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FELICITY: A MATLAB/C++ TOOLBOX FOR DEVELOPING
FINITE ELEMENT METHODS AND SIMULATION MODELING\ast 

SHAWN W. WALKER\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper describes a MATLAB/C++ finite element toolbox, called FELICITY, for
simulating various types of systems of partial differential equations (e.g., coupled elliptic/parabolic
problems) using the finite element method. It uses MATLAB in an object-oriented way for high-level
manipulation of data structures in finite element codes, while utilizing a domain-specific language
(DSL) and code generation to automate low-level tasks such as matrix assembly (via the MATLAB
mex interface). We describe the fundamental functionality of the toolbox's MATLAB interface, such
as using higher order Lagrange (simplicial) meshes, defining finite element spaces, allocating degrees-
of-freedom, assembling discrete bilinear and linear forms, and interpolation over meshes. Moreover,
we describe in-depth how automatic code generation is implemented in FELICITY. Two example
problems and their implementation are provided to demonstrate the ability of FELICITY to solve
coupled problems with interacting subdomains of different co-dimension. Future improvements are
also discussed.
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1. Introduction. The development of numerical methods to solve partial dif-
ferential equations (PDEs) continues to advance to address new domain areas and
problems of increasing complexity. With this, the number of software packages has
increased to address the needs for researching new methods and simulating large prob-
lems. In particular, there are several finite element (FE) packages (of varying design)
available to simulate a wide variety of PDEs, such as GRINS [14], feelpp [1], FEniCS
[38, 8], deal.II [11], DUNE [26], freeFEM++ [32], GetFEM++ [2], LifeV [3], mfem [4],
milamin [25], SfePy [24], oomph-lib [33], and Vega [5].

This paper describes the FE toolbox FELICITY: Finite ELement Implemen-
tation and Computational Interface Tool for You. It can be used to develop new finite
element methods (FEMs) for coupled multiphysics problems and nonlinear problems,
especially those that involve geometric information, such as surface tension-driven
flows. Some highlights of the toolbox are as follows:

\bullet It provides a general framework to tackle many types of problems.
\bullet A domain-specific-language (DSL) easily allows development of a special pur-
pose code for a single problem.

\bullet The MATLAB interface provides a powerful numerical computing environ-
ment at a high level.

\bullet Automatic code generation, combined with the mex/C++ interface, maintains
performance (e.g., for matrix assembly).

1.1. Motivation. Many FE packages are available, both commercial and free, so
``why another FE toolbox?"" The original purpose in designing FELICITY (beginning
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in 2010) was for solving elliptic and parabolic PDEs, where subdomains of different
co-dimension can interact. Some examples are as follows:

\bullet geometric flow problems, such as mean curvature flow andWillmore flow (e.g.,
[54, 17]), where PDEs on surfaces are solved using surface FE approaches [29];

\bullet problems where surface PDEs (e.g., Laplace--Beltrami) are coupled to PDEs
in a bulk domain, e.g., diffusion of surfactants in droplets;

\bullet multiphysics models that use Lagrange multipliers (defined on interfaces) to
couple different physical models together;

\bullet moving domain/interface problems that use front-tracking with conforming
meshes to model moving boundaries.

In all these cases, one is confronted with defining multiple FE spaces over sub-
domains of, say, co-dimension 1 that must interact with FE spaces over the bulk
domain through boundary integral terms. In addition, there may be mesh move-
ment/deformation issues to deal with.

To the best of our knowledge, there were no FE toolboxes during the initial de-
velopment of FELICITY that could easily handle FE spaces on multiple subdomains,
perform mesh manipulation, and solve Laplace--Beltrami PDEs with iso-parametric
elements without major effort. Only recently have all these items (simultaneously)
become features in other publicly available FE toolboxes.

