
SIAM J. SCI. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. A294–A326

TETRAHEDRALIZATION OF ISOSURFACES WITH
GUARANTEED-QUALITY BY EDGE REARRANGEMENT (TIGER)∗

SHAWN W. WALKER†

Abstract. We present a method for generating three-dimensional (3-D) unstructured tetrahedral
meshes of solids whose boundary is a smooth surface. The method uses a background grid (body-
centered-cubic (BCC) lattice) from which to build the final conforming 3-D mesh. The algorithm
is fast and robust and provides useful guaranteed dihedral angle bounds for the output tetrahedra.
The dihedral angles are bounded between 8.5◦ and 164.2◦. If the lattice spacing is smaller than
the “local feature size,” then the dihedral angles are between 11.4◦ and 157.6◦ (cf. Labelle and
Shewchuk [SIGGRAPH ’07, ACM, New York, 2007]). The method is simple to implement and
performs no extra refinement of the background grid. The most complicated mesh transformations
are 4-4 edge flips. Moreover, the only parameter in the method is the BCC lattice spacing. If the
surface has bounded curvature and if the background grid is sufficiently fine, then the boundary of
the output mesh is guaranteed to be a geometrically and topologically accurate approximation of the
solid surface. Applications of the method are in free boundary flows, modeling deformations, shape
optimization, and anything that requires dynamic meshing, such as virtual surgery.

Key words. mesh generation, three dimensions, tetrahedra, dihedral angles, octahedra, isosur-
face, level set, front-tracking

AMS subject classifications. 65N50, 65D18, 68U05

DOI. 10.1137/120866075

1. Introduction. Mesh generation is a classic problem in computer graphics,
geometric modeling, and scientific computing. Meshes are used for representing and
rendering surfaces, mechanical design, and enabling physical simulations. The finite
element method (FEM) [8, 9, 17, 30] is a popular choice for computing numerical
solutions of continuum level partial differential equations (PDEs) that model various
physical phenomena, such as elastic deformations and free surface fluid flows. In this
instance, the mesh provides a decomposition of the physical domain into elementary
shapes (such as tetrahedra) through which a FEM can be built.

Using a FEM leads to finite dimensional representations (matrices) of the PDE
model that must be solved to obtain the physical solution (e.g., deformation field).
The accuracy of the FEM and condition number of the related matrices depend on
the number of mesh elements as well as the mesh element “qualities” [3, 5, 34, 55].
More specifically, for tetrahedra, the dihedral angles must not be close to 0◦ and 180◦.
Naturally, these are desirable properties for any finite element mesh generator.

This paper develops a fast generation method for tetrahedral volume meshes. It
is directly inspired by the method in [36] but is simpler to implement and the dihedral
angle bounds are better if the mesh size is sufficiently small. Our method is applicable
in any dynamic meshing situation, such as multiphase flows, mechanical deformations,
or whenever a front-tracking approach is needed. It is numerically robust and offers
theoretical guarantees on the dihedral angles that are actually useful, which is crucial
to avoid “user intervention.” Our method does not accommodate extra “surface

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section February 14,
2012; accepted for publication (in revised form) September 26, 2012; published electronically January
15, 2013. This work was supported by NSF grant DMS-1115636.

http://www.siam.org/journals/sisc/35-1/86607.html
†Department of Mathematics and Cneter for Computation and Technology, Louisiana State Uni-

versity, Baton Rouge, LA 70803-4918 (walker@math.lsu.edu).

A294

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A295

constraints,” such as edge or corner constraints; it applies only to three-dimensional
(3-D) solids with smooth boundaries.

There has been a significant amount of work on tetrahedral mesh generation. Two
notable free software programs are TetGen [56] and NetGen [53]. Some early work
on Delaunay and octree methods can be found in [65, 25, 44, 4, 16, 6, 21] and more
recently in [39, 37, 15, 14]. Some methods use sliver exudation to remove degenerate
elements from the mesh [15, 20, 49].

Other methods take an optimization viewpoint [53, 24, 32, 41, 40, 23], while
others [12, 13, 2] use a variational form to minimize the interpolation error by local re-
meshing. Some methods use specific tilings of 3-D space [62, 22] or marching cubes [38]
or marching tetrahedra [43]. Another option for mesh generation uses implicit (level
set) functions to create conforming meshes [46, 47, 45, 10, 50, 51, 63, 35, 36] as well as
adaptive methods to create meshes adapted to the local feature size [7, 28, 33]. Some
of these methods also include mesh smoothing operations (see [18, 48, 54, 64, 29] for
more smoothing methods). An excellent detailed review of current meshing technology
can be found in [35, 36].

Because of the wide variety of mesh generation methods available, it is worthwhile
to ask what is not available. The following list describes several desirable properties
for any mesh generator:

• Tetrahedralize a solid region defined by a continuous and Lipschitz closed
surface (e.g., piecewise smooth with corners).

• Generate the mesh quickly, i.e., have an O(n) algorithm, where n is some
reasonable quantity such as the number of output vertices.

• Have theoretical guarantees on the “quality” of the output tetrahedra that
are practical (e.g., minimum dihedral angles � 1◦; maximum dihedral angles
� 180◦).

• Handle internal boundary constraints∗.
• Not be complicated to implement∗.
• Be parallelizable∗.

To the best of the author’s knowledge, no method exists that satisfies the above items
simultaneously, even if the “starred” items are omitted. Indeed, most dihedral angle
guarantees are less than 1◦, which is not useful in practice. See [35, 36] for more
information on current dihedral angle guarantees. For these reasons, mesh generation
is a major bottleneck in industrial design and simulation, especially for dynamic
meshing.

Although our method does not satisfy all items in the above list either, it does
achieve the following:

• Tetrahedralizes an interior solid region defined by a continuous closed surface,
with bounded curvature (i.e., a C1,1 surface).

• Is a practically fast algorithm (see section 4.3).
• Has guarantees on the dihedral angles of the output tetrahedra:

no restrictions: restriction: c ≤ Rm/1.1

minimum dihedral angle > 8.54◦, minimum dihedral angle > 11.47◦,
maximum dihedral angle < 164.18◦, maximum dihedral angle < 157.59◦,

where c is the lattice spacing (background mesh size) and Rm is (essentially)
the local feature size of the solid’s surface (see Theorem 2).

• Not complicated to implement.
• Can mostly be parallelized.

A296 SHAWN W. WALKER

The algorithm is called “Tetrahedralization of Isosurfaces, with Guaranteed-qual-
ity, by Edge Rearrangement” or TIGER. In section 2, we note some basic definitions
and material. Section 3 gives a high-level description of the main algorithm, while
section 4 describes Version 1 of the algorithm (simplest version). Section 5 summarizes
the meshing guarantees of the method and the dihedral angle bounds for Version 1.
Section 6 presents a minor modification (Version 2) that leads to better dihedral
angles provided the background mesh is sufficiently fine. We present meshing results
in section 7 and conclude with a discussion in section 8 on parallelization and heuristics
one can use to improve the meshes created by our method. Appendix A describes our
technique for proving the dihedral angle bounds.

2. Preliminaries. The method uses a background mesh from which to construct
an output mesh that conforms to an object’s boundary. The idea is to deform the
background mesh (i.e., move the vertices) such that there is a set of mesh edges that
conform to the object’s surface. But a mesh is inherently anisotropic, meaning the
mesh edges will not be favorably aligned with the surface in all instances. Therefore,
the method makes simple local topological transformations of the background mesh
(i.e., 4-4 edge-flips [31]) in order to ensure the edges are favorably aligned.

2.1. Background mesh. Let LA := Z
3 be a cubic lattice, i.e., the set of points

in R
3 whose coordinates are integers. We denote the (uniformly) scaled cubic lattice

by LA(c), where all three dimensions are scaled by c > 0 (c is the lattice spacing).
Similarly, let LB := LA +

(
1
2 ,

1
2 ,

1
2

)
, i.e., each point is shifted by the vector

(
1
2 ,

1
2 ,

1
2

)
;

we can also scale it: LB(c).
Consider the (scaled) body-centered-cubic (BCC) lattice:

(1) BCC(c) := LA(c) ∪ LB(c).

Let T be the Delaunay triangulation of the point set BCC(c) [58]. For mesh notation,
let the set of vertices of T (lattice points) be denoted by V and edges of T denoted
by E (see Figure 1). The edges decompose into two types of edges, long and short,
each type having the exact same (Euclidean) length. For the unscaled BCC lattice,
the lengths are Llg := 1 and Lst :=

√
3/2. Naturally, the scaled BCC lattice has long

and short edge lengths cLlg and cLst (respectively).
A crucial part of the method uses an octahedral view of the BCC mesh, which

has recently been considered for generating surface meshes [11, 61]. In the BCC
context, an octahedron is a set of four tetrahedra that all share a common longest
edge (Figure 2). The common longest edge of an octahedron is called the spine of the
octahedron. Basic considerations lead to the following proposition.

Proposition 1. The following properties are true for the BCC tetrahedral mesh
T .

1. Every edge of the LA lattice is the spine of an octahedron O ⊂ T ; likewise
for LB.

2. The set of BCC tetrahedra T can be decomposed into a disjoint union of
octahedra whose spines are edges in LA. A different decomposition is given if
LB is used.

3. Every T ∈ T , belongs to two distinct (but overlapping) octahedra, i.e., there
exist octahedra O1, O2 such that O1 ∩O2 = T (see Figure 2 (b)).

Proof. 1. Let E be a long edge of LA, and let {Q1, Q2, Q3, Q4} be the four cubes
in LA that all contain E as an edge (see Figure 1). The octahedron, whose spine is
E, is defined by the two end point vertices of E and the four LB vertices that lie at
the center of the cubes.

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A297

BCC Lattice and Tetrahedra

Fig. 1. Highlighted tetrahedra in a BCC lattice. The tetrahedra are generated by the Delaunay
triangulation of the point set BCC(c) for any c > 0. Each tetrahedron has two long edges (equal
length): one belonging to lattice LA, the other to LB. The remaining four short edges (equal length)
connect LA vertices to LB vertices (i.e., they bridge the two lattices). All of the tetrahedra are
self-similar, differing only by rotations and translations.

2. Given two edges E1, E2 in LA, one can show that the interior of their corre-
sponding octahedra do not overlap. Moreover, given any point p in R

3, it is obvious
how to find the enclosing cube Q (assumed to be a closed set) in LA. Next, find the
closest edge E of Q and let O be the octahedron whose spine is E. One can verify
that p is contained in the closure of O.

3. Let T ∈ T . Clearly, T has two long edges E1, E2. Let O1, O2 be the
corresponding octahedra. It is straightforward to check that O1 ∩O2 = T .

A

B C

(a) Distinct octahedra.

A B

(b) Overlapping octahedra.

Fig. 2. Examples of octahedra contained in the BCC tetrahedral mesh. In (a), octahedra A
and C belong to the same lattice LA; the spine of octahedron B belongs to lattice LB. Moreover, the
spine of C is orthogonal to the spines of A and B. In (b), the spines of A and B belong to lattices
LA and LB (respectively), and the intersection of A and B is a single tetrahedron (not shown).

