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We present a robust discretization of the Ericksen model of liquid crystals with variable 
degree of orientation coupled with colloidal effects and electric fields. The total energy 
consists of the Ericksen energy, a weak anchoring (or penalized Dirichlet) energy to 
model colloids, and an electrical energy for a given electric field. We describe our special 
discretization of the total energy along with a method to compute minimizers via a discrete 
quasi-gradient flow algorithm which has a strictly monotone energy decreasing property. 
Numerical experiments are given in two and three dimensions to illustrate that the method 
is able to capture non-trivial defect patterns, such as the Saturn ring defect. We conclude 
with a rigorous proof of the �-convergence of our discrete energy to the continuous energy.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

This paper presents a method for solving the Ericksen model of liquid crystals [1,2], with additional effects due to 
colloidal domains and electric fields. Liquid crystals are a work-horse technology enabling electronic displays [3–5], for 
instance. Moreover, they have a host of potential applications in material science [6–21]. One avenue is to use external 
fields (e.g. electric fields) and colloidal dispersions to build new materials through directed self-assembly [22,7,12,23–29,16,
19,30,31].

A significant amount of mathematical analysis has been done on liquid crystals [32–44]. Moreover, a host of numerical 
methods have been developed for statics and dynamics [45–51]. In particular, the methods in [52,43,53–55] are for harmonic 
mappings and liquid crystals with fixed degree of orientation, i.e. a unit vector field n (called the director field) represents 
the orientation of liquid crystal molecules. See [56–60] for methods that couple liquid crystals to Stokes flow. We also refer 
to the survey paper [45] for more numerical methods.

The method we present [61,62] is for the one-constant model of liquid crystals with variable degree of orientation [1,2,
32] (Ericksen’s model). The state of the liquid crystal is described by a director field n and a scalar function s, the so-called 
degree-of-orientation, which minimize the energy

E[s,n] :=
∫
�

(
κ |∇s|2 + s2|∇n|2

)
dx +

∫
�

ψ(s)dx. (1)
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Fig. 1. Macroscopic order parameter: the director variable n. Nematic liquid crystal molecules have an elongated rod-like shape (see elongated ellipsoids), 
which gives the material its anisotropic nature. The value of n(x) (a unit vector), at the point x, represents a probabilistic average over a local ensemble of 
liquid crystal molecules “near” x [32].

Hereafter, κ > 0 is a material constant, � is a bounded Lipschitz domain in Rd with d ≥ 2, and ψ is a double well potential 
(defined below).

Minimizers of the Ericksen model may exhibit non-trivial defects (depending on boundary conditions) [63,10,64,39,38,
65]. The presence of s in (1) leads to an Euler–Lagrange equation for n that is degenerate. This allows for line and plane 
defects (singularities of n) in dimension d = 3 when s vanishes; these types of defects are important for applications, 
especially defects that lie on three dimensional space curves [7,66]. Regularity properties of minimizers, and the size of 
defects, were studied in [39]. This leads to the study of dynamics [33] and corresponding numerics [46], which are relevant 
to our paper. But in both cases they regularize the model to avoid the degeneracy associated with the order parameter s
vanishing.

Our finite element method (FEM) does not require any regularization. We discussed the mathematical foundation of our 
method in [61,62]: we proved stability and convergence properties via �-convergence [67] (as the mesh size h goes to zero) 
and developed a quasi-gradient flow method to solve the discrete problem. Our discretization of the energy (1), defined in 
(16), requires that the mesh Th be weakly acute (or the stronger condition of having non-obtuse angles). This discretization 
preserves the underlying structure and robustly handles the unit length constraint on n and the degeneracy present when 
s vanishes. Our previous paper [61] showed a variety of simulations of minimizers with interesting defect structures.

The present paper demonstrates the ability of the Ericksen model, and of our method, to capture defect structures in-
duced by colloidal inclusions (i.e. holes in the domain) and effects due to electric fields. We are able to recreate the famous 
Saturn ring defect [68], which occurs around colloidal particles in different situations, by using both a conforming (non-
obtuse mesh) and a non-conforming cube mesh with an immersed boundary approach to model the colloid. In addition, we 
include electric field effects by incorporating an electric energy term into the total energy (1), and demonstrate the classic 
Freedericksz transition [32,2,41,69,70]. We also investigate the coupling of colloidal and electric effects.

The paper is organized as follows. In Section 2, we recall the Ericksen model for liquid crystals with variable degree 
of orientation, and describe our discretization of the continuous energy. Section 3 recalls properties of the discretization, 
and our initial minimization scheme. Section 4 describes the details for properly implementing our method. Section 5.1
illustrates our method in the presence of a colloidal inclusion with a conforming non-obtuse mesh. Section 5.2 shows an 
alternative way to model colloids by an immersed boundary approach (along with supporting simulations). In Section 6, 
we show how to include electric field effects in the model and describe a modified minimization procedure to compute 
minimizers. Section 7 presents the monotone energy decreasing property of the quasi-gradient flow algorithm to compute 
discrete minimizers. Section 8 provides a summary of the �-convergence for our discrete energy. We close in Section 9 with 
some discussion.

2. Ericksen’s model

Let the director field n : � ⊂ Rd → Sd−1 be a vector-valued function with unit length (see Fig. 1 for a description of the 
meaning of n). The degree-of-orientation s : � ⊂ Rd → (− 1

2 , 1) is a real valued function (see Fig. 2 for a description of the 
meaning of s). The variable n, by itself, cannot properly describe a “loss of order” in the liquid crystal material because it 
has unit length. The s variable provides a way to characterize the local order (see Fig. 2).

2.1. Ericksen’s one constant energy

The equilibrium state of the liquid crystal material is described by the pair (s, n) minimizing a bulk-energy functional 
(1) which we split as

E1[s,n] :=
∫
�

(
κ |∇s|2 + s2|∇n|2

)
dx, E2[s] :=

∫
�

ψ(s)dx, (2)

where κ > 0. The double well potential ψ is a C2 function defined on −1/2 < s < 1 that satisfies [1,35,39]

1. lims→1 ψ(s) = lims→−1/2 ψ(s) = ∞,
2. ψ(0) > ψ(s∗) = mins∈[−1/2,1] ψ(s) = 0 for some s∗ ∈ (0, 1),
3. ψ ′(0) = 0.
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Fig. 2. Macroscopic order parameter: the degree-of-orientation variable s. It is a probabilistic average over the angle θ between n(x) and an individual liquid 
crystal molecule; the average is taken over a local ensemble [32]. The case s = 1 represents the state of perfect alignment in which all molecules (in the 
ensemble) are parallel to n. Likewise, s = −1/2 represents the state of microscopic order in which all molecules (in the ensemble) are perpendicular to n. 
When s = 0, the molecules do not lie along any preferred direction which represents the state of an isotropic, uniformly random, distribution of molecules 
(in the ensemble). The state s = 0 is called a defect in the liquid crystal material.

It was shown in [35,39] that introducing an auxiliary variable u = sn allows the energy E1[s, n] to be rewritten as

E1[s,n] = Ẽ1[s,u] :=
∫
�

(
(κ − 1)|∇s|2 + |∇u|2

)
dx, (3)

which follows from the orthogonal decomposition ∇u = n ⊗ ∇s + s∇n (and is due to the constraint |n| = 1). Hence, [35,39]
define the admissible class of solutions (minimizers) as

A :={(s,u) : � → (−1/2,1) ×Rd : (s,u) ∈ [H1(�)]d+1, u = sn,n ∈ Sd−1}. (4)

We may also enforce boundary conditions on (s, u), possibly on different parts of the boundary. Let (�s, �u) be open subsets 
of ∂� where we set Dirichlet boundary conditions for (s, u). Then we have the following restricted admissible class

A(g, r) := {
(s,u) ∈A : s|�s = g, u|�u = r

}
, (5)

for some given functions (g, r) ∈ [W 1∞(Rd)]d+1 that satisfy the following in a neighborhood of ∂�: −1/2 < g < 1 and 
r = gq, for some q ∈ Sd−1. Note that if we further assume

g ≥ δ0 on ∂�, for some δ0 > 0, (6)

then the function n is H1 in a neighborhood of ∂� and satisfies n = g−1r = q ∈ Sd−1 on ∂�.
When the degree of orientation s is a non-zero constant, the energy E1[s, n] in (2) effectively reduces to the Oseen-Frank 

energy 
∫
�

|∇n|2. The purpose of the degree of orientation is to relax the energy of defects. In fact, discontinuities in n (i.e. 
defects) may still occur in the singular set

S := {x ∈ � : s(x) = 0}, (7)

with finite energy: E[s, n] < ∞. The existence of minimizers in the admissible class, subject to Dirichlet boundary conditions, 
was shown in [35,39]. Minimizers with defects are constructed explicitly in [32] or discovered numerically in [61].

The parameter κ in (2) plays a major role in the occurrence of defects. Assuming the boundary condition for s is a 
positive constant well away from zero, if κ is large, then 

∫
�

κ |∇s|2dx dominates the energy and s stays close to a positive 
constant within the domain �. Thus, defects are less likely to occur. If κ is small (say κ < 1), then 

∫
�

s2|∇n|2dx dominates 
the energy, and s may vanish in regions of � and induce a defect. This was confirmed by our numerical experiments in 
[61,62]. The physically relevant case 0 < κ < 1 is the more difficult case with regard to proving �-convergence (see [61]) 
because the energy is no longer convex.

2.2. Discretization of the energy

Let Th = {T } be a conforming simplicial triangulation of �. The set of nodes (vertices) of Th is denoted Nh and has 
cardinality n. We demand that Th be weakly acute, namely

kij := −
∫
�

∇φi · ∇φ j dx ≥ 0 for all i �= j, (8)

where φi is the standard “hat” basis function associated with node xi ∈ Nh . We indicate with ωi = supp φi the patch of a 
node xi (i.e. the “star” of elements in Th that contain the vertex xi ). Of course, (8) imposes a severe geometric restriction 
on Th [71,72] (especially in three dimensions). We recall the following characterization of (8) for d = 2.
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Lemma 1 (Weak acuteness in two dimensions). For any pair of triangles T1 , T2 in Th in two space dimensions that share a common 
edge e, let αi be the angle in Ti opposite to e (for i = 1, 2). Then (8) holds if and only if α1 + α2 ≤ 180◦ for every edge e.

Generalizations of Lemma 1 to three dimensions, involving interior dihedral angles of tetrahedra, can be found in [73,74]. 
Note that a non-obtuse mesh (one where all interior angles are bounded by 90◦) is automatically weakly-acute.

The method uses the following finite element spaces:

Sh := {sh ∈ H1(�) : sh|T is affine for all T ∈ Th},
Uh := {uh ∈ [H1(�)]d : uh|T is affine in each component for all T ∈ Th},
Nh := {nh ∈Uh : |nh(xi)| = 1 for all nodes xi ∈ Nh},

(9)

where Nh imposes the unit length constraint at the vertices of the mesh.
Let Ih denote the piecewise linear Lagrange interpolation operator on mesh Th with values in either Sh or Uh . We have 

the following discrete version of the admissible class:

Ah := {(sh,uh) ∈ Sh ×Uh : −1/2 < sh < 1 in �, uh = Ih[shnh] where nh ∈Nh}. (10)

Next, we let gh := Ih g and rh := Ihr be the discrete Dirichlet data, and introduce the discrete spaces that include (Dirichlet) 
boundary conditions

Sh(�s, gh) := {sh ∈ Sh : sh|�s = gh}, Uh(�u, rh) := {uh ∈Uh : uh|�u = rh},
as well as the discrete admissible class with boundary conditions:

Ah(gh, rh) := {(sh,uh) ∈Ah : sh ∈ Sh(�s, gh),uh ∈ Uh(�u, rh)} . (11)

In view of (6), we can also impose the Dirichlet condition nh = Ih[g−1
h rh] on ∂�.

Our discrete version of E1[s, n] is “derived” by invoking basic properties of the stiffness matrix entries kij . First note ∑n
j=1 kij = 0 for all xi ∈Nh , and for piecewise linear sh =∑n

i=1 sh(xi)φi we have∫
�

|∇sh|2dx = −
n∑

i=1

kii sh(xi)
2 −

n∑
i, j=1,i �= j

ki j sh(xi)sh(x j).

