is adapted from the Calderón extension
theorem (see [1]).

Theorem 4.1. Let Ω be a uniformly Lipschitz domain in Rn. Then there is
a linear continuous extension operator P : H1(Ω) → H1(Rn), such that for u in
H1(Ω) we have that ‖Pu‖H1(Rn) ≤ C‖u‖H1(Ω), where C > 0 depends on the Lipschitz
constant of Ω. Similarly, we can define an extension operator PΩALL : H1(Ω) →
H1(ΩALL) such that

(4.17) û = PΩALLu, ‖û‖H1(ΩALL) ≤ Ĉ‖u‖H1(Ω), for Ĉ > 0.

Hence, convergence of a sequence of functions {un} (each un defined on Ωn) will
be understood in terms of convergence of their extensions {ûn} to the fixed domain
ΩALL.
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4.4.1. Lower semicontinuity. Clearly, the functional Jts is strongly continu-
ous. As for Jdiss, the following lemma can be obtained from [22, 28].

Lemma 4.5. Let X and {Xn} be in X (d, L) for some compatible d and L (see
Definition 4.2). Note that Ω = Ω(X) and Ωn = Ωn(Xn) are uniformly Lipschitz. Let
u ∈ V0(X) and un ∈ V0(Xn) and define the extensions û := PΩALLu, ûn := PΩALLun.
Assume that ûn ⇀ û in H1(ΩALL). Then the functionals defined by (2.6) and (2.7)
satisfy

Jts(uB(X), τB(X)) = lim inf
n→∞ Jts(uB,n(Xn), τB,n(Xn)),

Jdiss(X,u(X)) ≤ lim inf
n→∞ Jdiss(Xn,un(Xn)).

(4.18)

Corollary 4.1. Recall (2.6), (2.8) and let Jmag = −Jts or Jmag = −Jeff . Then
Jmag satisfies

Jmag(X,u(X)) ≤ lim inf
n→∞ Jmag(Xn,un(Xn)).(4.19)

Proof. The proof follows directly from Lemma 4.5.

4.4.2. Compactness of admissible set.
Lemma 4.6 (compactness of X ). Let {Xn} be a sequence in X (d, L) with d, L > 0

and L ≥ 2d. Then there is a subsequence converging uniformly in W 1,∞([−1, 1]) to
an X in X (d, L), i.e.,

(4.20) ‖Xnk
−X‖W 1,∞([−1,1]) → 0, as k → ∞.

Proof. Let Xn be in X (d, L) for all n ≥ 1. Then the family of functions {Xn} is
defined on a compact set [−1, 1] and is uniformly bounded, and both {Xn} and {X′

n}
are equicontinuous families of functions; recall Xn is Lipschitz continuous as well as
X′

n by Lemma 4.2. Thus, by the Arzela–Ascoli theorem [41, 43], there is a uniformly
convergent subsequence {Xnk

}:

‖Xnk
−X‖L∞([−1,1]) → 0, ‖X′

nk
−X′‖L∞([−1,1]) → 0.(4.21)

Hence, X is in W 1,∞([−1, 1]). By the definition of X (d, L), the subsequence {Xnk
}

satisfies the hypothesis of Lemma 4.4. So X satisfies

Rglobal(X) ≥ d, ‖X(−1)−X(1)‖ ≥ 2d.(4.22)

Likewise, uniform convergence implies ‖X(t)‖ ≤ r0/2 and ‖X′(t)‖ = L/2. Thus, X is
in X (d, L).

4.5. A minimizer exists. We apply the direct method in the calculus of vari-
ations to prove the following theorem.

Theorem 4.2. There exists at least one minimizer (X∗,u∗(X∗)) in V for the
problem (4.15).

Proof. Clearly, V is nonempty because there exists a unique solution of (3.6).
Assume d is sufficiently large, i.e., d > A = maxt,θ |ac(t, θ)|, and L ≥ 2d. So all
shapes in O are well defined.

For any sequence {Xn} in X (d, L), let ΩB,n = ΩB(Xn), pn = p(Xn), and un =
u(Xn) denote the dependence on Xn, where (un, pn) is the solution of (3.6) for the
locomotor shape given by ΩB,n. From Proposition 4.1, we know that Jmag is bounded
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below for all X in X . Thus, one can find a minimizing sequence {(Xn,un)} in V such
that

lim
n→∞ Jmag(Xn,un) = inf

(X,u(X))∈V
Jmag(X,u(X)).

Therefore, by Lemma 4.6, there exists a subsequence of {Xn}, again denoted {Xn},
and an X∗ in X such that Xn → X∗ uniformly in W 1,∞([−1, 1]).

By the definition of the admissible set X and Lemma 3.2, we have that ‖un‖H1(Ωn)

is uniformly bounded, i.e., ‖un‖H1(Ωn) ≤ K0 for some independent constant K0 > 0.
Now we extend un to ΩALL by setting ûn(x) = uB,n + ωB,n × (x − xc) for all x
in ΩB,n, and ûn(x) = un(x) for all x in Ωn. One can show that ‖ûn‖H1(ΩALL) ≤
C‖un‖H1(Ωn) ≤ K1 uniformly in n. Using the “inf-sup” condition [8, 6, 25], one can
also show that ‖pn‖L2(Ωn) is uniformly bounded (pn being the pressure associated
with un). Next, we define an extension of pn by setting p̂n(x) = 0 for all x in ΩB,n,
and p̂n(x) = pn(x) for all x in Ωn. Clearly, ‖p̂n‖L2(ΩALL) is uniformly bounded.

Hence, we can take weakly convergent subsequences, and using the Rellich lemma
[21], we get

ûn ⇀ û, in H1(ΩALL), ûn → û, in L2(ΩALL), p̂n ⇀ p̂, in L2(ΩALL)(4.23)

for some û in H1(ΩALL) and p̂ in L2(ΩALL). Now define u(X∗) = û|Ω(X∗) and
p(X∗) = p̂|Ω(X∗). We now show that (u(X∗), p(X∗)) solves the weak formulation
(3.6) over Ω(X∗).

To this end, define

W = {v ∈ C∞(ΩALL) : v = vB + ϑB × (x− xc) on an open subset

containing ΩB(X
∗), and vB ∈ R3,ϑB = (0, 0, a), a ∈ R, and v = 0, on ΓO}

(4.24)

and take ϕ in W. Because Xn → X∗ uniformly, ϕ is in H1(Ωm) for m sufficiently
large. So we can take v = ϕ in the first equation in (3.6) on Ωm (for m sufficiently
large) to get

1

2

∫
Ωm

D(um) : D(ϕ)−
∫
Ωm

pm∇ · ϕ = (ϑB · ez)τB,z.(4.25)

Taking the limit of the first term, we have (by extension)∫
Ωm

D(um) : D(ϕ) =

∫
ΩALL

D(ûm) : D(ϕ) →
∫
ΩALL

D(û) : D(ϕ)

=

∫
Ω(X∗)

D(u(X∗)) : D(ϕ),

where the last equality follows because û is a rigid motion on ΩB(X
∗). Likewise,∫

Ωm

pm∇ · ϕ →
∫
Ω(X∗)

p(X∗)∇ · ϕ,

because p̂ vanishes on ΩB(X
∗). Combining these results reduces (4.25) to

1

2

∫
Ω(X∗)

D(u(X∗)) : D(ϕ) −
∫
Ω(X∗)

p(X∗)∇ · ϕ = (ϑB · ez)τB,z(4.26)
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for all ϕ in W. By density of W in V0(X
∗), we know that (u(X∗), p(X∗)) satisfies

the first equation in (3.6) on Ω(X∗). Similarly, one can show that (u(X∗), p(X∗)) also
satisfies the divergence constraint.

