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This paper presents a softened notion of proximity (or self-avoidance) for curves. We then 
derive a sensitivity result, based on shape differential calculus, for the proximity. This is 
combined with a gradient-based optimization approach to compute three-dimensional, 
parameterized curves that minimize the sum of an elastic (bending) energy and a 
proximity energy that maintains self-avoidance by a penalization technique. Minimizers 
are computed by a sequential-quadratic-programming (SQP) method where the bending 
energy and proximity energy are approximated by a finite element method.
We then apply this method to two problems. First, we simulate adsorbed polymer strands 
that are constrained to be bound to a surface and be (locally) inextensible. This is a 
basic model of semi-flexible polymers adsorbed onto a surface (a current topic in material 
science). Several examples of minimizing curve shapes on a variety of surfaces are shown. 
An advantage of the method is that it can be much faster than using molecular dynamics 
for simulating polymer strands on surfaces. Second, we apply our proximity penalization to 
the computation of ideal knots. We present a heuristic scheme, utilizing the SQP method 
above, for minimizing rope-length and apply it in the case of the trefoil knot. Applications 
of this method could be for generating good initial guesses to a more accurate (but 
expensive) knot-tightening algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Self-assembly of micro structures is a growing research area with applications in basic science and material design [22,
37,32]. In particular, polymers confined to curved surfaces have great scientific interest. The packing of strands of DNA onto 
a protein complex, as well as packaging DNA into a small volume to fit inside a cell, is of fundamental importance in biology 
[35,41,52]. In the design of materials, micro-scale patterned surfaces can be used to create material components with novel 
optical, electronic and magnetic properties [43]. Moreover, elastic polymer chains can be forced into regular patterns when 
they are energetically bound to a deformable membrane [33,61,62,53]. Therefore, modeling and simulating the equilibrium 
configurations of semi-flexible polymer strands on surfaces is important for basic physics understanding and developing 
technological applications [12,1,46].

A crucial driving force of these patterns is self-contact [19,20], i.e. an object’s matter cannot overlap itself. A long polymer 
chain that is forced to reside on a closed, bounded surface must interact with itself when obtaining its equilibrium configu-
ration. Hence, the presence of self-contact (or self-avoidance) in these systems plays a fundamental role in their equilibrium 
states and dynamic evolutions [50], so we must account for it when modeling these systems. Multiple characterizations of 
self-contact have been developed in the literature [29,30,19] (all in the context of knots).
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This paper presents a smoothed notion of self-avoidance for curves that is suitable for gradient-based optimization 
methods. Our method is based on a modified version of the global radius of curvature [19,20,31,42,47]. This concept possesses 
some very nice analytical properties [42,47] and was used to prove the existence of optimal shapes of “thick” knots [19,20,
24]. But it is certainly not limited to this one application. We demonstrate our method by applying it to two problems.

The first problem is on the adsorption of semi-flexible polymers onto surfaces, which has been done in several research 
works [35,41,52,59,61,62,53] mostly using molecular dynamics and Lennard-Jones potentials. We propose to simulate the 
equilibrium configuration of inextensible elastic curves that are bound to a surface and satisfy the no-penetration condition 
(i.e. the elastic curve is self-avoiding). By no-penetration, we assume the curve is surrounded by a tubular neighborhood that 
does not self-intersect (see Section 2.1.5), which is completely inline with modeling “thick” polymer strands.

We use an energetic continuum approach, i.e. the curves are parameterized 1-D manifolds (not beads on a string) that 
minimize the sum of an elastic energy and a “proximity” (penalized) energy that enforces the no-penetration condition. The 
proximity functional (see Section 2.3) softens the effect of self-contact, and as far as we know is new. Gradient information 
is computed via shape differentiation. We then discretize the problem and give a discrete sequential-quadratic-programming 
(SQP) method for finding local minimizers of the energy. To the best of our knowledge, this is a novel scheme, but we point 
out another constrained gradient scheme in [3]. As for efficiency, our method takes a few hundred to about a thousand 
iteration steps. A molecular dynamics simulation typically takes on the order of a few million steps. Hence, our method 
should be faster than a direct molecular dynamics simulation.

The second problem is on computing ideal knots. We present a heuristic algorithm for minimizing rope-length of closed 
curves (i.e. for approximating ideal knots), that utilizes the SQP method above, and apply it in the case of the trefoil 
knot. One application of the method could be for generating good initial guesses to a more accurate (but expensive) knot-
tightening algorithm. Furthermore, it may be useful for probing optimal configurations of more complicated knots.

The paper is organized as follows. Section 2 reviews the concept of global radius of curvature, then we present our 
penalized approach for preventing self-contact. Section 3 shows how we model the equilibrium shape of semi-flexible 
curves as minimizers of an energy functional which includes a term to penalize self-intersection; Section 4 describes a 
finite element method and optimization algorithm for computing minimizers, including a heuristic method for minimizing 
rope-length (Section 4.7). Several numerical results are shown in Section 5, followed with some concluding remarks.

2. Measuring proximity

In order to model and simulate curves that do not self-intersect, we must quantity self-contact for “thick” curves (see 
Definition 1). We start by reviewing the concept of global radius of curvature [19,20,31]. Then, we present a softened version 
of the global radius of curvature (i.e. the “proximity”) that is useful for numerics and optimization. Throughout the paper, 
we make the following assumption.

Assumption 1. Let � ⊂ R3 be a smooth (open or closed) curve in R3, with length L, and parameterized by α : [0, 1] → R3

(unless otherwise stated). Moreover, assume that � is simple, i.e. it has no self-intersections.

2.1. Global radius of curvature

2.1.1. Circumradius
Let R be the circumradius of three non-collinear points x, y, z in R3:

R(x,y, z) = |x − y||y − z||z − x|
4A(x,y, z)

, (1)

where | · | is the Euclidean norm and A(x, y, z) is the area of a triangle with vertices x, y, z. Thus, R(x, y, z) ≥ 0 and 
R(x, y, z) := ∞ if x, y, z are collinear. Any three non-collinear points define a unique circumcircle and a unique circum-
sphere that contains the circumcircle as a great circle.

If � is a simple smooth curve, then the domain of R can be extended to any triple of points on � by continuous limits. 
Suppose that x = α(s), y = α(t), z = α(u) are three distinct points on �. Then one can show that [19]

R(x,y,y) := lim
u→t

R(x,y, z) = |x − y|
2| sin θxy′ | , (2)

where θxy′ is the angle between the vector x − y �= 0 and the tangent vector τ (y) to � at y. Thus, the limit circumcircle is 
tangent to � at y and passes through x. We also have that

R(x,x,x) := lim
t,u→s

R(x,y, z) = ρ(x), (3)

where ρ(x) is the standard local radius of curvature of � at x, i.e. the limit circumcircle is the osculating circle of � at x.
For any curve �, we define the global radius of curvature ρG(x) at each point x in � by [19,20]
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Fig. 1. Illustration of the global radius of curvature. We compute ρG (x0), ρG (x1) at two points x0, x1 on the thick black curve � by doing the minimization 
in (5). Two circumcircles are shown for different values of y, z. For this particular curve, ρG(x0) is achieved by the local radius of curvature, i.e. ρG (x0) =
ρ(x0). But ρG (x1) < ρ(x1) where the curve comes near to itself.

ρG(x) = inf
y,z∈�\{x}

y�=z

R(x,y, z). (4)

When � is simple and smooth, the infimum can be replaced by a minimum, i.e.

ρG(x) = min
y,z∈�

R(x,y, z). (5)

Moreover, ρG : � →R+ is a continuous function on �. This follows by continuity of R(x, y, z) and (2), (3). See Fig. 1 for an 
illustration.

The function ρG generalizes curvature to a global concept. Clearly, we have

0 ≤ ρG(x) ≤ ρ(x), ∀x ∈ �. (6)

Note that ρG is infinite when � is a straight line. Conversely, if there is a point x0 in � for which ρG(x0) = ∞, then 
ρG(x) = ∞ for all x in � and � is a straight line (because ρG is a continuous function).

We can characterize the global radius of curvature geometrically. Depending on the point x in �, the number ρG (x) may 
be the local radius of curvature, or the strictly smaller radius of a circle containing x and another distinct point y in �
where the circle is tangent. Thus, the minimization in (5) can be done with the restriction y = z. See [19] for more details.

2.1.2. Point tangent radius
Let τ (y) be the unit tangent vector of � at y in �. Then, by taking appropriate limits, one can show that the point-

tangent radius is given by

lim
z→y

R(x,y, z) = R(x,y,y) = |x − y|
2
∣∣∣ x−y
|x−y| × τ (y)

∣∣∣ = |x − y|
2

[
1 −

(
x−y
|x−y| · τ (y)

)2
]1/2

,

i.e. it is the radius of a circle that passes through x and y and is tangent to � at y. With this, we define the point tangent 
function

Rpt(a,τ ) := |a|
2

[
1 −

(
a
|a| · τ

)2
]1/2

.
(7)

Thus, the point tangent radius is related to the circumradius by

Rpt(x − y,τ (y)) = R(x,y,y). (8)

Note that Rpt(a, τ (y)) is an even function with respect to the argument a.
Hence, we can compute the global radius of curvature (at a point x in �) by computing

ρG(x) = min
y∈�

Rpt(x − y,τ (y)), (9)

instead of the double minimization in (5). Alternative radius functions have been proposed for defining other global radius 
of curvature functions. In [44], they show that the point tangent radius gives the minimal value amongst all obvious choices 
of radius function.