Thus, using kii = − 
∑

j �=i ki j and the symmetry kij = k ji , we get∫
�

|∇sh|2dx =
n∑

i, j=1

kij sh(xi)
(
sh(xi) − sh(x j)

)

= 1

2

n∑
i, j=1

kij
(
sh(xi) − sh(x j)

)2 = 1

2

n∑
i, j=1

kij
(
δi j sh

)2
,

(12)

where we define

δi j sh := sh(xi) − sh(x j), δi jnh := nh(xi) − nh(x j). (13)

Therefore, we define the discrete energy to be

Eh
1[sh,nh] :=κ

2

n∑
i, j=1

kij
(
δi j sh

)2 + 1

2

n∑
i, j=1

kij

(
sh(xi)

2 + sh(x j)
2

2

)
|δi jnh|2, (14)

where the second term is a first order approximation of 
∫
�

s2|∇n|2, which is novel in the finite element literature [61]. The 
double well energy is discretized in the usual way:

Eh
2[sh] :=

∫
�

ψ(sh(x))dx. (15)

The specific form of (14) lies on the fact that it makes the nodal values of sh and nh readily accessible for analysis. The 
identity in (3) is obtained (at the continuous level) by taking advantage of the unit length constraint |n| = 1. However, at 
the discrete level, we only impose the unit length constraint at the nodes of the mesh, and we cannot hope for much more 
because nh is a piecewise polynomial. Hence, in order to obtain a similar identity to (3) (see Lemma 2 below), we need 
access to nodal values. In [61], we show that the discrete energy (14) allows us to handle the degenerate coefficient s2

h
without regularization.
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The discrete formulation is as follows. Find (sh, nh) ∈ Sh(�s, gh) × Nh(�n, rh) such that the following energy is mini-
mized:

Eh[sh,nh] := Eh
1[sh,nh] + Eh

2[sh]. (16)

3. Review of the method

3.1. Energy inequality

Our discrete energy (14) satisfies a discrete version of (3) [35,39], which is a key component of our analysis in [61]. To 
see this, we introduce ̃sh := Ih|sh| and two discrete versions of the vector field u

uh := Ih[shnh] ∈ Uh, ũh := Ih [̃shnh] ∈ Uh. (17)

Note that both (sh, uh), (̃sh, ̃uh) are in Ah(gh, rh). We now state a discrete version of (3).

Lemma 2 (Discrete energy inequality). Let the mesh Th satisfy (8). If (sh, uh) ∈ Ah(gh, rh), then, for any κ > 0, the discrete energy 
(14) satisfies

Eh
1[sh,nh] ≥ (κ − 1)

∫
�

|∇sh|2dx +
∫
�

|∇uh|2dx =: Ẽh
1[sh,uh], (18)

as well as

Eh
1[sh,nh] ≥ (κ − 1)

∫
�

|∇ s̃h|2dx +
∫
�

|∇ũh|2dx =: Ẽh
1 [̃sh, ũh]. (19)

In fact, the following inequalities are valid [61]

Eh
1[sh,nh] − Ẽh

1[sh,uh] ≥ Eh, Eh
1[sh,nh] − Ẽh

1 [̃sh, ũh] ≥ Ẽh, (20)

where

Eh := 1

4

n∑
i, j=1

kij
(
δi j sh

)2∣∣δi jnh
∣∣2, Ẽh := 1

4

n∑
i, j=1

kij
(
δi j̃ sh

)2∣∣δi jnh
∣∣2. (21)

Note that Eh, ̃Eh ≥ 0 because kij ≥ 0 for i �= j. We refer to [61] for further details.

3.2. Minimization scheme

We summarize the discrete quasi-gradient flow scheme in [61] which we use to compute discrete minimizers.

3.2.1. Boundary conditions
In the continuous setting, Dirichlet boundary conditions are enforced in the space. Let

H1
�(�) := {v ∈ H1(�) : v = 0 on �}, (22)

where � ⊂ ∂� is either �s, �n , and s ∈ g + H1
�s

(�), u ∈ r + [H1
�u

(�)]d . We assume �n = �u ⊂ �s and (6) to be valid on �s . 
The trace n = q := g−1r is thus well defined on �n .

The superscript k will stand for an iteration counter. Therefore, sk
h ∈ Sh(�s, gh) and nk

h ∈ Nh(�n, qh) indicate iterates 
satisfying Dirichlet boundary conditions where gh := Ih g and qh := Ihq. We will further simplify the notation in some 
places upon writing:

sk
i := sk

h(xi), nk
i := nk

h(xi), zi := zh(xi), vi := vh(xi).

3.2.2. First order variation
We start with the energy Eh

1. Due to the unit length constraint at the nodes in Nh (see (9)), we introduce the space of 
discrete tangential variations:

U⊥
h (nh) = {vh ∈Uh : vh(xi) · nh(xi) = 0 for all nodes xi ∈ Nh}. (23)

Next, the first order variation of Eh[sk , nk ] in the direction vh ∈U⊥(nk ) ∩ H1 (�) reads
1 h h h h �n
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δnh Eh
1[sk

h,nk
h;vh] =

n∑
i, j=1

kij

(
(sk

i )
2 + (sk

j)
2

2

)
(δi jn

k
h) · (δi jvh). (24)

The first order variation of Eh
1[sk

h, nk
h] in the direction zh ∈ Sh ∩ H1

�s
(�) consists of two terms

δsh Eh
1[sk

h,nk
h; zh] = κ

n∑
i, j=1

kij

(
δi j s

k
h

)(
δi j zh

)+
n∑

i, j=1

kij|δi jn
k
h|2

(
sk

i zi + sk
j z j

2

)
. (25)

We next consider the energy Eh
2. In order to guarantee a monotonically energy decreasing scheme, we employ the convex 

splitting technique in [75–77], i.e. we split the double well potential ψ into a convex and concave part. Let ψc and ψe be 
both convex for all s ∈ (−1/2, 1) so that ψ(s) = ψc(s) − ψe(s), and set

δsh Eh
2[sk+1

h ; zh] :=
∫
�

[
ψ ′

c(sk+1
h ) − ψ ′

e(sk
h)
]
zhdx, (26)

which yields the inequality∫
�

ψ(sk+1
h )dx −

∫
�

ψ(sk
h)dx ≤ δsh Eh

2[sk+1
h ; sk+1

h − sk
h], (27)

for any sk
h and sk+1

h in Sh [61]. Note that

δnh Eh[sk
h,nk

h;vh] = δnh Eh
1[sk

h,nk
h;vh],

δsh Eh[sk
h,nk

h; zh] = δsh Eh
1[sk

h,nk
h; zh] + δsh Eh

2[sk
h,nk

h; zh].
3.2.3. Discrete quasi-gradient flow algorithm

Our scheme for minimizing Eh[sh, nh], defined in (16), is an alternating direction method, which minimizes with respect 
to nh and evolves sh separately in the steepest descent direction during each iteration. Therefore, this algorithm is not a 
standard gradient flow but rather a quasi-gradient flow.

Algorithm: Given (s0
h, n0

h) in Sh(�s, gh) ×Nh(�n, qh), iterate Steps (a)–(c) for k ≥ 0.

Step (a): Minimization. Find tk
h ∈ U⊥

h (nk
h) ∩ H1

�n
(�) such that nk

h + tk
h minimizes the energy Eh[sk

h, nk
h + vh] for all vh in 

U⊥
h (nk

h) ∩ H1
�n

(�), i.e. tk
h satisfies

δnh Eh[sk
h,nk

h + tk
h;vh] = 0, ∀vh ∈U⊥

h (nk
h) ∩ H1

�n
(�).

Step (b): Projection. Normalize nk+1
i := nk

i +tk
i

|nk
i +tk

i |
at all nodes xi ∈Nh .

Step (c): Gradient flow. Using (sk
h, nk+1

h ), find sk+1
h in Sh(�s, gh) such that∫

�

sk+1
h − sk

h

δt
zh = −δsh Eh[sk+1

h ,nk+1
h ; zh], ∀zh ∈ Sh ∩ H1

�s
(�).

In the numerical experiments, we impose Dirichlet boundary conditions for both sk
h and nk

h on subsets of the boundary. 
Note that the scheme has no restriction on the time step thanks to the implicit Euler method in Step (c).

The quasi-gradient flow scheme has a monotone energy decreasing property, provided the mesh Th is weakly acute (8)
[71,72].

Theorem 3 (Monotonicity [61]). Let Th satisfy (8). The iterate (sk+1
h , nk+1

h ) of the Algorithm (discrete quasi-gradient flow) of Sec-
tion 3.2.3 exists and satisfies

Eh[sk+1
h ,nk+1

h ] ≤ Eh[sk
h,nk

h] − 1

δt

∫
�

(sk+1
h − sk

h)2dx.

Equality holds if and only if (sk+1
h , nk+1

h ) = (sk
h, nk

h) (equilibrium state).

We extend this result in Theorem 8 to include additional energy terms; see (101).



574 R.H. Nochetto et al. / Journal of Computational Physics 352 (2018) 568–601
4. Implementation

We implemented our method using the MATLAB/C++ finite element toolbox FELICITY [78]. In this section, we give details 
on forming the ensuing discrete systems, and how to solve part (a) of the quasi-gradient flow algorithm in 3-D using the 
tangent space. For all 3-D simulations, we used the algebraic multi-grid solver (AGMG) [79–82] to solve the linear systems 
in parts (a) and (c) of the quasi-gradient flow algorithm. In 2-D, we simply used the “backslash” command in MATLAB.

4.1. Finite element matrices

Implementing the algorithm requires construction of the discrete energy, as well as its variational derivative. This requires 
the symmetric mass and stiffness finite element matrices: M := (mij)

n
i, j=1, K := (−kij)

n
i, j=1, where

mij =
∫
�

φi φ j, kij = −
∫
�

∇φi · ∇φ j, (28)

and {φi}n
i=1 is the set of basis functions of the space Sh .

4.2. Finite element functions and coefficient vectors

The function sh is represented by a linear combination of {φi}n
i=1. If the dimension of � is d, then the vector field nh has 

d components, where each component is written as a linear combination of {φi}n
i=1. The nodal values of sh and nh , at node 

xi , are denoted by si and ni .
The corresponding coefficient vectors (arrays) are denoted with non-italicized capital letters, i.e. S ∈ Rn , N ∈ Rdn , such 

that

S = [S1,S2, ...,Sn]T , N = [N1,N2, ...,Nn,Nn+1, ...Ndn]T , (29)

where Si := si and

Ni = ni · e1,

Ni+n = ni · e2,

Ni+2n = ni · e3,

...

Ni+(k−1)n = ni · ek,

...

Ni+(d−1)n = ni · ed,

(30)

for 1 ≤ i ≤ n, where {ei}d
i=1 are the canonical basis vectors of Rd . In other words, we store the coefficients of nh so that the 

e1 components are first, followed by the e2 components, and so on. Therefore,

nh(xi) ≡ ni = (Ni,Ni+n,Ni+2n, ...,Ni+(d−1)n)
T , for all 1 ≤ i ≤ n.

4.3. Discrete variations

Let us write δsh Eh
1[�, sh, nh; zh] from (25) in a different form:

δsh Eh
1[sh,nh; zh] = 2κZT K S + 1

2

n∑
i, j=1

(A(nh))i j
(
SiZi + S jZ j

)
, (31)

where Z ∈ Rn is the coefficient vector corresponding to zh ∈ Sh , and A(nh) ≡ (A(nh))n
i, j=1 is the symmetric matrix defined 

by

(A(nh))i j = kij

d∑
r=1

(Ni+(r−1)n − N j+(r−1)n)
2. (32)
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Lemma 4. Let A be an arbitrary n × n matrix, and Y, Z be arbitrary n × 1 column vectors. Then

n∑
i, j=1

(A)i jYiZi =
n∑

i=1

YiZi

n∑
j=1

(A)i j︸ ︷︷ ︸
=:( Â)i

= ZT [diag( Â)]Y,
(33)

where ̂A is a n × 1 column vector and [diag( Â)] is a n × n diagonal matrix formed from {( Â)1, ( Â)2, ..., ( Â)n}.

Continuing with (31), and using (33), we get

δsh Eh
1[sh,nh; zh] = 2κZT K S + 1

2

n∑
i, j=1

(A(nh))i jSiZi + 1

2

n∑
i, j=1

(A(nh))i jS jZ j,

= 2κZT K S + ZT D(nh)S,

(34)

where

D(nh) = diag( Â(nh)), ( Â(nh))i =
n∑

j=1

(A(nh))i j .