A298 SHAWN W. WALKER

2.2. Physical domain. Consider a bounded domain Ω ⊂ R
3. Let φ : R3 → R

be a continuous level set function such that φ > 0 inside Ω and φ < 0 outside Ω; thus,
Γ ≡ ∂Ω = {x : φ(x) = 0}. We want to decompose R

3, using the BCC background
grid, into a mesh of tetrahedra that approximates Ω well. For now, we require only
that Γ be continuous (i.e., a C0 surface). Note: the output mesh from our algorithm
will not (in general) respect any sharp edges/corners of Γ.

2.3. Intersections with Γ. We define a cut point to be a point c ∈ R
3 such

that c ∈ E, for some edge E in E , and φ(c) = 0. If an edge E ∈ E has end points
v1, v2 such that sgn(φ(v1)) �= sgn(φ(v2)), then there exists at least one cut point on
E and we call E a cut edge. Note that we never have to consider the situation where
sgn(φ(v)) = 0 because we assume the following definition of the sign function:

sgn(s) = +1, s ≥ 0,

sgn(s) = −1, s < 0.
(2)

Hence, if φ(v) = 0 (i.e., v is a point on the surface), then sgn(φ(v)) = 1. If a
tetrahedron T ∈ T contains a cut edge, then we call it a cut tetrahedron.

Remark 1. The following fact is taken from the marching tetrahedra algorithm
[43] (which is a variant of the marching cubes algorithm [38]).

• For any T ∈ T , only the following cases are possible: (a) all the vertices
have the same sign (i.e., level set values are either all positive or negative),
(b) one vertex has a different sign than the other three, (c) two vertices are
negative and two vertices are positive. The last two cases correspond to a cut
tetrahedron (See Figure 3). Therefore, a cut tetrahedron must have either
three or four cut edges (of its six edges), and their arrangement must match
the pattern in Figure 3.

±

±±

∓

∓

∓

∓
∓

Fig. 3. The two classic examples of marching tetrahedra [43]. The signs of the level set function
are given at each vertex. If a tetrahedron is cut, then it must have one of these two configurations
(after accounting for symmetry). Of course, there are also the cases (not shown) when the level set
function is zero at a vertex; because of the sign convention (2), these are special cases of the two
cases shown here.

Let Ec ⊂ E be the set of all cut edges. Furthermore, associate a single cut point
cE ∈ E with each E ∈ Ec. If a cut edge has more than one cut point, then choose
any one of the cut points to associate with the cut edge. Moreover, let Tc ⊂ T be
the set of all cut tetrahedra. So Tc consists of a “shell” of tetrahedra near the surface
Γ. It does not necessarily enclose Γ because one can construct examples where a
tetrahedron has all positive vertices, but pairs of cut points lie along its edges.

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A299

2.4. Distance to cut points. We define a special “distance” function. Let
v ∈ V be given and let E ∈ E be an edge that has v as an end point. Then, setting
xv to be the position coordinate of v and assuming E is a cut edge, with associated
cut point cE , define

dcut(v;E) :=
|xv − cE |

|E| ,(3)

where |E| is the length of E, and the norm |·| is the (Euclidean) length of a vector. If E
does not contain a cut point, then dcut(v;E) := +∞. Essentially, (3) is a normalized
distance measure. Note that dcut(v;E) is not defined if E does not contain v as an
end point.

Let St(v; E) = {E ∈ E : v is an end point of E}, i.e., the star of edges emanating
from v; sometimes we abbreviate by just writing St(v). The following minimization
is an important part of the method:

dmin(v) := min
E∈St(v)

dcut(v;E).(4)

The following proposition is basic.
Proposition 2. Let E ∈ Ec and let v1, v2 be the end point vertices of E. Then

(5) min (dcut(v1;E), dcut(v2;E)) ≤ 0.5.

2.5. Manifold vertices. An important part of the algorithm is to identify a
subset of mesh vertices that approximates the surface Γ. We refer to this subset as
the set of manifold vertices ; i.e., this set of vertices will lie on the boundary of the
output mesh. We also allow manifold vertices to modify the “state” of adjoining cut
edges. In other words, any cut edge where at least one end point is a manifold vertex
is considered to be inactive or suppressed. Otherwise, it is active.

Manifold vertices are chosen to prevent an interior vertex from being connected
to an exterior vertex through a single mesh edge. Note that manifold vertices are not
considered to be interior or exterior to Γ because eventually their coordinate positions
will be moved to the surface. Hence, the only candidate vertices for manifold status
are the end points of cut edges.

It is possible that the manifold vertex labeling could lead to a tetrahedron that has
all four vertices labeled manifold. We call these tetrahedra ambiguous because it is not
clear whether they are inside or outside Γ. We also call an octahedron ambiguous if all
four tetrahedra in the octahedron are ambiguous. The algorithm handles ambiguous
tetrahedra by either deleting them, or using heuristics (section 8.3). When all manifold
vertices are moved to the surface and all topological transformations are done, the
interior and exterior tetrahedra can be identified (step 8 of Algorithm 1).

3. Main algorithm. Given a bounded domain Ω, Algorithm 1 outputs a mesh
of the interior of Ω (where φ is positive). The main idea of the algorithm is to label
vertices as manifold until there are no more active cut short edges. All remaining
active long edges are accounted for by simple topological transformations of the back-
ground BCC mesh. The main procedure is separated into several subalgorithms that
are described in subsequent sections.

4. Algorithm: Version 1. Version 1 of our algorithm is the simplest (i.e., we
ignore step 7 in Algorithm 1). Note: comments within all algorithm descriptions are
denoted with “//.”

A300 SHAWN W. WALKER

Algorithm 1 Mesh Generation

1. Find all cut edges Ec and their associated cut points; i.e., for every E ∈ Ec there
is a distinct cE ∈ E.
2. Initialize the active set of short and long cut edges E+

st , E+
lg (respectively) such

that E+
st ∪ E+

lg = Ec.
3. Execute Initial Vertex Labeling, Algorithm 2. This returns E+

st as empty and a
set of labeled manifold vertices along with their associated destination points. E+

lg

is also modified.
4. Execute Back-Labeling, Algorithm 3. This changes the set of labeled manifold
vertices such that no manifold vertex moves to a destination point along an edge
toward another manifold vertex. Moreover, it ensures E+

st is still empty, but modifies
the set E+

lg .
5. Move each manifold vertex to its destination point. This generates new vertex
coordinates Vnew.
6. ExecuteActive Long Edge-Flips, Algorithm 4. This generates a new triangulation
Tnew.
7. Additional Processing Step. If Version 2 is used, then Execute Additional Edge-
Flips, Algorithm 5. This further modifies the triangulation Tnew.
8. For each T ∈ (Tnew,Vnew), label T as an interior (exterior) tetrahedron if φ is
positive (negative) on all of T ’s nonmanifold vertices. If a tetrahedron is ambiguous,
then mark it as an exterior tetrahedron.

φ < 0

φ > 0

Fig. 4. Example of step 1 of Algorithm 1 (in two dimensions). The blue curve is the zero level
set of φ (i.e., the surface). The bold points of the mesh are interior vertices; exterior vertices are
not bold. A cut edge of the mesh has one vertex as interior and the other vertex as exterior.

4.1. Identify interior vertices and cut edges. Step 1 identifies which vertices
of the BCC mesh are inside the object by direct interpolation of the level set function
φ using the sign convention (2). See Figure 4 for an illustration. Step 2 initializes
data structures to keep track of which cut edges are active and suppressed while the
algorithm runs.

4.2. Initial vertex labeling. In step 3, we must choose a subset of mesh vertices
to be manifold vertices so that we can apply straightforward processing to move the
manifold vertices in order to ensure the mesh conforms to Γ. A simple choice is to take

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A301

M

v0

+ −

(a) A manifold labeling example (2-D).

v1

v2

(b) Computing dcut (3-D).

Fig. 5. Examples of labeling manifold vertices. (a) shows a two-dimensional (2-D) mesh during
the labeling procedure in Algorithm 2. The blue curve is the level set surface {φ = 0}. One vertex
has been labeled manifold (M) which causes the adjoining cut edge to be suppressed (note small
black circle). An active short cut edge still remains (note lower large red circle) with an interior
end point denoted v0. Algorithm 2 will label v0 manifold, because it is closer to an active cut point
than the − end point, and suppress the lower short cut edge. The remaining active long cut edge
(horizontal edge) is handled separately by an edge-flip (see section 4.4 in the 3-D case). (b) shows
eight short edges of the BCC mesh that adjoin vertex v1, where four of the edges are active, with
cut points denoted by circles. The current active short cut edge is denoted by a dashed line segment.
We compute d1, d2 by finding St(v1; E+

st), St(v2; E+
st) and computing the minimization in (6). Since

d1 < d2, we label v1 manifold. Furthermore, we assign the closest cut point (red circle on dashed
line segment) as the destination point of v1. We then suppress all active (long and short) edges
adjoining v1.

the inner (or outer) free boundary of the cut tetrahedra Tc. However, this can be a bad
choice because it could lead to highly squashed tetrahedra in the general case. This
would require employing mesh smoothing and nontrivial topological transformations
for nodes away from the manifold in order to maintain a decent element quality.
Unfortunately, this requires more computation, and it would make obtaining bounds
on the dihedral angles impossible.

Alternatively, Algorithm 2 provides a simple, inexpensive way to choose the mani-
fold vertices and where to place them on the surface Γ. See Figure 5 for an illustration.

Algorithm 2 Initial Vertex Labeling

while E+
st �= ∅ do

Choose an active cut edge E in E+
st .

Let v1, v2 be the end point vertices of E; compute

Ei = arg min
E∈St(vi;E+

st)
dcut(vi;E), di = dcut(vi;Ei) for i = 1, 2.(6)

If di < dj , then label vi a manifold vertex and choose cEi to be its destination
point, where i = 1, j = 2 or i = 2, j = 1. If d1 = d2 = 1

2 , then choose the point
that adjoins the most active cut edges. If they are the same, then choose v1.
Remove all active edges from E+

st and E+
lg that adjoin the newly chosen manifold

vertex, i.e., suppress them.
end while

A302 SHAWN W. WALKER

Basic considerations yield the following result.
Proposition 3. After step 3 or step 4 of Algorithm 1 has completed, every mani-

fold vertex has its own unique destination cut point that it will move to. Furthermore,
the largest distance of all manifold vertices from their destination cut points is bounded
by half the corresponding short edge length cLst (recall Proposition 2), where c is the
lattice spacing. Moreover, each manifold BCC vertex is constrained to move along
eight distinct directions, which are defined by the unit vectors:

di = (±1,±1,±1) /
√
3 for i = 1, 2, . . . , 8.(7)

4.3. Back-labeling procedure. After the initial labeling process has finished,
some manifold vertices may move along short edges (of the BCC mesh) toward other
manifold vertices (see Figure 6). These situations can lead to flattened tetrahedra, so
they must be eliminated. Algorithm 3 achieves this by “back-labeling.”