2.1.3. Basic properties
We now list properties of the point tangent radius and the global radius of curvature (see [19,31,44] for details). Basic 

limiting arguments show that
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lim
y→x

Rpt(x − y,τ (y)) = 1

|κ(x)| = ρ(x), (10)

where κ is the vector curvature of � at x. For a fixed x in �, the associated minimizer in (9) satisfies one of the following 
two conditions [31,44]:

x − y

|x − y| · τ (y) = 0, (type 1) OR |κ(y)|Rpt(x − y,τ (y)) = 1, (type 2), (11)

i.e. either x − y is orthogonal to � at y or the point tangent circle has the same radius as ρ(y). For example, ρG (x) may be 
realized by the local radius of curvature. This result follows by basic calculus and limits [44].

2.1.4. Minimum global radius of curvature
For any curve �, we associate the number

ρG(�) = inf
x∈�

ρG(x). (12)

If � is simple and smooth, then ρG is continuous, so we can replace the infimum by a min:

ρG(�) = min
x∈�

ρG(x). (13)

The following geometric interpretation of ρG(�) is given in [19]. Any spherical shell of radius less than ρG (�) cannot 
intersect � in three or more points (counting tangency points twice). Basically, a ball of radius less than ρG (�) cannot 
become “stuck” on �, because there is always “room” for it to pass through the interstices of the curve �.

Put differently, ρG(�) yields information about the closest proximity of � with itself. Either ρG(�) is the minimum local 
radius of curvature or the strictly smaller radius of a sphere, that contains no portion of the curve � in its interior, which is 
tangent to the curve at two diametrically opposite points x and y [19,31,44]. At these points we have the symmetry property

ρG(�) = ρG(x) = Rpt(x − y,τ (y)) = Rpt(y − x,τ (x)) = ρG(y). (14)

Let Udc be the set of pairs of points (x, y) in � such that x �= y and x − y is orthogonal to τ (x) and τ (y) (i.e. the set of 
double critical points). One way to characterize the minimum global radius of curvature is [9,34,19]

ρG(�) = min

{
ρ(x), min

(x,y)∈Udc

|x − y|
2

}
. (15)

We also have that ρG (�) is continuous on the space of C1,1 curves, i.e. ρG(�) is continuous at any simple curve � that 
is not a straight line segment (otherwise it is infinite). Moreover, ρG (�k) tends to zero for any sequence of simple smooth 
curves {�k} that approaches a self-intersecting curve [20,47].

2.1.5. Curve thickness
Let T (�) be the “tube” surrounding � defined as

T (�) =
⋃
x∈�

D(x, r), (16)

where D(x, r) is the open disk of radius r > 0 centered at x such that the tangent vector τ (x) of � is orthogonal to D(x, r). 
The maximum value of r such that all of the disks {D(x, r)} remain pairwise disjoint is precisely ρG(�) [19]. Thus, ρG(�)

is the radius of the thickest (open) smooth tube that can be centered on �, without self-intersections. Along these lines, 
we define the notion of a “thick” curve.

Definition 1 (Curve thickness). Let � be a C1,1 curve. We say that � is a thick curve if there exists a tubular neighborhood 
T (�), with positive thickness, such that T (�) does not self-intersect. Moreover, we say � has thickness d > 0 if d has the 
maximal value possible such that T (�) does not self-intersect when the disks in (16) have radius less than or equal to d.

In our application, the curve will have a prescribed thickness (e.g. the thickness of the polymer) that our algorithm will 
maintain in a penalized sense (Section 4.6).

Previous researchers have introduced and studied the concept of an ideal knot [29,30,19]. Let K be a set of simple, 
smooth, closed curves of a specified topological knot class with fixed length L. Now consider the maximization: find �∗ in 
K such that

ρG(�∗) = max
�∈KρG(�). (17)

The optimizer �∗ in K is called an ideal knot, i.e. �∗ is the thickest curve of fixed length that can be tied into a given knot. 
Existence of C1,1 optimal solutions is described in [20,42]. It can be shown [19] that a necessary condition of the optimal 
solution �∗ is that
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Fig. 2. Illustration of the non-smoothness of ρG . (a) A portion of a curve � ⊂ R3 is shown, where the point x0 lies on a straight part of the curve that is 
coming out of the page. Note: ρG (x0) = r0. (b) The curve is deformed slightly but does not change ρG (x0). (c) A different deformation does change ρG (x0).

ρG(x) = ρG(�∗), ∀x ∈ �∗, (18)

i.e. the global radius of curvature is constant and minimal over the entire curve.

2.2. Proximity

It is clear that the global radius of curvature ρG provides a notion of proximity (or closeness) for a thick curve (Defini-
tion 1) with respect to itself. However, ρG is not a particularly smooth function for the following reasons. First, computing 
a minimum (for a fixed x) in (9) is not a smooth process. For example, let g(t) = min( f1(t), f2(t)) for all t where f1 and f2
are C∞ functions, and note that g can be rewritten as

g(t) = f1(t) + f2(t)

2
− | f1(t) − f2(t)|

2
.

The presence of the absolute value means g cannot be better than continuous. Second, one can construct a smooth curve 
� such that an infinite number of points y realize the minimum in (9) for a fixed x. This can lead to abrupt changes in ρG
when smoothly deforming � (Fig. 2 shows an example).

In Fig. 2(a), part of a smooth closed curve � (embedded in three dimensions) is shown. It consists of a circular arc 
connected to two straight pieces with another part of the curve “coming out of the page” along the axis of the arc (i.e. the 
dot at x0). We consider x0 to be a point on the vertical piece that is in the plane of the circular arc. Computing ρG(x0), 
we see that every point y on the circular arc realizes the minimum in (9). Since it is a circular arc, we see that ρG(x0) = r0
where r0 is the radius of the arc. In Fig. 2(b), part of the circular arc has been deformed into a new shape �1. In this case, 
the points on �1 that achieve the minimum in (9) are the points on the circular arc that are unaffected by the deformation. 
In fact, Rpt(x0 − x1, τ (x1)) > r0 so x1 does not achieve the minimum. Fig. 2(c), shows a different deformation taking �
into �2. Now we have that ρG(x0) = r2 < r0 because Rpt(x0 − x2, τ (x2)) = r2 < r0. Thus, ρG can change abruptly depending 
on the particular deformation.

Indeed, let � ⊂ R3 be a given curve and suppose V : R3 → R3 is a smooth vector-valued function. We can define a 
parameterized family of curves by �t = {x ∈ R3 : x = y + tV(y), ∀y ∈ �}. Let x0 be a fixed point in � and let xt be the 
corresponding point in �t . Now consider the function f (t) = ρG(xt , �t), where we include the second argument �t to 
emphasize that ρG is computed on the curve �t . Even for a smooth V, f (t) may not even be differentiable (in the classical 
sense). Because of this non-smoothness, and the fact that ρG is a non-local function, computing the shapes of ideal knots 
is extremely difficult. Several researchers [39,31,37,44,3,40,2] attacked this problem by a brute-force optimization approach, 
e.g. a Monte-Carlo/molecular dynamics type of procedure was used. However, this is computationally expensive especially 
when the object being optimized is a smooth 1-D curve. It is well-known that ideal knots are regular C1,1 curves, and a 
molecular dynamics approach does not take advantage of this.

On the other hand, ensuring that a curve is self-avoiding (i.e. does not come close to a self-intersection) is not as 
extreme as ideal knots. In the following sections, we describe how to soften ρG and define a penalty function that averages 
the effect of self-contact in a way that allows us to compute shape derivatives [15,45,55]. Moreover, we incorporate this 
into a constrained shape optimization method for computing optimal configurations of curves that minimize their bending 
energy with an additional penalty term to prevent self-intersections.

2.2.1. Weighted distance
We introduce a different geometric interpretation of the point tangent radius. Let us define the normal distance

|a|τ (z) :=
[

aT (I − τ (z) ⊗ τ (z))a
]1/2

, (19)

where a is an arbitrary vector and z is in �. In other words, it is the length of the vector a when projected onto the 
subspace orthogonal to the tangent space of � at z; so, |·|τ (z) is a semi-norm. Now define the normal distance ratio:

N (a,τ (z)) := |a|τ (z)

|a| = normal length

standard length
=

[
1 −

(
a

|a| · τ (z)
)2

]1/2

. (20)
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Fig. 3. Diagram of the behavior of the point tangent radius Rpt. Part of a curve � is shown with three points identified. Direct computation gives 
|x0 − x1|/2 = Rpt(x0 − x1, τ (x1)) = Rpt(x1 − x0, τ (x0)) ≈ 11.87, Rpt(x0 − x2, τ (x2)) ≈ 33.74, and |x0 − x2|/2 ≈ 16.44. Clearly, Rpt inflates distances 
for point pairs that are not points of closest approach (i.e. type 1 critical points).