FELICITY has now expanded to include other features, which make it a vi-
able tool for a variety of problems. It can be used to implement other methods to
simulate free boundary problems, such as phase-field methods, as well as many ``stan-
dard"" problems, such as Poisson's equation, the Navier--Stokes equations, elasticity
problems, etc. Moreover, FELICITY is developed in MATLAB, so it inherits the
convenience of the MATLAB interface. However, it is not pure MATLAB; C++ code
is used to maintain performance (see subsection 1.2).

Currently, the main motivation behind FELICITY is to provide a flexible high-
level interface, a good level of modularity, and some low-level access to the underlying
code to facilitate research of FE methods and development of simulation software for
novel mathematical models. Most research-level problems require some kind of ``non-
standard"" modification of preexisting methods. The main philosophy in FELICITY is
to not hide all the details of implementing an FEM so that modifications can remain
moderately easy. Some examples are the following:

\bullet Nontrivial mesh modification. Performing topological changes of meshes in
front-tracking is usually difficult with ``black-box"" FE packages because the
mesh data structure is usually buried in the package.

\bullet Coupled models. A typical example is when different types of FE spaces
on different subdomains meet at an interface. If the coupling is nonlinear,
then special care is needed to develop solvers/preconditioners. FELICITY
provides direct access to the ``blocks"" of a multiphysics problem.

\bullet New algorithms. For example, implementing multigrid methods for new types
of problems can be difficult in black box packages. It is often assumed that one
will use an ``off-the-shelf"" multigrid solver that was developed for a standard
problem (which may be inappropriate). In contrast, a multigrid solver for
Cahn--Hillard [19] was recently developed in FELICITY.

1.2. Design decisions. In creating FELICITY, the main design decision was
to use a high-level scripting language as much as possible. For instance, managing
degrees-of-freedom (DoFs) for an FEM often involves indexing tricks, which can be
efficiently implemented through vectorization with, say, MATLAB or Python. More-
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over, a high-level language allows easy access to other external packages. Other
FE packages that do this are milamin (MATLAB), SfePy (Python), and FEniCS

(Python). freeFEM++ has its own custom scripting language, but it is more restric-
tive than the other options listed here.

The alternative to a high-level language is a standard language, such as C++.
This allows more control and freedom of developing a code but is more labor intensive;
this is the approach of deal.II. Moreover, the syntax of defining a problem is less
``pretty"" in a standard language than in a high-level one. On the other hand, a high-
level language is very readable, easy to learn/use, and can still be very flexible in
many situations. Unfortunately, high-level languages may have adverse inefficiencies
in certain contexts (e.g., for loops in MATLAB).

Thus, the next design decision was to isolate certain computationally intensive
tasks of an FEM and implement them in C++ code that is interfaced to MATLAB
through the mex interface. Some of these tasks are well defined; one can straightfor-
wardly implement a stand-alone C++ code to perform the task and then wrap it with
the mex interface. Some examples are search trees (FELICITY includes interfaces to
quadtrees and octrees), as well as mesh generation (which FELICITY also provides
via the method in [49]).

However, other tasks are not so well defined. There is an immense variability
possible in developing an FEM. In this case, FELICITY uses automatic C++ code
generation to write special purpose C++ code that implements a very specific task in
a given FEM, e.g., allocating DoFs, assembling matrices that represent discrete bilin-
ear forms, interpolating FE functions and geometric data, and finding closest points
in curved meshes. Automatic code generation is accomplished through a DSL written
in a MATLAB function that uses special MATLAB classes included in FELICITY.
Code generation provides a way to mediate the demands of a general software pack-
age with the flexibility of a special purpose code. In this regard, FELICITY takes
inspiration from the FEniCS project [37, 39], though the details of the design and im-
plementation are different. Indeed, FEniCS only does code generation for assembling
FE forms. FELICITY demonstrates that code generation can be used to mitigate the
implementation of other FE tasks (e.g., interpolation and searching curved surface
meshes for closest points).

The next design decision was about manipulating (simplex) meshes. FELIC-
ITY builds on the MATLAB triangulation class with its own special purpose mesh
classes, which provide easy access to mesh data, such as connectivity, point coordi-
nates, neighbor information, etc., for simplex meshes in one, two, and three dimen-
sions. In principle, other types of meshes can be implemented in FELICITY, but this
has not been done yet.