M

M

Fig. 6. Tetrahedron with bad initial manifold labeling. This is a situation where the initial
labeling procedure results in a manifold vertex (M) moving (along red arrow) to a destination point
along an edge toward another manifold vertex. Back-labeling removes these situations.

In order to better describe the algorithm, define the following subsets of vertices
of V :

(8)

MA = {v ∈ LA : v is manifold}, MB = {v ∈ LB : v is manifold},
MA→B = {v ∈ MA : (v, z) = E, where v moves along E toward z, and z ∈ MB},
MB→A = {v ∈ MB : (v, z) = E, where v moves along E toward z, and z ∈ MA},
MA→0 = MA \MA→B, MB→0 = MB \MB→A.

Clearly, we have the following disjoint unions: MA = MA→0∪MA→B, MB = MB→0 ∪
MB→A.

The result of Algorithm 3 is to modify the labeling so that MA→B = MB→A = ∅,
i.e., that no manifold vertex moves along an edge toward another manifold vertex (see
Figure 7). The following lemma verifies this.

Lemma 1. Suppose we have an initial labeling; i.e., steps 1–3 of Algorithm 1 have
executed. Then the back-labeling procedure (Algorithm 3) is guaranteed to terminate
with MA→B = MB→A = ∅.

Proof. Note that since Ω is bounded, we need only to consider a finite subset
of (T ,V). Suppose MA→B �= ∅. Then one pass through the first while loop of the
back-labeling procedure chooses a v ∈ MA→B, removes v from MA→B, and results in
one of the following three possible outcomes:

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A303

Algorithm 3 Back-Labeling Procedure

// Ensure the set MA→B = ∅.
while MA→B �= ∅ do
Choose any v ∈ MA→B and remove v from MA→B ⊂ MA, i.e., unlabel it; this
may reactivate some cut short and cut long edges.
Recompute the active cut (short) edge list E+

st , and modify the active cut (long)
edge list E+

lg .

if E+
st �= ∅ then

Compute the candidate manifold vertices for each E ∈ E+
st (independently)

using (6), but do not suppress any cut edges yet.
// Note that since E is active, the end point opposite to v cannot be a manifold
vertex.
Let vE be the candidate manifold vertex for each E ∈ E+

st .
if v = vE for some E ∈ E+

st then
Choose v to be manifold, and append v to MA→0.
// # (MA) remains the same; # (MA→B) decreases by 1.
// The sets MB→0, MB→A remain unchanged.

else
// PROPAGATION
Make all {vE} manifold and append to MB→0. This may cause some vertices
to move from MA→0 to MA→B.
// # (MA) decreases by 1; # (MA→B) could increase by (at most) # ({vE})−
1.
// The set MB→0 increases in size by # ({vE}); the set MB→A may lose
some elements, but it definitely will not gain any. This is because there may
have been LB manifold vertices moving toward v.

end if
// Note: for either case, all cut short edges become suppressed, i.e., E+

st = ∅,
and E+

lg is modified.
else
// # (MA) decreases by 1; # (MA→B) decreases by 1.
// The set MB→A may lose some elements, but it definitely will not gain any.

end if
end while
// Ensure the set MB→A = ∅. The procedure is analogous to the previous one.

• v becomes a nonmanifold vertex, and no other vertices in V are set to manifold
status; or

• v is appended to MA→0, and no other vertices in V are set to manifold status;
or

• v becomes nonmanifold, but a new set of vertices {vi} is added to MB→0,
which move toward v. This may cause a set of vertices {ṽi} ⊂ MA→0 to be
removed from MA→0 but appended to MA→B.

Let # (S) denote the number of elements in any set S. Let a0 = #(MA) before the
back-labeling procedure runs, and define ak = #(Mk

A), where Mk
A is the state of the

set MA after the kth pass. Clearly, from the definition of Algorithm 3, {ak} is a
monotonically decreasing sequence of nonnegative integers.

Suppose the procedure does not terminate; i.e., the condition of the while loop is

A304 SHAWN W. WALKER

(a) Result of initial labeling procedure. (b) After first pass of Back-Labeling.

(c) During second pass of Back-Labeling. (d) After second pass of Back-Labeling.

Fig. 7. 2-D illustration of Back-Labeling Procedure (Algorithm 3). Manifold vertices are de-
noted by a black or shaded circle; unlabeled vertices are white circles. A subset of short edges of
the background mesh are shown with edge arrows indicating how the “tail” manifold vertex moves.
(a) shows the result of the initial labeling procedure (Algorithm 2) where three manifold vertices
(shaded circles) move toward other manifold vertices. (b) shows the “labeling state” after the first
pass of the while loop in Algorithm 3. An offending manifold vertex was unlabeled without reactivat-
ing a cut edge. However, there still remains one manifold vertex moving toward another manifold
vertex. (c) shows the “labeling state” during the second pass. The offending vertex is unlabeled
which reactivates a cut edge (denoted by dashed edge). The red dot denotes the location of a cut
point on the reactivated edge. (d) After the second pass completes, the result is that the vertex is
relabeled manifold but directed along a different edge, i.e., toward a different cut point. The final
state has no manifold vertices moving toward other manifold vertices; see Lemma 1.

always true. Then {ak} is an infinite sequence, and there exists an N > 0 such that
ak = p for all k > N for some nonnegative integer p. But if ak remains constant for
k > N , then # (Mk+1

A→B) = # (Mk
A→B)−1 for all k > N . Thus, there is a finite J > N

such that # (MJ
A→B) = 0, so MJ

A→B = ∅. But this contradicts the condition of the
while loop always being true. Hence, the first part of Algorithm 3 must terminate.

Next, consider the second while loop, and note that no new elements were added
to the set MB→A during the first loop. By the same argument, we have that the
second loop also terminates. Furthermore, the set MA→B is unaffected by the second
loop because it is empty when the second loop begins and no new elements can be
added to it (similar to the previous case for the set MB→A). Therefore, we obtain the
assertion.

Remark 2. Important property of the back-labeling procedure: once it completes,
it is not possible to remove any of the manifold vertices from manifold status without
reactivating at least one cut short edge (i.e., the one that the manifold vertex is
moving along).

For implementation purposes, it is not necessary to keep track of the sets MA→0,
MB→0, MA→B, MB→A. These were introduced only for the proof of Lemma 1. One
can also interleave modifying MA→B and MB→A; it is not necessary to modify LA

vertices first followed by LB vertices. Note that an “ordered warping” (ordered move-
ment) approach was an option in [36], except they could not guarantee it would
terminate. This seems to be an advantage of our method, which considers only the
short cut edges when labeling vertices.

Remark 3 (parallelization issue). The back-labeling procedure presents some dif-
ficulties for a parallel implementation, since a chain of dependencies may need to be
resolved in order to guarantee that MA→B = MB→A = ∅ (recall the “// PROPAGA-
TION” line). From our experience, the back-labeling execution time is not significant
(sometimes it does not even execute). Usually, the initial vertex labeling gives an
adequate labeling with only a few vertices that require modification without any far-
reaching propagation effects. The main purpose of back-labeling is to eliminate cases

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A305

that could lead to flattened tetrahedra. It also has the advantage of reducing the
number of ambiguous tetrahedra.

v1

v2

v3

v4

v5

v6

Fig. 8. Remaining active cut long edge, which is the spine of an octahedron. The vertices v1,
v2 are not labeled manifold, and edge (v1, v2) is cut at the middle, while v3, v4, v5, v6 are all labeled
manifold. This is the only possible configuration for an active cut long edge (see Proposition 4).

4.4. Flipping active long edges. In general, after all cut short edges of the
mesh are suppressed, there will be some remaining cut long edges that are still active
(see Figure 8). The following proposition says there is only one possible configuration
for an active cut long edge.

Proposition 4. Suppose all cut short edges of the mesh are suppressed, meaning
that every cut short edge has one of its end points labeled manifold. Suppose there is
a cut long edge E with neither end point labeled manifold (i.e., it is active). Consider
the octahedron O whose spine is E, and assume the vertices are numbered as shown
in Figure 8. Then the vertices {v3, v4, v5, v6} must all be labeled manifold.

Proof. Suppose that one of the vertices {v3, v4, v5, v6} is not labeled manifold
(say v3). Since neither v1 or v2 are labeled manifold, then the short edges (v2, v3) and
(v1, v3) must not be cut (by hypothesis). However, all four tetrahedra ofO must be cut
(because the spine E is cut), and there are only two possible cut edge configurations
for each tetrahedron (recall Figure 3). Therefore, it is not possible for E to be cut
and both (v2, v3) and (v1, v3) to not be cut. This can be seen by accounting for all
possible cut configurations.

So either (v2, v3) or (v1, v3) must be cut. But v1, v2, and v3 are not manifold,
which means there is a cut short edge with neither end point labeled manifold. But
this contradicts the fact that all cut short edges are suppressed. Hence, v3 must be
labeled manifold. The same argument holds for v4, v5, and v6.

Remark 4. The remaining active (cut) long edges must be suppressed in order
to have a valid output mesh. One option is to label one of the end points of the
active long edge manifold. For example, label v2 in Figure 8 as manifold. But this
requires v2 to move toward the cut point on the spine of the octahedron or toward
one of the manifold vertices on the outer ring of the octahedron. Both choices lead to
bad dihedral angle bounds. It is more advantageous to instead flip the spine of the
octahedron.

The above considerations suggest that we delete the cut long edge (i.e., (v1, v2)
in Figure 8) and insert a new edge: either (v3, v5) or (v4, v6). The tetrahedral con-

A306 SHAWN W. WALKER

nectivity for each octahedral “slice” is as follows:

(9)

slice S (v1-v2 edge): slice A (v3-v5 edge): or slice B (v4-v6 edge):

T1 = [v1, v3, v2, v6] ⇒ T̃1 = [v3, v4, v5, v2] T̃1 = [v6, v3, v4, v2]

T2 = [v1, v4, v2, v3] ⇒ T̃2 = [v3, v5, v6, v2] T̃2 = [v6, v4, v5, v2]

T3 = [v1, v5, v2, v4] ⇒ T̃3 = [v3, v5, v4, v1] T̃3 = [v6, v4, v3, v1]

T4 = [v1, v6, v2, v5] ⇒ T̃4 = [v3, v6, v5, v1] T̃4 = [v6, v5, v4, v1]

where slice S is the original (standard) tetrahedral configuration of the octahedron,
and slices A and B are the two options (see Figure 9).

Algorithm 4 Flip Active Long Edges

Recall that E+
lg is the set of (remaining) active cut long edges.

for E ∈ E+
lg do

Get the octahedral cell that has E as its spine (i.e., get the four tetrahedra
{T1, T2, T3, T4} that have E as an edge).
Put the six vertices {vi}6i=1 of the octahedron into a well-defined order (see Fig-
ure 8).

// We want to replace {Ti}4i=1 by {T̃i}4i=1 using either slice A or slice B; see
equation (9).