Clearly, N (·, τ (·)) is dimensionless and takes values in [0, 1]. If a is close to being normal to � at z, then N (a, τ (z)) is 
close to 1; if it is close to being tangent, then it is close to 0. Note that N (a, τ (z)) is an even function with respect to the 
argument a.

In lieu of the above, we can rewrite (8) in the form

Rpt(x − y,τ (y)) = |x − y|
2

1

N (x − y,τ (y))
. (21)

If N (x − y, τ (y)) = 0 and x �= y, then Rpt(x − y, τ (y)) := +∞. The first term, |x − y|/2, in (21) is simply the “half-distance” 
associated with two points. The second term, N (x − y, τ (y))−1, accounts for the geometry of the curve �. In fact, when 
N (x − y, τ (y)) < 1, the second term inflates the half distance between x and y making them seem farther away; see Fig. 3
for an illustration.

Remark 1. One of the main issues in dealing with self-contact is how to distinguish between nearly adjacent points on a 
curve and points that are clearly disjoint but close in space. Obviously, points that are close with respect to the parameteri-
zation variable t in α(t) should not play a role in determining self-contact; nearby points along a curve are supposed to be 
close.

A common trick to enforce self-avoidance of curves is to attach point charges along the curve with a pairwise Coulomb 
repulsive potential energy term defined for any two charges. For this to work, a “cut-off” distance is usually defined so that 
nearby charges along the curve ignore each other if they are within the cut-off distance. This is an ad-hoc approach because 
the cut-off distance is arbitrary and it is not clear what a “good” cut-off distance should be. For instance, what if the curve 
loops back quickly on itself? If the radius of curvature is less than the cut-off distance, then any type 1 critical points will 
be incorrectly ignored.

Hence, the normal distance ratio allows for a convenient way to ignore points on the curve that are nearly adjacent to 
the fixed query point x, but without specifying any arbitrary cut-off distance. So Rpt(x − y, τ (y)) is a good measure for how 
close the points x and y really are with respect to self-contact.

2.2.2. Modified point tangent radius
The point tangent radius Rpt(x − y, τ (y)) quantifies self-contact, but is difficult to compute with numerically when y is 

close to x. The ratio in (21) involves small quantities for a smooth curve as y approaches x. Moreover, obtaining derivative 
information from Rpt is even more delicate (when y is close to x). In order to utilize a gradient based optimization method 
to enforce no self-intersection (of thick curves), we need another option to compute with.

Hence, we consider a modified version of the point tangent radius:

R̃pt(a,τ ) := |a|
2

1

N 2(a,τ )
, (22)

i.e. we square the denominator in (21). Note that Rpt ≤ R̃pt. The same interpretation holds, as before, except limx→y R̃pt(x −
y, τ (y)) = ∞ (follows by standard limits). So nearby points on a smooth curve are always considered “far away” regardless 
of the local radius of curvature, i.e. R̃pt ignores the (pointwise) local radius of curvature of the curve. This is convenient in 
computing derivatives.

Remark 2 (Effect of R̃pt). Using R̃pt(x − y, τ (y)) yields the same set of double critical (type 1) points as Rpt(x − y, τ (y)); 
recall (15). This is because N (x − y, τ (y)) = 1 at double critical points. Using R̃pt(x − y, τ (y)) effectively removes the local 
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self-interaction of Rpt. Thus, we can ignore the sensitivity of the local curvature when computing derivative information 
(also see Remark 4).

2.2.3. Sensitivities
Sections 3 and 4 present a gradient based optimization method for optimizing thick curves that minimize an energy 

consisting of a bending energy term and a penalized self-intersection energy. For this, we must compute the sensitivity of 
R̃pt(x − y, τ (y)) when the curve � is perturbed. This section states some basic formulas that we will need later.

Consider a reference curve �0 ⊂ R3 and let V : R3 → R3 be a smooth vector-valued function. We define a perturbed 
curve � by the perturbation of the identity approach [55,15]:

�ε = {x ∈R3 : x = y + εV(y),∀y ∈ �0}. (23)

Note: we could consider V as only defined on �0. By straightforward calculus of variations, we have the material derivative 
of the distance:

δV|x − y| = x − y

|x − y| · (V(x) − V(y)). (24)

Moreover, the material derivative of N (x − y, τ (y)) gives

δVN (x − y,τ (y)) = −
[

1 −
(

x − y

|x − y| · τ (y)

)2
]−1/2 (

x − y

|x − y| · τ (y)

)
·

·
{

V(x) − V(y)

|x − y| · τ (y) −
[

x − y

|x − y| · V(x) − V(y)

|x − y|
]

x − y

|x − y| · τ (y)

+ x − y

|x − y| · τ̇ (y)

}
,

where τ̇ = [I − τ ⊗ τ ]∂sV and ∂s is the derivative with respect to arc-length. Rewriting, we have

δVN (x − y,τ (y)) = − 1

N (x − y,τ (y))

(
x − y

|x − y| · τ (y)

)
·

·
{
τ (y) ·

[
I − x − y

|x − y| ⊗ x − y

|x − y|
]

V(x) − V(y)

|x − y|

+ x − y

|x − y| · [I − τ (y) ⊗ τ (y)]∂sV(y)

}
. (25)

2.3. Penalty approach

2.3.1. Proximity penalty
We quantify self-contact of a curve, with uniform thickness, in the following way. Let d be the cross-sectional radius 

of a thick curve, i.e. the radius of the cylindrical tubular neighborhood (recall (16) and Definition 1). Define the two-point 
self-contact function

Sc(x,y) = 2R̃pt(x − y,τ (y)) − 2d = |x − y|
N (x − y,τ (y))2

− 2d. (26)

We can interpret the values of Sc in the following way. If x, y are double-critical points (recall (15)) such that x �= y, then 
Sc ≥ 0 implies that the tubular neighborhoods near x and y do not overlap (note that R̃pt =Rpt for double-critical points). 
If Sc < 0, then they do overlap.

This implies the following. If Sc(x, y) ≥ 0 for all x, y in � and ρ(x) ≥ d for all x in �, then by (15) it must be that 
ρG(�) ≥ d. Thus, for a curve with uniform thickness d, it will not overlap itself (no self-penetration).

Remark 3 (Penalize self-intersection). In the case of optimizing the shape of a thick curve (with thickness d) such that it 
never self-intersects, we could enforce that Sc ≥ 0 and the local radius of curvature be larger than d. Another option is to 
soften the constraint by merely penalizing self-intersection of the tubular neighborhood of the curve by incorporating Sc
into an appropriate barrier function. This is done in Section 3 which utilizes the bending energy of a curve to penalize the 
local radius of curvature.
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Therefore, we use the following penalization approach for enforcing Sc(x, y) ≥ 0. Let ψ :R →R+ be a C1 cut-off function 
defined by

ψ(t) =
{

0, if t ≥ 0,

(1/2)t2, if t < 0,
(27)

and define the proximity penalty function at x in �:

Q p(x) =
∫
�

ψ (Sc(x,y))ds(y). (28)

So Q p(x) vanishes when no “points of closest approach” are sufficiently close to x. Alternatively, it is positive if a point of 
closest approach is close to x. Note that Q p(x) also depends on �.

The main point of (28) is that it averages the effect of self-contact for points of closest approach, instead of the “hard” 
constraint imposed by the minimization in (9). Hence, we refer to (28) as a “softened” version of self-contact for points of 
closest approach (also see Remark 5).

The set of type 1 critical points (11) and the set of double critical points Udc (see (14)) for a curve � can vary erratically 
as � smoothly deforms. In other words, recall �ε in (23) and let ρε

G(xε) be the global radius of curvature for �ε at the 
point

xε = x + εV(x), (29)

for some fixed x in �0. In general, the minimizing point in ρε
G (xε) does not depend smoothly on ε (recall Section 2.2 and 

Fig. 2). Therefore, building a gradient based optimization method by tracking points of closest approach is not practical. 
Instead, we use (28) for its averaging effect.

2.3.2. Sensitivity of the proximity
The gradient of Q p(x) with respect to x is needed for the shape optimization method in Section 3. But Q p(x) = Q p(x, �)

also depends on � and it is not clear if we can vary x independently of � because x ∈ �. First, we establish this fact.
Recall �ε in (23), i.e.

yε = 	ε(y) := y + εV(y), for some y ∈ � ⇔ yε ∈ �ε, (30)

for some arbitrary V :R3 →R3 in C1,1. Let x be a fixed point in � ≡ �0. Then xε is the corresponding point in �ε through 
the map (30).