Next, we write out δnh Eh
1[sh, nh; vh] from (24) in a different form:

δnh Eh
1[sh,nh;vh] =

d∑
r=1

n∑
i, j=1

kij

(
S2

i + S2
j

2

)
�i j(r)︸ ︷︷ ︸


r :=

,
(35)

where we defined

�i j(r) := (
Ni+(r−1)n − N j+(r−1)n

) · (Vi+(r−1)n − V j+(r−1)n
)
, (36)

with V ∈Rdn the coefficient vector corresponding to vh ∈ Uh .
Let us now focus on 
1:


1 =
n∑

i, j=1

kij

(
S2

i + S2
j

2

)(
Ni − N j

) · (Vi − V j
)
,

= 1

2

n∑
i, j=1

(̃A(sh))i j
(
Ni · Vi − Ni · V j − N j · Vi + N j · V j

)
,

(37)

where Ã(sh) is the n × n symmetric matrix defined by

Ã(sh) ≡ ((̃A(sh))i j)
n
i, j=1, (̃A(sh))i j = kij

(
S2

i + S2
j

)
. (38)

Using symmetry gives


1 = 1

2

n∑
i, j=1

2(̃A(sh))i j
(
Ni · Vi − N j · Vi

)
=

n∑
i, j=1

(̃A(sh))i j (Ni · Vi) −
n∑

i, j=1

(̃A(sh))i j
(
N j · Vi

)
= V(1 : n)T D̃(sh)N(1 : n) − V(1 : n)T Ã(sh)N(1 : n),

(39)

where V(1 : n) denotes the first n components of V, etc., and

D̃(sh) = diag(̂̃A(sh)), (̂̃A(sh))i =
n∑

(̃A(sh))i j . (40)

j=1
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Applying the same argument to 
r , we get


r = V((r − 1)n + 1 : rn)T D̃(sh)N((r − 1)n + 1 : rn)

− V((r − 1)n + 1 : rn)T Ã(sh)N((r − 1)n + 1 : rn).
(41)

Therefore, recalling (35), we obtain

δnh Eh
1[sh,nh;vh] = VT D(sh)N − VT A(sh)N, (42)

where D(sh) is dn × dn block diagonal (with d identical blocks), where each block equals D̃(sh) defined in (40); similarly, 
A(sh) is dn × dn block diagonal (with d identical blocks), where each block equals Ã(sh) defined in (38).

4.4. Discrete quasi-gradient flow

Given (sk
h, nk

h), we have the corresponding coefficient vectors (Sk, Nk). We now rewrite the Algorithm in Section 3.2.3 in 
terms of the matrices and vectors introduced earlier.

Step (a): By (42), we solve the following linear system in the tangent space (see Section 4.5) to obtain tk
h:[

D(sk
h) − A(sk

h)
]

Tk = −
[

D(sk
h) − A(sk

h)
]

Nk, (43)

where Tk in Rdn is the coefficient vector corresponding to tk
h in U⊥

h (nk
h) ∩ H1

�n
(�). Note that (43) must be modified to 

enforce Dirichlet boundary conditions (if necessary).

Remark 5 (Solving a degenerate system). The system matrix in (43) is symmetric positive semi-definite, which is easily verified 
from the properties of D(sk

h). Moreover, it is positive definite if |sk
h| > 0 everywhere. Hence, the system can be solved by any 

method for symmetric positive definite matrices.
When sk

h = 0 at a sufficient number of nodes, the matrix will be singular. In this case, one could use a conjugate gradient 
method [83]; note that the right-hand-side of (43) is guaranteed to be in the column space of the system matrix.

In 3-D, we solve (43) using AGMG [79–82], which has the following condition: all the diagonal entries of the matrix 
must be positive. If this is not the case, we must modify the system matrix in (43) accordingly. This is most easily done 
by using the minimizing movement strategy described in Section 7.1, which effectively adds an identity matrix (with small 
weight ρ > 0) to the system matrix in (43).

Step (b): Apply the normalization step at all nodes to obtain nk+1
h , i.e.

(1): W := Nk + Tk,

(2): αi :=
(

W2
i + W2

i+n + · · · + W2
i+(d−1)n

)1/2
, for all 1 ≤ i ≤ n,

(3): Nk+1
i+(r−1)n := Wi+(r−1)n/αi, for all 1 ≤ i ≤ n, and r = 1,2, ...,d,

where Nk+1 is the coefficient vector corresponding to nk+1
h .

Step (c): Use the following convex splitting of the double well: ψ(s) = ψc(s) − ψe(s), where we choose

ψc(s) = c0s2, ψe(s) = c0s2 − ψ(s),

and select c0 > 0 large enough to ensure that ψc(s), ψe(s) are convex for all −1/2 < s < 1. Recall (26) and note that ψ ′
c(s)

is linear. Hence, we can write

δsh Eh
2[sk+1

h ; zh] =
∫
�

[ψ ′
c(sk+1

h ) − ψ ′
e(sk

h)]zhdx

= 2c0ZT MSk+1 − ZT B(sk
h),

where Z is the coefficient vector corresponding to zh in Sh ∩ H1
�s

(�), and B(sk
h) = (B1, ..., Bn)T in Rn is a column vector 

defined by

Bi =
∫
�

ψ ′
e(sk

h)φidx, for all 1 ≤ i ≤ n. (44)

Therefore, using (34), we solve the following linear system for Sk+1:[
M + 2δtκ K + δt D(nk+1

h ) + 2c0δtM
]

Sk+1 = MSk + δtB(sk
h), (45)

where Sk+1 is the coefficient vector corresponding to sk+1
h . Note that (45) must be modified to enforce Dirichlet boundary 

conditions.
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4.5. Tangential variations

Solving Step (a) of the Algorithm requires a tangential basis for the test function and the solution. However, forming 
the matrix system is easily done by first ignoring the tangential variation constraint (i.e. arbitrary variations), followed by a 
simple modification of the matrix system. For a concrete realization of the procedure, we consider the case d = 3.

Let ATk = C represent the linear system in Step (a) (ignoring the tangent space constraint), where A is a dn × dn matrix, 
and Tk , C are column vectors in Rdn . Note that the solution vector Tk is the coefficient vector associated with the finite 
element function tk

h in U⊥
h (nk

h) (recall Section 3.2.3).
Multiplying the linear system by a column vector V in Rdn , we seek to find Tk in Rdn such that

VT ATk = VT C, for all V ∈Rdn. (46)

Next, using nk
h in Nh , find qk

h , wk
h in U⊥

h (nk
h) such that {nk

h(xi), qk
h(xi), wk

h(xi)} forms an orthonormal basis of R3 at each 
node xi , i.e. find an orthonormal basis of Uh . Let Qk , Wk in Rdn be the coefficient vectors associated with qk

h , wk
h .

Since tk
h is in the tangent space, we can expand Tk as

Tk
i+(r−1)n = FiQ

k
i+(r−1)n + GiW

k
i+(r−1)n, for all 1 ≤ i ≤ n,1 ≤ r ≤ 3, (47)

where F = (F1, ..., Fn)T , G = (G1, ..., Gn)T are unknown solution (column) vectors in Rn . With this, we can write the expan-
sion of Tk as

Tk =
⎡⎣ D1(Qk)

D2(Qk)

D3(Qk)

⎤⎦ F +
⎡⎣ D1(Wk)

D2(Wk)

D3(Wk)

⎤⎦G, (48)

where D1(·), D2(·), D3(·) are n × n diagonal matrices defined by

Dr(Qk) := diag[Qk((r − 1)n + 1 : rn)], for r = 1,2,3,

Dr(Wk) := diag[Wk((r − 1)n + 1 : rn)], for r = 1,2,3.
(49)

Furthermore, we make a similar tangential expansion for V:

V =
⎡⎣ D1(Qk)

D2(Qk)

D3(Qk)

⎤⎦Y +
⎡⎣ D1(Wk)

D2(Wk)

D3(Wk)

⎤⎦Z, (50)

where Y = (Y1, ..., Yn)T , Z = (Z1, ..., Zn)T are arbitrary column vectors in Rn .
Now note that A is symmetric block diagonal with d identical blocks Ã (recall (42)). And the orthogonality of qk

h and wk
h

at the nodes is equivalent to

Qk
i Wk

i + Qk
n+iW

k
n+i + Qk

2n+iW
k
2n+i =

3∑
r=1

Qk
(r−1)n+iW

k
(r−1)n+ j = 0, (51)

for all 1 ≤ i ≤ n. From this, one can show that

[
D1(Qk) D2(Qk) D3(Qk)

]
A

⎡⎣ D1(Wk)

D2(Wk)

D3(Wk)

⎤⎦=
3∑

r=1

Dr(Qk) ÃDr(Wk) = 0 ∈Rn×n. (52)

Indeed, looking at the (i, j) entry and using (49), we have

3∑
r=1

[Dr(Qk) ÃDr(Wk)]i j =
3∑

r=1

Qk
(r−1)n+i( Ã)i jW

k
(r−1)n+ j

= ( Ã)i j

3∑
r=1

Qk
(r−1)n+iW

k
(r−1)n+ j = 0,

by (51).
Therefore, plugging the expansions (48), (50) into (46), accounting for (52), and using the arbitrariness of Y, Z, we obtain 

two decoupled, n × n linear systems to solve:

A(Qk)F = C(Qk), A(Wk)G = C(Wk), (53)
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Fig. 3. Simulation results for Section 4.6. The director field is shown on the planes z = 0.1, 0.5, 0.9, which indicates that it is piecewise constant (see (55)). 
On the right, the z = 0.5 plane case indicates that the director field takes on an intermediate value between (1, 0, 0)T and (0, 1, 0)T . The numerical solution 
was computed at mesh level � = 5.

which are defined by

A(Qk) = [
D1(Qk) D2(Qk) D3(Qk)

]
A

⎡⎣ D1(Qk)

D2(Qk)

D3(Qk)

⎤⎦ ,

A(Wk) = [
D1(Wk) D2(Wk) D3(Wk)

]
A

⎡⎣ D1(Wk)

D2(Wk)

D3(Wk)

⎤⎦ ,

C(Qk) = [
D1(Qk) D2(Qk) D3(Qk)

]
C,

C(Wk) = [
D1(Wk) D2(Wk) D3(Wk)

]
C.

After solving for F and G, we compute Tk via (47) or (48). This yields the finite element function tk
h in Step (a) of Sec-

tion 3.2.3.

4.6. Experimental order of convergence

We test the accuracy of our method against an exact solution found in [32, Sec. 6.4] that represents a plane defect (see 
Fig. 3). The computational domain is a cube � = [0, 1]3 and we set κ = 0.2. The double well potential is removed, so the 
energy is E[s, n] ≡ E1[s, n].

The following Dirichlet boundary conditions on ∂� ∩ ({z = 0} ∪ {z = 1}) are imposed for (s, n):

z = 0 : s = s∗, n = (1,0,0),

z = 1 : s = s∗, n = (0,1,0),
(54)

and Neumann conditions are imposed on the remaining part of ∂�, i.e. ν · ∇s = 0 and ν · ∇n = 0. The exact solution (s, n)

(at equilibrium) only depends on z and is given by

n(z) = (1,0,0), for z < 0.5, n(z) = (0,1,0), for z > 0.5,

s(z) = 0, at z = 0.5, and s(z) is linear for z ∈ (0,0.5) ∪ (0.5,1.0).
(55)

Fig. 3 gives an illustration of n, and Fig. 4 shows a one-dimensional slice of s.
Numerical errors are given in Table 1. The meshes were created by partitioning � into (2�)3 uniform cubes, where �

is the mesh level, and sub-dividing each cube into six non-obtuse tetrahedra. The estimated order of convergence is given 
in the last row of the table. The L2-accuracy appears to be first order for both (s, u), the smoother variables, and half 
order for n. Since n is discontinuous across the plane {x3 = 0} (plane defect), we cannot expect better accuracy in L2 with 
continuous elements; moreover, s does not have better regularity than H1. Furthermore, our discrete energy Eh

1 uses a first 
order approximation (16) of 

∫
�

s2|∇n|2, which is accounted for by the consistency errors (21). These two facts are most 
likely responsible for the reduced linear order for (s, u).
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Fig. 4. Simulation results for Section 4.6. The scalar field s is shown evaluated along a line parallel to the z-axis and passing through x = 0.5, y = 0.5. It is 
close to the exact piecewise linear solution in (55). The numerical solution was computed at mesh level � = 5.

Table 1
Numerical error vs. mesh refinement for plane defect in three dimensions. The estimated order of convergence (EOC) is given in the last row.

Level � ‖s − sh‖L2(�) ‖s − sh‖H1(�) ‖n − nh‖L2(�) ‖u − uh‖L2(�) ‖u − uh‖H1(�)

3 5.5087E−02 5.5090E−01 2.6693E−01 5.7355E−02 4.6602E−01
4 2.9158E−02 3.9858E−01 2.0545E−01 2.9840E−02 3.2646E−01
5 1.4981E−02 2.7986E−01 1.4642E−01 1.5207E−02 2.2661E−01
6 7.5964E−03 1.9726E−01 1.0398E−01 7.6800E−03 1.5878E−01

EOC 0.9797 0.5046 0.4938 0.9855 0.5132

Fig. 5. Illustration of the Saturn ring defect. A spherical colloidal particle is shown with normal anchoring conditions on its boundary (i.e. the director field 
n is parallel to the normal vector ν of the sphere). The region where s = 0 (i.e. the singular set S) is marked by the thick curve and occurs depending on 
the outer boundary conditions (away from the sphere) imposed on n.

5. Colloidal effects

Colloidal particles immersed in a liquid crystal can induce interesting equilibrium states with non-trivial defect config-
urations. One example is the famous Saturn ring defect [68,84], which is a circular ring of defect surrounding a spherical 
hole inside the liquid crystal domain (see Fig. 5), i.e. � is the region outside the sphere.