// Note: for either slice, each T̃i has exactly one nonmanifold vertex (v1 or v2).

Therefore, {T̃1, T̃2} is inside the surface Γ and {T̃3, T̃4} is outside, or vice versa;
see section 4.5 for more details.
The slice choice is made based on the interior tetrahedra. Without loss of gen-
erality, denote the interior tetrahedra as {T̃A

1 , T̃A
2 } for slice A and {T̃B

1 , T̃B
2 } for

slice B.
Let θAmin, θ

A
max be the min and max dihedral angles for {T̃A

1 , T̃A
2 } and θBmin, θ

B
max

be similarly defined for slice B.
// apply slice choice policy.
if θAmin > 11.47◦ and θBmin > 11.47◦ then
Choose slice A if θAmax < θBmax; otherwise, choose slice B. // minimize the
maximum dihedral angle.

else
Choose slice A if θAmin > θBmin; otherwise, choose slice B. // maximize the
minimum dihedral angle.

end if
end for

Local edge-flips within octahedra have the following advantages:
• They do not cause any propagation problems, i.e., where one has to continue
modifying the mesh away from the initial edge-flip region. The operation is
completely contained within the octahedral cell.

• By Proposition 4, the edge-flip introduces a new edge that is guaranteed to
not be an active cut edge.

• It is still possible to compute a priori bounds on the dihedral angles.
Algorithm 4 implements an edge-flip policy for the remaining active cut long edges.

Remark 5. The “slice” choice policy in Algorithm 4 is important to guarantee
good dihedral angles for the interior mesh. We consider only the interior tetrahedra

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A307

Wire Frame Exploded View

v1

v1

v2

v2

v3

v3

v4

v4

v5

v5

v6

v6

⇒

⇒

Fig. 9. Edge-flip operation. Top part of figure is the original slice S. Bottom part shows slice A
(see (9)). slice B is analogous to slice A.

of each slice because it is not possible to ensure good angles for all four tetrahedra if
the four outer vertices of the octahedron move in extreme ways.

Different criteria can be used to choose the slice. One choice is to always max-
imize the minimum dihedral angle. But our dihedral angle bound calculations (see
Appendix A) found that it is not possible to do better than 11.47◦ for the minimum
dihedral angle. Moreover, the maximum dihedral angle can degrade to ≈ 166◦ if we
are concerned only with the minimum dihedral angle. So our policy acts to first ensure
that the minimum dihedral angle has sufficient quality, followed by ensuring a good
maximum dihedral angle.

We conclude with a result stating that the active long edge-flips in Algorithm 4
can be performed independently.

Proposition 5. Suppose all cut short edges of the mesh are suppressed, and
suppose there are two distinct active cut long edges E1, E2. Then both edges can
be flipped with Algorithm 4, and the connectivity of the resulting mesh is guaranteed
to be consistent (i.e., the mesh is conforming and there are no overlapping, tangled
elements).

Proof. Let O1 and O2 be the octahedra associated with E1 and E2 (respectively).
Suppose that O1 and O2 overlap (nonempty intersection). Then, by Proposition 1,
part 3, O1 must contain E2 as an outer long edge and O2 must contain E1 as an outer
long edge (recall Figure 2 (b) and Figure 8). But by Proposition 4, it means that E1,
E2 have both end points labeled manifold, implying that E1 and E2 are not active.
Ergo, O1 and O2 cannot overlap.

Therefore, since the long edge-flip within each octahedron does not affect the
mesh connectivity outside each octahedron, it is clear that the new mesh connectivity
is consistent.

4.5. Choosing inside and outside tetrahedra. The last step of Algorithm 1
marks which tetrahedra in the mesh are inside or outside the surface. It is clear that
if the level set function φ is positive at all nonmanifold vertices of a tetrahedron T ,
then T should be marked as being inside Γ. If a tetrahedron T has all four vertices
labeled manifold, then T is ambiguous and it is not obvious where it belongs. The

A308 SHAWN W. WALKER

simplest strategy is to consider all ambiguous tetrahedra to be outside the surface,
i.e., just delete them. The final output mesh (Tout,Vout) consists of only the interior
tetrahedra and their referenced vertices.

5. Meshing guarantees. Despite the simplicity of Algorithm 1, we are able to
achieve the following guarantees on the output mesh:

• The tetrahedra of the interior mesh have good dihedral angles.
• The boundary of the output mesh is close to the surface Γ.
• If Γ is C1,1 (i.e., has bounded curvature) and the BCC grid has sufficient
resolution, then the boundary of the output mesh is homeomorphic to Γ.

Proving the above items is done by techniques similar to those in [36]. We outline
them in the following sections.

5.1. Dihedral angles for Version 1. If Algorithm 1 is used to mesh an arbi-
trary continuous surface Γ, but without step 7, we have the following bounds on the
dihedral angles for the interior tetrahedra (see Appendix A):

(10) minimum dihedral angle > 8.54◦, maximum dihedral angle < 164.18◦.

Of course, any edges/corners of Γ will not be respected by the output mesh (i.e., there
will not be a set of mesh edge segments that conform to a surface edge). These angle
bounds are directly comparable to the bounds obtained by the method described in
[36]. However, we highlight the following differences:

• For one-sided meshing, the bounds in [36] are better than in (10) (by roughly
2◦ to 3◦ depending on the parameters of their method; see [36] for more
details).

• The method in [36] requires extra refinement of the mesh in order to conform
to the surface. In particular, they require the use of special stencils (8 non-
trivial stencils after accounting for symmetries) which they use to subdivide
the BCC mesh. This requires a matching procedure to choose the correct
stencil and the use of a parity rule [36].

Thus, our method makes a small trade-off in the angle qualities but gains in simplicity.
The most complicated aspect is the edge-flips, which are inexpensive to compute and
straightforward to implement because the structure of the BCCmesh is known a priori.
Our angle bounds are obtained by a computer-assisted proof (see Appendix A).

5.2. Geometric and topological accuracy. Obviously, the generated mesh
should be a faithful representation of the shape described by the surface Γ. It is clear
from the algorithm that every vertex on the boundary of the output mesh lies on Γ.
Moreover, the algorithm never connects an interior vertex (i.e., positive level set sign)
with an exterior vertex (negative sign), so the output mesh respects Γ.

The method in [36] also achieves this, and the authors prove a geometric and
topological accuracy result provided the background mesh is sufficiently fine. Indeed,
their statements are general in that they apply to any background mesh method that
satisfies the statements in the previous paragraph; ergo, they directly apply to our
method as well. For convenience of the reader, the following two theorems taken from
[36] apply to our method.

Theorem 1 (one-sided Hausdorff bound). Suppose Algorithm 1 meshes a con-
tinuous level set function φ. (It does not matter if ambiguous tetrahedra are included
in the output mesh.) For any point p in space, if p lies in an output tetrahedron but
φ(p) < 0 (implying that p should lie outside the mesh), or if p does not lie in an output
tetrahedron but φ(p) > 0, then p is within a distance no greater than ω =

√
7/8 from

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A309

the isosurface {φ = 0}, i.e., Γ. (The number ω applies for the unscaled BCC lattice.
If the BCC lattice is scaled by c, the number is ωc.)

Proof. The same proof in [36, 35] applies here as well despite the edge-flip in our
method. This is because you can go back to the reference BCC grid to compute the
worst-case distance that p can be from Γ.

Remark 6. Theorem 1 says that if the background lattice is scaled by a factor c,
then the greatest distance between a mesh boundary point and its nearest point on
Γ converges to zero as c → 0.

Theorem 2 (topologically accurate). Suppose Algorithm 1 meshes a continuous
level set function φ whose zero surface Γ is C1,1 [1, 19]. Assume the background BCC
grid is scaled by c. Let Rm > 0 be the minimum distance from a point on Γ to a point
on the medial axis of Γ [57]. (Thus, Rm is a lower bound on the radius of curvature
of Γ.) If Rm > ωc, with ω defined as in Theorem 1, then every point on Γ is within a
distance ωc from the mesh boundary. Moreover, if c/Rm is sufficiently small, then the
boundary of the mesh is homeomorphic to Γ, and there is a continuous deformation
of space that carries Γ to the mesh boundary (i.e., there is an ambient isotopy from
the identity map on Γ to the homeomorphism that maps Γ to the mesh boundary).

Proof. See [36] for the proof and [35] for more details.

6. Algorithm: Version 2.

6.1. One bad case. When computing the dihedral angle bounds, it was found
that there is one case that prevents our algorithm from outright beating the method
in [36] in terms of dihedral angle bounds for one-sided meshing. This case, and its
mirror image, are shown in Figure 10. More specifically, the movement directions of
the three manifold vertices in Figure 10 are given by the unit vectors

Case 1: (1,−1, 1) /
√
3, (−1,−1, 1) /

√
3, (−1, 1, 1) /

√
3,

Case 2: (1, 1, 1) /
√
3, (−1,−1, 1) /

√
3, (−1, 1, 1) /

√
3.

The two cases in Figure 10 are not unreasonable, since they can arise from a flat
surface, parallel to the y-z plane, cutting through the mesh at the “right” x-intercept.

However, ignoring this one case would yield the angle bounds for a single tetra-
hedron with three vertices labeled manifold (see Appendix A.3.1),

(11) minimum dihedral angle > 13.26◦, maximum dihedral angle < 157.59◦,

which are, of course, much better than (10).

6.2. Another edge-flip. The case in Figure 10 can be eliminated by an appro-
priate long edge-flip (similar to Figure 9). Consider the edge-flip policy depicted in
Figure 11; the details are given in Algorithm 5.

The edge-flip operation shown in Figure 11 (for both mirror image cases) yields
the following dihedral angle bounds for the whole octahedron (see Appendix A.3.1):

(12) minimum dihedral angle > 18.53◦, maximum dihedral angle < 150.01◦.

Note: these bounds are for when the manifold vertices meet the extreme movement
criteria given in Algorithm 5.

Of course, it is important that this additional edge-flip not interfere with itself or
the active long edge-flip discussed in section 4.4. We now verify this.

Proposition 6. Suppose all cut short edges of the mesh are suppressed, and sup-
pose there are two distinct long edges E1, E2 with only one end point labeled manifold.

A310 SHAWN W. WALKER

xx
x

y
y

zz
Isometric View x-y View x-z View

(a) Case 1.

xx
x

y

y

zz

Isometric View x-y View x-z View

(b) Case 2.

Fig. 10. Two cases that give the worst angles. Cases 1 and 2 (which are mirror images of
each other) consist of three vertices labeled manifold and are moving along (short) edges that are
highlighted by the red arrows. Recall that there are eight directions along which manifold vertices can
move (7). Because of our algorithm, the vertices cannot move more than half the short edge length.
From our computer-assisted proof, it turns out that when the three vertices move the maximum
amount, the angle bounds in (10) are achieved. Hence, they are sharp estimates because this can
occur for a flat surface.