Therefore, (X∗,u(X∗)) is in V , which implies that V is weakly closed. Moreover,
Jmag is lower semicontinuous by Corollary 4.1. Ergo, we apply the following argument
[14, 36]: since {(Xn,un)} is a minimizing sequence, we have

inf
(X,u(X))∈V

Jmag(X,u(X)) = lim inf
n→∞ Jmag(Xn,un)

(4.19) → ≥ Jmag(X
∗,u(X∗)) ≥ inf

(X,u(X))∈V
Jmag(X,u(X)),

by the definition of infimum. Thus, we get Jmag(X
∗,u∗) = inf(X,u(X))∈V Jmag(X,u(X)),

so (X∗,u(X∗)) is a minimizer for (4.15).
Remark 6. The admissible set X in (4.11) can easily be modified to include a

cargo constraint (see section 5.2.2), but we avoided this in section 4.2.4 in order to
have a simpler presentation. The proof goes through, essentially the same, in this
case as well.

5. Optimization approach and algorithm. Deriving a gradient-based op-
timization algorithm requires the sensitivity of the cost functionals with respect to
perturbations of the shape [15, 18, 52, 61]. Some applications of shape optimization
in fluids can be found in [27, 68, 69]. Some related references on optimization of
nonlinear elastic curves are [4, 11, 12, 48].

The following sections state the formulas that give the sensitivity information for
our problem. In section 5.3, we pose a variational method for computing descent
directions for the centerline curve parametrization X, followed by a description of
the complete optimization algorithm. We then prove well-posedness of the descent
direction solution (5.16) in section 5.4.

5.1. Existence of shape derivative of cost functionals. The following the-
orem states that Jts and Jdiss have a shape derivative in terms of an appropriate
adjoint problem under certain smoothness assumptions.

Theorem 5.1. Suppose Γ is C2, and let VΓ be a C2 shape perturbation of Γ
defined on ΩALL, such that VΓ = 0 on ΓO. Then u is H2(Ω)∩V0 and p is H1(Ω)∩Q

(see [59, 66]), and it has a shape derivative (u′, p′) in the direction VΓ, which satisfies
(B.3) (see Appendix B.1.1). In addition, the functionals Jts and Jdiss are differentiable
with respect to VΓ (i.e., δJts(ΩB;VΓ) and δJdiss(ΩB;VΓ) exist) and are given by

δJts(ΩB;VΓ) = ((MτB)× ωB) · ẋc +

∫
Γ

(VΓ · ν)(Sν −Hν) · [I− ν ⊗ ν]σν,

δJdiss(ΩB;VΓ) =

∫
Γ

(VΓ · ν)(Kν) · [I− ν ⊗ ν]σν,

(5.1)

where “⊗” denotes the tensor product, ν points out of Ω (into ΩB), and ẋc is given
by

ẋc = −
∫
Γ

(x− xc)(VΓ · ν) / |ΩB|.(5.2)
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The adjoint stress tensor S is defined by S(r, 
) = −
I+D(r) with (r, 
) solving the
following adjoint Stokes problem:

−∇ · S(r, 
) = 0 in Ω,

∇ · r = 0 in Ω,

r = rB + ηB × (x− xc) on Γ,

r = 0 on ΓO,∫
Γ

Sν = MτB =: gB (given),

∫
Γ

(x− xc)× (Sν) = ξB,

(5.3)

where rB, ηB, and ξB have the form

rB =

⎛⎝ rB,x (unknown)
rB,y (unknown)
rB,z (unknown)

⎞⎠ , ηB =

⎛⎝ 0
0

η̄z (unknown)

⎞⎠ ,

ξB =

⎛⎝ ξB,x (unknown)
ξB,y (unknown)

0

⎞⎠ .

(5.4)

Similarly, H, K are the stress tensors for adjoint problems (B.9), (B.12) (see Ap-
pendix B.1).

Proof. The existence of (u′, p′) can be proved by straightforward modification
of [27, Theorems 6.15, 6.18], [35, section 11.3.4, Lemmas 11.5, 11.6], or [47]; these
references contain results on shape differentiation of the Navier–Stokes equations. The
existence of unique solutions to the adjoint equations is clear. A formal derivation of
(5.1) is provided in Appendix B.1.

5.2. Sensitivities of constraints. We need sensitivities of the constraints for
the optimization algorithm in section 5.3. The inextensibility and cargo constraints
are purely geometric, so the sensitivity calculations are straightforward (see subse-
quent sections). The global radius of curvature constraint is also geometric, but it is
nonlocal (see Remark 8).

5.2.1. Local inextensibility constraint. We require that ‖X′(t)‖ = L/2 for
−1 ≤ t ≤ 1, which is more conveniently written as an integral. To this end, let

(5.5) Lloc(μ; Σ) =

∫
Σ

μ(X0 ◦X−1)−
∫
Σ0

μ for all μ : Σ0 → R,

where X0 is a parametrization of a reference curve Σ0, X
−1 is the inverse map of

X, and μ is any scalar valued integrable function. One can think of μ as a density
distribution. Thus, the inextensibility constraint is now written as Lloc(μ; Σ) = 0 for
all μ. Using the parametrization, we rewrite this as∫ 1

−1

μ(X0(t))(‖X′(t)‖ − ‖X′
0(t)‖) dt = 0 for all μ,

where the reference curve satisfies ‖X′
0(t)‖ = L/2 (local constraint). Since μ is ar-

bitrary, this clearly recovers the differential constraint ‖X′(t)‖ = L/2. Note that a
global constraint is not adequate because the surface shape Γ depends on the way Σ
is parameterized (see section 2.1).
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The sensitivity of (5.5) can be computed by standard methods in the calculus of
variations [16, 36], which we write as a bilinear form (useful later)

b(V, λ) := δLloc(λ;V) =

∫
Σ

λτ · ∂sV for all V ∈ X, for all λ ∈ M,(5.6)

where ∂s is the derivative with respect to arc-length, τ is the oriented unit tangent
vector of X, V is a perturbation of X (i.e., Σ), λ is a Lagrange multiplier (defined
on Σ), and X ≡ X(X) := H2(Σ) and M ≡ M(X) := (H1(Σ))∗ (see section 5.3.1).
Alternatively, we could try to build inextensibility explicitly into the parametrization,
but it is more conveniently dealt with by Lagrange multipliers.

5.2.2. Cargo constraint. For studying the practical aspects of optimal loco-
motor shapes, we impose an additional obstacle or cargo constraint to simulate the
case where the locomotor is transporting a fixed payload. Assume the cargo is a rigid
body (set denoted Ωcargo) whose shape is described by the zero level-set of φcargo. We
want to ensure that ΩB lies strictly outside the cargo, i.e.,

φcargo(x) ≤ −Ccargo, for all x ∈ ΩB, Ccargo > 0 (fixed constant),(5.7)

where φcargo is the signed distance function for Ωcargo (positive inside Ωcargo). With

this, we modify the model (2.3) by replacing ΩB with Ω̃B = ΩB ∪ Ωcargo, i.e., the
swimmer consists of the tail and cargo rigidly attached to each other. The tail shape
is still parameterized by (2.1).

We include this as a penalty function (added to the cost functional) for the entire
curve Σ. Let g : (0,∞) → R be a C∞ barrier function satisfying the following:
g(t) ≥ 0, g′(t) ≤ 0, g(t) → ∞ as t → 0+, and g(t) = 0 for all t ≥ γ0 > 2Ccargo where
γ0 is a chosen parameter. Then the extra penalty term is

Hcargo(Σ) =

∫
Σ

g(−φcargo(x)) =

∫ 1

−1

g(−φcargo(X(t)))‖X′(t)‖dt(5.8)

with sensitivity given by standard calculus of variations [16, 36]

δHcargo(Σ;V) =

∫ 1

−1

−g′(−φcargo(X(t)))(V(t) · ∇φcargo(X(t)))‖X′(t)‖dt

+

∫ 1

−1

g(−φcargo(X(t)))

(
X′(t)
‖X′(t)‖ ·V′(t)

)
dt

= −
∫
Σ

g′(−φcargo(x))(V · ∇φcargo(x)) +

∫
Σ

g(−φcargo(x))(τ · ∂sV).