In this section, we demonstrate that the Ericksen model and our numerical method are able to capture interesting 
defect structures in the presence of colloids. The colloid particle is modeled as a spherical inclusion inside the liquid crystal 
domain. Section 5.1 shows a direct simulation (with a conforming mesh) which gives rise to a Saturn ring-like defect 
structure (depending on outer boundary conditions). In Section 5.2, we combine our method for the Ericksen model with an 
immersed boundary approach and compare with our conforming mesh approach. For both subsections, we use the following 
notation. The liquid crystal domain is denoted by �, with boundary ∂� that decomposes into a disjoint union ∂� = �i ∪�o , 
where �i is the boundary of the interior “hole” and �o is the outer boundary of the cylindrical domain that contains the 
hole (see Figs. 8 and 11).

5.1. Conforming non-obtuse mesh

5.1.1. Meshing the domain
It is quite difficult to generate a conforming, non-obtuse, tetrahedral mesh of a general domain; in fact, it is still an open 

question whether it is always possible to generate a non-obtuse tetrahedral mesh of a general three dimensional domain. 
For our purposes, we managed to create a non-obtuse mesh of a cylindrical domain with a hole cut out, but the procedure 
is not general. However, the resulting mesh is valid for testing our method.

We start by describing the domain �, which is essentially a cylinder with square cross-section with a spherical hole 
removed from the interior. First, we create a tetrahedral mesh of a rectangular solid with the following dimensions: 
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Fig. 6. Non-obtuse mesh of cylindrical domain with interior spherical hole. Left figure depicts the initial mesh obtained by first partitioning a right prism 
into 8 × 8 × 24 cubes and dividing them into six tetrahedra, and next mapping them via (56). Right picture (rotated 90 degrees) displays the final mesh, 
with 1,764,864 tetrahedra, after applying a 1-to-8 refinement and a 1-to-24 “yellow” refinement to the previous mesh. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

[−0.5, 1.5] × [−0.5, 1.5] × [−2.5, 3.5]. We partition the solid into 8 × 8 × 24 uniformly sized cubes, of side length h = 0.25, 
and further partition each cube into six tetrahedra.

Next, we shear the mesh by mapping the vertices with the following linear map:

x =
⎡⎣ x

y
z

⎤⎦=
⎡⎣ 1/

√
2 0 0

0 1/
√

2 0
−1/2 −1/2 1

⎤⎦ x̂, (56)

where x̂ are coordinates in the initial rectangular solid. This results in a mesh of so-called ideal tetrahedra, whose circum-
centers coincide with their barycenters [85,86] (so-called “well-centered” tetrahedra). The resulting “prism” is a cylinder 
with square cross-section given by [−0.25

√
2, 0.75

√
2]2 and is centered about the z = 0 plane (see Fig. 6).

We then remove all tetrahedra (from the prism mesh) whose circumcenters are inside a sphere of radius R = 0.283/
√

2
centered at (0.5/

√
2, 0.5/

√
2, 0)T . The internal cavity represents our spherical colloid. We make a small adjustment of the 

vertex positions on the boundary of the cavity so that they lie exactly on the given sphere boundary. Thus, the tetrahedra 
are slightly off from being exactly well-centered.

In order to have a more accurate simulation, we apply two well chosen refinements in the following way. We use 
a standard 1-to-8 uniform refinement of the mesh [87], while choosing the best diagonal to maintain the well-centered 
property. The (new) vertices on the boundary of the internal cavity are adjusted so that the mesh conforms to the sphere. 
The resulting mesh is not as well-centered, but all tetrahedra still strictly contain their circumcenters. Therefore, we use the 
“yellow” refinement described in [88, pg. 1108–1109], which partitions each tetrahedron into 24 tetrahedra where each new 
tetrahedron has the circumcenter as a vertex. This final refinement is guaranteed to yield a non-obtuse mesh; see Fig. 6 for 
a view of the surface mesh of the prism.

Note that we do not adjust the new vertices (generated by the second refinement) to lie on the spherical hole’s boundary. 
Any adjustment seems to yield an obtuse mesh, because the domain with hole is not convex. Thus, the surface mesh of the 
internal spherical hole boundary is slightly faceted (see Fig. 7). This is allowable because the defect structures of interest 
are not very sensitive to the fine details of the geometry of the hole.
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Fig. 7. Surface mesh of the interior hole. Not all vertices lie on the spherical cavity, so as to ensure that all tetrahedra are non-obtuse, thereby giving a 
slightly faceted surface mesh. This is compatible with the Saturn ring defect not being very sensitive to fine details of the hole geometry.

Fig. 8. Boundary conditions for a disperse/point defect (Section 5.1.2). One can see why a defect arises because of the incompatibility of the director fields 
on the bottom of the sphere and the bottom of the prism.

The final mesh has 1,764,864 tetrahedra and 329,698 vertices. The dihedral angles are between 4.156◦ and 90◦ (non-
obtuse); the surface mesh angles are between 2.726◦ and 90◦ . The minimum angles are not great, but acceptable for 
numerical simulation.

5.1.2. Simulating a disperse/point defect
Consider the boundary conditions shown in Fig. 8, which is the director field version of the Landau–deGennes model 

considered in [84]. The precise strong anchoring condition is given by

n = ν, on �i, n = (0,0,1)T , on �o, s = s∗, on ∂�, (57)

where ν is the outer normal vector of the spherical inclusion, and s∗ is the global minimum of the double well potential ψ . 
Moreover, the double well potential has the convex splitting ψ(s) = (0.3)−2 (ψc(s) − ψe(s)) for − 1

2 < s < 1, where

ψc(s) := 63.0s2 ψe(s) := −16.0s4 + 21.33333333333s3 + 57.0s2, (58)

with a local minimum at s = 0 and global minimum at s = s∗ := 0.750025. The initial conditions in � for the gradient flow 
are: s = s∗ and n = (0, 0, 1)T .

The equilibrium solution, for κ = 0.1, is shown in Fig. 9. The low value of κ leads to a large disperse defect region, which 
is induced by the “frustrated” boundary conditions between the bottom of the sphere and the bottom of the cylinder (see 
Fig. 8).
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Fig. 9. Simulation results for Fig. 8 (κ = 0.1). The surface mesh of the internal hole is shown and the s = 0.04 iso-surface is plotted in red which indicates 
the defect region; the director field is depicted with white arrows. The disperse defect region has a bowl-like shape underneath the internal hole. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Simulation results for Fig. 8 (κ = 1.0). The surface mesh of the internal hole is shown and the s = 0.1 iso-surface is plotted in red which indicates 
the defect region; the director field is depicted with white arrows. The defect region is more localized to a “point” below the internal hole (cf. Fig. 9). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A different equilibrium solution is obtained with κ = 1.0, which is shown in Fig. 10. The larger value of κ leads to a 
smaller defect region compared to Fig. 9. The center of the hole is ≈ (0.354, 0.354, 0)T and the location of the defect region 
is ≈ (0.354, 0.354, −0.275)T .

5.1.3. Simulating a Saturn ring-like defect
Consider the boundary conditions shown in Fig. 11, which is another director field version of the Landau–deGennes 

model considered in [84]. The strong anchoring condition is given by

n = ν, on �i, s = s∗, on ∂�, (59)

where n smoothly interpolates between (0, 0, −1)T and (0, 0, 1)T on �o . The same double well potential is used as in (58). 
The initial conditions in � for the gradient flow are: s = s∗ and

n(x, y, z) = (0,0,−1)T , if z < 0,

n(x, y, z) = (0,0,+1)T , if z ≥ 0.

The equilibrium solution, for κ = 1.0, is shown in Fig. 12. The choice of boundary conditions in Fig. 11 essentially induces 
the Saturn ring defect. The hole’s radius is ≈ 0.200111 and the radius of the Saturn ring is ≈ 0.314. Note that the structure 
of the director field is not the same as would be obtained with the Landau–deGennes model [84]. For instance, the line field 
in the Saturn ring defect structure of [84] displays a 1/2 degree point defect, whereas in our model the point defect of the 
director field is of degree 1 (see Fig. 11). This is a limitation of the Ericksen’s model, which is sensitive to the orientation of 
the director field n.
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Fig. 11. Boundary conditions for Section 5.1.3. A ring-like defect arises in this case because the director field on the sides of the cylinder are incompatible 
with the director field on the sphere.

Fig. 12. Simulation results for Fig. 11 (κ = 1.0). The surface mesh of the internal hole is shown and the s = 0.12 iso-surface is plotted in red which 
indicates the defect region; the director field is depicted with white arrows. The defect region mimics the classic Saturn ring defect. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

5.2. Immersed boundary method

The weakly acute (or non-obtuse) condition on the mesh is extremely difficult to satisfy in practice in three dimensions. 
Therefore, we propose an immersed boundary approach to deal with general colloid shapes. We define a fixed “phase-field” 
function to represent the colloidal region inside the liquid crystal domain, and add a special “boundary” energy term Ea to 
enforce boundary conditions on the colloid’s boundary. Specifically, we generalize the continuous (1) and discrete (16) total 
energies to

E[s,n] := E1[s,n] + E2[s] + Ea[s,n], (60)

Eh[sh,nh] := Eh
1[sh,nh] + Eh

2[sh] + Eh
a[sh,nh], (61)

where Ea, Eh
a can take two different forms described in Sections 5.2.3 and 5.2.4.

5.2.1. Representing a colloid
Let � ⊂ R3 be the “hold-all” domain that contains the liquid crystal material and colloids. Moreover, let �̂c ⊂ R3 be the 

reference domain for a rigid solid (i.e. colloid), and let �c be obtained from �̂c by a rigid motion. We use �c to represent 
the true colloid domain, with �̂c as a reference shape. We assume throughout that �c ⊂⊂ �. Thus, the region of interest 
for the liquid crystals is given by � \ �c.

Let d̂ : R3 → R be the signed distance function to ∂�̂c , i.e.

d̂(x̂) = dist(∂�̂c, x̂), ∀x̂ ∈R3, (62)

which is positive inside of �̂c; thus ∂�̂c is the zero level set of d̂. Next, define an affine map F : R3 → R3 such that 
�̂c = F(�c) by

x̂ = F(x) = Rx + b, (63)
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where R is a constant rotation matrix, and b is a translation vector. Thus, the distance function for �c is given by:

d(x) = d̂(F(x)) = d̂(x̂), (64)

with derivative formula:

∇d(x) = ∇̂d̂(F(x))∇F(x) = ∇̂d̂(F(x))R. (65)

5.2.2. Phase-field
Define a one dimensional phase-field function:

φref(t) = 1

2

[
2

π
arctan

(
− t

ε

)
+ 1

]
, (66)

where φref : (−∞, ∞) → (0, 1). The parameter ε > 0 is the thickness of the transition. The derivative is given by:

φ′
ref(t) = − 1

πε

1

1 + ( t
ε

)2
. (67)

The phase-field function associated with the colloidal sub-domain �c is

φ(x) = φref(d(x)) = φref(d̂(F(x))). (68)

Thus, φ is essentially 0 inside the colloidal inclusion and 1 outside; so φ ≈ 1 “marks” where the liquid crystal domain is. 
The gradient is given by

∇φ(x) = φ′
ref(d(x))∇d(x) = φ′

ref(d̂(F(x)))∇̂d̂(F(x))∇F(x)

= φ′
ref(d̂(F(x)))∇̂d̂(F(x))R = − 1

πε

1

1 +
(

d̂(F(x))
ε

)2
∇̂d̂(F(x))R, (69)

and so we have

|∇φ(x)|2 =
(

1

πε

)2 1(
1 +

(
d̂(F(x))

ε

)2
)2

|∇̂d̂(F(x))|2.
(70)

We note the following relation between bulk and surface integrals. Given f ∈ C(�), define

Jε( f ) = C0
ε

2

∫
�

f (x)|∇φ(x)|2dx, where C0 := 4π. (71)

Then one can show that (since |∇̂d̂(·)| = 1 near the zero level set of d̂(·))

lim
ε→0

Jε( f ) =
∫

∂�c

f (x)ds(x).

In particular, limε→0 Jε(1) = |∂�c| is the surface area of the boundary of the colloid �c .