Note that the function R̃pt(x −y, τ (y)) is continuous whenever N (x −y, τ (y)) > 0 and infinite otherwise. In fact, R̃pt(x −
y, τ (y)) is large for all y in � sufficiently close to x. Let Br(x) be the ball of radius r > 0 centered at x. Then there exists 

 > 0 such that

Sc(x,y) ≥ 2, for all y ∈ B
(x) ∩ �. (31)

Let �̂ε = 	ε(B
(x) ∩ �). By continuity, there exists ε′ > 0 such that

Sc,ε(xε,yε) ≥ 1, for all yε ∈ �̂ε, for all ε ∈ [0, ε′], (32)

where Sc,ε is the self-contact function on �ε . Therefore,

ψ(Sc,ε(xε,yε)) = ψ ′(Sc,ε(xε,yε)) = 0, for all yε ∈ �̂ε, for all ε ∈ [0, ε′]. (33)

Define �̃ε = 	ε(� \ B
(x)) = �ε \ �̂ε . From (33), we see that

Q p(xε, �̃ε) =
∫
�̃ε

ψ(Sc,ε(xε,yε))ds(yε), for all ε ∈ [0, ε′]. (34)

Clearly, �̃ε does not depend on V evaluated at x. In particular, xε and �̃ε are independent, which means they can be varied 
independently; this is the main reason for introducing (22). Therefore, by (34), x is simply a parameter in Q p(x), which 
means we can differentiate Q p(x) with respect to x in the standard way.

Computing the gradient, we find

∇x Q p(x) =
∫
�

ψ ′ (Sc(x,y))∇xSc(x,y)ds(y), (35)

where
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∇xSc(x,y) = ∇x

( |x − y|
N (x − y,τ (y))2

)
= x − y

|x − y|
1

N (x − y,τ (y))2
− 2

|x − y|
N (x − y,τ (y))3

∇xN (x − y,τ (y)).

The last term leads to

∇xN (x − y,τ (y)) = − 1

N (x − y,τ (y))

1

|x − y|
(

x − y

|x − y| · τ (y)

)
·

·
[

I − x − y

|x − y| ⊗ x − y

|x − y|
]
τ (y),

which follows by calculations similar to (25). Altogether, we obtain

∇xSc(x,y) = 1

N (x − y,τ (y))2

{
x − y

|x − y|

+ 2
1

N (x − y,τ (y))2

(
x − y

|x − y| · τ (y)

)[
I − x − y

|x − y| ⊗ x − y

|x − y|
]
τ (y)

}
. (36)

Remark 4. The presence of R̃pt in Sc(x, y) makes computing the gradient of Q p(x) with respect to x straightforward. If 
we had used Rpt instead, then the calculation would be much more involved because of the self-interaction of the local 
curvature.

3. Minimizing energy

3.1. Curve energy

Given a thick curve � ⊂ R3, with thickness d (see Definition 1), we define its energy to be

A(�) = Jb(�) + η Jp(�), (37)

Jb(�) = 1

2

∫
�

|κ(x)|2 ds(x), (38)

Jp(�) =
∫
�

Q p(x)ds(x), (39)

where (38) is the so-called bending energy [60], (39) is the proximity penalty functional, and η > 0 is a penalization 
parameter. The bending energy is used to control the local radius of curvature. We use Jp as an energy penalization on the 
proximity of the curve to itself (recall Section 2.3). In other words, Jb and Jp penalize the terms in the characterization 
(15).

Our goal is to find a curve �∗ that minimizes (37) subject to constraints discussed in the following sections. Choos-
ing η large enough will ensure minimal overlap of T (�, d) = ∪x∈�D(x, d), where D(x, d) is the open disk centered at x, 
perpendicular to τ (x), with radius d, i.e. the region occupied by the “thick” curve (recall Section 2.1.5).

Remark 5. Many kinds of knot energies and self-avoidance energies have been proposed (for example, see [9,19,39,36,40,48,
49]). But they are more global in nature. For instance, [48,49] define an Lp integral of 1/ρG(·) as a self-avoidance energy, 
which puts an Lp bound on the global curvature. As p → ∞, their energy recovers the minimum global radius of curvature 
(13) [19]. Thus, their proposed energy gives a means to interpolate between a purely “soft” repulsive potential and the 
“hard” potential corresponding to exact no self-penetration. The energy we propose is more localized and is only active 
when points of closest approach become too close. This is consistent with our goal of modeling polymer strands adsorbed 
onto surfaces.

3.1.1. Sensitivity of the bending energy
Consider a reference curve �0 ⊂R3 and let V : R3 → R3 be a smooth vector-valued function. Recall the perturbed curve 

�ε in (23). With this, we consider the functional Jb(ε) ≡ Jb(�ε) as a function of ε . Differentiating Jb(ε) gives the so-called 
shape perturbation of Jb with respect to V, i.e.

δ Jb(�;V) := d
Jb(ε)

∣∣∣ . (40)

dε ε=0
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This is a classic calculation that can be found in [5,6,17,60,55] among others. For our purposes, we refer to the result in [6]
for the shape sensitivity of the bending energy of a surface. Their result reduces to the following in the case of a curve:

δ Jb(�;V) =
∫
�

∇�κ : ∇�V − 2
∫
�

[(∇� id�)(∇�V)] : [∇�κ]

+ 1

2

∫
�

(∇� · κ)(∇� · V) − (∂sV) · κ∣∣
∂�

− 1

2
|κ |2V · τ ∣∣

∂�
, (41)

where 
∣∣
∂�

denotes evaluation at the end points of the open curve �, ∇� := τ∂s , and ∂s is the derivative with respect to 
arc-length. The boundary terms are a minor modification of the derivation in [6] which can be found in [55].

Because � is a curve, we can further simplify (41) to

δ Jb(�;V) =
∫
�

∂sκ · ∂sV − 3

2

∫
�

(τ · ∂sκ)(τ · ∂sV) − (∂sV) · κ∣∣
∂�

− 1

2
|κ |2V · τ ∣∣

∂�
. (42)

3.1.2. Sensitivity of the proximity
Applying standard shape differentiation formulas [15,23,55] to (39), we get

δ Jp(�;V) =
∫
�

Q p(x)(τ · ∂sV)ds(x) +
∫
�

V · ∇x Q p(x)ds(x), (43)

where the formula for ∇x Q p(x) is given in (35).

3.2. Constraints

3.2.1. Local inextensibility constraint
Let α : [0, 1] → � be a parameterization of �; similarly, let α0 parameterize a fixed reference curve �0. Define the local 

length constraint functional as

B(q,�) =
∫
�

q(α0 ◦ α−1(x))ds(x) −
∫
�0

q(x)ds(x), for all q : �0 →R, (44)

where α−1 is the inverse map of α, and q is any scalar valued L2(�0) integrable function. So the inextensibility constraint 
is simply B(q, �) = 0 for all q, i.e. the parts of the curve � and �0 that correspond (through the map α0 ◦ α−1) must have 
equal length. Imposing a global length constraint may not be adequate in all cases. If the thickness d varies along the curve, 
then a local length constraint is necessary to preserve the desired thickness distribution. Also, in the numerics, it may be 
desirable to use an adaptive mesh for representing �; again, a local length constraint is needed for maintaining the local 
mesh size.

The sensitivity of (44) can be computed by standard methods in the calculus of variations [16,26,55] and/or standard 
shape differentiation formulas. We write this as a bilinear form

b(p,V) := δ� B(p,�;V) =
∫
�

pτ · ∂sV, (45)

for all smooth functions V and L2(�) functions p, where p is a Lagrange multiplier (see [57] for a similar approach). We 
use δ� to emphasize that we are perturbing with respect to �.

3.2.2. Surface attachment constraint
Recalling the application, i.e. that a thick curve � models a polymer strand being adsorbed onto a surface � ⊂ R3, we 

must also impose this condition into the minimization of (37). This could be done by adding an additional energy penaliza-
tion to (37); this would yield an additional force (similar to the other sensitivities) that pushes � onto �. Alternatively, we 
can constrain � to lie on �. In this paper, we take the latter approach.

Let � be a smooth surface without boundary and represent it as the zero set of a level set function φ : R3 → R:

� = {x ∈R3 : φ(x) = 0}. (46)

For convenience, we assume that φ is, in fact, the distance function to �. Now define the surface constraint functional

C(μ,�) =
∫

μ(x)φ(x)ds(x), for all μ : � →R. (47)
�
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So the surface constraint is simply C(μ, �) = 0 for all μ in L2(�), i.e. � should lie on the zero level set of φ.
The sensitivity of (47) follows by basic shape differentiation, which we write as a bilinear form

c(λ,V) := δ�C(λ,�;V) =
∫
�

λ(V · ∇φ) +
∫
�

λφτ · ∂sV, (48)

for all smooth functions V and L2(�) functions λ, where λ is a Lagrange multiplier.