(5.9)

In addition, we also have an equality constraint for the positive end-point ∂Σ+ ≡
X(+1), that is, we want the end-point to stay a fixed distance from the surface of the
cargo: −φcargo(X(+1)) = Ccargo, where Ccargo > 0 is a fixed constant. This models
the cargo as being rigidly attached to the locomotor. For reasons of scaling, we impose

E+(Σ) := g(−φcargo(X(+1)))− g(Ccargo) ≡ 0(5.10)

with sensitivity given by

δE+(Σ;V) = −g′(−φcargo(X(+1)))V(+1) · ∇φcargo(X(+1)).(5.11)
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We assume that g is such that −g′(Ccargo) = α0 > 0 for some fixed constant α0; this
is done to ensure the sensitivity does not vanish. Similarly to (5.6), we define the
following bilinear form for later use:

c(V, ζ) = ζ δE+(Σ;V), for all V ∈ X, for all ζ ∈ R.(5.12)

Remark 7. For simplicity, we model a passive payload as a rigid sphere with
one end-point of Σ (i.e., the “attachment point”) constrained to be a fixed distance
from the surface of the sphere, i.e., (5.10). Of course, there is a gap between the
tail and cargo, but the entire configuration (tail and cargo) is considered as one rigid

body Ω̃B = ΩB ∪ Ωcargo. Note that only the tail shape Σ and attachment point are
optimized here; cargo shape is not being optimized. Having a small gap between the
tail and cargo allows for flexibility in defining the cargo/tail shape parametrization.
This changes the problem slightly from what was given in sections 2–4 but does not
pose any serious difficulties (recall Remark 6). The set of admissible shapes (4.11) is
easily modified to include cargo constraints.

5.3. Variational method.

5.3.1. Lagrangian. For simplicity, we formulate a descent method for the func-
tional Jmag (X) = −Jts (X,u(X))+εHcargo(X), where ε > 0 is a small penalty param-
eter for the cargo to ensure that the locomotor does not intersect it. The minus sign
means that we are actually maximizing Jts. Note that we can reformulate (4.15) over
the set (4.11) because X (d, L) is equivalent to O. (Recall that the surface parametriza-
tion is fixed.) Therefore, to determine a solution of (4.15), we first define a Lagrangian
functional to handle the constraints:

L (X, λ, ζ) = Jmag (X) + Lloc(λ;X) + ζE+(X),(5.13)

where λ ∈ M, ζ ∈ R are Lagrange multipliers. Note that Σ ≡ X([−1, 1]), so we
replaced Σ by X in (5.13). The function spaces needed to make sense of the descent
method are

X ≡ X(X) = H2(Σ) (space of curve perturbations),

M ≡ M(X) = (H1(Σ))∗ (local inextensibility Lagrange multiplier space).
(5.14)

Remark 8. We choose H2(Σ) as the base function space for perturbations of
X in order to maintain control of the curvature κ. Recall that the admissible set
(4.11) had a lower bound on the global radius of curvature which also served to
impose the excluded volume constraint (see section 4.2). But including this in our
(numerical) method would require an extra penalty term (or inequality constraint)
that involves a nonlocal computation. In lieu of this, we take a convenient compromise
by “smoothing” the curve perturbation with H2(Σ). Of course, because of the bilinear
form (5.6), this induces the space for the multiplier to be a dual space.

The first-order optimality conditions (KKT system [35]) associated with (5.13)
are

δXL (X∗, λ∗, ζ∗;V) = δJmag(X
∗;V) + δLloc(λ

∗;V) + ζ∗ δE+(X∗;V) = 0,

δλL (X∗, λ∗, ζ∗;μ) = Lloc(μ;X
∗) = 0,

δζL
(
X∗, λ∗, ζ∗; ζ̃

)
= ζ̃E+(X∗) = 0

(5.15)

for all V in X(X∗), μ in M(X∗), ζ̃ in R, i.e., we seek a solution (X∗, λ∗, ζ∗) of (5.15).
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5.3.2. Constrained gradient descent. Applying Newton’s method to (5.15)
yields an iterative method for obtaining an extremal solution. If we replace the Hessian
term in Newton’s method by a positive definite inner product, we obtain the following
variational problem, whose solution gives a descent perturbation ϕ of the centerline
Σ at each step of the iteration.

Variational Formulation 5.1 (constrained gradient flow). Let X̂ be a known

curve parametrization. Find ϕ in X(X̂), λ in M(X̂), and ζ in R such that

〈ϕ,V〉H2(Σ) + b(V, λ) + c(V, ζ) = −δJmag(X̂;V) for all V in X(X̂),

b(ϕ, μ) = −Lloc(μ; X̂) for all μ in M(X̂),

c(ϕ, ζ̃) = −E+(X̂)ζ̃ for all ζ̃ in R.

(5.16)

Note that ϕ and V are defined on Σ ≡ X̂([−1, 1]). Assuming that the constraints

are satisfied, setting V = ϕ gives δJmag(X̂;ϕ) = −〈ϕ,ϕ〉H2(Σ) < 0, provided ϕ �= 0.

So ϕ is a descent perturbation of the parametrization X̂. Evaluating δJmag(X̂;V)

requires computing δJts(X̂;VΓ(V)), where VΓ is defined by extending V from Σ to Γ
by the surface parametrization in (2.1) (see Appendix B.2).

By iterating the system (5.16), we obtain a steepest descent method for optimizing
the centerline curve Σ. Intuitively, one can view the optimization process as the
deformation of an “elastic beam” driven by a body force given by the shape derivative
δJmag. The algorithm essentially consists of solving a sequence of linear problems and
is iterated until the shape converges; see Algorithm 1 for a detailed description. One
can find other function space based optimization methods in [10, 32, 33, 34, 35].

Algorithm 1. Semidiscrete shape flow.

Let α be the step size for updating the domain shape.
Let X0 be an initial parametrization of the centerline such that Σ0 := X0([−1, 1])
which has a given length, i.e., |Σ0| = L. Note that this induces a shape Ω0

B,
Γ0 := ∂Ω0

B.
Define Ω0 = ΩALL \ Ω0

B.
for k = 0, 1, 2, . . . do
Solve Stokes: Let (uk, pk, τ k

B) solve (2.3) on Ωk. Let σk be the associated stress
tensor.
Solve Adjoint Stokes: Let (rk, 
k, ξkB) solve (5.3) on Ωk. Let Sk be the associated
stress tensor.
Evaluate Sensitivities: Compute δJmag(X

k;V) for all V.
Solve for Descent Direction: Let ϕk+1 solve (5.16) on Xk.
Update Shape: Let Xk+1(t) := Xk(t) + αϕk+1(Xk(t)) for all t in [−1, 1]; α is
obtained via a backtracking line-search. This yields Σk+1, which induces a shape
Ωk+1

B , Γk+1 := ∂Ωk+1
B .

Define Ωk+1 = ΩALL \ Ωk+1
B .

end for

The fully discrete algorithm follows directly from Algorithm 1 by applying a
spatial discretization (see section 6.1). A convergence criteria can be based on ‖Xj −
Xj+1‖L2([−1,1]) and whether the constraints are suitably satisfied.