Let O1, O2 be the octahedral cells associated with E1 and E2 (respectively). Assume
that O1, O2 match the case depicted in Figure 11; i.e., each has three manifold vertices
moving in the directions shown. Then both edges can be flipped with Algorithm 5, and
the connectivity of the resulting mesh is guaranteed to be consistent (i.e., the mesh is
conforming and there are no overlapping, tangled elements).

Proof. We proceed similar to the proof of Proposition 5 in that we must show
that O1 cannot contain E2 and O2 cannot contain E1. For convenience, let us adopt
the vertex labeling shown in Figure 11. If O1 did contain E2, then E2 = (v3, v6)
or E2 = (v4, v5) (because E2 has one manifold end point). But this would imply
that O2 does not match the case depicted in Figure 11; i.e., E2 would not have its
manifold vertex moving “upward.” In other words, if E1 is a long edge to be flipped
by Algorithm 5, then the surrounding long edges (v3, v6), (v4, v5) will not be flipped
by Algorithm 5. Therefore, O1 cannot contain E2 and O2 cannot contain E1, so the
algorithm cannot interfere with itself.

We also have the following proposition.

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A311

v1
v1

v2

v2
v3

v3

v4

v4 v5v5
v6v6

⇒

Fig. 11. Additional edge-flip policy. Diagram shows an octahedron with three manifold vertices
labeled by bold black dots and moving along the red arrows (corresponds to Figure 10 (a)); the
movement directions are relative to the octahedron’s spine orientation. If the manifold vertices
move by a large amount, then the tetrahedron with three manifold vertices can have bad angles
(recall Figure 10). In this case, we flip the spine of the octahedron (bold line segment) using the
same operation depicted in Figure 9. This produces tetrahedra with better dihedral angles. Note: the
same policy holds for the mirror image case (Figure 10 (b)).

Algorithm 5 Additional Edge-Flip Policy

Let Eflip be the set of long edges that have one end point labeled manifold.
for E ∈ Eflip do
Find the octahedron O associated with E, i.e., the set of tetrahedra O = {Ti}4i=1

that share E as a common edge.
Order (number) the vertices of O as depicted in Figure 11.
if O has only 3 manifold vertices that match the labeling configuration shown in
Figure 11 then
Let di = x̃i − xi, where xi, x̃i are the coordinates of vi and its destination
point (respectively) for i = 2, 3, 4.
if {d2,d3,d4} match the directions shown in Figure 10 (either case) then
Define di = |di| /(cLst), for i = 2, 3, 4.
if d2 ≥ 0.3 AND d3 ≥ 0.3 AND d4 ≥ 0.3 then
Let {T̃A

i }4i=1 be the alternate set of tetrahedra given by the set of six
vertices in O and the slice A operation depicted in Figure 9 and (9). Note:
Slice B could be used (it does not matter).

Replace O by {T̃A
i }4i=1.

end if
end if

end if
end for

Proposition 7. Both edge-flip policies, Algorithms 4 and 5, cannot interfere
with each other.

Proof. Obviously, if there is an active cut long edge to be flipped, then none of its
surrounding long edges can have only one end point labeled manifold by Proposition 4.

Alternatively, if there is a long edge that is the spine of an octahedron with the
configuration shown in Figure 11, then none of the surrounding long edges can be
active cut long edges. Note that the edge (v5, v6) cannot be a cut long edge, because
then Proposition 4 would imply that v1 is labeled manifold, which is a contradiction.
So neither edge-flip policy can affect the other.

A312 SHAWN W. WALKER

Remark 7. We execute Algorithm 5 immediately after Algorithm 4. In fact, both
algorithms can be executed completely in parallel, since no communication is necessary
between edge-flips. The movement criteria, i.e., d2, d3, d4 ≥ 0.3, are not numerically
sensitive. For example, one could use 0.31 and still obtain the same overall dihedral
angle bounds in (15).

6.2.1. Sufficient resolution eliminates conflicting case. The edge-flip pol-
icy in Algorithm 5 cannot always eliminate the two cases shown in Figure 10. For
example, v5 in Figure 11 could also be labeled manifold and be moving in such a
way that the long edge (v5, v6) may also need to be flipped. Obviously, we cannot
apply Algorithm 5 to both long edges without ruining the output mesh connectivity.
Therefore, if this “conflicting” situation arises, the safest policy is to not flip either.

However, it is worthwhile to consider when (and if) this situation can indeed
occur. To this end, let Rm be the minimum distance from a point on Γ to a point
on the medial axis of Γ [57] (i.e., shape skeleton of Γ). Next, choose any four points
on Γ that are not coplanar, and find the sphere that intersects all four points. The
radius of the sphere provides an upper bound on Rm; if the four points are coplanar,
then take the radius to be +∞. This essentially follows from the definition of medial
axis and is related to the concept of global radius of curvature [27, 26] which can be
extended to surfaces.

The following remark summarizes when this conflicting situation can happen.
Remark 8. Suppose we apply the mesh generation Algorithm 1 with a scaled

BCC lattice (with spacing c) and there is a long edge E with one end point labeled
manifold, and E is the spine of an octahedron with vertices ordered as shown in
Figure 11. In particular, assume that {v2, v3, v4, v5} are labeled manifold and that
{v2, v3, v4} are moving along the directions described in Figure 10 (relative to the
spine orientation E). In addition, assume that the vertices {v2, v3, v4} move more
than 0.3cLst, where c is the lattice spacing and Lst =

√
3/2 (i.e., {v2, v3, v4} satisfy

the criteria of Algorithm 5 to execute an edge-flip). Then, no matter which valid
short edge direction v5 moves along, Rm (defined earlier) satisfies the estimate

(13) Rm < 1.1c.

This result is a straightforward application of a computer-assisted proof, similar to
our approach for estimating the dihedral angle bounds (see Appendix A.3.2).

Thus, the “conflicting” situation can be avoided if the lattice spacing satisfies

(14) c ≤ Rm/1.1,

which is not an unreasonable assumption if we want a decent approximation of Γ.

6.2.2. Last resort edge-flip. If (14) is not satisfied, and if a fourth vertex is
manifold, we can still try to flip, as long as that fourth vertex does not move more
than 0.3cLst. That way we know we do not need to flip the long edge (v5, v6). This
is a straightforward modification of Algorithm 5. In this case, a choice must be made
between not flipping and using one of the alternate slices (A or B). The same decision
policy used in Algorithm 4 can be used here.

6.3. Improved angle bounds for Version 2. All the properties that were
satisfied for Version 1 (see section 5) also hold for Version 2, except the dihedral angle
bounds are better (see Appendix A.4):

(15) minimum dihedral angle > 11.47◦, maximum dihedral angle < 157.59◦,

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A313

provided condition (14) is satisfied. These bounds are uniformly better than the
bounds given in [36].

7. Numerical results. We apply Algorithm 1 (Version 2) to a variety of shapes
in the following sections. Step 1 was implemented in MATLAB. Steps 2–8 were
implemented in C++ by a MATLAB-MEX file for efficiency. The BCC lattice is
built by first defining a standard (scaled) cubic lattice, with N points per unit length
along each dimension, followed by including the centroid of each cube as additional
vertices. Next, the triangulation connectivity data is straightforwardly defined and
we store all long and short edges separately. Then we store the local neighboring
tetrahedra of all long edges (i.e., the octahedra).

Several figures show results of Algorithm 1 (Version 2). The minimum and max-
imum dihedral angles for each example are listed in the figure.

7.1. Level set input data. For these examples, the input data is a scalar
function φ(x, y, z) (i.e., a level set function). For the simple shapes, φ is implemented
analytically. The Bimba shape is represented by a 3-D Cartesian grid with level set
values defined at the grid points; thus, φ is computed by interpolation of the grid
data. Timings are given in Table 1.

Table 1

Statistics for the level set input cases in Figures 12 and 13 are given: number of cubic lattice
points used (along one coordinate direction), number of output tetrahedra, number of surface trian-
gles, and computational running times (in seconds) for each step of Algorithm 1 (Version 2). The
hardware used was a Lenovo laptop with Intel Core i7-2640M CPU @ 2.80 GHz processor, 8 GB
RAM, and Windows 7 (64-bit). Newton’s method was used for computing cut points in step 1 for the
first three examples. Bisection was used for step 1 in the Bimba example, which is why the running
time is longer. Note: these running times do not include the initial setup time of the background
BCC mesh.

Shapes Pts Tetra. Triang. Step 1 Step 2 Step 3 Step 4 Steps 5–8 Total
Plane 31 163,210 12,682 0.044 0.011 < 0.001 < 0.001 0.011 < 0.068
Sphere 31 2,904 552 0.046 0.010 < 0.001 < 0.001 0.010 < 0.068
Torus 31 8,012 1,640 0.082 0.011 0.001 < 0.001 0.011 < 0.106
Bimba 51 112,495 8,670 0.299 0.040 0.003 0.002 0.055 0.399

7.1.1. Simple shapes. For the three cases in Figure 12, we restrict the scaled
BCC lattice to the unit cube, using 31 cubic lattice points along each of the coordinate
directions x, y, z. The level set functions for each shape are defined analytically. The
computational running time for each shape is given in Table 1. The same background
cube mesh was used for each of the shapes in Figure 12.

7.1.2. Bimba sculpture. Similar setup as in the previous section, except the
scaled BCC lattice (restricted to the unit cube) uses 51 cubic lattice points along each
of the coordinate directions x, y, z (see Figure 13). The level set function φ(x, y, z)
was defined by linear interpolation of samples on a 100×100×100 Cartesian grid.
The running times are given in Table 1. Step 1 was implemented in MATLAB using
bisection to compute the cut points instead of Newton’s method. Thus, step 1 takes
a lot longer here than for the simple shapes. Recall that Newton’s method converges
quadratically, whereas bisection converges only linearly. However, Newton’s method
requires derivative information [59, 60].

7.2. Surface mesh inputs. For these examples (Figures 14–19), the input data
is a closed manifold (watertight) triangular surface mesh. Hence, we use bisection to
compute the cut points, which requires that we “query” the geometry to determine

A314 SHAWN W. WALKER

θmin = 13.9527◦

θmax = 157.5891◦
θmin = 23.2422◦

θmax = 129.1642◦
θmin = 20.6041◦

θmax = 151.5570◦

Fig. 12. Meshing results for simple shapes (left to right: plane, sphere, torus). All three cases
were meshed with a background grid given by the unit cube meshed by BCC tetrahedra (31 cubic
lattice points along each coordinate). The plane case realizes the upper bound on the maximum
dihedral angle. The sphere of radius 0.13 is shown with a cutaway view to illustrate the interior
tetrahedra. The torus with cross-sectional radius 0.08 and “sweeping” radius 0.2 (e.g., surface of
revolution) is rotated 25◦ with respect to the x-y plane of the background cube before meshing. The
minimum and maximum dihedral angles are given.