3.3. Minimization problem

We define the admissible set of curves to be

U = {� ∈ C1,1 : � ⊂ �, B(q,�) = 0,∀q ∈ L2(�0), and C(μ,�) = 0,∀μ ∈ L2(�)}, (49)

where �0 is a fixed reference curve (recall Section 3.2.1). The minimization problem is then to find a curve �∗ in U such 
that

A(�∗) = min
�∈U A(�). (50)

Similar optimization problems have been considered before in the context of non-linear rods and knots. In [20,42], they 
showed the existence of C1,1 minimizing curves that satisfied a thickness constraint. A similar problem was also analyzed 
for optimizing the shape of magnetic micro-swimmers, with a local length constraint, in [27,57].

We will not delve into the theoretical intricacies of the continuous optimization problem (50), because most of the 
theoretical issues have been established in other research. The main goal in the present paper is to develop a computational 
algorithm for finding numerical realizations of �∗ in (50) and to illustrate our method in a variety of cases (Section 5). 
Thus, we will keep the discussion of the continuous optimization problem at a formal level.

In order to solve this non-linear constrained optimization problem, we first reformulate it using Lagrange multipliers. 
Hence, consider the Lagrangian

L(�, p, λ) = A(�) − B(p,�) − C(λ,�), (51)

defined for all smooth curves � and L2(�) functions p, λ. In other words, the local inextensibility constraint and surface 
constraint are enforced through Lagrange multipliers.

The first order optimality conditions for (51) follow from shape differentiation and differentiating the multipliers, i.e. 
find (�∗, p∗, λ∗) such that

δ�L(�∗, p∗, λ∗;Y) ≡ δ�A(�∗;Y) − δ� B(p∗,�∗;Y) − δ�C(λ∗,�∗;Y) = 0,

δpL(�∗, p∗, λ∗;q) ≡ B(q,�∗) = 0,

δλL(�∗, p∗, λ∗;μ) ≡ C(μ,�∗) = 0, (52)

for all possible variations Y, q, and μ. We postpone the details of solving this system to Section 4.2.

4. Discrete SQP method

We now discretize the problem using finite elements. We introduce discrete function spaces to represent �, as well as 
the Lagrange multipliers (p, λ). We then describe a gradient descent type of scheme for minimizing A(�) under the local 
inextensibility and surface constraints described in Section 3.2.

4.1. Finite element spaces

We begin by partitioning the interval [0, 1] into N − 1 sub-intervals: I := {I j}N−1
j=1 , i.e. the mesh (N is the number of 

points or vertices). Define a continuous piecewise polynomial space on I:

Xk := {v ∈ C0([0,1]) : v|I j ∈ Pk(I j),1 ≤ j ≤ N − 1}, k ≥ 1,

X0 := {v ∈ L2([0,1]) : v|I j ∈ P0(I j),1 ≤ j ≤ N − 1}, (53)

where Pk(I) is the space of polynomials of degree k on the interval I . Note that if v is a vector valued function, then v in 
Xk means that each component of v is in Xk (the same notation holds for all the other spaces).

For a general open curve �, we parameterize it by α : [0, 1] → R3. For the numerics, we replace � with �h which is 
parameterized by αh : [0, 1] → R3 (h is a discretization parameter). In other words, �h = αh([0, 1]). Moreover, we take αh
in X2 (i.e. continuous piecewise quadratic over I). Thus, the map αh induces a partition of edge segments E = {E j} on �h , 
i.e. E j = αh(I j) for 1 ≤ j ≤ N − 1. With this, we define the local mesh size h j = |E j | and smallest mesh size h = min j h j for 
the mesh E on �h .
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Algorithm 1 SQP method.

Given a fixed reference curve �0
h , with parameterization α0 : [0, 1] →R3, let α0

h be the standard Lagrange interpolant of α0 over [0, 1].
Initialize merit function penalty ζ 0 := 0.
for k = 0, 1, 2, . . . do

Perform line-search with merit function (see Algorithm 2) to obtain βk+1.
Update curve: αk+1

h (t) := αk
h(t) + βk+1Vk+1

h ◦ αk
h(t), for all t . This yields �k+1

h .
end for
Note: convergence is obtained when βk+1 becomes too small.

Now define a finite element space on �h [7,8,13] for the curve perturbation:

Yh := {v ∈ C0(�h) : (v ◦ αh) ∈X2}, (54)

and piecewise constant spaces for the multipliers

Qh := {q ∈ L2(�h) : (q ◦ αh) ∈X0}, Mh := {μ ∈ L2(�h) : (μ ◦ αh) ∈X0}. (55)

4.2. SQP method

The discrete version of the first order optimality conditions (52) comes about by replacing (�∗, p∗, λ∗) with (�∗
h , p∗

h, λ∗
h)

in Yh ×Qh ×Mh and taking variations (Y, q, μ) in Yh ×Qh ×Mh .
Applying a quasi-Newton method to (52) yields an iterative method for obtaining a solution. Each iteration of the method 

requires solving a saddle-point system to obtain a descent direction Vh which is used to update the curve �h . Thus, given 
the current guess �k

h at iteration k ≥ 0, we obtain Vk+1
h by solving the following problem: find (Vk+1

h , pk+1
h , λk+1

h ) in Yh ×
Qh ×Mh such that

a(Vk+1
h ,Y) + b(pk+1

h ,Y) + c(λk+1
h ,Y) = −δ�A(�k

h;Y), ∀Y ∈Yh,

b(q,Vk+1
h ) = −B(q,�k

h), ∀q ∈Qh,

c(μ,Vk+1
h ) = −C(μ,�k

h), ∀μ ∈Mh, (56)

where Yh , Qh , Mh are defined on �k
h . The bilinear form a(·, ·) is a chosen inner product on Yh . It replaces the usual Hessian 

term in Newton’s method with a positive definite matrix, which makes the method a quasi-Newton method. Iterating (56)
yields a sequential quadratic programming (SQP) method for optimizing � (see Algorithm 1 for a precise description). For 
further details on SQP methods, see [10,21,38,25,51]. Similar approaches can be found in [58,57,27].

4.3. Merit function

The presence of the constraints affects the choice of step-size when updating the curve, i.e. the cost functional A(�h)

may decrease but at the expense of violating the constraints. So we must balance reducing A(�h) versus violating the 
constraints. Therefore, the line-search in Algorithm 1 is performed using a merit function [38], which is defined as

θ(�h, ζ ) = A(�h) + ζ
(‖B(�h)‖l1 + ‖C(�h)‖l1

)
, (57)

where ζ ≥ 0 is a penalty parameter for the constraint violation and is updated at each optimization step. The l1 norms are 
defined as

‖B(�h)‖l1 = max
q∈Qh‖q‖l∞=1

B(q,�h) =
N−1∑
j=1

∣∣∣|E j| − |E0
j |
∣∣∣ , (58)

where E j ⊂ �h , E0
j ⊂ �0

h are corresponding edges through the map α0 ◦ α−1, and

‖C(�h)‖l1 = max
μ∈Mh‖μ‖l∞=1

C(μ,�h) =
N−1∑
j=1

∣∣∣∣∣∣∣
∫
E j

φ(x)ds(x)

∣∣∣∣∣∣∣ . (59)

The directional derivative, at step k of the optimization, is given by [38]

δ�θ(�k
h, ζ ;Vk+1

h ) = δ�A(�k
h;Vk+1

h ) − ζ
(
‖B(�k

h)‖l1 + ‖C(�k
h)‖l1

)
, (60)

where (Vk+1, pk+1, λk+1) solves (56). In fact, the derivative can be estimated by [38]
h h h



S.W. Walker / Journal of Computational Physics 311 (2016) 275–298 287
Algorithm 2 Line search with merit function.
1: Set parameter ξ ∈ (0, 1) and initial step size β0 > 0.
2: Input: �k

h and ζ k .

3: Initialize: βk+1 := β0, ACCEPT := FALSE.
4: while ACCEPT == FALSE do
5: Compute (Vk+1

h , pk+1
h , λk+1

h ) by solving (66) with βk+1.

6: Define penalty: ζ k+1 := max(ζ k, ‖pk+1
h ‖l∞ , ‖λk+1

h ‖l∞ ).

7: Compute αk+1
h (t) := αk

h(t) + βk+1Vk+1
h ◦ αk

h(t), for all t . This defines �k+1
h .

8: Evaluate θ(�k
h, ζ k+1) and θ(�k+1

h , ζ k+1) by (57), and δθ(�k
h, ζ k+1; Vk+1

h ) by (60).

9: if θ(�k+1
h , ζ k+1) ≤ θ(�k

h, ζ k+1) + ξβk+1δθ(�k
h, ζ k+1; Vk+1

h ) then
10: ACCEPT := TRUE
11: else
12: βk+1 := βk+1/2.
13: end if
14: end while
15: return βk+1 and ζ k+1.
16: Note: if βk+1 becomes too small, we break the loop.