Remark 9. nonlocal computation. One could include the global radius of curva-
ture constraint in the Lagrangian (5.13), but it is difficult to compute with because
it is nonlocal. Alternatively, one can perform the global radius of curvature calcu-
lation (or an approximation of it) within the line-search process. In other words, if
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X̃ is a candidate curve, and if Rglobal(X̃) < d (where d is some thickness threshold),
then the step size should be reduced. Of course this could lead to small steps in
the optimization if the shape really wants to have self-contact. In all the numerical
cases we explored for the microswimmer problem, we never witnessed any tendency
for self contact. However, it is not clear how to avoid this constraint when proving
the existence of a minimizer (section 4).

5.4. Well-posed descent method. Because the inner product 〈·, ·〉H2(Σ) is
trivially coercive over H2(Σ), the well-posedness of computing a descent direction
with (5.16) is guaranteed if the so-called inf-sup condition is satisfied [6, 8]. This is
proved in the following lemma.

Lemma 5.1 (continuous inf-sup). Let Σ be a parameterized 3-D curve and assume
Σ has bounded curvature (see Remark 8). Define X− = {v ∈ X : v = 0 at ∂Σ− ≡
X(−1)}; X+ is defined similarly with ∂Σ+ ≡ X(+1). Then there exists a constant
β > 0 that only depends on L = |Σ| and ‖κ‖L2(Σ), where κ is the scalar curvature of
X, such that

sup
V∈X−

∫
Σ
μ[τ · (∂sV)]

‖V‖H2(Σ)
≥ β‖μ‖M for all μ ∈ M.(5.17)

Note that X− can be replaced with X+.
Proof. Without loss of generality, we will consider the X− case only. Let μ

be an arbitrary function in M. Let s : [−1, 1] → [0, L] be the arc-length function

associated with X, i.e., s(t) =
∫ t

−1
‖X′(r)‖ dr, which implies that t = −1 ⇔ s = 0

and t = +1 ⇔ s = L.
First, note the definition of the dual norm:

‖μ‖M = sup
ω∈H1(Σ)

∫
Σ μ(s)ω(s)

‖ω‖H1(Σ)
,(5.18)

where the integral is understood in the sense of duality pairing [1, 21]. Ergo, there
exists a 
 in H1(Σ) such that∫

Σ

μ
 = ‖μ‖2
M
, ‖
‖H1(Σ) = ‖μ‖M.(5.19)

Next, let W be defined on Σ in terms of s(·) by W(ŝ) :=
∫ ŝ

0 
(s)τ (s)ds. This
gives ∫

Σ

μ[τ · (∂sW)] =

∫ L

0

μ(s)τ (s) · (
(s)τ (s))ds =

∫ L

0

μ(s)
(s)ds = ‖μ‖2M.(5.20)

Next, by standard inequalities and noting |τ | = 1, we have

‖W‖2L2(Σ) =

∫ L

0

|W(s)|2ds ≤
∫ L

0

(∫ s

0

|
(r)|dr
)2

ds

≤ L2

∫ L

0


2(s)ds = L2 ‖
‖2L2(Σ),

‖∂sW‖2L2(Σ) = ‖
‖2L2(Σ),

‖∂2
sW‖2L2(Σ) ≤ 2(‖∂s
‖2L2(Σ) + ‖κ‖2L2(Σ)‖
‖2L2(Σ)).

(5.21)
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Thus, W is in X− and we obtain
(5.22)
‖W‖2H2(Σ) ≤ (L2 + 1 + 2‖κ‖2L2(Σ))‖
‖2L2(Σ) + 2‖∂s
‖2L2(Σ) ≤ C2

0‖
‖2H1(Σ) = C2
0‖μ‖2M,

where C0 = max((L+ 1 +
√
2‖κ‖L2(Σ)),

√
2). Combining (5.22) with (5.20) gives

(5.23)

∫
Σ
μ[τ · (∂sW)]

‖W‖H2(Σ)
≥ β‖μ‖M,

where β = 1/C0. Replacing W by the supremum over all X− gives the asser-
tion.

Remark 10. In Lemma 5.1, we allowed one end-point to be constrained. However,
it is not possible to satisfy (5.17) in general if both are constrained. Consider the case
where Σ is straight (τ is constant) and V is required to vanish at ∂Σ. Then for μ = 1,
we have ∫

Σ

μ[τ · (∂sV)] = μτ ·
∫
Σ

∂sV = μτ ·V
∣∣∣
∂Σ

= 0,

which implies that (5.17) cannot be true.
To conclude, we state the full well-posedness result.
Theorem 5.2 (well-posedness). Assume that ∂Σ+ ≡ X(+1) satisfies the end-

point constraint (5.10), and the barrier function g satisfies −g′(Ccargo) = α0 > 0 for
some fixed constant α0 (see section 5.2.2). Under the hypothesis of Lemma 5.1, there
exists a constant β > 0 that only depends on L = |Σ|, ‖κ‖L2(Σ), α0, such that

sup
V∈X

b(V, μ) + c(V, ζ̃)

‖V‖H2(Σ)
≥ β(‖μ‖M + |ζ̃|), for all μ ∈ M, ζ̃ ∈ R.(5.24)

Moreover, there is a unique solution (ϕ, λ, ζ) of (5.16) that depends continuously on
the data.

Proof. Let μ ∈ M and ζ̃ ∈ R be arbitrary but fixed. By Lemma 5.1, there exists
W ∈ X+ satisfying

b(W, μ) =

∫
Σ

μ[τ · ∂sW] = β0‖μ‖M, ‖W‖H2(Σ) = 1, W|∂Σ+ = 0.

Let Z ∈ X be the constant vector given by Z = ∇φcargo(X(+1)) sgn(ζ̃), which satisfies

‖Z‖H2(Σ) = |∇φcargo(X(+1))| ‖1‖L2(Σ) = |Σ|1/2,
because φcargo is a distance function. By hypothesis,X(+1) satisfies−φcargo(X(+1)) =
Ccargo. Thus, by (5.10), (5.11), and (5.12), we have

c(Z, ζ̃) = ζ̃ (−g′(Ccargo))Z(+1) · ∇φcargo(X(+1)) = ζ̃sgn(ζ̃)α0 = α0|ζ̃|,
where α0 > 0 is a fixed constant.

Now define V = W + Z. Then ‖V‖H2(Σ) ≤ 1 + |Σ|1/2 and

b(V, μ) + c(V, ζ̃) = b(W, μ) + b(Z, μ)︸ ︷︷ ︸
=0

+ c(W, ζ̃)︸ ︷︷ ︸
=0

+c(Z, ζ̃) = β0‖μ‖M + α0|ζ̃|.

The statement (5.24) follows by forming the quotient and taking the supremum with
β = min(β0, α0). Well-posedness follows from [6], [8, Theorem 1.1].
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6. Numerical discretization. This section describes the finite element/spline
method we use to approximate the system (5.16). We then prove well-posedness of a
discrete version of (5.16). As for the approximation of the 3-D Stokes equations, many
numerical schemes already exist. The method we use in our numerical demonstrations
is described in section 7.

6.1. Spatial discretization. The discretization of the infinite dimensional op-
timization problem requires a set of discrete spaces to replace the function spaces
given earlier. We begin by partitioning the interval [−1, 1] into a set of subintervals:
I := {Ik}N−1

k=1 , i.e., the mesh. Moreover, we use the symbol “h” to denote discretiza-
tion of the domain. If X : [−1, 1] → R3 is a parametrization of Σ, then X induces a
partition of edge segments {Ek} on Σ, i.e., Ek = X(Ik).