5.2.3. Weak anchoring
We model boundary conditions on the colloid’s surface by imposing weak anchoring [32,2] with Ea, Eh

a . A standard, but 
somewhat ad-hoc, form for the energy in the Q-tensor model [89, eqn. (66)] is

J (Q) = Ka

2

∫
∂�c

|Q − Q0|2, (72)

where Q0 is the desired value of Q on the boundary ∂�c and Ka is a large weighting parameter (penalty approach). For our 
purposes, we will focus on imposing homeotropic anchoring, i.e. we take Q0 to have the form of a uniaxial nematic:

Q0 = s∗
(
ν ⊗ ν − 1

I
)

,

3
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where ν is the normal of ∂�c and s∗ is the global minimum of the double well potential. Using the expression Q = s
(
n ⊗

n − 1
3 I
)

for uniaxial nematics, along with the facts that Q, Q0 are symmetric, |Q − Q0|2 = tr
[
(Q − Q0)

2
]
, and |n| = |ν| = 1, a 

straightforward calculation gives

|Q − Q0|2 = 2ss∗ [|n|2|ν|2 − (n · ν)2
]
+ 2

3
(s − s∗)2|ν|2. (73)

We use (73) as motivation for our weak anchoring energy in the context of the Ericksen model combined with the im-
mersed boundary method. In fact, noting that ν = ∇φ/|∇φ|, simplifying ss∗ in (73) with s2, and normalizing the constants, 
we resort to (71) to define the continuous weak anchoring energy as

Ea[s,n] := Ka

2
C0ε

∫
�

s2
[
|n|2|∇φ|2 − (∇φ · n)2

]
+ Ka

2
C0ε

∫
�

|∇φ|2(s − s∗)2. (74)

Note that (74) imposes normal anchoring of the director field when minimized. However, since (74) is invariant with respect 
to arbitrary changes in the sign of n, we expect a different behavior of the director field n close to the colloid boundary 
∂�c from that in Section 5.1. This is confirmed by the numerical experiments of Subsection 5.2.6.

The next task is to modify the energies E1[s, n] and E2[s] to account for the colloid, or equivalently for the phase 
variable φ. One possible choice is

E1[s,n] :=
∫
�

φ
(
κ |∇s|2 + s2|∇n|2)dx, E2[s] :=

∫
�

φ ψ(s)dx, (75)

which has the disadvantage that the system is near singular in �c where φ ≈ 0 and still requires values for n and s
inside �c. We thus prefer to take a extreme approach and think of the colloid �c as a rigid membrane filled with liquid 
crystal material and subjected to the same weak anchoring condition as the exterior. In the limit ε → 0, the two systems 
inside and outside of �c decouple and we may simply consider the latter. This suggests keeping the original forms for E1
and E2 in (2). Therefore, we use the continuous total energy in (60).

We now discuss the discrete counterpart of (60), starting with Ea[s, n]. We first introduce the following discrete inner 
products:

an
h (nh,vh; sh,∇φ) :=

∫
�

Ih

{
s2

h

[
(nh · vh)|∇φ|2 − (∇φ · nh)(∇φ · vh)

]}
,

as
h(sh, zh;nh,∇φ) :=

∫
�

Ih

{
sh zh

[
|nh|2|∇φ|2 − (∇φ · nh)

2
]}

,

(76)

where Ih is the Lagrange interpolant. These expressions correspond to using so-called mass lumping quadrature which, for 
all f ∈ C0(�), reads∫

�

Ih f =
∑
T ∈Th

∫
T

Ih f =
∑
T ∈Th

|T |
d + 1

d+1∑
i=1

f (xi
T ), (77)

where {xi
T }d+1

i=1 are the vertices of T . This quadrature rule is exact for piecewise linear polynomials and has the advantage 
that the finite element realization of (76) is a diagonal matrix. The following result elaborates on this.

Lemma 6 (Monotone property for lumped mass matrix). Let mh :Uh ×Uh →R be a bilinear form defined by

mh(nh,vh) :=
∫
�

Ih [nh · H(x)vh] dx,

where H is a continuous d × d symmetric positive semi-definite matrix. If |nh(xi)| ≥ 1 at all nodes xi in Nh, then

mh(nh,nh) ≥ mh

(
nh

|nh| ,
nh

|nh|
)

.

Proof. In view of (77), we rewrite mh(nh, vh) as

mh(nh,vh) =
∑ |T |

d + 1

d+1∑[
nh(xi

T ) · H(xi
T )vh(xi

T )
]
.

T ∈Th i=1
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Then, clearly

mh(nh,nh) =
∑

T ∈Th

|T |
d + 1

d+1∑
i=1

|nh(xi
T )|2

[
n(xi

T )

|nh(xi
T )| · H(xi

T )
nh(xi

T )

|nh(xi
T )|

]

≥
∑
T ∈Th

|T |
d + 1

d+1∑
i=1

[
nh(xi

T )

|nh(xi
T )| · H(xi

T )
nh(xi

T )

|nh(xi
T )|

]
= mh

(
nh

|nh| ,
nh

|nh|
)

,

which concludes the proof. �
To apply Lemma 6 to the first bilinear form in (76) we observe that H reads

H = s2
h

(
|∇φ|2I − ∇φ ⊗ ∇φ

)
,

and is symmetric positive semi-definite, whence

an
h (nh,nh; sh,∇φ) ≥ an

h

(
nh

|nh| ,
nh

|nh| ; sh,∇φ

)
. (78)

Thus, we take the discrete weak anchoring energy to be

Eh
a[sh,nh] := Ka

2
C0ε

⎛⎝an
h (nh,nh; sh,∇φ) +

∫
�

|Ih∇φ|2(sh − s∗)2

⎞⎠ ; (79)

note that an
h (nh, nh; sh, ∇φ) = as

h(sh, sh; nh, ∇φ). The discrete total energy is then given by (61).

5.2.4. Penalizing Dirichlet conditions
The weak anchoring energy (74) is insensitive to the orientation of the director field n, a drawback of this approach for 

the Ericksen model. To impose a general Dirichlet boundary condition (g, r) on the colloid’s surface, in a more consistent 
manner, we consider a different penalization.

Consider the following penalization energy:

J [s,u] = Ka

2

∫
∂�c

|u − r|2 + |s − g|2,

where Ka is a large penalty parameter. We proceed as in Section 5.2.3, that is we first manipulate this formula to get one 
with suitable monotonicity properties. Write u = sn and r = gν , replace g by s because s ≈ g , and expand the first square 
using that |n| = |ν| = 1 to get |u − r|2 = s2|n − ν|2. We next express the line energy J [s, u] as a bulk energy within the 
immerse boundary method. Recall that ν = ∇φ/|∇φ| and make use of (71) to define

Ea[s,n] := Ka

2
C0ε

∫
�

|∇φ|2
{

s2
∣∣∣∣n − ∇φ

|∇φ|
∣∣∣∣2 + |s − g|2

}
. (80)

The discrete form of this penalized Dirichlet energy is given by

Eh
a[sh,nh] := Ka

2
C0ε

⎛⎝ãh
s(sh, sh;nh,∇φ) +

∫
�

|Ih∇φ|2(sh − gh)
2

⎞⎠ , (81)

where

ãh
n(nh,vh; sh,∇φ) :=

∫
�

Ih

{
s2

h|∇φ|2nh · vh

}
,

�h(vh; sh,∇φ) :=
∫
�

Ih

{
s2

h|∇φ|∇φ · vh

}
,

ãh
s(sh, zh;nh,∇φ) :=

∫
Ih

{
sh zh

∣∣|∇φ|nh − ∇φ
∣∣2} .

(82)
�
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Note that

ãh
s(sh, sh;nh,∇φ) = ãh

n(nh,nh; sh,∇φ) − 2�h(nh; sh,∇φ) +
∫
�

Ih

{
s2

h|∇φ|2
}

, (83)

and that ãh
n and �h(vh; sh, ∇φ) are also useful in computing variational derivatives of (81). Recall that the total discrete 

energy is given by (61). The presence of the Lagrange interpolation operator Ih in (81), (82) is needed to ensure that Step 2 
(projection) of the Algorithm in Subsection 3.2.3 decreases the energy (see (84) below).

Lemma 7 (Monotone property for penalized Dirichlet energy). Let d ≥ 2 and let n, m be arbitrary vectors in Sd−1. If t ∈ Rd such that 
|n + t| ≥ 1, then

|(n + t) − m| ≥
∣∣∣∣ n + t

|n + t| − m

∣∣∣∣ .
Proof. Let n0 := n+t

|n+t| and note that

|(n + t) − m|2 = |n + t|2 + 1 − 2 n0 · m |n + t|, |n0 − m|2 = 2 − 2 n0 · m.

This implies

|(n + t) − m|2 − |n0 − m|2 = |n + t|2 − 1 − 2 n0 · m
(|n + t| − 1

)
= (|n + t| − 1

)(|n + t| + 1 − 2n0 · m
)≥ 0,

because |n + t| ≥ 1. This is the asserted estimate. �
We now apply Lemma 7 to ãh

s in (81), by setting m = ∇φ/|∇φ|, and obtain the monotonicity property

ãh
s(sh, sh;nh + th,∇φ) =

∫
�

Ih

{
|∇φ|2s2

h

∣∣∣∣(nh + th) − ∇φ

|∇φ|
∣∣∣∣2
}

≥ ãh
s
(

sh, sh; nh + th

|nh + th| ,∇φ

)
,

(84)

where it is assumed that nh(xi) · th(xi) = 0 at all nodes xi .

5.2.5. Minimization scheme
We apply the Algorithm in Section 3.2.3 to the total energy (61) in the case of either weak anchoring energy (79) or 

penalized Dirichlet energy (81). To this end, we need the following additional variational derivatives of Eh
a . The first order 

variation of Eh
a[sh, nh] in the direction vh ∈ U⊥

h (nk
h) ∩ H1

�n
(�) at the director variable nk

h reads

δnh Eh
a[sk

h,nk
h;vh] = KaC0ε an

h (nk
h,vh; sk

h,∇φ), (85)

for the energy (79), whereas the expression reads

δnh Eh
a[sk

h,nk
h;vh] = KaC0ε

{
ãh

n(nk
h,vh; sk

h,∇φ) − �h(vh; sk
h,∇φ)

}
, (86)

for the energy (81).
The first order variation of Eh

a[sh, nh] in the direction zh ∈ Sh ∩ H1
�s

(�) at the degree of orientation variable sk
h is

δsh Eh
a[sk

h,nk
h; zh] = KaC0ε

⎧⎨⎩as
h(sk

h, zh;nk
h,∇φ) +

∫
�

|Ih∇φ|2(sk
h − s∗)zh

⎫⎬⎭ (87)

for the energy (79), whereas the expression reads

δsh Eh
a[sk

h,nk
h; zh] = KaC0ε

⎧⎨⎩ãh
s(sk

h, zh;nk
h,∇φ) +

∫
�

|Ih∇φ|2(sk
h − gh)zh

⎫⎬⎭ (88)

for the energy (81). Note that (78) and (84) guarantee that the projection step in our algorithm reduces the energy 
Eh

a[sh, nh], whence Theorem 3 still holds in this context (see Theorem 8).
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Fig. 13. Simulation results for boundary conditions in (89) (κ = 1.0) using the immersed boundary approach and anchoring energy (79). The surface mesh 
of the colloid boundary is shown and the s = 0.14 iso-surface is plotted in red which indicates the defect region. The director field is also shown (white 
arrows) on a plane parallel to the y–z plane and passing through x = 0.5. The defect region is spread out into a “washer” region (cf. Section 5.1.2). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.2.6. Simulating defects with weak anchoring
The computational domain is a unit cube � = [0, 1]3. The colloid is represented by a sphere of radius 0.25 centered at 

(0.5, 0.5, 0.5)T . We consider the boundary conditions shown in Fig. 8. The strong anchoring condition on ∂� is given by

n = (0,0,1)T , on ∂�, s = s∗, on ∂�, (89)

whereas Ea given in (79) models weak anchoring on the colloid’s surface with parameters

Ka = 300.0, ε = 0.06.

We use the same double well potential as before. The initial conditions in � for the gradient flow are: s = s∗ and n =
(0, 0, 1)T .

The equilibrium solution, with κ = 1.0, is shown in Fig. 13. The defect region is significantly different than that shown 
in Section 5.1.2. This is due to the fact that the weak anchoring energy (74) is invariant with respect to arbitrary changes in 
the sign of n.

Next, we change the boundary conditions as we did in Section 5.1.3, i.e. the strong anchoring condition on ∂� is given 
by

n smoothly interpolates between (0,0,−1)T and (0,0,1)T , and s = s∗, on ∂�, (90)

whereas Ea models weak anchoring on the colloid’s surface. The initial conditions in � for the gradient flow are: s = s∗
and

n(x, y, z) =
{

(0,0,−1)T , if z < 0,

(0,0,+1)T , if z ≥ 0.

The equilibrium solution, with κ = 1.0, is shown in Fig. 14. Again, the choice of boundary conditions essentially induces 
the Saturn ring defect. The radius of the Saturn ring is ≈ 0.38. Also, note that the structure of the director field is not the 
same as would be obtained with the Landau–deGennes model [84].