θmin = 20.8124◦

θmax = 145.1697◦

Fig. 13. Meshing results for a sculpture “Bimba” (level set data courtesy of Xin Li at Louisiana
State University). Mesh was generated from a unit cube of BCC tetrahedra (51 cubic lattice points
along each coordinate). The surface mesh is shown on the left, with a cutaway view on the right to
illustrate the interior tetrahedra. The minimum and maximum dihedral angles are given.

whether or not a point is inside the surface. The querying operation was done in MAT-
LAB using an M-file inpolyhedron, by Sven Holcombe, available from the MATLAB
File Exchange. This causes the running time of step 1 to be rather long. It is certainly
possible to further improve the efficiency of step 1, which is the subject of future work.
The method in [36] had the same issue. Again, the scaled BCC lattice is restricted to
the unit cube. Timings for all examples are given in Table 2.

Most of the input meshes were obtained from the Aim@Shape website:

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A315

Table 2

Statistics for the surface mesh input cases in Figures 14–19 are given. The same format as in
Table 1 is used, as is the same hardware. Bisection (and a geometry query) was used for step 1 in
all examples.

Shapes Pts Tetra. Triang. Step 1 Step 2 Step 3 Step 4 Steps 5–8 Total
Bumpy Torus 31 59,432 8,502 14.885 0.013 0.003 < 0.001 0.021 < 14.923

Genus 3 51 118,030 13,466 20.451 0.041 0.005 0.001 0.060 20.558
Hand 61 138,592 12,368 28.541 0.069 0.005 0.002 0.091 28.708
Skull 81 648,464 68,182 87.778 0.160 0.026 0.009 0.292 88.265

Stanford Bunny 61 326,242 17,932 36.785 0.073 0.006 0.004 0.097 36.965
Stanford Dragon 41 32,854 5,930 14.149 0.031 < 0.001 < 0.001 0.031 < 14.213

http://shapes.aimatshape.net. However, all surface meshes shown in the figures
are the result of Algorithm 1; i.e., the surface mesh shown is the boundary of the
output tetrahedral mesh produced by Algorithm 1, Version 2.

θmin = 20.9334◦

θmax = 151.1319◦

Fig. 14. Meshing results for a Bumpy Torus (surface mesh data from the Aim@Shape web-
site). Mesh was generated from a unit cube of BCC tetrahedra (31 cubic lattice points along each
coordinate). Same format as Figure 13.

We compare our Stanford Dragon meshing results (see last row of Table 2 and Fig-
ure 19) to the results obtained by the meshing method in [36]. Labelle and Shewchuk’s
Stanford Dragon mesh had 32,853 tetrahedra (very close to our result), with mini-
mum and maximum dihedral angles of 14.9◦ and 157.5◦. The total computation time
took 24.5 seconds, of which 0.172 seconds were for mesh generation; the rest of the
time was spent doing bisection and geometry queries to determine if a point is inside
or outside the surface Γ (i.e., step 1). The hardware they used was a Mac Pro with
a 2.66 GHz Intel Xeon processor. For our Stanford Dragon, the output mesh had
32,854 tetrahedra, with a minimum and maximum dihedral angle of 15.9◦ and 152.0◦.
The total computation time took 14.213 seconds, of which 0.064 seconds were for mesh
generation (i.e., steps 2–8). Hence, both methods have comparable computing times.
Note the discrepancy in the different hardware used when comparing the computing
times.

A316 SHAWN W. WALKER

θmin = 18.4114◦

θmax = 150.7961◦

Fig. 15. Meshing results for a Genus 3 shape (surface mesh data from the Aim@Shape web-
site). Mesh was generated from a unit cube of BCC tetrahedra (51 cubic lattice points along each
coordinate). Same format as Figure 13. The surface mesh is slightly jagged in the high curvature
regions.

θmin = 18.5646◦
θmax = 151.9300◦

Fig. 16. Meshing results for a hand shape (surface mesh data from the Aim@Shape website).
Mesh was generated from a unit cube of BCC tetrahedra (61 cubic lattice points along each coordi-
nate). Same format as Figure 13.

8. Conclusion.

8.1. Adapted meshes. We presented a method for generating quasi-uniform
tetrahedral meshes of isosurfaces. A graded mesh can be created by using an octree
decomposition of the volume containing the isosurface; this technique was proposed
by Labelle and Shewchuk [36]. Their idea was to have uniformly sized cubes covering
the surface but then have successively larger cubes in the interior using an octree.
Meshing the graded (interior) cubes was achieved through the use of stencils. Then

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A317

Fig. 17. Meshing results for a skull with brain cavity (surface mesh data from the Aim@Shape
website). Mesh was generated from a unit cube of BCC tetrahedra (81 cubic lattice points along each
coordinate). Same format as Figure 13. Dihedral angles: minimum 17.8194◦, maximum 152.4381◦.

θmin = 15.4402◦

θmax = 150.3648◦

Fig. 18. Meshing results for the Stanford Bunny (surface mesh data courtesy of Xin Li at
Louisiana State University). Mesh was generated from a unit cube of BCC tetrahedra (61 cubic
lattice points along each coordinate). Same format as Figure 13.

they applied their meshing algorithm to the uniform part of the background grid
that covers the surface. One can use the same approach for our method, i.e., use the
Labelle and Shewchuk octree decomposition to generate the background grid, followed
by the TIGER algorithm applied to the uniform region of the background grid that
covers the surface.

A318 SHAWN W. WALKER

θmin = 15.8596◦
θmax = 152.0262◦

Fig. 19. Meshing results for the Stanford Dragon (surface mesh data courtesy of Xin Li at
Louisiana State University). Mesh was generated from a unit cube of BCC tetrahedra (41 cubic
lattice points along each coordinate). Same format as Figure 13.

Grading the mesh on the surface, while maintaining useful dihedral angle bounds,
appears to be difficult. It is not clear how to achieve this with the TIGER algorithm.
The same issue exists in the Labelle and Shewchuk method [36].

8.2. Parallelization. Every step of Algorithm 1 is parallelizable, except for the
back-labeling procedure, step 4. In all numerical experiments performed, the back-
labeling never propagated very far from the initial set of manifold vertices that moved
toward other manifold vertices. However, one can construct pathological surfaces that
could cause every end point of a cut edge to be visited by the back-labeling procedure.
But these cases tend to be very sensitive to the position of the BCC mesh relative to
the surface. Hence, one can try displacing the background grid slightly and rerunning
the algorithm if the back-labeling takes too long.

8.3. Some heuristic approaches. Algorithm 1 is guaranteed only to mesh the
interior or exterior of Γ but not both. However, in practice, both sides are usually
adequate if the lattice spacing is sufficiently fine. It is still possible to have ambiguous
tetrahedra, even for a flat surface. In this case, the ambiguous tetrahedra deform
into slivers with zero volume. For one-sided meshing, ambiguous tetrahedra can
be deleted. If both sides must be meshed consistently, then a bisection/refinement
procedure could be used to remove the sliver [42]. As a last resort, try rerunning
the algorithm with the surface shifted by a fraction of the lattice spacing. This may
induce a different labeling and mesh topology that may not have ambiguous elements.

For ambiguous tetrahedra that have sufficient quality, there is still the issue of
identifying whether they are inside or outside the surface. Various rules have been de-
vised to classify these tetrahedra [36], the simplest being to evaluate φ at the centroid
and let the sign determine whether it is in or out. One could introduce extra refine-
ment to “break” the ambiguity, though this adds complexity to the implementation.
Taking advantage of the octahedral view of the BCC mesh might be advantageous
here.

The meshes generated by our algorithm tend to have good topological connec-
tivity, so applying straightforward mesh smoothing techniques may be useful for im-
proving the dihedral angles even further.

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A319

Appendix A. Computing guarantees on dihedral angles. We determine
the dihedral angle bounds by direct computation over a finite number of cases. For
example, a single BCC tetrahedron may have three of its four vertices labeled mani-
fold, each of which may move along a short edge of the BCC mesh. There are a finite
number of directions that each vertex can move, so there are only a finite number
of cases to check. For each case, each vertex’s position is represented by a single
parameter (i.e., its distance along the short edge); call it αi for the ith vertex. Thus,
there is a 3-D parameter space that must be searched [36].

When searching the parameter space, we compute the six dihedral angles of the
tetrahedron by the formula

(16) θk := arccos (−fk) , 1 ≤ k ≤ 6, fk := Nk1 ·Nk2 ,

where Nk1 , Nk2 are the unit normal vectors of the adjoining faces of edge k of the
tetrahedron, where 1 ≤ k1, k2 ≤ 4. Note that the function arccos(−s) is a mono-
tonically increasing function of s, so minimizing (or maximizing) θk is equivalent to
minimizing or maximizing fk. Note that Ni = ai ×bi/|ai ×bi|, where ai,bi are vec-
tors defining the edges of face i, and that |ai ×bi| is twice the area of face i. Clearly,
fk is a function of the four vertex positions of the tetrahedron. If no three vertices
are co-linear (i.e., no tetrahedral face has zero area), then clearly fk is differentiable
with respect to the vertex positions. In particular, fk is differentiable with respect to
the three parameters (α1, α2, α3) (in fact, it is C∞).

Furthermore, if the area of each tetrahedral face is bounded below by a strictly
positive constant, then one can obtain a uniform explicit bound on |∇fk| (uniformly
with respect to the parameters), i.e.,

(17) c0 := max
1≤k≤6

[
max

j=1,2,3
|(∂αjfk)(α1, α2, α3)|

]
.

Now suppose we sample the 3-D parameter space by a uniform Cartesian grid. Es-
sentially, we are interpolating a smooth function via trilinear interpolation. Ergo, we
have the standard error estimate [9, 52]

(18) ‖fk − Ihfk‖L∞(Q) ≤ 3c0h,

where Q is the parameter space “cube,” Ih is the interpolation operator, h is the
Cartesian grid size, and the “3” comes from summing over the three parameters.
Therefore, assuming c0 is known, one can compute the true global minimum of fk
(over Q) to within whatever accuracy is desired by choosing a small enough h. This
is exactly how we computed the dihedral angle bounds. Furthermore, all calcula-
tions were done for an unscaled (unit) BCC lattice, because uniform scaling does not
affect the angles. The following sections give details on each of the tetrahedral (or
octahedral) configurations that were computed. All angle bounds are accurate to two
decimal places (in degrees) and are strictly correct as written.

Remark 9. We actually estimate the minimum of all six dihedral angles of a
tetrahedron, i.e.,

(19) fmin = min
1≤k≤6

fk,

which is not differentiable but is Lipschitz with constant given by the largest derivative
in absolute value over all fk for 1 ≤ k ≤ 6; this follows by a standard argument. So

A320 SHAWN W. WALKER

we have an error estimate similar to (18) by basic Sobolev interpolation theory [9].
The same holds when computing the maximum dihedral angle over a tetrahedron.

Remark 10. Estimating c0 requires computing the sensitivity of Ni to perturba-
tions of the parameters, which critically depends on the area of the tetrahedral face i.
In other words, one must find a lower bound on the area of each tetrahedral face over
the entire parameter range. We did this using the same technique suggested above,
i.e., we sample the face area function fine enough, then take a conservative (uniform)
lower bound on the face area that is guaranteed to be correct. For all of the cases we
investigate, the tetrahedral face area never comes close to being degenerate. Ergo, we
obtain a correct, albeit conservative, estimate of c0.