δ�θ(�k
h, ζ ;Vk+1

h ) ≤ − a(Vk+1
h ,Vk+1

h )

−
(
ζ − max(‖pk+1

h ‖l∞ ,‖λk+1
h ‖l∞)

)(
‖B(�k

h)‖l1 + ‖C(�k
h)‖l1

)
. (61)

Therefore, at each step of the optimization, we update the constraint penalty by ζ k+1 := max(ζ k, ‖pk+1
h ‖l∞ , ‖λk+1

h ‖l∞); this 
ensures that δθ(�k

h, ζ ; Vk+1
h ) ≤ 0. Thus, at the kth optimization step, we define a step size βk+1 to be acceptable if

θ(�k+1
h , ζ k+1) ≤ θ(�k

h, ζ k+1) + ξβk+1δ�θ(�k
h, ζ k+1;Vk+1

h ), for some ξ ∈ (0,1), (62)

where �k+1
h is parameterized by αk+1

h (t) := αk
h(t) + βk+1Vk+1

h ◦ αk
h(t), for all t in [0, 1]. The precise line search method is 

described in Algorithm 2. See [38] for more details and [58] for an example of using a line search with merit function.

4.4. Discrete weak formulation

The sensitivity of the bending energy δ Jb(�h) involves derivatives of the curvature κ (see Section 3.1.1). This means that 
directly computing δ Jb(�h) requires a sufficiently smooth curve. One way to circumvent this is to adopt the approach in [6]
and introduce κ as an unknown and append another equation to (56). To motivate this, consider the following integration 
by parts relation when � is an open smooth curve [18,14],∫

�

∂sid� · ∂sW = τ · W
∣∣∣
∂�

−
∫
�

∂2
s id� · W = τ · W

∣∣∣
∂�

+
∫
�

κ · W, for all smooth W, (63)

where id� : � → � is the identity map on �, τ = ∂sid� , and κ = −∂2
s id� [16]. Given �, we can view (63) as a weak form 

of the curvature κ .
Therefore, at each step of the optimization, we impose (63) at the discrete level. This can be done by writing (63)

explicitly in terms of �k
h , implicitly in terms of �k+1

h , or semi-implicitly. In order to avoid taking small steps during the 
optimization process, and for efficiency, we follow [56,6] and use the semi-implicit approach. This gives∫

�k
h

∂s(α
k+1
h ◦ (αk

h)−1) · ∂sW =
∫
�k

h

κk+1
h · W, for all W ∈Wh,0,

where κk+1
h has zero boundary values and lies in the space

Wh,0 := {v ∈ C0(�k
h) : (v ◦ αk

h) ∈X2 and v = 0, at ∂�k
h}. (64)

Choosing zero boundary conditions for curvature is a natural boundary condition when modeling elastic beams. It also has 
the added benefit of simplifying the formulation. Furthermore, we can use the relation αk+1

h ◦ (αk
h)−1 := id

�k
h
+ βk+1Vk+1

h

and the fact that ∂sid
�k

h
= τ k

h to arrive at∫
�k

h

κk+1
h · W − βk+1

∫
�k

h

∂sVk+1
h · ∂sW =

∫
�k

h

τ k
h · ∂sW, for all W ∈Wh,0, (65)

where τ k is the explicit tangent vector of �k . Similar approaches can be found in [5,4].
h h
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Hence, given a trial step size βk+1, we obtain the corresponding descent direction Vk+1
h by solving the following problem. 

Find (Vk+1
h , κk+1

h , pk+1
h , λk+1

h ) in Yh ×Wh,0 ×Qh ×Mh such that

m(∂sκ
k+1
h , ∂sY) − (3/2)m(τ k

h · ∂sκ
k+1
h ,τ k

h · ∂sY)

+a(Vk+1
h ,Y) + b(pk+1

h ,Y) + c(λk+1
h ,Y) = −ηδ

�k
h

Jp(�k
h;Y), ∀Y ∈Yh,

m(κk+1
h ,W) − βk+1m(∂sVk+1

h , ∂sW) = m(τ k
h, ∂sW), ∀W ∈Wh,0,

b(q,Vk+1
h ) = −B(q,�k

h), ∀q ∈Qh,

c(μ,Vk+1
h ) = −C(μ,�k

h), ∀μ ∈Mh, (66)

where m(u, v) = ∫
�k

h
u · v.

Remark 6. Algorithm 2 (for the line search) must solve (66) for each trial step size. The alternative would be to use an 
explicit calculation of κk+1

h and solve for Vk+1
h once before doing the line search. However, we found that this leads to 

extremely small step sizes, so it is cheaper (overall) to include (66) in the line search.
The reason is due to the bending energy. Assuming a(·, ·) is an L2 inner product, (66) is a modified version of the 

Willmore flow [5,4,6] for curves with additional constraints and the proximity penalty functional as an extra driving force. 
The L2-gradient flow of the Willmore functional is a non-linear PDE with one derivative in time and four derivatives in 
space. So using an explicit method for the gradient flow of the Willmore functional would yield a step size restriction 
on the order of β = O (h4). Hence, the semi-implicit approach in (66) is crucial for improving the convergence rate to a 
minimizer.

4.5. Computation of the proximity penalty

We evaluate Jp and δ Jp by first computing an interpolant of Q p in the space Yh . In other words, at each nodal variable 
xi on �h , we compute Q p(xi) using numerical quadrature on �h (similarly for δ Jp). The nodal variables consist of the 
endpoints and midpoints of each edge in E .

Hence, for each point xi , we must compute an integral over �h . However, we do not need to compute the integral over 
the entire curve. For instance, let x0 be any point in �h and E ∈ E be an edge of �h . Then,

dist(x0, E) ≥ 2d, ⇒ Sc(x0,y) ≥ 0, for all y ∈ E. (67)

This implies that the contribution to Q p(x0) from edge E is zero (same for ∇ Q p(x0)). This is a manifestation of the lower 
interaction property in [19].

Therefore, we only need to evaluate quadrature formulas on edges that are less than a distance of 2d from x0 to compute 
Q p(x0) and ∇ Q p(x0). We can take advantage of this by finding the nearest neighbor edges to each nodal point, which can 
be done efficiently using an octree data structure.

4.6. Optimization schedule for adsorbed polymers

We use the following scheme in all of the examples in Section 5.1 to compute a constrained minimizer.

1. Generate a curve that is close to the surface � before running Algorithm 1. This is done by minimizing the following 
energy:

Ã(�) = Jb(�) + η Jp(�) + ηφ Jφ(�), Jφ(�) :=
∫
�

√
ε2

0 + φ2(x)ds(x), (68)

where Jφ(�) is a regularization of 
∫
�

|φ| with ε0 > 0. The minimization is done by a gradient descent method, where 
the descent direction is obtained by solving a modified version of (66). This is done by setting λk+1

h = 0, omitting the 
last equation in (66), and changing the right-hand-side of the first equation in (66) accordingly. We then use a standard 
back-tracking line search with the energy (68) (no merit function) to update the curve. This first step is necessary to 
give a good initial curve for Algorithm 1. Once the curve is sufficiently close to � (we use φ to evaluate this), or the 
step-size is too small, we stop the descent scheme.

2. Run the merit function based Algorithm 1 with the curve produced by step (1) as the initial curve. During this run, we 
reset ζ to zero every 100 iterations. This is useful if ζ becomes artificially large during a single iteration due to one of 
the Lagrange multipliers having a large maximum. If ζ is extremely large, then the optimization can stall. Algorithm 1
terminates when the step size becomes less than the minimum step size allowed.
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Algorithm 3 Inflate knot.
Define f 0 := 1. Set γ0 = 0.1, TOL = 10−5.
Let �0

h minimize Ã(�h, f 0) for all �h of fixed length. Compute ρ0
G (x) from �0

h .
for k = 0, 1, 2, . . . do

Compute δ f k+1 = ω(ρk
G ).

Initialize: γ k+1 := γ0.
while γ k+1 ≥ TOL do

Update: f̃ = f k + γ k+1δ f k+1 (inflate).
Let �̃h minimize Ã(�h, ̃f ) for all �h of fixed length. Compute ρ̃G (x) from �̃h .
if min(ρ̃G ) > min(ρk

G ) then

Accept the curve �̃h :
�k+1

h := �̃h , ρk+1
G := ρ̃G , f k+1 = f̃ .

break while.
else

γ k+1 := γ k+1/2.
end if

end while
end for
The FOR loop terminates when γ k+1 becomes less than TOL.

4.7. Inflating a knot

4.7.1. Overview
We present a heuristic method, using the proximity penalty approach and the SQP method in Section 4.2, for inflating 

mathematical knots. Recalling Section 2.1.5 and (17), a curve � is called an ideal knot if it maximizes ρG (�) amongst all 
curves in a specified topological knot class of fixed length.

Suppose we are given a curve � that minimizes (37) subject to the local length constraint (i.e. we remove the surface 
constraint). A necessary condition for � to be an ideal knot is that ρG (x) is constant for all x in �. Thus, if ρG(x) is not 
constant, then increasing the proximity penalty where ρG(x) is smallest should (hopefully) push those parts of the curve 
away from itself, effectively increasing ρG (�).