Next, we need (at least) C1 type basis functions to have a conforming approxi-
mation of the space H2(Σ). Since X is a 1-D curve, it is advantageous to use a cubic
spline basis which has better continuity: C2 [55, 63]. Let {tk}Nk=1 be the nodal points
in the interval [−1, 1], i.e.,

t1 = −1, tk+1 = Ik ∩ Ik+1, k = 1, 2, . . . , N − 2, tN = 1.

Let {ηk}N+1
k=0 be the cardinal cubic spline basis functions [55, 63] such that

(6.1) ηi(tj) = δij for all 1 ≤ i, j ≤ N,

and η0 and ηN+1 are the end-slope basis functions

η0(tj) = ηN+1(tj) = 0, 1 ≤ j ≤ N, η′0(t1) = 1, η′0(tN ) = 0,

η′N+1(t1) = 0, η′N+1(tN ) = 1.
(6.2)

Then the cubic spline space is defined by

(6.3) Sh :=

{
v ∈ C2([−1, 1]) : v(t) =

N+1∑
k=0

αkηk(t) for all αk ∈ R

}
⊂ H2([−1, 1]),

where h is the mesh size.
For the remainder, let Xh : [−1, 1] → R3 such that Xh ∈ Sh. In other words,

Σh = Xh([−1, 1]) is a (parametric) cubic spline approximation of Σ. Note that v in
L2, for example, means each component of v is in L2. The same notation holds for
all the other spaces (including discrete).

Remark 11. Note that the statements of Lemma 5.1 and Theorem 5.2 are true
if X is replaced with Xh. Of course, having a curve with kinks in it would cause
problems with the surface parametrization; recall (2.1). Thus, the use of a spline
space is advantageous because of the extra level of differentiability.

We state the polynomial spaces [6, 7] needed in approximating H2(Σh) and
M(Σh): the mapped spline space

(6.4) Xh := {v ∈ C2(Σh) : (v ◦Xh) ∈ Sh} ⊂ H2(Σh)

and the piecewise constant space

(6.5) Mh := {v : v ◦Xh|I ∈ P0(I) for I ∈ I} ⊂ L2(Σh) ⊂ M(Σh),

where Pk(I) is the space of polynomials of degree ≤ k on the domain I. We now state
the discrete version of (5.16).
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Variational Formulation 6.1 (discrete gradient flow). Let X̂h in Sh be a

known curve parametrization. Find ϕ in Xh(X̂h), λ in Mh(X̂h), and ζ in R such that

〈ϕ,V〉H2(Σh) + b(V, λ) + c(V, ζ) = −δJmag(X̂h;V) for all V in Xh(X̂h),

b(ϕ, μ) = −Lloc(μ; X̂h) for all μ in Mh(X̂h),

c(ϕ, ζ̃) = −E+(X̂h)ζ̃ for all ζ̃ in R.

(6.6)

6.2. Stable descent scheme. The well-posedness of (6.6) follows by the same
criteria as in section 5.4, the main result being the following.

Lemma 6.1 (discrete inf-sup, piecewise constant). Let Σh be parameterized by
Xh ∈ Sh and assume Σh has bounded curvature. Assume the hypothesis of Lemma 5.1.
Let X−

h = Xh ∩ X−. Then there exists a constant β > 0 independent of h0 =
maxE⊂Σh

|E| such that

sup
V∈X

−
h

∫
Σh

μ[τ · (∂sV)]

‖V‖H2(Σh)
≥ β‖μ‖M(Σh) for all μ ∈ Mh,(6.7)

provided the mesh size h0 is sufficiently small. Note that X−
h can be replaced by X+

h .
Proof. Let us consider the X−

h case only and let μ be an arbitrary function in Mh.
By Lemma 5.1 (and Remark 11), there exists an F in X− such that

(6.8) ‖F‖H2(Σh) = ‖μ‖M,
∫
Σh

μ[τ · ∂sF] = β‖μ‖2
M
.

Next, let W be in X−
h with nodal values given by interpolating F at the nodes of

the mesh I and setting the end-slopes to zero; this is possible because of the Sobolev
embedding: H2(Σh) ⊂ C0(Σh). By basic approximation theory [58, Theorem 6.25,
p. 230]

(6.9) ‖W‖H2(Σh) ≤ c0‖F‖H2(Σh)

for some independent constant c0. Also, let τ̂ in Mh be a piecewise constant approx-
imation of the unit tangent vector τ of Σh defined by

τ̂ |E =
1

|E|
∫
E

τ , ⇒ ‖τ̂ − τ‖L∞(E) ≤ K0|E|,(6.10)

for each edge segment E contained in Σh. Note that K0 is a fixed constant that
depends on the curvature of Σh (or its Lipschitz constant).

We must show that W satisfies a similar relation as (5.23). We start by consid-
ering an edge segment E ⊂ Σh. Note that

∫
E
∂sW =

∫
E
∂sF because W is the nodal

interpolant of F. Then,∫
E

μ[τ · (∂sW)] = μ

∫
E

(τ − τ̂ ) · ∂sW + μτ̂ ·
∫
E

∂sW

= μ

∫
E

(τ − τ̂ ) · ∂sW + μτ̂ ·
∫
E

∂sF.

(6.11)

Continuing, we get∫
Σh

μ[τ · (∂sW)] =

∫
Σh

μ(τ − τ̂ ) · ∂s(W − F) +

∫
Σh

μτ · ∂sF,(6.12)
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where we summed over all edges. Therefore,

∫
Σh

μ[τ · (∂sW)] ≥ −‖τ − τ̂‖L∞(Σh)‖μ‖M(‖∂sW‖H1(Σh) + ‖∂sF‖H1(Σh))

+

∫
Σh

μτ · ∂sF

by (6.10) ≥ −c1h0

[
‖μ‖2

M
+ ‖∂sW‖2H1(Σh)

+ ‖∂sF‖2H1(Σh)

]
+

∫
Σh

μ[τ · ∂sF],

(6.13)

where h0 = maxE⊂Σh
|E| and c1 is an independent constant. Using (6.8), (6.9) gives

∫
Σh

μ[τ · (∂sW)] ≥ −c2h0‖μ‖2M +

∫
Σh

μ[τ · ∂sF] = (β − c2h0)‖μ‖2M ≥ β

2
‖μ‖2

M

(6.14)

for some constant c2 > 0 and h0 sufficiently small. Thus, we obtain the quotient

(6.15)

∫
Σh

μ[τ · (∂sW)]

‖W‖H2(Σh)
≥ β

2c0
‖μ‖M.

The assertion follows by taking the supremum.
Using splines gives an effective way to ensure smooth tangent and normal fields

(when using piecewise approximations), so as to have a well-defined surface parametri-
zation for Γ (i.e., no artificial self-intersections). Note that updating the centerline
curve Xh throughout the optimization process is completely consistent because Xh

and ϕ ◦Xh are both in Sh (recall Algorithm 1). We close with the full stability result
for computing discrete descent directions.

Theorem 6.1 (well-posedness). Assume that ∂Σ+ ≡ X(+1) satisfies the end-
point constraint, i.e., the last line of (5.15). Under the hypothesis of Lemma 6.1, there
exists a constant β > 0 dependent on L = |Σh|, ‖κ‖L2(Σh), and α0 (see section 5.2.2)
but independent of h0 = maxE⊂Σh

|E|, such that

sup
V∈Xh

b(V, μ) + c(V, ζ̃)

‖V‖H2(Σh)
≥ β(‖μ‖M(Σh) + |ζ̃|), for all μ ∈ Mh, ζ̃ ∈ R,(6.16)

provided the mesh size h0 is sufficiently small. Moreover, there is a unique solution
(ϕh, λh, ζh) of (6.6) that depends continuously on the data.

Proof. The proof is similar to the proof of Theorem 5.2.