With the estimate in hand, we compute conservative estimates of the global mini-
mum and maximum of fk over the parameter range. Thus, we can compute (correctly)
a lower bound on the minimum dihedral angle and an upper bound on the maximum
dihedral angle using (16). The accuracy of these bounds can be tightened by simply
using a smaller mesh spacing h.

Of course, this is an expensive calculation. But it is not part of the mesh gen-
eration method, so it has no impact on the algorithm’s efficiency. Moreover, this
calculation can be trivially parallelized so it is tractable. Indeed, one can even use an
adaptive octree approach to make it more efficient.

A.1. Single tetrahedron. A single tetrahedron can have (at most) three of its
four vertices labeled manifold. Ambiguous tetrahedra (all four vertices manifold) are
not considered here because they are not included in the interior mesh; recall step 8
of Algorithm 1. In other words, we guarantee only the interior mesh which does not
include any ambiguous tetrahedra.

More specifically, let {v1, v2, v3, v4} be the vertices of a tetrahedron in the BCC
mesh, and assume that v1 does not move. Thus, we must search the parameter range:

(20) α1 = 0, 0.0 ≤ αi ≤ 0.5 for i = 2, 3, 4,

where αi is the distance that vi moves (relative to the initial vertex position in the
BCC mesh) along a short edge normalized by Lst =

√
3/2.

Since there are only eight short edges adjoining each vertex, there are 83 = 512
cases to evaluate. We rule out some of the cases where a vertex moves along a short
edge toward another vertex that also moves a nonzero amount. This is because the
back-labeling procedure eliminates those cases (see section 4.3). For this configuration,
the worst-case dihedral angle bounds over all the valid cases are

(21) minimum dihedral angle > 8.54◦, maximum dihedral angle < 164.18◦.

If the two cases in Figure 10 are ignored, then the angle bounds become

(22) minimum dihedral angle > 13.26◦, maximum dihedral angle < 157.59◦.

A.2. Active cut long edge case.

A.2.1. Parameter ranges. An octahedron whose spine is an active cut long
edge must have the four outer ring vertices labeled manifold (see Figure 8). Since there
are eight short edges adjoining each vertex, there are 84 = 4096 cases to evaluate.
However, many of these cases are redundant because of rotational symmetry about
the spine (rigid rotations do not change angles); thus, we eliminate the repeat cases.
The parameter ranges are

(23) α1, α2 = 0, 0.0 ≤ αi ≤ 0.5 for i = 3, 4, 5, 6,

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A321

where αi is the normalized distance that vi moves along a short edge (see Figure 8).
When computing the maximum and minimum dihedral angles (for a fixed set

of parameter choices), we apply the policy described in Algorithm 4. This means we

compute the angles for only two of the four tetrahedra (i.e., {T̃1, T̃2}) while accounting
for the “best” slice choice. The next section describes how we verified the dihedral
angle bounds for the active cut long edge configuration.

A.2.2. Angle bounds.
Lemma 2. Consider the edge-flip policy in Algorithm 4, and suppose {T̃A

1 , T̃A
2 }

and {T̃B
1 , T̃B

2 } are the interior tetrahedra for slices A and B. Then it is always guar-
anteed that at least one of the slices satisfies the dihedral angle bounds

(24) minimum dihedral angle > 11.47◦, maximum dihedral angle < 157.49◦

over the entire parameter range given in (23) and over all cases.
Proof. Recall (16) and let fA

min, f
B
min be the minimum of fk, for 1 ≤ k ≤ 6, of

slices A, B, respectively, and analogously define fA
max, f

B
max. Define the dot product

bounds by

(25) ηmin = − cos(11.47π/180), ηmax = − cos(157.49π/180).

Thus, proving (24) is equivalent to proving the following statement:

(26) (fA
min > ηmin) and (fA

max < ηmax) or (fB
min > ηmin) and (fB

max < ηmax).

We encode this relation into the function

ρ := (fA
min − ηmin)

+ · (ηmax − fA
max)

+ + (fB
min − ηmin)

+ · (ηmax − fB
max)

+,

where s+ := max(s, 0). Note: ρ is a Lipschitz function with a bounded derivative
that is easily estimated in terms of (17). Hence, proving (26) is equivalent to showing
that ρ is bounded below (uniformly) by a positive constant. In other words, we
must compute the global minimum of ρ for each case and verify that it is positive.
We do this by the same type of computer-assisted proof as was described earlier,
which requires estimating ∂αjρ and using a sufficiently small mesh spacing h (recall
Remark 10). Thus, we are able to verify that the angle bounds in (24) are strictly
correct as written.

Remark 11. We verify the result of Lemma 2 for the other two tetrahedra (i.e.,

{T̃3, T̃4}), because the interior of Γ could be on either side of Γ depending on the sign
of φ.

For an arbitrary surface, we cannot guarantee good dihedral angles and a con-
sistent/conforming mesh on both sides of the surface simultaneously for the active
cut long edge case. This is because different slices may be used on either side of the
surface due to the edge-flip policy in Algorithm 4. If the same slice were used on both
sides, then the worst case dihedral angles become 0◦ and 180◦! Clearly not desirable.
For the same reason, we cannot guarantee meshing a domain such that the mesh con-
forms to an open surface contained inside the domain (e.g., a mesh that conforms to
an internal “crack”). However, see the discussion in section 8.3 for potential remedies
in practice.

A.3. Additional edge-flip case. Consider the octahedron shown in Figure 11
(as well as its mirror image). Hence, there are two cases to check with three parame-
ters. The angle bounds we compute in this configuration are valid whether one always
chooses slice A or slice B when executing the edge-flip.

A322 SHAWN W. WALKER

A.3.1. Angle bounds. Recall the edge-flip policy described in Algorithm 5.
So there are only three manifold vertices that move (out of six total). Hence, the
parameter ranges are

(27) α1, α5, α6 = 0, 0.3 ≤ αi ≤ 0.5 for i = 2, 3, 4,

where αi is the normalized distance that vi moves along a short edge (see Figure 11).
For this configuration, the dihedral angle bounds over the two cases are

(28) minimum dihedral angle > 18.53◦, maximum dihedral angle < 150.01◦,

using either slice A or slice B.
If we use Algorithm 5, we must also consider the case when we do not flip;

i.e., perhaps v2, v3, or v4 do not move far enough. This implies that we reconsider
the single tetrahedron case in Appendix A.1 except with the following three sets of
parameter ranges:

(1) 0.0 ≤ α2 ≤ 0.3, 0.0 ≤ α3 ≤ 0.5, 0.0 ≤ α4 ≤ 0.5,

(2) 0.0 ≤ α2 ≤ 0.5, 0.0 ≤ α3 ≤ 0.3, 0.0 ≤ α4 ≤ 0.5,

(3) 0.0 ≤ α2 ≤ 0.5, 0.0 ≤ α3 ≤ 0.5, 0.0 ≤ α4 ≤ 0.3;

i.e., the edge-flip policy in Algorithm 5 is not triggered. For this configuration, the
dihedral angle bounds over the two cases are

(29) minimum dihedral angle > 13.39◦, maximum dihedral angle < 156.68◦.

A.3.2. Allowable conditions for additional edge-flip. The additional edge-
flip is not guaranteed to be allowable if there is an additional fourth vertex labeled
in the octahedron shown in Figure 11 (see sections 6.2.1 and 6.2.2). It turns out that
if the lattice spacing c of the BCC background grid is not sufficiently small relative
to Rm (the minimum distance to the medial axis of Γ), then this “conflict” situation
can indeed happen. Therefore, we would like to estimate how large c must be for this
to occur.

We estimate via a numerical approximation. Suppose we are in the situation
described by Remark 8. We have four parameters (the distances that the four manifold
vertices move along their short edges) to be searched. For a fixed set of parameters,
we have a set of four vertex positions {ṽ2, ṽ3, ṽ4, ṽ5}. We then find the sphere that
intersects these vertices and compute its radius R0. As noted earlier, this radius
satisfies R0 ≥ Rm. We then sweep the parameter space

0.3 ≤ αi ≤ 0.5 for i = 2, 3, 4, 5,

where αi refers to the normalized distance that vi moves along its edge to its destina-
tion ṽi. This search is performed for each possible set of movement directions. There
are two directions along which v2 can move: one direction for v3 and one direction for
v4 (we are assuming {v2, v3, v4} satisfy the edge-flip criteria of Algorithm 5). And v5
could move along seven distinct short edges (note it cannot move toward v2 because
of back-labeling). Hence, we sweep for 14 different cases.

Finding the sphere that intersects four points can be numerically sensitive if
the four points are close to being coplanar. However, because of the choices of the
parameters here, the four points are never close to being coplanar. This is easily

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A323

monitored in our code by checking the value of a 4× 4 determinant. Essentially, this
means that R0 is differentiable with respect to the four parameters. We derive an
explicit bound on the gradient of R0 (with respect to αi) and use that to rigorously
estimate the error of our calculation. Basically, this is the same approach described
earlier.

For this configuration, using the unscaled BCC lattice, we found Rm < 1.1 uni-
formly over all 14 cases; this estimate is strictly correct as written. If the lattice is
scaled by c, then a standard argument gives

Rm < 1.1c,

which means that if the lattice spacing is too large, then the conflict situation might
occur. Therefore, the additional edge-flip policy can always be done so long as

c ≤ Rm/1.1.

A.4. Final dihedral angle bounds.
Theorem 3. Version 1 of Algorithm 1 has dihedral angle bounds given by

minimum dihedral angle > 8.54◦, maximum dihedral angle < 164.18◦.

For version 2 (includes step 7 of Algorithm 1), let c be the BCC lattice spacing
and Rm be defined as in Theorem 2. If c ≤ Rm/1.1, then the dihedral angles satisfy

minimum dihedral angle > 11.47◦, maximum dihedral angle < 157.59◦.

Proof. For version 1, the angle bounds are given by (21) since those are clearly
the most conservative. These bounds hold for any continuous surface, though the
mesh that is generated will not respect geometric edges/corners.

For version 2, if we assume the condition c ≤ Rm/1.1, then (21) is no longer
relevant because that case is removed by the additional edge-flip, Algorithm 5. Ergo,
we must contend with (22) and (24); the bounds in (28) and (29) are of course more
generous (so can be ignored). Therefore, we obtain the assertion.

Note added in proof. The TIGER algorithm in implemented in the soft-
ware package FELICITY, which is available at www.mathworks.com/matlabcentral/
fileexchange/31141-felicity.

Acknowledgments. The author thanks Xin Li (Louisiana State University) for
providing the Bimba, Stanford Bunny, and Stanford Dragon data to test the al-
gorithm. The author also acknowledges shapes.aimatshape.net, the Aim@Shape
website, for the other surface meshes.

REFERENCES

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amster-
dam) 140, Elsevier, Amsterdam, 2003.

[2] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun, Variational tetrahedral meshing,
ACM Trans. Graph., 24 (2005), pp. 617–625.