4.7.2. Algorithm
We start by considering a modified proximity penalty functional:

J̃p(�, f ) =
∫
�

f (x)Q p(x)ds(x), (69)

where f : � → R+ is a function that augments the proximity penalty locally. Computing the shape perturbation (while 
holding f fixed) gives

δ J̃p(�, f ;V) =
∫
�

f (x)Q p(x)(τ · ∂sV)ds(x)

+
∫
�

f (x)V · ∇ Q p(x)ds(x) +
∫
�

Q p(x)V · ∇� f (x)ds(x), (70)

where ∇� appears because f is defined only on �. So, given f defined on a fixed reference curve �0, we wish to find a 
closed curve � that minimizes

Ã(�, f ) = Jb(�) + η J̃p(�, f ), (71)

subject to a local length constraint. This can be done by a gradient descent method analogous to step (1) in Section 4.6.
The issue now is to find f such that the minimizer of (71) is one that has ρG (x) as close as possible to a constant. 

Algorithm 3 does this.
In Algorithm 3, we apply a map ω : R+ → R+ to determine an incremental change in f . The map is chosen to be C1, 

positive when ρG is near ρG , and zero elsewhere. The exact form of y = ω(x) is a piecewise cubic hermite polynomial 
defined by the following data:

{xi} = {m, (0.9m + 0.1M), (0.7m + 0.3M), M}, {yi} = {1,1,0,0}, {si} = {0,0,0,0}, (72)

where m = min(ρG), M = max(ρG), and {si} are the slope values corresponding to the {(xi, yi)} coordinate pairs. Thus, when 
updating f with δ f = ω(ρG), the value of f (x) at a point x is unchanged when ρG (x) is much greater than ρG . Otherwise, 
f (x) increases slightly.
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Table 1
Parameter values. For each example, the maximum and minimum step size is given. The value of η used in step (1) and step (2) of the optimization 
schedule (Section 4.6) is given. The number of iterations used in steps (1) and (2) is also given.

Example β (max/min) η ηφ ε0 ξ Iterations

Section 5.1.1 0.03/10−6 10.0/100.0 1.0 0.01 0.2 434/587
Section 5.1.2 0.03/10−10 100.0/200.0 1.0 0.01 0.2 21/356
Section 5.1.3 0.03/10−8 10.0/100.0 20.0 0.01 0.02 61/266
Section 5.1.4 0.03/10−8 10.0/100.0 10.0 0.05 0.2 28/348
Section 5.1.5 0.03/10−6 10.0/100.0 50.0 0.05 0.2 38/342

Remark 7. The heuristic approach of Algorithm 3 avoids differentiating ρG . Indeed, in order to maximize ρG , a natural 
approach would be to apply a gradient based optimization method. However, ρG is not differentiable with respect to the 
curve in the usual sense (a more complex notion of differentiability for this problem was recently described in [11]). Our 
goal here is to present a simple algorithm that gives a decent approximation of an ideal knot.

Remark 8. The computation of ρG is approximated, at a nodal point xi in �h , by

ρG(xi) = min

{
min

yi∈�h\{xi}
Rpt(xi − yi,τ h(yi)),

1

|κh(xi)|
}

, (73)

where the minimization in yi was performed over all nodal points in �h such that yi �= xi . Compare this with (9), (15). 
Note that κh(xi) is the discrete curvature vector obtained from solving the weak formulation (66). The value of τ h(yi) is 
computed directly using the piecewise quadratic curve �h .

5. Numerical results

5.1. Polymers on surfaces

We present several examples of the optimization schedule in Section 4.6. In each case, the parameterization of the initial 
curve is given as well as the surface on which the curve is to be adsorbed. Moreover, we give the amount by which the 
constraints are violated, i.e. we give the values of

‖B(�h)‖l∞ = max
1≤ j≤N−1

∣∣∣|E j| − |E0
j |
∣∣∣ , ‖C(�h)‖l∞ = max

1≤ j≤N−1

∣∣∣∣∣∣∣
∫
E j

φ(x)ds(x)

∣∣∣∣∣∣∣ ,
in the figure caption for the final iteration. A list of parameters used for all the examples is given in Table 1. The curve 
thickness was set to d = 0.2.

All numerical results were performed in MATLAB using the FELICITY toolbox [54]. The computational time for most of 
the examples was between 1 and 3 minutes on a Dell desktop computer with an Intel Core i7-4770 CPU at 3.4 GHz, with 
32 GB of RAM. The example in Section 5.1.3 took about 4 minutes because a finer discretization was used. The initial step 
size to try in each iteration of Algorithm 1 was defined to be either twice the step size from the previous iteration or the 
maximum step size (whichever is smaller). This helped avoid unnecessary initial trial steps.

5.1.1. Coiling onto a sphere
The initial (open) curve �0

h is parameterized by

α0
h(t) = (2,0.1 sin(10πt),45t − 2), for t ∈ [0,1], (74)

with total length of 45.055, and is discretized with 200 edge segments using X2. The surface � is a sphere of radius 1.3
centered at the origin.

In order to prevent the curve from getting tangled up as it moves toward the surface in step (1) of the optimization 
schedule in Section 4.6, we set a Dirichlet boundary condition for the velocity Vh at the end of the curve farthest from the 
surface, i.e. we set

Vh|x0 = −sgn(φ(x0))∇φ(x0),

where x0 is the point on ∂� farthest from �, and φ is the level set function for the surface �. In step (2), no Dirichlet 
condition is applied.

Figs. 4 and 5 show the results of the curve optimization. The surface � is shown in light blue. Each edge E j of �h is 
a parametric quadratic curve (by the definition of X2) defined by the nodal values of αh restricted to the interval I j . We 
plot �h by a thin black curve, with black dots denoting the end points of every edge of �h . The magenta dots represent the 
nodal values of αh corresponding to the “midpoint” of the edge. The same format is used in all subsequent figures.
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Fig. 4. Optimization of a curve adsorbing onto a sphere (Section 5.1.1). The entire curve is not visible in the first four plots. Without the proximity penalty 
term, the curve would converge to a great circle with multiple overlaps. (For interpretation of the colors in this figure, the reader is referred to the web 
version of this article.)

Fig. 5. Final shape for a curve adsorbed onto a sphere (Section 5.1.1). The surface is plotted in the lower right hand figure only. At iteration 1021, the 
constraints are satisfied to within: ‖B(�h)‖l∞ = 2.756 · 10−7, ‖C(�h)‖l∞ = 6.711 · 10−6. (For interpretation of the colors in this figure, the reader is referred 
to the web version of this article.)

5.1.2. Tennis ball pattern on a sphere
The initial (closed) curve �0

h is parameterized by

α0
h(t) = (1.2 cos(2πt),1.2 sin(2πt),1.8 sin(6πt)), for t ∈ [0,1], (75)

with total length of 23.401, and is discretized with 200 edge segments using X2. The surface � is a sphere of radius 1.3
centered at the origin.

Figs. 6 and 7 show the results of the curve optimization.

5.1.3. Tennis ball pattern on a rounded cube
The initial (closed) curve �0

h is parameterized by

α0(t) = (1.0 cos(2πt),1.0 sin(2πt),1.2 sin(8πt)), for t ∈ [0,1], (76)
h
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Fig. 6. Optimization of a closed curve adsorbing onto a sphere (Section 5.1.2). Without the proximity penalty term, the curve would converge to a great 
circle with multiple overlaps.

Fig. 7. Final shape for a closed curve adsorbed onto a sphere (Section 5.1.2). The surface is plotted in the lower right hand figure only. Note the symmetric 
“tennis-ball” pattern. At iteration 377, the constraints are satisfied to within: ‖B(�h)‖l∞ = 3.549 · 10−8, ‖C(�h)‖l∞ = 5.722 · 10−7.

Fig. 8. Optimization of a closed curve adsorbing onto a rounded cube (Section 5.1.3). Without the proximity penalty term, the curve would converge to a 
loop about a diagonal section of the surface with multiple overlaps.

with total length of 20.635, and is discretized with 400 edge segments using X2 . The surface � is described by the set of 
points (x, y, z) that satisfy

x8 + y8 + z8 = (0.8)8. (77)

Figs. 8 and 9 show the results of the curve optimization.

5.1.4. Closed curve on an equipotential surface
The initial (closed) curve �0

h is parameterized by

α0
h(t) = (1.8 cos(2πt),1.8 sin(2πt),1.5 sin(8πt)), for t ∈ [0,1], (78)

with total length of 27.316, and is discretized with 200 edge segments using X2 . The surface � is described by the set of 
points x = (x, y, z) that satisfy

4∑ 1

‖x − xi‖ = 2.8, (79)

i=1
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Fig. 9. Final shape for a closed curve adsorbed onto a rounded cube (Section 5.1.3). The surface is plotted in the lower right hand figure only. Note the 
symmetric pattern analogous to the “tennis-ball” pattern in Section 5.1.2. At iteration 327, the constraints are satisfied to within: ‖B(�h)‖l∞ = 3.351 · 10−5, 
‖C(�h)‖l∞ = 5.055 · 10−4.