5.2.7. Simulating defects with penalized Dirichlet conditions
We adopt the same computational conditions here, except that Ea is given by (81) which models a Dirichlet condition 

(penalized) on the colloid’s surface. Everything else is the same as before, including parameter values.
Using the first set of boundary conditions (89), the equilibrium solution (κ = 1.0) is shown in Fig. 15. The defect region 

is essentially the same as in Section 5.1.2 (see Fig. 10). In other words, the penalized Dirichlet condition is not invariant 
with respect to arbitrary changes in the sign of n.

Next, we change the outer boundary conditions as we did in Section 5.1.3. Using the second set of boundary conditions 
(90), the equilibrium solution (κ = 1.0) is shown in Fig. 16.

The choice of boundary conditions induces the Saturn ring defect (similar to Fig. 12). The radius of the Saturn ring is 
≈ 0.405. Also, note that the structure of the director field is not the same as would be obtained with the Landau–deGennes 
model [84].
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Fig. 14. Simulation results for boundary conditions in (90) (κ = 1.0) using the immersed boundary approach and anchoring energy (79). The surface mesh 
of the colloid boundary is shown and the s = 0.06 iso-surface is plotted in red which indicates the defect region. The director field is also shown (white 
arrows) on a plane parallel to the y–z plane and passing through x = 0.5. The defect region mimics the classic Saturn ring defect (cf. Section 5.1.3). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Simulation results for boundary conditions in (89) (κ = 1.0) using the immersed boundary approach and anchoring energy (81). The surface mesh 
of the colloid boundary is shown and the s = 0.06 iso-surface is plotted in red which indicates the defect region. The director field is also shown (white 
arrows) on a plane parallel to the y–z plane and passing through x = 0.5. The defect region is “point-like” at height z = 0.11 (cf. Section 5.1.2). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Simulation results for boundary conditions in (90) (κ = 1.0) using the immersed boundary approach and anchoring energy (81). The surface mesh 
of the colloid boundary is shown and the s = 0.08 iso-surface is plotted in red which indicates the defect region. The director field is also shown (white 
arrows) on a plane parallel to the y–z plane and passing through x = 0.5. The defect region mimics the classic Saturn ring defect (cf. Section 5.1.3). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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6. Electric field

External field effects, such as an electric field, can be modeled by adding another term to the energy. The following 
sections describe this as well as prove the monotone energy decreasing property of our algorithm applied to the modified 
energy.

6.1. Modified energy

The energy now takes the form

E[s,n] = E1[s,n] + E2[s] + Ea[s,n] + Eext[s,n], (91)

where Eext[s, n] is the external field energy. Following [69,2], we let Eext[s, n] be defined by

Eext[s,n] := − Kext

2

⎛⎝ε̄

∫
�

(1 − sγa)|E|2 + εa

∫
�

s(E · n)2

⎞⎠ , (92)

where E is the given (fixed) electric field. The other constants are related to the material properties of the liquid crys-
tal medium. Define ε‖ , ε⊥ to be the dielectric permittivities in the directions parallel and orthogonal to a liquid crystal 
molecule. Define ε̄ = (ε‖ + 2ε⊥)/3 to be the average dielectric permittivity (the 2 is for the two directions orthogonal to 
the director), εa = ε‖ − ε⊥ the dielectric anisotropy, and γa = εa/(3ε̄) a dimensionless ratio. We allow for εa to be positive 
or negative and note that 0 ≤ γa ≤ 1 when 0 ≤ ε⊥ ≤ ε‖ .

Note that the sign of the second integral in (92) can be negative (however it is bounded because s, E, and n are bounded). 
Thus, in order to preserve our energy decreasing minimization scheme (Section 3.2.3), we first introduce a discrete quantity 
analogous to (76):

eh(sh,nh,vh) =
∫
�

Ih

[
|εa||E|2(nh · vh) − εash(E · nh)(E · vh)

]
. (93)

To apply Lemma 6 we see that the matrix H reads

H = |εa||E|2I − εashE ⊗ E,

which is symmetric and positive semi-definite because |sh| ≤ 1. Consequently

eh(sh,nh,nh) ≥ eh

(
sh,

nh

|nh| ,
nh

|nh|
)

. (94)

We now define the discrete counterpart of (91) to be

Eh[sh,nh] := Eh
1[sh,nh] + Eh

2[sh] + Eh
a[sh,nh] + Eh

ext[sh,nh], (95)

where the discrete electric energy is similar to (92) and is given by

Eh
ext[sh,nh] = Kext

2

⎛⎝−ε̄

∫
�

(1 − shγa)|E|2 + eh(sh,nh,nh) − |εa|
∫
�

|E|2
⎞⎠ . (96)

Observe that (96) is an approximation of

Eh
ext[sh,nh] = Kext

2

⎛⎝−ε̄

∫
�

(1 − shγa)|E|2 − εa

∫
�

sh(E · nh)
2 + |εa|

∫
�

|E|2(|nh|2 − 1)

⎞⎠ , (97)

where the “extra” term is non-positive and consistent (i.e. it vanishes as h → 0 provided the singular set S has zero Lebesgue 
measure). Moreover, 

∫
�

|E|2|n|2 is constant at the continuous level, whence the extra term does not fundamentally change 
the energy. However, it is needed to ensure the projection step in the algorithm decreases the (discrete) energy, which is 
guaranteed by (94).
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Fig. 17. Simulation results for the Freedericksz transition (Section 6.3.1) with Dirichlet boundary conditions on the left and right of �. The director field is 
shown (white arrows) at equilibrium with the given electric field E = (1, 0)T . The degree-of-orientation is shown on the right.

6.2. Minimization scheme

We apply the Algorithm of Section 3.2.3 to the energy (95), except we need the following variational derivatives of Eh
ext. 

The first order variation of Eh
ext in the direction vh ∈U⊥

h (nk
h) ∩ H1

�n
(�) at the director variable nk

h reads

δnh Eh
ext[sk

h,nk
h;vh] = Kexteh(sk

h,nk
h,vh). (98)

The first order variation of Eh
ext in the direction zh ∈ Sh ∩ H1

�s
(�) at the degree of orientation variable sk

h is

δsh Eh
ext[sk

h,nk
h; zh] = Kext

2

⎛⎝ε̄γa

∫
�

|E|2zh − εa

∫
�

Ih

[
(E · nk

h)
2zh

]⎞⎠ . (99)

6.3. Simulations

We present simulations of the classic Freedericksz transition and the effect of an electric field on the shape of the Saturn 
ring defect.

6.3.1. Freedericksz transition
We consider a two dimensional cell with no colloids present, i.e. Ka = 0. The domain is defined to be � = [0, 1]2 ⊂ R2, 

with �D = {0, 1} × [0, 1], and �N = ∂� \ �D . The boundary conditions are given by

n = (0,1)T , s = s∗, on �D ,

(ν · ∇)n = 0, (ν · ∇)s = 0, on �N ,
(100)

where ν is the outer normal vector of ∂�. Moreover, the double well potential is defined in (58). The initial conditions in 
� for the gradient flow are:

s = s∗, n = (10−2,1)T /|(10−2,1)|.
They are chosen to perturb the minimizing pair n = (0, 1)T , s = s∗ without the electric field.

The equilibrium solution, for κ = 1.0, is shown in Fig. 17, with electric field parameters as follows: Kext = 16.0, E =
(1, 0)T , ε̄ = 1.0, εa = 2.0, γa = 0.5. The director field deflects toward the right to better align with the imposed electric field 
E, which is the expected response known as the Freedericksz transition. In this case, 0.6995 ≤ s ≤ 0.7757 so the role of s is 
not so critical because there is no defect region.

6.3.2. Saturn ring interaction with an electric field
We consider the interaction of an electric field with a colloidal particle in three dimensions. The domain is defined to 

be � = [0, 1]3 ⊂ R3, with �D = ∂�. The placement of the colloidal sphere and the boundary conditions are the same as in 
Section 5.2.6 corresponding to Fig. 14, i.e. recall the description in Fig. 11. The double well potential is defined in (58). The 
weak anchoring parameters are the same as in Section 5.2.6. The electric field parameters are given as follows: Kext = 160.0, 
E = (0, 1, 0)T , ε̄ = 1.0, εa = 2.0, γa = 0.5.

The equilibrium solution, for κ = 1.0, is shown in Fig. 18. The Saturn ring defect changes significantly (i.e. breaks into 
four pieces) because Kext is so large. Note that the solution without the electric field is given in Fig. 14.



592 R.H. Nochetto et al. / Journal of Computational Physics 352 (2018) 568–601
Fig. 18. Simulation results for deforming the Saturn ring with an electric field (Section 6.3.2). The director field is shown (white arrows) at equilibrium with 
the given electric field E = (0, 1, 0)T . The s = 0.15 iso-surface is shown in red. The ring defect changes into two sliver-like defects and two disk-like defects. 
The location of the sliver (disk) defect is at a radius of ≈ 0.38 (≈ 0.36); the spherical colloid has a radius of 0.25. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

7. Discrete quasi-gradient flow algorithm

We demonstrate that our minimization scheme in Section 3.2.3 monotonically decreases the following discrete total 
energy

Eh[sh,nh] := Eh
1[sh,nh] + Eh

2[sh] + Eh
a[sh,nh] + Eh

ext[sh,nh], (101)

which includes the colloidal and electric field effects.

7.1. Discrete minimizing movements

The method of minimizing movements [90, pg. 32] is rather convenient for ensuring energy decrease even for non-strictly 
convex energies. Note that this is the case of nh �→ Eh[sh, nh] for fixed sh when the latter vanishes at one or more nodes 
as well as the energies (75) which are degenerate because of the presence of the phase variable φ. This approach could be 
applied to more general non-convex energies as well.

We present the idea for an abstract energy E : H → R where H is a Hilbert space with norm ‖ · ‖ and inner product 
〈·, ·〉. We construct a sequence of iterates {uk}∞n=0 ⊂ H as follows: choose u0 ∈ H arbitrarily and consider minimizing the 
augmented functional

F [u] := E[u] + ρ‖u − uk‖2

for ρ sufficiently large so that F is strictly convex. Whether this is possible depends on the specific structure of E , but note 
that any ρ > 0 would work for our two examples in this paper. Let uk+1 ∈H be the unique minimizer of F . Then

E[uk+1] < F [uk+1] = E[uk] + ρ‖uk+1 − uk‖2 ≤ F [uk] = E[uk], (102)

provided uk+1 �= uk . This means that we achieve strict energy decrease unless we reach a stationary point. Convergence of 
uk to a local minimizer of E is a delicate matter and within the context of �-convergence. We elaborate on both energy 
decrease and convergence for our concrete functionals below.

7.2. Energy decreasing property

We now capitalize on the preceding calculations to show the following key result, which extends Theorem 3 proved in 
[61]. Given (sk

h, nk
h) ∈ Sh ×Nh , we modify the discrete total energy of (101) as follows for any ρ ≥ 0:

F h[sh,nh] := Eh[sh,nh] + ρ‖nh − nk
h‖2

L2(�)
. (103)

Theorem 8 (Energy decrease). Let Th satisfy (8). Given (sk
h, nk

h) ∈ Sh × Nh, the iterate (sk+1
h , nk+1

h ) ∈ Sh × Nh of the Algorithm of 
Section 3.2.3 for (103) exists and satisfies

Eh[sk+1
h ,nk+1

h ] ≤ Eh[sk
h,nk

h] − 1

δt

∫
�

(sk+1
h − sk

h)2dx.

Equality holds if and only if (sk+1, nk+1) = (sk , nk ) (equilibrium state).
h h h h
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Proof. Steps (a) and (b) show monotonicity, whereas Step (c) proves strict decrease of the energy.
Step (a): Minimization. Since F h[sk

h, nh] is convex in nh for fixed sk
h , there exists a tangential variation tk

h which minimizes 
F h[sk

h, nk
h + vh] amongst all tangential variations vh . Invoking (102) we deduce

Eh[sk
h,nk

h + tk
h] ≤ Eh[sk

h,nk
h].

Step (b): Projection. Since the mesh Th is weakly acute, we claim that

nk+1
h = nk

h + tk
h

|nk
h + tk

h|
⇒ Eh[sk

h,nk+1
h ] ≤ Eh[sk

h,nk
h + tk

h].

First we show that

nk+1
h = nk

h + tk
h

|nk
h + tk

h|
⇒ Eh

1

[
sk

h,nk+1
h

]≤ Eh
1

[
sk

h,nk
h + tk

h

]
.

Following [55,91], let vh = nk
h + tk

h , wh = vh|vh | , and observe that |vh| ≥ 1 (at the nodes) and wh is well-defined. By (14)
(definition of the discrete energy), we only need to show that

kij

(sk
i )

2 + (sk
j)

2

2
|wh(xi) − wh(x j)|2 ≤ kij

(sk
i )

2 + (sk
j)

2

2
|vh(xi) − vh(x j)|2

for all xi, x j ∈ Nh . Because kij ≥ 0 for i �= j, this is equivalent to showing that |wh(xi) − wh(x j)| ≤ |vh(xi) − vh(x j)|. This 
follows from the fact that the mapping a �→ a/|a| defined on {a ∈ Rd : |a| ≥ 1} is Lipschitz continuous with constant 1. Note 
that equality above holds if and only if nk+1

h = nk
h or equivalently tk

h = 0.
Next, from (78) and (79), we get

Eh
a[sk

h,nk+1
h ] ≤ Eh

a[sk
h,nk

h + tk
h].