7. Computational results. We present numerical results of our discrete opti-
mization algorithm, which solves (6.6) to obtain a descent direction at each iteration.
Another important part of the algorithm is the solution of the 3-D Stokes equa-
tions (2.3) (and adjoint equations) in order to evaluate the cost sensitivities. We
use a boundary integral approach, which easily accommodates the swimmer shapes
described by (2.1) when {N1,N2} are determined using parallel transport (see sec-
tion 2.1). Details of the boundary integral method are in [38, 40]. Subsequent sections
describe the numerical optimization results.

Remark 12. For each numerical example, we choose the desired length L and a
constant C such that L/(2A) = C, where C is the aspect ratio. This determines A,
which appears in (2.2) and fixes O in (4.12).
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Fig. 7.1. Optimal locomotor shape. The far left plot shows the initial shape (Σ is four full
turns of a helix) with an aspect ratio of 20; the centerline length is constrained to be L = 2.0. The
next plot shows the optimized result from our algorithm. On the right, we see the X,Y components
of the parametrization of Σ versus the parameter variable: −1 ≤ t ≤ +1; Z component is just
linear increasing. The dashed curve is the initial shape and the solid curve is the optimal shape.
The surface grid is only for illustration; the computational grid for solving Stokes is of much higher
resolution.

7.1. Examples without cargo. We first present optimizations of swimmers
that do not possess an attached cargo. Figure 7.1 shows the initial and final con-
figurations for such a swimmer that has aspect ratio L/(2A) = 20 with L = 2. The
centerline of the initial shape is given byX0(t) = b cos(kt)ex+b sin(kt)ey+αtez, where
α = 0.7, k = 4π, b = k−1

√
1− α2, and {ex, ey, ez} are the canonical basis vectors of

R3. This corresponds to a simple helix with four turns and pitch λ = 2πα/k = 0.35.
During the optimization, the body evolves into a shape that closely resembles a helix
with 3/2 turns. Figure 7.2 shows the cost, Jts, and sensitivity, δJts, over the course
of the optimization. We see the cost improve by a factor of 1.475, and the sensitiv-
ity approach zero, indicating that the shape predicted by our algorithm is a (local)
minimizer.

Due to the scale invariance of the Stokes equations, the optimal shape will not
change if L and A are scaled by the same factor. This is not the case, however, if
one varies the aspect ratio. We demonstrate the effect of aspect ratio on the optimal
shape by performing an optimization of a swimmer with L/(2A) = 50. The results
from this optimization are provided in Figure 7.3. To compare with the L/(2A) = 20
case, we set the initial centerline shape to be given by X0(t). We immediately see
that the thinner body leads to higher speeds (lower cost values). We also see that the
resulting optimal shape is quite different than that of the L/(2A) = 20 case. Here,
the optimal shape retains the four turns but is straighter than the initial condition,
namely, the projection of the centerline tangent onto the swimming direction is greater
for the optimal shape. We find that the aspect ratio clearly has an impact on the
optimal shape. It is important to note that these effects are not captured by drag-
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to that shown in Figure 7.1. In the sensitivity plot, δJts is evaluated along the descent direction and
is normalized such that the optimization step size is 1.
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Fig. 7.3. Optimal locomotor shape. The far left plot shows the initial locomotor shape (initial
Σ is four full turns of a helix) with an aspect ratio of 50; the centerline length is constrained to be
L = 2.0. The format is similar to Figure 7.1.
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Fig. 7.4. Optimal locomotor shape with spherical cargo. The far left plot shows the initial
locomotor shape and cargo placement (initial Σ is two full turns of a helix); the centerline length is
constrained to be L = 2.0. The format is similar to Figure 7.1.

based models such as resistive force theory [44] that treat the hydrodynamic problem
in the limit of L/(2A) → ∞.

7.2. Example with cargo. The presence of a passive payload attached to one
end of the swimmer affects the optimal shape. Figure 7.4 shows the result of an opti-
mization of a swimmer with L = 2 and aspect ratio L/(2A) = 20 that is “attached”
to a sphere with radius R = 0.1L (recall section 5.2.2). This particular choice of
aspect ratio, cargo size, and shape corresponds directly to the microswimmer geome-
tries realized experimentally in [23]. With the payload, the optimal tail shape has a
much greater radius (relative to the main swimming axis) and only about 3/4 of a
turn, i.e., the tail must “fan out” from the payload in order to maximize its swim-
ming speed. The additional drag caused by having the cargo greatly slows down the
swimmer by a factor of 2. Moreover, the attachment point moves from being directly
underneath the spherical cargo to along its side, i.e., the attachment point is affected
by the optimization. Compared to the payload-free case, the optimization yields a
greater (relative) decrease in the total cost, lowering it by a factor of 2.3. Therefore,
introduction of the cargo significantly affects the optimal tail shape.

8. Conclusion. We have shown the existence of a minimizer to an infinite di-
mensional shape optimization problem related to microlocomotors in 3-D Stokes flow,
which used a calculus of variations type framework while taking advantage of theo-
retical tools in self-contact of curves. We then described a variational gradient based
optimization algorithm that uses shape differential calculus to obtain the functional
sensitivities. Moreover, we proved well-posedness of a variational formulation used to
compute descent directions for the locomotor centerline curve X (both for the con-
tinuous and discrete formulations). Last, we presented numerical results illustrating
the effectiveness of our method.
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We emphasize the importance of the generality of our method. It allows us to
capture the complete optimal tail configuration and accommodate cargo with various
shapes. In addition, our method readily incorporates more complex cargo geometries
(such as a payload at both ends) which can dramatically alter the optimal Σ. Our
approach also utilizes the complete Stokes flow problem to obtain the fluid forces ex-
perienced by the swimmers. Relying on approximations such as resistive-force theory
[44] can lead to degenerate optimizing shapes [62] (i.e., helices with decreasing am-
plitude as the number of turns per unit length increases). Accordingly, we are now
employing our method to further the results presented in the previous section and
to determine experimentally realizable optimal swimmer shapes [39]. We are exam-
ining the dependence of the optimal shape and associated cost on the aspect ratio
of the tail, thereby extending Lighthills results [44] to finite-sized swimmers. We are
also applying our approach to assess the effects of cargo size on the results of the
optimization.

Appendix A. Basic estimates.

A.1. Rigid motions. In the proof of Lemma 3.2, we will consider the decom-
position of the rigid motion for the body ΩB. Let {η1, η2, η3, η4} be defined by

η1 = ex, η2 = ey, η3 = ez, η4 = ez × (x− xg) for x ∈ Γ,(A.1)

where {ex, ey, ez} are the canonical basis vectors of R3. Note that {ηi}4i=1 are or-
thogonal with respect to the L2(Γ) inner product. Moreover, note

‖η4‖2L2(Γ) =

∫
Γ

|ez × (x− xg)|2 =

∫
Γ

(|x − xg|2 − |ez · (x− xg)|2) = Iz,

where Iz is the moment of inertia of Γ (about the z-axis) with respect to the geometric
center xg assuming the “shell mass density” is unity [49, 67]. The smallest that Iz
can be is when Σ is a line segment. Thus, there is a constant CIz > 0 depending only
on ac such that

Iz ≥ CIz |Σ|,
provided Γ does not intersect itself. Therefore, we have

‖ηi‖L2(Γ) = |Γ|1/2, i = 1, 2, 3,

‖η4‖L2(Γ) =

(∫
Γ

|ez × (x− xg)|2
)1/2

=
√
Iz ≥

√
CIz |Σ|.