Fig. 10. Optimization of a closed curve adsorbing onto an equipotential surface (Section 5.1.4). Without the proximity penalty term, the curve would 
converge to a loop about the horizontal mid-plane with multiple overlaps.

Fig. 11. Final shape for a closed curve adsorbed onto an equipotential surface (Section 5.1.4). The surface is plotted in the lower right hand figure only. The 
curve achieves a symmetric pattern because the surface is symmetric. At iteration 376, the constraints are satisfied to within: ‖B(�h)‖l∞ = 2.232 · 10−6, 
‖C(�h)‖l∞ = 1.416 · 10−4.

where

x1 = (1,1,0), x2 = (−1,1,0), x3 = (−1,−1,0), x4 = (1,−1,0).

Figs. 10 and 11 show the results of the curve optimization.
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Fig. 12. Optimization of an open curve adsorbing onto a genus-2 surface (Section 5.1.5).

Fig. 13. Final shape for an open curve adsorbed onto a genus-2 surface (Section 5.1.5). The surface is plotted in the lower right hand figure only. The 
shape is not symmetric because the initial curve was not symmetric. At iteration 380, the constraints are satisfied to within: ‖B(�h)‖l∞ = 1.426 · 10−4, 
‖C(�h)‖l∞ = 1.090 · 10−3.

5.1.5. Open curve on a genus-2 surface
The initial (open) curve �0

h is parameterized by

α0
h(t) = (1.5 cos(1.9πt),1.5 sin(1.9πt),1.2 sin(8πt)), for t ∈ [0,1], (80)

with total length of 21.807, and is discretized with 200 edge segments using X2 . The surface � has genus equal to 2 and is 
described by the set of points x = (x, y, z) that satisfy

2y(y2 − 3x2)(1 − z2) + (x2 + y2)2 − (9z2 − 1)(1 − z2) = 0.2. (81)

Figs. 12 and 13 show the results of the curve optimization.

5.1.6. Effect of initial condition and penalty parameter
The particular initial condition can affect the equilibrium solution produced by Algorithm 1. For instance, in Section 5.1.1, 

one can simply rotate the initial condition, and the equilibrium solution will obviously rotate as well (because of spherical 
symmetry). Moreover, the optimization problem is non-convex so it is expected that minimizers are not unique. For example, 
in Section 5.1.5, rotating the initial curve by 90◦ (about the z-axis) leads to a very different minimizing shape.

The effect of η appears to be rather mild. For the case in Section 5.1.4, we tried three different values: η = 50, 100, 200. 
The final equilibrium shape was the same for all three values, but the number of iterations in step (2) of the optimization 
schedule (Section 4.6) varied: 737, 348, 389. However, it is still conceivable that changing η can lead to different minimizing 
shapes, especially if the surface has lots of folds and twists.

5.2. Inflating the trefoil knot

We demonstrate Algorithm 3 on the trefoil knot. The initial curve used for �0
h in the algorithm is the trefoil knot 

parameterized by

α0(t) = 0.5((sin(2πt) + 2 sin(4πt)), (cos(2πt) − 2 cos(4πt)),− sin(6πt)), for t ∈ [0,1], (82)
h
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Fig. 14. Inflating the trefoil knot (Section 5.2). The initial curve and final curve are shown. The local radius of curvature ρ is plotted in blue; the global 
radius of curvature ρG is in black. Note: ρG < ρ over the entire curve. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 15. Final shape of the trefoil knot.

with total length of 14.413, and is discretized with 200 edge segments using X2. We ran Algorithm 3 for a total of 56 
iterations until the step size dropped below the minimum allowed. During this process, we must repeatedly find a minimizer 
of (71). For this, we set d = 0.5 and η = 10.0. The total number of gradient descent iterations used to minimize (71) was 
1126. The overall simulation time was 5.66 minutes.

Fig. 14 shows the initial curve and the final curve produced by Algorithm 3, as well as plots of ρG and ρ for both curves. 
Fig. 15 shows different views of the final curve.

Fig. 16 shows the results of the knot “inflation” algorithm. An ideal knot is characterized by its so-called rope-length:

rope-length of � = |�|
ρG(�)

.

An ideal knot has minimal rope-length. This is plotted in Fig. 16, which clearly shows the rope-length being reduced. The 
initial rope-length is 37.4971539641; the final value is 33.7484406674. A very good estimate of the true minimum value is 
provided in [31,44]: 32.744459376, which is accurate to the number of digits given. Choosing different weights for the {xi }
data in (72) does not significantly change the final rope-length we compute; worst case was 34.168787 corresponding to 
{xi} = {m, (0.7m + 0.3M), (0.4m + 0.6M), M}.
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Fig. 16. Knot inflation data.

We also plot the difference max(ρG) − min(ρG) in Fig. 16 to show how the algorithm pushes ρG closer to a constant. At 
the final iteration, max(ρG) − min(ρG) = 1.8394 · 10−3. The final form of the function f is also shown.

Remark 9 (Effect of η). The penalty parameter does have some effect on the final solution. The following table lists the values 
of the rope-length depending on η.

η 1 5 10 20 50

rope-length 66.8283 33.7285 33.7484 34.1993 34.6857

If η is too small, then self-intersection is not sufficiently penalized, i.e. self-intersection is practically ignored. This is why 
the rope-length is so large when η = 1. We found that when η is large, the algorithm may end prematurely (i.e. takes too 
few iterations). This was the case for η = 50. Thus, if η is large, then the minimum step size should be reduced.

5.3. Conclusion

The main result of this paper is a softened notion of proximity presented in Sections 2.2 and 2.3. We then computed 
equilibrium curve shapes that minimize an energy consisting of a bending energy and a penalized proximity functional (to 
enforce no-overlap of the curves). Our algorithm, based on an SQP approach, is able to compute complex curve shapes on a 
variety of surfaces. Many of the shapes are reminiscent of Euler’s elastica (see Figs. 7 and 9).

5.3.1. Self-contacting bodies
We emphasize that minimizing the bending energy of self-avoiding curves, restricted to arbitrary surfaces, is a non-

convex problem. There may be many local, constrained minimizers, which our algorithm picks out only one. The same 
issue is present when using molecular dynamics (MD) with “beads on a string”, such as in [62]. However, the number of 
time-steps used in MD simulations is on the order of 1 to 10 million, whereas our method takes on the order of hundreds 
to about a thousand for number of gradient descent steps. Thus, our method should be useful for finding interesting min-
imizing configurations for semi-flexible polymers adsorbed onto surfaces. One observation we noticed in the simulations 
was that ηφ (in step (1) of Section 4.6) should be chosen larger when the surface has regions of high curvature. This is to 
overcome the curve’s bending stiffness in order to force the curve onto the surface. One possible extension of our method 
is to allow the surface to deform (e.g. treat the surface as a bio-membrane).

One extension of the method is to replace the penalization approach with an inequality constraint on (28) via a Lagrange 
multiplier. This would require combining a variational inequality [28] on (39) with the bending energy functional. In addi-
tion, it would be interesting if the “softening” of self-contact in (28) could be modified in order to better approximate the 
“hard” limit (see Section 2.3.1 and Remark 5).

The method could be easily modified for surfaces, i.e. to enforce that a bendable surface does not intersect itself; appli-
cations here could be in bio-membranes and cloth simulation. Furthermore, this method could be combined with simulating 
highly deformable elastic bodies, such as swimming organisms and locomoting snakes, to ensure they maintain the con-
straint of no self-intersection.

5.3.2. Approximating ideal knots
The heuristic approach in Section 4.7 for finding ideal knot shapes may be a useful sub-component of an overall method. 

The final shape found is not an ideal knot, but it is close (see Section 5.2 for the actual data). Many highly accurate 
methods exist for computing minimal rope-length (see [31,44] and [3] for instance). However, they are very expensive 
methods because the ideal knot optimization problem is not smooth. For example, [3] mentions that a hundred thousand 
iterations is a standard run. Thus, our scheme is a good option for providing a decent initial guess, at low computational 
cost, to a more accurate method.

It is not clear how to formally justify the heuristic algorithm in Section 4.7.2. Most likely, a different approach would be 
necessary. One option is to first adopt the variational inequality approach mentioned in Section 5.3.1 because this eliminates 
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the penalization parameter. Moreover, it avoids situations where self-contact may be over-penalized when the curve has a 
large set of “points of closest approach” that are equal distance to a single point (see Fig. 2(a) for an example); this is a 
common situation for ideal knots, such as the trefoil knot.

Using an inequality approach for (39) implies that modifying the proximity penalty functional in (69) would no longer 
work; recall that we used f in (69) to “inflate” the knot. Instead, one could introduce a variable bending rigidity coefficient 
into (38) that would become the control variable to optimize to drive the curve to an ideal knot shape. Hence, in order to 
justify this new algorithm, we need to better understand the effect of the bending energy on the shape of the knot. A key 
step in this direction would be to derive a sensitivity result connecting the (variable) bending coefficient to the equilibrium 
shape of a curve that minimizes its bending energy under an inequality constraint on (28). This could potentially provide a 
new means for computing ideal knots.
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