Moreover, using (94) and (96), we also get

Eh
ext[sk

h,nk+1
h ] ≤ Eh

ext[sk
h,nk

h + tk
h].

Therefore, we find that

Eh[sk
h,nk+1

h ] ≤ Eh[sk
h,nk

h + tk
h].

Step (c): Gradient flow. Since Eh
1 is quadratic in terms of sk

h , and

2sk+1
h

(
sk+1

h − sk
h

)= (
sk+1

h − sk
h

)2 + ∣∣sk+1
h

∣∣2 − ∣∣sk
h

∣∣2,
reordering terms gives

Eh
1[sk+1

h ,nk+1
h ] − Eh

1[sk
h,nk+1

h ] = R1 − Eh
1[sk+1

h − sk
h,nk+1

h ] ≤ R1,

where

R1 := δsh Eh
1[sk+1

h ,nk+1
h ; sk+1

h − sk
h].

Moreover, Eh
a is also quadratic in terms of sk

h , so we get a similar inequality

Eh
a[sk+1

h ,nk+1
h ] − Eh

a[sk
h,nk+1

h ] ≤ Ra,

where

Ra := δsh Eh
a[sk+1

h ,nk+1
h ; sk+1

h − sk
h].

Next, (27) implies

Eh
2[sk+1

h ] − Eh
2[sk

h] =
∫
�

ψ(sk+1
h )dx −

∫
�

ψ(sk
h)dx ≤ R2 := δsh Eh

2[sk+1
h ; sk+1

h − sk
h],

and accounting for the electric field gives

Eh
ext[sk+1,nk+1] − Eh

ext[sk ,nk+1] = Rext := δs Eh
ext[sk+1,nk+1; sk+1 − sk ].
h h h h h h h h h
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Combining all estimates and invoking Step (c) of the Algorithm yields

Eh[sk+1
h ,nk+1

h ] − Eh[sk
h,nk+1

h ] ≤ R1 + R2 + Ra + Rext = − 1

δt

∫
�

(sk+1
h − sk

h)2,

which is the assertion. Note finally that equality occurs if and only if sk+1
h = sk

h and nk+1
h = nk

h , which corresponds to an 
equilibrium state. This completes the proof. �
Remark 9. The choice ρ > 0 in (103) ensures a positive definite system to solve for nk+1

h no matter whether the system for 
ρ = 0 is singular or degenerate (see Remark 5).

8. �-convergence of the discrete energy

We show that our discrete energy (101) �-converges to the continuous energy

E[s,n] := E1[s,n] + E2[s] + Ea[s,n] + Eext[s,n]. (104)

This implies existence of global minimizers of (104), and convergence of global minimizers of (101) to global minimizers of 
(104) along with convergence of discrete to continuous energies.

We recall the setting of our �-convergence result in [61] and next extend it to the more general energy (104). Let the 
continuous and discrete spaces be

X := L2(�) × [L2(�)]d, Xh := Sh ×Uh.

We define E[s, n] as in (104) for (s, u) ∈ A(g, r) and E[s, u] = ∞ for (s, n) ∈ X \A(g, r). Likewise, we define Eh[sh, nh] as in 
(101) for (sh, uh) ∈ Ah(gh, rh) and Eh[s, n] = ∞ for all (s, u) ∈ X \Ah(gh, rh). We state the two properties of �-convergence 
for E1[s, n] [61].

Theorem 10 (�-convergence). Let {Th} be a sequence of weakly acute meshes. Then, for every (s, n) ∈X the following two properties 
hold:

• Lim-inf inequality: for every sequence {(sh, nh)} converging strongly to (s, n) in X, we have

E1[s,n] ≤ lim inf
h→0

Eh
1[sh,nh]; (105)

• Lim-sup inequality: there exists a sequence {(sh, nh)} such that (sh, nh) converges strongly to (s, n) in X and

E1[s,n] ≥ lim sup
h→0

Eh
1[sh,nh]. (106)

We refer to [61] for a complete proof of this rather technical theorem. We now give a brief outline. The lim-sup inequality 
is a consistency estimate in the usual numerical analysis sense. It reduces to showing that Eh, ̃Eh → 0 as h → 0, in (20) and 
(21). If n ∈ [H1(�)]d , then the residual term (21) would be of order h2

∫
�

|∇sh|2dx which obviously converges to zero. The 
presence of defects entails lack of [H1(�)]d regularity of n, whence this heuristic argument fails. A rigorous proof involves 
a rather delicate regularization argument of any pair (s, u) ∈ A(g, r) which preserves Dirichlet boundary values and the 
structure condition u = sn for some n of unit norm away from the singular set S.

Proving the lim-inf is more technical. It follows from (19), which also reads

Eh
1[sh,nh] ≥ (κ − 1)

∫
�

|∇ Ih |̃uh||2dx +
∫
�

|∇ũh|2dx = Ẽh
1 [̃sh, ũh],

and the fact that Ẽh
1 [̃sh, ̃uh] is weakly lower semi-continuous [61, Lemma 3.4 (weak lower semicontinuity)]. This usually 

follows from convexity (with respect to ∇ũh), but this is not obvious when 0 < κ < 1 and is a key contribution of [61].
�-convergence combined with a coercivity property yields that global minimizers of the discrete problem converge 

to global minimizers of the continuous problem [92,93]. We explicitly show this property in Theorem 11. However, 
�-convergence does not yield rates of convergence. In Section 4.6, we provide some experimental rates of convergence.

Theorem 11 (Convergence of global discrete minimizers). Let {Th} satisfy (8) and assume Ea , Eh
a are given by (74), (79). If (sh, uh) ∈

Ah(gh, rh) is a sequence of global minimizers of Eh[sh, nh] in (101), then every cluster point is a global minimizer of the continuous 
energy E[s, n] in (104).
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Proof. We proceed in several steps.
1. Coercivity. In view of (101), assume there is a constant � > 0 such that

lim inf
h→0

Eh[sh,nh] = lim inf
h→0

(
Eh

1[sh,nh] + Eh
2[sh] + Eh

a[sh,nh] + Eh
ext[sh,nh]

)
≤ �,

for otherwise there is nothing to prove. We apply [61, Lemma 3.5 (coercivity)]

Eh
1[sh,nh] ≥ min{κ,1}

∫
�

|∇ũh|2dx ≥ min{κ,1}
∫
�

|∇ Ih|sh||2dx,

to extract subsequences (not relabeled) (̃sh, ̃uh) → (̃s, ̃u) and (sh, uh) → (s, u) converging weakly in [H1(�)]d+1, strongly in 
[L2(�)]d+1 and a.e. in �. We next invoke [61, Lemma 3.6 (characterizing limits)] to show that the limits satisfy the structure 
properties

u = sn, ũ = s̃n in � \ S, (107)

for a suitable vector field n, with |n| = 1, and such that nh → n strongly in L2(� \ S) and a.e. in � \ S.
2. Lim-inf inequality. Using [61, Lemma 3.4 (weak lower semicontinuity)] we deduce

Ẽ1 [̃s, ũ] =
∫
�

(κ − 1)|∇ s̃|2 + |∇ũ|2dx ≤ lim inf
h→0

Ẽh
1 [̃sh, ũh] ≤ lim inf

h→0
Eh

1[sh,nh],

where the last inequality is a consequence of (19). Since sh converges a.e. in � to s, so does ψ(sh) to ψ(s). Apply now 
Fatou’s lemma to write

E2[s] =
∫
�

ψ(s) =
∫
�

lim
h→0

ψ(sh) ≤ lim inf
h→0

∫
�

ψ(sh) = lim inf
h→0

Eh
2[sh].

We now consider the weak anchoring energy Eh
a [sh, nh] of (79), i.e. we show that∫

�

s2
[
|n|2|∇φ|2 − (∇φ · n)2

]
dx = lim

h→0

∫
�

Ih

{
s2

h

[
|nh|2|∇φ|2 − (∇φ · nh)

2
]}

dx. (108)

In view of (17), properties of the Lagrange interpolant yield

Ih

{
s2

h

[
|nh|2|∇φ|2 − (∇φ · nh)

2
]}

= Ih

[
|uh|2|∇φ|2 − (∇φ · uh)

2
]
.

Next, classic interpolation theory yields∥∥|uh|2|∇φ|2 − Ih[|uh|2|∇φ|2]∥∥L2(�)
� h

∥∥∥|uh||∇φ|2∇uh

∥∥∥
L2(�)

+ h
∥∥∥|uh|2|∇φ|∇2φ‖L2(�) � h‖uh

∥∥∥
H1(�)

.

Since ‖uh‖H1(�) is uniformly bounded, |uh|2|∇φ|2 − Ih[|uh|2|∇φ|2] → 0 in L2(�) and a.e. in �. Similarly, (∇φ · uh)2 −
Ih[(∇φ · uh)2] → 0 in L2(�) and a.e. in �. Hence, using that uh → u a.e. in � and |uh| is uniformly bounded, combining the 
Lebesgue dominated convergence theorem with (107) implies the following equivalent form of (108)∫

�

[
|u|2|∇φ|2 − (∇φ · u)2

]
dx = lim

h→0

∫
�

[
|uh|2|∇φ|2 − (∇φ · uh)

2
]

dx. (109)

Furthermore, since φ is smooth, the Lebesgue dominated convergence theorem also gives∫
�

|∇φ|2(s(x) − s∗)2dx = lim
h→0

∫
�

|Ih∇φ|2(sh(x) − s∗)2dx.

Therefore, we obtain

Ea[s,n] = lim
h→0

Eh
a[sh,nh]. (110)

We proceed similarly for the electric energy (92). In view of (93), (96), we show that∫
|εa||E|2 − εas(E · n)2dx = lim

h→0

∫
Ih

[
|εa||E|2|nh|2 − εash(E · nh)

2
]

dx. (111)
� �



596 R.H. Nochetto et al. / Journal of Computational Physics 352 (2018) 568–601
First, we exploit that |nh| = 1 at the nodes to infer that∫
�

Ih

[
|E|2|nh|2

]
=
∫
�

Ih

[
|E|2

]
→

∫
�

|E|2, as h → 0,

because E is assumed to be smooth. For the other term in (93), nodal interpolation implies

Ih

[
sh(E · nh)

2
]

= Ih [(E · uh)(E · nh)] ,

because uh = Ih[shnh]. Standard interpolation theory on each element T of Th gives

‖(E · uh)(E · nh) − Ih[(E · uh)(E · nh)]‖L1(T ) � h2(‖|uh||nh|‖L1(T )

+ ‖|uh||∇nh|‖L1(T ) + ‖|∇uh||nh|‖L1(T ) + ‖|∇uh||∇nh|‖L1(T )

)
.

Summing over all T ∈ Th , and using Cauchy–Schwarz, we get

‖(E · uh)(E · nh) − Ih[(E · uh)(E · nh)]‖L1(�) � h2‖uh‖H1(�)‖nh‖H1(�).

Since |nh| ≤ 1, an inverse estimate gives ‖∇nh‖L2(�) � h−1, and so

‖(E · uh)(E · nh) − Ih[(E · uh)(E · nh)]‖L1(�) � h‖uh‖H1(�) → 0, as h → 0.

Thus, we just need to show∫
�

(E · u)(E · n)dx = lim
h→0

∫
�

(E · uh)(E · nh)dx. (112)

We decompose the integral into the singular set S = {s = 0} = {u = 0} and the complement and use the Lebesgue dominated 
convergence theorem upon realizing that (E · uh)(E · nh) is uniformly bounded. Since uh → u a.e. in �, we obtain

lim
h→0

∫
S

(E · uh)(E · nh)dx =
∫
�

χS lim
h→0

(E · uh)(E · nh)dx = 0.

In addition, we utilize [61, Lemma 3.6 (characterizing limits)] to deduce that nh → n a.e. in � \ S, whence

lim
h→0

∫
�\S

(E · uh)(E · nh)dx =
∫

�\S
(E · u)(E · n)dx.