(A.2)

A.2. Proof of Lemma 3.2. Proof. Setting v = u in (3.6) gives

1

2

∫
Ω

D(u) : D(u) = ωB,zτB,z = |ωB,z|‖η4‖L2(Γ)
|τB,z|

‖η4‖L2(Γ)
≤ c1‖ωB,zη4‖L2(Γ)

|τB,z|
|Σ|1/2 ,

(A.3)

where we used (A.2), and c1 is a constant dependent (at most) on ac. Let ũB =
uB + ωB × (xg − xc) (a spatially constant vector). Continuing, we have

1

2

∫
Ω

D(u) : D(u) ≤ c1

(
‖ωB,zη4‖2L2(Γ) + ‖ũB‖2L2(Γ)

)1/2 |τB,z|
|Σ|1/2

= c1‖ũB + ωB,zη4‖L2(Γ)
|τB,z|
|Σ|1/2 ,

(A.4)
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where the equality follows by the orthogonality of {ηi}4i=1. Now note

ũB + ωB,zη4 = uB + ωB × (xg − xc) + ωB × (x− xg)

= uB + ωB × (x− xc) = u
∣∣∣
Γ
.

(A.5)

Thus, we obtain by (3.10) and a trace theorem

C‖u‖2H1(Ω) ≤
1

2

∫
Ω

D(u) : D(u) ≤ c1
|τB,z|
|Σ|1/2 ‖u‖L2(Γ) ≤ c2

|τB,z|
|Σ|1/2 ‖u‖H1(Ω)

⇒ ‖u‖H1(Ω) ≤ c3
|Σ|1/2 |τB,z|,

(A.6)

where c3 only depends on ac and ΩALL. The bound for the pressure follows similarly.
The other inequality for the velocity follows by first solving an auxiliary problem: let
w be the unique velocity solution of

−∇ · σ(w) = 0, ∇ ·w = 0 in Ω,

w = sgn(ωB,z · τB,z)ωB × (x− xc) on Γ, w = 0 on ΓO,
(A.7)

where ωB comes from the solution u of (3.6). The PDE in (A.7) is a standard Stokes
problem, so we have the following estimate [66, 59, 21]:

‖w‖H1(Ω) ≤ c4‖ωB × (x− xc)‖H1/2(Γ) = c4|ωB,z|‖ez × (x− xc)‖H1/2(Γ)

≤ c4|ωB,z| diam(Γ)‖1‖H1/2(Γ) ≤ c4|ωB,z| |Σ| ‖1‖H1/2(Γ) ≤ c5|ωB,z|,
(A.8)

where c5 only depends on Σ, ΩALL, and ac (note that |Γ| ≈ |Σ| by (3.9)). Because w
is in V0, we can set v = w in (3.6) to get

|ωB,z||τB,z| = 1

2

∫
Ω

D(u) : D(w) ≤ 2‖u‖H1(Ω)‖w‖H1(Ω) ≤ 2c5‖u‖H1(Ω)|ωB,z|
⇒ |τB,z| ≤ 2c5‖u‖H1(Ω).

(A.9)

We have proved (3.11). A similar argument gives that |uB|+ |ωB| ≤ c6|τB,z|. And the
inequality |τB,x|+ |τB,y| ≤ c7|τB,z| comes from the previous results and the definition
τB :=

∫
Γ x× (σν). Ergo, we obtain (3.12).

Appendix B. Shape sensitivity analysis. In deriving a gradient-basedmethod
for computing optimal solutions of (4.13), we use shape sensitivity calculations. We
recall some basic concepts; details can be found in [15, 31, 46, 47, 52]. Let ḟ(Ω;VΓ)(·)
denote the Lagrangian material derivative of f : Ω → R, where VΓ denotes the ve-
locity field perturbation in a neighborhood of Γ. The shape derivative of f (Eulerian
partial derivative) is defined by [15, 31]

(B.1) f ′(Ω;VΓ) := ḟ(Ω;VΓ)−∇xf(Ω) ·VΓ.

Note that the regularity of solution to the state equation (see Theorem 5.1) is sufficient
to apply (B.1).

B.1. Shape derivative PDE and adjoints. Recall the cost functionals Jts,
Jdiss given in (2.6), (2.7). Because of the simple form of Jts, Jdiss, we can compute
the variational derivatives by the product rule:

δJts(ΩB;VΓ) = u′
B ·MτB + τ ′

B ·MTuB, δJdiss(ΩB;VΓ) = ω′
B,zτB,z.(B.2)
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However, these formulas are not efficient to evaluate because they depend on the
particular perturbation VΓ used. Thus, we rewrite them using adjoints (recall Theo-
rem 5.1).

B.1.1. Shape derivative PDE. The shape derivative PDE that (u′, p′) satis-
fies is given as follows:

−∇ · σ′(u, p) = 0 in Ω,

∇ · u′ = 0 in Ω,

u′ = u′
B + ω′

B × (x− xc)− ωB × ẋc − (VΓ · ∇)u+ ωB ×VΓ on Γ,

u′ = 0 on ΓO,∫
Γ

σ′ν = 0 =: f ′B,
∫
Γ

x× (σ′ν) = τ ′
B,

(B.3)

where the vectors u′
B, ω

′
B, and τ ′

B have the form

u′
B =

⎛⎜⎝ u′
B,x (unknown)

u′
B,y (unknown)

u′
B,z (unknown)

⎞⎟⎠ , ω′
B =

⎛⎜⎝ 0

0

ω′
B,z (unknown)

⎞⎟⎠ ,

τ ′
B =

⎛⎜⎝ τ ′B,x (unknown)

τ ′B,y (unknown)

0

⎞⎟⎠ ,

(B.4)

and ẋc is given by (5.2). The derivation of (B.3) is as follows. One can transform (2.3)
(by a rigid motion) to an equivalent Stokes problem where all of the nonzero boundary
conditions are on the outer boundary. Similarly, one can take the net force and
torque conditions to be on the outer boundary (by Gauss’ divergence theorem). The
advantage here is that the shape perturbation calculation (for perturbing Γ ≡ ∂ΩB) is
easier for the translated problem because the outer boundary is fixed. In particular,
the perturbation of the normal vector in the net force and torque conditions does not
appear. Finally, one maps the perturbed PDE system back using the inverse of the
rigid motion transformation. This yields (B.3).

B.1.2. Adjoint problem for u′
B ·MτB. Using (5.3), integration by parts, and

(B.3), we have

0 = −
∫
Ω

(∇ · S) · u′ =
∫
Ω

S : ∇u′ −
∫
Γ

(Sν) · u′ −
∫
ΓO

(Sν) · u′

=

∫
Ω

∇r : σ′(u)−
∫
Γ

(Sν) · u′

= −
∫
Ω

r · (∇ · σ′(u)) +
∫
Γ

r · (σ′(u)ν)−
∫
Γ

(Sν) · u′,

(B.5)
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which simplifies further by (B.3) and (B.4) to give

0 = rB ·
∫
Γ

σ′(u)ν +

∫
Γ

(ηB × (x− xc)) · (σ′(u)ν)−
∫
Γ

(Sν) · u′

= ηB ·
∫
Γ

(x− xc)× (σ′(u)ν)−
∫
Γ

(Sν) · u′ = ηB · τ ′
B︸ ︷︷ ︸

=0

−
∫
Γ

(Sν) · u′

= −
∫
Γ

(Sν) · (u′
B + ω′

B × (x− xc)− ωB × ẋc − (VΓ · ∇)u+ ωB ×VΓ)

= −u′
B ·MτB − ω′

B · ξB︸ ︷︷ ︸
=0

+(ωB × ẋc) ·MτB +

∫
Γ

(Sν)

· [(VΓ · ∇)u]−
∫
Γ

(Sν) · (ωB ×VΓ).