[3] I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J.
Numer. Anal., 13 (1976), pp. 214–226.

[4] B. S. Baker, E. Grosse, and C. S. Rafferty, Nonobtuse triangulation of polygons, Discrete
Comput. Geom., 3 (1988), pp. 147–168.

[5] R. E. Bank and L. R. Scott, On the conditioning of finite element equations with highly
refined meshes, SIAM J. Numer. Anal., 26 (1989), pp. 1383–1394.

A324 SHAWN W. WALKER

[6] M. Bern, D. Eppstein, and J. Gilbert, Provably good mesh generation, J. Comput. System
Sci., 48 (1994), pp. 384–409.

[7] J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355–378.
[8] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,

2nd ed., Cambridge University Press, Cambridge, UK, 2001.
[9] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,

2nd ed., Springer, New York, 2002.
[10] R. Bridson, J. Teran, N. Molino, and R. Fedkiw, Adaptive physics based tetrahedral mesh

generation using level sets, Engineering with Computers, 21 (2005), pp. 2–18.
[11] H. Carr, T. Theußl, and T. Möller, Isosurfaces on optimal regular samples, in Proceedings

of the Symposium on Data Visualisation 2003, VISSYM ’03, Aire-la-Ville, Switzerland,
2003, pp. 39–48.

[12] L. Chen, Mesh smoothing schemes based on optimal Delaunay triangulations, in 13th Interna-
tional Meshing Roundtable, Sandia National Laboratories, 2004, pp. 109–120.

[13] L. Chen and J. Xu, Optimal Delaunay triangulations, J. Comput. Math., 22 (2004), pp. 299–
308.

[14] S.-W. Cheng and T. K. Dey, Quality meshing with weighted Delaunay refinement, SIAM J.
Comput., 33 (2004), pp. 69–93.

[15] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng, Sliver exu-
dation, in Proceedings of the Fifteenth Annual Symposium on Computational Geometry,
SCG ’99, ACM, New York, 1999, pp. 1–13.

[16] L. P. Chew, Guaranteed-quality Delaunay meshing in 3d (short version), in Proceedings of the
Thirteenth Annual Symposium on Computational Geometry, SCG ’97, ACM, New York,
1997, pp. 391–393.

[17] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40,
SIAM, Philadelphia, PA, 2002.

[18] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, Implicit fairing of irregular meshes
using diffusion and curvature flow, in SIGGRAPH ’99: Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-
Wesley, New York, 1999, pp. 317–324.

[19] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Upper Saddle
River, NJ, 1976.

[20] H. Edelsbrunner and D. Guoy, An experimental study of sliver exudation, Engineering with
Computers, 18 (2002), pp. 229–240.

[21] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge Monogr. Appl.
Comput. Math., Cambridge University Press, Cambridge, UK, 2001.

[22] D. Eppstein, J. M. Sullivan, and A. Üngör, Tiling space and slabs with acute tetrahedra,
Comput. Geom., 27 (2004), pp. 237–255.

[23] J. M. Escobar, G. Montero, R. Montenegro, and E. Rodŕıguez, An algebraic method for
smoothing surface triangulations on a local parametric space, Internat. J. Numer. Methods
Engrg., 66 (2006), pp. 740–760.

[24] L. A. Freitag and C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping and
smoothing, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 3979–4002.

[25] A. Fuchs, Automatic grid generation with almost regular Delaunay tetrahedra, in Proceedings,
7th International Meshing Roundtable, Sandia National Laboratories, 1998, pp. 133–148.

[26] O. Gonzalez, J. H. Maddocks, F. Schuricht, and H. von der Mosel, Global curvature
and self-contact of nonlinearly elastic curves and rods, Calculus of Variations, 14 (2002),
pp. 29–68.

[27] O. Gonzalez and J. H. Maddocks, Global curvature, thickness and the ideal shapes of knots,
Proc. Nat. Acad. Sci. USA, 96 (1999), pp. 4769–4773.

[28] R. Grosso, C. Lürig, and T. Ertl, The multilevel finite element method for adaptive mesh
optimization and visualization of volume data, in VIS ’97: Proceedings of the 8th Confer-
ence on Visualization, IEEE Computer Society Press, Washington, DC, 1997, pp. 387–394.

[29] H. Huang and U. Ascher, Surface mesh smoothing, regularization, and feature detection,
SIAM J. Sci. Comput., 31 (2008), pp. 74–93.

[30] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis, Dover Publications, Mineola, NY, 2000.

[31] B. M. Klingner and J. R. Shewchuk, Aggressive tetrahedral mesh improvement, in Proceed-
ings of the 16th International Meshing Roundtable, Seattle, WA, 2007, pp. 3–23.

[32] P. M. Knupp, Algebraic mesh quality metrics, SIAM J. Sci. Comput., 23 (2001), pp. 193–218.
[33] A. P. Kuprat and D. R. Einstein, An anisotropic scale-invariant unstructured mesh generator

suitable for volumetric imaging data, J. Comput. Phys., 228 (2009), pp. 619–640.

TETRAHEDRALIZATION OF ISOSURFACES (TIGER) A325

[34] M. Kř́ıžek, On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer.
Anal., 29 (1992), pp. 513–520.

[35] F. Labelle, Tetrahedral Mesh Generation with Good Dihedral Angles Using Point Lattices,
Ph.D. thesis, University of California, Berkeley, 2007.

[36] F. Labelle and J. R. Shewchuk, Isosurface stuffing: Fast tetrahedral meshes with good di-
hedral angles, in SIGGRAPH ’07, ACM, New York, 2007.

[37] X.-Y. Li and S.-H. Teng, Generating well-shaped Delaunay meshed in 3d, in Proceedings of
the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, SIAM,
Philadelphia, 2001, pp. 28–37.

[38] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction
algorithm, SIGGRAPH Comput. Graph., 21 (1987), pp. 163–169.

[39] S. A. Mitchell and S. A. Vavasis, Quality mesh generation in higher dimensions, SIAM J.
Comput., 29 (2000), pp. 1334–1370.

[40] R. Montenegro, J. M. Cascón, J. M. Escobar, E. Rodŕıguez, and G. Montero, An au-
tomatic strategy for adaptive tetrahedral mesh generation, Appl. Numer. Math., 59 (2009),
pp. 2203–2217.

[41] R. Montenegro, G. Montero, J. M. Escobar, and E. Rodŕıguez, Efficient strategies for
adaptive 3-d mesh generation over complex orography, Neural Parallel Sci. Comput., 10
(2002), pp. 57–76.

[42] K. R. Moyle and Y. Ventikos, Local remeshing for large amplitude grid deformations, J.
Comput. Phys., 227 (2008), pp. 2781–2793.

[43] H. Müller and M. Wehle, Visualization of implicit surfaces using adaptive tetrahedriza-
tions, in DAGSTUHL ’97: Proceedings of the Conference on Scientific Visualization, IEEE
Computer Society Press, Washington, DC, 1997, p. 243.

[44] D. J. Naylor, Filling space with tetrahedra, Internat. J. Numer. Methods Engrg., 44 (1999),
pp. 1383–1395.

[45] P. Ning and J. Bloomenthal, An evaluation of implicit surface tilers, IEEE Comput. Graph.
Appl., 13 (1993), pp. 33–41.

[46] Y. Ohtake, A. Belyaev, and A. Pasko, Dynamic meshes for accurate polygonization of im-
plicit surfaces with sharp features, in SMI ’01: Proceedings of the International Conference
on Shape Modeling & Applications, IEEE Computer Society, Washington, DC, 2001, p. 74.

[47] Y. Ohtake and A. G. Belyaev, Dual/primal mesh optimization for polygonized implicit sur-
faces, in SMA ’02: Proceedings of the Seventh ACM Symposium on Solid Modeling and
Applications, ACM, New York, 2002, pp. 171–178.

[48] Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski, Polyhedral surface smoothing with si-
multaneous mesh regularization, in GMP ’00: Proceedings of Geometric Modeling and
Processing, IEEE Computer Society Press, Washington, DC, 2000, p. 229.

[49] S. Oudot, L. Rineau, and M. Yvinec, Meshing volumes bounded by smooth surfaces, in
Proceedings of the 14th International Meshing Roundtable, San Diego, CA, 2005, pp. 203–
219.

[50] P.-O. Persson, Mesh size functions for implicit geometries and PDE-based gradient limiting,
Engineering with Computers, 22 (2006), pp. 95–109.

[51] P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004),
pp. 329–345.

[52] A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis, 2nd ed., Dover,
Mineola, NY, 2001.

[53] J. Schöberl, Netgen an advancing front 2d/3d-mesh generator based on abstract rules, Com-
put. Vis. Sci., 1 (1997), pp. 41–52.

[54] V. Shapiro and I. Tsukanov, Implicit functions with guaranteed differential properties, in
SMA ’99: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications,
ACM, New York, 1999, pp. 258–269.

[55] J. R. Shewchuk, What Is a Good Linear Finite Element? Interpolation, Conditioning,
Anisotropy, and Quality Measures, http://www.cs.cmu.edu/∼jrs/jrspapers.html (2002).

[56] H. Si, Tetgen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Tri-
angulator, v1.4.3 User’s Manual, Technical report, Research Group: Numerical Mathemat-
ics and Scientific Computing, Weierstrass Institute for Applied Analysis and Stochastics
(WIAS), Berlin, 2011.

[57] K. Siddiqi and S. M. Pizer, Medial Representations, Computational Imaging 37, Springer,
New York, 2008.

[58] D. M. Y. Sommerville, Space-filling tetrahedra in Euclidean space, Proc. Edinb. Math. Soc.,
41 (1923), pp. 49–57.

[59] G. W. Stewart, Afternotes on Numerical Analysis, SIAM, Philadelphia, 1996.

A326 SHAWN W. WALKER

[60] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed., Texts Appl. Math. 12,
Springer, New York, 2002.

[61] J. C. Torres, F. Soler, F. Velasco, A. León, and G. Arroyo, Marching octahedra, in
Congreso Español de Informática Gráfica, 2009, pp. 179–186.

[62] A. Üngör, Tiling 3d Euclidean space with acute tetrahedra, in Canadian Conference on Com-
putational Geometry, 2001.

[63] Z. J. Wood, P. Schröder, D. Breen, and M. Desbrun, Semi-regular mesh extraction from
volumes, in VIS ’00: Proceedings of the Conference on Visualization ’00, IEEE Computer
Society Press, Los Alamitos, CA, 2000, pp. 275–282.

[64] Y. Yao, C. S. Koh, and D. Xie, Robust mesh regeneration based on structural deformation
analysis for 3D shape optimization of electromagnetic devices, in ICEMS 2003, Sixth In-
ternational Conference on Electrical Machines and Systems, Vol. 2, 2003, pp. 732–735.

[65] M. A. Yerry and M. S. Shephard, Automatic three-dimensional mesh generation by the
modified-octree technique, Internat. J. Numer. Methods Engrg., 20 (1984), pp. 1965–1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