Collecting the above results, and recalling that u = sn, we obtain (111). Finally, the Lebesgue dominated convergence theo-
rem implies∫

�

(1 − sγa)|E|2dx = lim
h→0

∫
�

(1 − shγa)|E|2dx,

whence

Eext[s,n] = lim
h→0

Eh
ext[sh,nh]. (113)

Consequently, we arrived at

Ẽ1 [̃s, ũ] + E2[s] + Ea[s,n] + Eext[s,n] ≤ lim inf
h→0

Eh[sh,nh]. (114)

3. Lim-sup inequality. This is a consistency inequality. Since we have to use Lagrange interpolation, and so point values, 
we first need to invoke a regularization procedure. Given ε > 0 arbitrary, we resort to [61, Proposition 3.2 (regularization of 
functions in Ah(gh, rh))] to find a pair (tε, vε) ∈ A(g, r) ∩ [W 1∞(�)]d+1 such that

E[tε,mε ] ≤ inf
(t,m)∈A(g,r)

E[t,m] + ε ≤ E[s,n] + ε, (115)

where mε := t−1
ε vε if tε �= 0 or otherwise mε is an arbitrary unit vector. Let (tε,h, vε,h) ∈ Ah(gh, rh) and mε,h ∈ Nh be the 

Lagrange interpolants of (tε , vε, mε) and apply [61, Lemma 3.3 (lim-sup inequality)] to (tε, vε) and mε to write

E1[tε,mε ] = lim Eh
1[tε,h,mε,h].
h→0
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Moreover, [61, Theorem 3.7 (convergence of global discrete minimizers)] shows that

E2[tε] =
∫
�

lim
h→0

ψ(tε,h) = lim
h→0

∫
�

ψ(tε,h) = lim
h→0

Eh
2[tε,h].

We now consider the weak anchoring energy (79), and observe that

Ih

{
t2
ε,h

[
|mε,h|2|∇φ|2 − (∇φ · mε,h)

2
]}

= Ih

{[
|vε,h|2|∇φ|2 − (∇φ · vε,h)

2
]}

(116)

because of the definition of Lagrange interpolant and vε = tεmε . Hence, following a similar argument as in (109), we find 
that (116) converges in L2(�) as h → 0 because vε ∈ [W 1∞(�)]d . Therefore, the convergence

Ea[tε,mε ] = lim
h→0

Eh
a[tε,h,mε,h]

follows in a similar fashion as the convergence of (110). Also, since∫
�

|Ih∇φ|2(tε,h − s∗)2 →
∫
�

|∇φ|2(tε − s∗)2, as h → 0, (117)

by standard interpolation theory, taking (116) and (117) together, we get

Ea[tε,mε ] = lim
h→0

Eh
a[tε,h,mε,h].

For the electric energy (96), the definition of the Lagrange interpolant again implies

Ih

[
|εa||E|2|mε,h|2 − εatε,h(E · mε,h)

2
]

= Ih

[
|εa||E|2 − εatε(E · mε)

2
]
. (118)

The first term in (118) clearly converges to |εa||E|2 in L1(�). For the second term ξε := tε(E · mε)
2, take δ > 0 arbitrary, 

define Sδ := {|tε | ≤ δ}, and note that

xi ∈ Nh : |x − xi | ≤ Ch ⇒ |tε(x) − tε(xi)| ≤ Cεh.

Let h be small, depending on ε and δ, so that Cεh ≤ δ
2 . If x ∈ Sδ , then tε(xi) ≤ 3

2 δ and∫
Sδ

∣∣ξε − Ihξε
∣∣≤ Cεδ.

On the other hand, if x /∈ Sδ , then tε(xi) ≥ 1
2 δ and ξε is Lipschitz in � \ S δ

2
with constant Cε,δ . Therefore∫

�\Sδ

∣∣ξε − Ihξε
∣∣≤ Cε,δh.

Taking the limits, first as h → 0 and next as δ → 0, we infer that

lim
h→0

∫
�

Ihξεdx =
∫
�

ξεdx

which implies convergence of the second term in (118). Moreover, since 
∫
�

tε,h|E|2dx → ∫
�

tε |E|2dx, as h → 0, we obtain

Eext[tε,mε ] = lim
h→0

Eh
ext[tε,h,mε,h].

Collecting the preceding estimates we end up with the lim-sup equality

E[tε,vε ] = lim
h→0

Eh[tε,h,vε,h]. (119)

4. Convergence of energy. We observe that ∇ũ = ∇ s̃ ⊗ n + s̃∇n a.e. in � \ S, whence

Ẽ1 [̃s, ũ] =
∫

κ |∇ s̃|2 + |̃s|2|∇n|2 =
∫

κ |∇s|2 + |s|2|∇n|2 = E1[s,n],

�\S �\S
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and note that � \ S can be replaced by � because ∇s = 0 on S. Therefore, in view of (114), (115) and (119), we arrive at

E[s,n] ≤ lim inf
h→0

Eh[sh,nh] ≤ lim sup
h→0

Eh[sh,nh] ≤ lim
h→0

Eh[tε,h,nε,h] = E[tε,vε] ≤ E[s,n] + ε.

Finally, letting ε → 0, we see that the pair (s, n) is a global minimizer of E and E[s, n] = limh→0 Eh[sh, nh], as asserted. This 
concludes the proof. �

It remains to show the �-convergence when the discrete weak anchoring energy (79) is replaced by the penalized 
Dirichlet energy (81).

Corollary 12 (Convergence of global discrete minimizers). Let {Th} satisfy (8) and assume Ea , Eh
a are given by (80), (81). If (sh, uh) ∈

Ah(gh, rh) is a sequence of global minimizers of Eh[sh, nh] in (101), then every cluster point is a global minimizer of the continuous 
energy E[s, n] in (104).

Proof. Following the proof of Theorem 11, we only need to show that the lim-inf and lim-sup inequalities hold for the 
anchoring energy (81).

Step 1. Lim-inf inequality: Thanks to Step 1 in Theorem 11, any (sh, uh) → (s, u) converging in X, there exists a sub-
sequence (sh, uh) → (s, u) converging weakly in [H1(�)]d+1, strongly in [L2(�)]d+1 and a.e. in �. To prove the limit-inf 
equality, we note that

Eh
a[sh,nh] = Ka

2
C0ε

⎛⎝∫
�

Ih

{
s2

h

∣∣|∇φ|nh − ∇φ
∣∣2}+

∫
�

|Ih∇φ|2(sh − gh)
2

⎞⎠
= Ka

2
C0ε

⎛⎝∫
�

Ih

{∣∣T h
1

∣∣2}+
∫
�

(T h
2 )2

⎞⎠ ,

where

T h
1 := |∇φ|uh − sh∇φ and T h

2 := |Ih∇φ|(sh − gh).

For the first term T h
1 , since uh and sh converge to u and s in L2(�), we note that

T h
1 → T1 := |∇φ|u − s∇φ in L2(�) as h → 0.

Therefore, 
∫
�
(T h

1 )2 → ∫
�
(T1)

2 which implies that (similar to what is done in (109))∫
�

Ih{(T h
1 )2 − (T1)

2} ≤ C

∫
�

(T h
1 )2 − (T1)

2 → 0 as h → 0.

Moreover, since 
∫
�

Ih{(T1)
2} → ∫

�
(T1)

2 as h → 0, we obtain that∫
�

Ih

{
(T h

1 )2
}

→
∫
�

(T1)
2. (120)

For the second term T h
2 , we have

T h
2 → T2 := |∇φ|(s − g) a.e. as h → 0 and |T h

2 | ≤ 2 max
�

|∇φ|.
By the Lebesgue dominated convergence theorem, we have∫

�

(T h
2 )2 →

∫
�

(T2)
2.

Combining this with (120), we infer that

lim
h→0

Eh
a [sh,uh] = Ea[s,u].

Step 2. Lim-sup inequality: We follow step 3 in the proof of Theorem 11 and set (tε , vε) ∈ A(g, r) ∩ [W 1∞(�)]d+1 such 
that (tε, vε) → (s, u) weakly in [H1(�)]d+1, strongly in [L2(�)]d+1 and a.e. in �. Let (tε,h, vε,h) be the Lagrange interpolants 
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of (tε, vε), then (tε,h, vε,h) → (tε, vε) strongly in [L2(�)]d+1 and a.e. in �. By a similar procedure as before, we are able to 
show that

lim
h→0

Eh
a [tε,h,vε,h] = Ea[tε,vε].

This concludes the proof. �
9. Conclusions

We present a robust finite element method for the Ericksen energy that models nematic liquid crystals with variable de-
gree of orientation. This is augmented by additional energy terms to model colloidal effects and electric fields. We present 
several simulations to illustrate the diverse range of phenomena that can be captured by our method, e.g. interesting defect 
structures (such as the Saturn ring) as well as the ability to modulate the defect structures with external fields. We prove 
a monotone energy decreasing property for our quasi-gradient flow method (applied to (101)) which hinges on a mass-
lumping strategy for the auxiliary energy terms Eh

a and Eh
ext. Furthermore, we provide a full �-convergence proof of our 

discrete energy (101) to the original continuous energy (104).
The following are possible extensions of this work: modeling of liquid crystal droplets, i.e. by coupling the Ericksen 

energy to Cahn–Hilliard; coupling with full electro-statics with or without charge transport, as well as including electro-
dynamics to model liquid crystal laser devices; and also optimizing colloidal particle distributions by actuating the liquid 
crystal medium. Furthermore, we plan on extending our method to handle the full Q-tensor model.
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[17] I. Muševič, S. Žumer, Liquid crystals: maximizing memory, Nat. Mater. 10 (4) (2011) 266–268.
[18] M. Rahimi, T.F. Roberts, J.C. Armas-Pérez, X. Wang, E. Bukusoglu, N.L. Abbott, J.J. de Pablo, Nanoparticle self-assembly at the interface of liq-

uid crystal droplets, Proc. Natl. Acad. Sci. USA 112 (17) (2015) 5297–5302, http://dx.doi.org/10.1073/pnas.1422785112, http://www.pnas.org/content/
112/17/5297.abstract.

[19] A.A. Shah, H. Kang, K.L. Kohlstedt, K.H. Ahn, S.C. Glotzer, C.W. Monroe, M.J. Solomon, Self-assembly: liquid crystal order in colloidal suspensions of 
spheroidal particles by direct current electric field assembly (small 10/2012), Small 8 (10) (2012) 1457, http://dx.doi.org/10.1002/smll.201290056.

[20] J. Sun, H. Wang, L. Wang, H. Cao, H. Xie, X. Luo, J. Xiao, H. Ding, Z. Yang, H. Yang, Preparation and thermo-optical characteristics of a smart 
polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition, Smart Mater. Struct. 23 (12) (2014) 125038, 
http://stacks.iop.org/0964-1726/23/i=12/a=125038.

http://dx.doi.org/10.1007/BF00380413
http://refhub.elsevier.com/S0021-9991(17)30695-2/bib646547656E6E65735F626F6F6B31393935s1
http://refhub.elsevier.com/S0021-9991(17)30695-2/bib646547656E6E65735F626F6F6B31393935s1
http://refhub.elsevier.com/S0021-9991(17)30695-2/bib476F6F6462795F696E626F6F6B32303132s1
http://refhub.elsevier.com/S0021-9991(17)30695-2/bib476F6F6462795F696E626F6F6B32303132s1
http://www.teachersource.com/downloads/lesson_pdf/LC-AST.pdf
http://www.personal.kent.edu/bisenyuk/liquidcrystals/
http://dx.doi.org/10.1038/ncomms7012
http://dx.doi.org/10.1103/PhysRevLett.97.127801
http://dx.doi.org/10.1039/B901793N
http://dx.doi.org/10.1126/science.aaf4260
http://science.sciencemag.org/content/352/6281/40
http://science.sciencemag.org/content/352/6281/40
http://refhub.elsevier.com/S0021-9991(17)30695-2/bib426C696E6F765F626F6F6B31393833s1
http://refhub.elsevier.com/S0021-9991(17)30695-2/bib436F6C65735F4E5032303130s1
http://dx.doi.org/10.1039/B905631A
http://dx.doi.org/10.1016/S0030-4018(01)00989-0
http://www.sciencedirect.com/science/article/pii/S0030401801009890
http://www.sciencedirect.com/science/article/pii/S0030401801009890
http://dx.doi.org/10.1364/OE.18.026995
http://www.opticsexpress.org/abstract.cfm?URI=oe-18-26-26995
http://dx.doi.org/10.1038/nature11084
http://dx.doi.org/10.1126/science.1129660
http://www.sciencemag.org/content/313/5789/954.abstract
http://refhub.elsevier.com/S0021-9991(17)30695-2/bib4D75736576696332303131s1
http://dx.doi.org/10.1073/pnas.1422785112
http://www.pnas.org/content/112/17/5297.abstract
http://www.pnas.org/content/112/17/5297.abstract
http://dx.doi.org/10.1002/smll.201290056
http://stacks.iop.org/0964-1726/23/i=12/a=125038
http://dx.doi.org/10.1039/B901793N
http://dx.doi.org/10.1039/B905631A


600 R.H. Nochetto et al. / Journal of Computational Physics 352 (2018) 568–601
[21] M. Wang, L. He, S. Zorba, Y. Yin, Magnetically actuated liquid crystals, Nano Lett. 14 (7) (2014) 3966–3971, https://doi.org/10.1021/nl501302s, pMID: 
24914876.
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