(B.6)

Therefore, we have

u′
B ·MτB = (ωB × ẋc) ·MτB +

∫
Γ

(Sν) · {(VΓ · ∇)u− (ωB ×VΓ)} .(B.7)

With further manipulation, we obtain

(VΓ · ∇)u− (ωB ×VΓ) = (VΓ · ν)[I− ν ⊗ ν]σν.(B.8)

B.1.3. Adjoint problem for τ ′
B · MTuB. Let (r, 
) solve

−∇ ·H(r, 
) = 0 in Ω,

∇ · r = 0 in Ω,

r = rB + ηB × (x− xc) on Γ,

r = 0, on ΓO,∫
Γ

Hν = 0 =: gB (given),

∫
Γ

(x− xc)× (Hν) = ξB,

(B.9)

where rB, ηB, and ξB have the form

rB =

⎛⎝ rB,x (unknown)
rB,y (unknown)
rB,z (unknown)

⎞⎠ , ηB =

⎛⎝ (MTuB) · ex (given)
(MTuB) · ey (given)

η̄z (unknown)

⎞⎠ ,

ξB =

⎛⎝ ξB,x (unknown)
ξB,y (unknown)

0

⎞⎠ .

(B.10)

Note that for the case where M is such that Mij = 0, except M33 = 1 (recall
Definition 2.1), the solution of (B.9) vanishes, i.e., (r, 
) = (0, 0) so that H = 0. A
similar derivation as in section B.1.2 gives

τ ′
B ·MTuB = −

∫
Γ

(Hν) · {(VΓ · ∇)u− (ωB ×VΓ)} .(B.11)

Combining (B.2), (B.7), (B.8), and (B.11) gives the first line of (5.1).
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B.1.4. Adjoint problem for ω′
B,zτB,z. Let (r, 
) solve

−∇ ·K(r, 
) = 0 in Ω,

∇ · r = 0 in Ω,

r = rB + ηB × (x− xc) on Γ,

r = 0 on ΓO,∫
Γ

Kν = 0 =: gB (given),

∫
Γ

(x − xc)× (Kν) = τB,zez,

(B.12)

where rB, ηB, and ξB have the form

rB =

⎛⎝ rB,x (unknown)
rB,y (unknown)
rB,z (unknown)

⎞⎠ , ηB =

⎛⎝ 0
0

η̄z (unknown)

⎞⎠ ,

ξB =

⎛⎝ ξB,x (unknown)
ξB,y (unknown)

0

⎞⎠ .

(B.13)

Just as before, we obtain

ω′
B,zτB,z =

∫
Γ

(Kν) · {(VΓ · ∇)u− (ωB ×VΓ)} .(B.14)

Combining (B.2), (B.14) with (B.8) gives the second line of (5.1).

B.2. Mapping perturbations of Σ to Γ. The previous sections (of this ap-
pendix) presented the sensitivity analysis for the case where VΓ is a perturbation
defined in the neighborhood of the surface Γ. Since the control variable (or opti-
mization parameter) for our problem is the codimension 2 set Σ, we need to map
perturbations of Σ to Γ to compute the sensitivities using (5.1). This is needed to
compute the right-hand side of (5.16).

Let V be a parametric perturbation of X and define Xε = X+ εV. The pertur-
bation of the tangent vector τ is given by

(B.15) δτ =
1

‖X′(t)‖ (I− τ ⊗ τ )
dV

dt
= (I− τ ⊗ τ ) ∂sV.

Next, let δNi be the corresponding perturbation of Ni (for i = 1, 2) and note that

τ = N1 ×N2, N1 = N2 × τ , N2 = τ ×N1,(B.16)

because {τ ,N1,N2} is an orthogonal frame. By the product rule and (B.16), we have

δN1 = δN2 × τ +N2 × δτ , δN2 = δτ ×N1 + τ × δN1.(B.17)

By the definition of the surface parametrization, the perturbation of Γ is

(B.18) VΓ(t, θ) = V(t) + ac(t) (cos θδN1(t) + sin θδN2(t)) .

But we can simplify this further because we assume a circular cross-section (recall
(2.2)). In this case, the normal vector (on Γ) is given by

(B.19) ν(t, θ) = α(t)(cos θN1(t) + sin θN2(t)) + β(t)τ (t),
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where α2 + β2 = 1. We now calculate VΓ · ν since this appears in (5.1). Combining
(B.18) and (B.19), we obtain

VΓ · ν = V · ν + ac(t) (cos θδN1 + sin θδN2) · ν
= V · ν + ac(t)α(t) (cos θ sin θδN1 ·N2 + cos θ sin θδN2 ·N1)

+ ac(t)β(t) (cos θδN1 · τ + sin θδN2 · τ ) ,
(B.20)

where we used the fact that δN1 ·N1 = δN2 ·N2 = 0. Now note the following identity:

N1 ·N2 = 0 ⇒ δN1 ·N2 +N1 · δN2 = 0.

Hence, (B.20) reduces to

VΓ · ν = V · ν + ac(t)β(t) (cos θ(N2 × δτ ) · τ + sin θ(δτ ×N1) · τ )
= V · ν + ac(t) (cos θ(N2 × δτ ) + sin θ(δτ ×N1)) · ν.

(B.21)

Therefore, the perturbation of Γ can be written as (B.18) with δN1, δN2 replaced by

δN1 = N2 × δτ , δN2 = δτ ×N1,(B.22)

i.e., δN1, δN2 are completely determined by δτ . So VΓ is fully determined from V.
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[31] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approxi-
mation, and Computation, Adv. Des. Control 7, SIAM, Philadelphia, 2003.

[32] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semi-
smooth newton method, SIAM J. Optim., 13 (2003), pp. 865–888.

[33] M. Hintermüller and K. Kunisch, Path-following methods for a class of constrained mini-
mization problems in function space, SIAM J. Optim., 17 (2006), pp. 159–187.

[34] M. Hintermüller and W. Ring, A second order shape optimization approach for image seg-
mentation, SIAM J. Appl. Math., 64 (2004), pp. 442–467.

[35] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applica-
tions, Adv. Des. Control, SIAM, Philadelphia, 2008.

[36] J. Jost and X. Li-Jost, Calculus of Variations, Cambridge University Press, Cambridge, 1998.
[37] E. E. Keaveny and M. R. Maxey, Spiral swimming of an artificial micro-swimmer, J. Fluid

Mech., 598 (2008), pp. 293–319.
[38] E. E. Keaveny and M. J. Shelley, Applying a second-kind boundary integral equation for

surface tractions in Stokes flow, J. Comput. Phys., 230 (2011), pp. 2141–2159.
[39] E. E. Keaveny, S. W. Walker, and M. J. Shelley, Optimization of chiral structures for

microscale propulsion, Nano Lett., 13 (2013), pp. 531–537.
[40] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Dover

Publications, New York, 2005.
[41] S. Lang, Real and Functional Analysis, Grad. Texts Math., 3rd ed., Springer, New York, 1993.
[42] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Rep. Progr.

Phys., 72 (2009), 096601.
[43] P. D. Lax, Functional Analysis, Wiley-Interscience, New York, 2002.
[44] J. Lighthill, Mathematical Biofluiddynamics, SIAM, Philadelphia, 1975.
[45] E. J. Lobaton and A. M. Bayen, Modeling and optimization analysis of a single-flagellum

micro-structure through the method of regularized stokeslets, IEEE Trans. Control Systems
Technology, 10 (2008), pp. 1–8.

[46] B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids, Numer. Math.
Sci. Comput., Oxford University Press, New York, 2001.



3126 SHAWN W. WALKER AND ERIC E. KEAVENY

[47] M. Moubachir and J.-P. Zolésio, Moving shape analysis and control: Applications to fluid
structure interactions, Pure Appl. Math. 277, Chapman and Hall/CRC, Boca Raton, FL,
2006.
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