These mesh classes allow users to directly manipulate meshes during FE simu-
lations. Examples of this are in moving mesh problems, such as moving interface
problems, shape optimization, and dynamic meshes that undergo topological changes
[43]. Because of the high-level interface in FELICITY, users can move FE simulation
data from one mesh to another without having to dive into low-level code. Other FE
packages have this capability as well but, to the best of our knowledge, it is not clear
whether they are comparably easy.

One particular design decision (or feature) in FELICITY, which is significantly
different from most (if not all) other packages, is that local FE spaces are stored/repre-
sented in a ``flat"" m-file, i.e., the m-file stores the nodal basis functions, ordering of
DoFs on the reference element, etc. The motivation here comes from [35, Chap. 5,
Metaprogramming], where the rubric is ``put abstractions in code, details in meta-
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data,"" meaning a flat (i.e., simple to understand) file. In comparison, FEniCS com-
pletely hides this information. Our opinion is that the specific definition of the local
FE space should not be hidden from the user, especially given that it is a critical part
of the mathematical formulation of the FE discretization. Software designers cannot
foresee all possible use cases, so as much information as possible should be open to
the user.

On a related note, FELICITY implements different classes of elements in a mod-
ular fashion. For example, the automatic implementation of Lagrange (H1) elements
is based on an internal H1 Trans class that handles transformations of basis functions
to physical elements. H(div) elements, such as Raviart--Thomas, have an Hdiv Trans

class for transforming basis functions. There is also an Hcurl Trans class for H(curl)
elements. These classes are generic in the sense that they know nothing about the
nodal basis function definitions; they only implement transformation code. Hence,
adding a new element that falls under one of these classes is essentially trivial; the
user need only specify the flat m-file mentioned earlier. Unfortunately, implementing
a new class of transformations requires knowledge of some of the inner workings of
FELICITY.

In conclusion, FELICITY can be thought of as a library where the user learns the
package, brings various pieces together (where some of the pieces are more automated
than others), and creates a stand-alone program to simulate some desired phenomena.
The user never has to interact with the C++ code directly; however, the generated
code is readable and can (in principle) be modified if necessary. Furthermore, the
user is free to develop some parts of the code themselves, while using a subset of the
functionality of FELICITY.

1.3. What you should know to use FELICITY. The user is expected to be
familiar with weak and variational formulations of PDEs and have some experience
in the FEM, e.g., some knowledge of at least one of the references [18, 20, 21, 23, 34].
In addition, the user should know MATLAB at the level of [6].

1.4. Outline. The remainder of the paper describes the FELICITY framework,
its capabilities, its implementation, and examples of its use. Section 2 gives an
overview and highlights the main functionality of the FE toolbox. In section 3, we
explain how the DSL and code generation aspect of FELICITY are implemented.
Section 4 presents numerical solutions for two example PDE problems implemented
in FELICITY; details of the implementation are given in supplementary section SM1.
We conclude in section 5 by highlighting the successes of FELICITY and discussing
areas of future improvement.

2. Overview. We describe how FELICITY is used to implement parts of an FE
code in an object-oriented way and how other parts are automated by code generation.

2.1. Building blocks of an FEM. In order to develop an FE code to solve a
particular PDE problem, the following steps are often taken:

1. Replace the continuous domain with a discrete domain (i.e., mesh generation).
2. Define FE function spaces on the discrete domain.
3. Replace the continuous (infinite dimensional) weak formulation of the PDE

by a discrete (finite dimensional) version.
4. Compute discrete matrices that represent bilinear and linear forms in the

discrete weak formulation.
5. Form the matrix system that represents the discrete weak formulation, in-

cluding enforcement of boundary conditions.



C238 SHAWN W. WALKER

6. Apply a solver to the linear system to find the discrete solution.
7. Postprocess the solution; this may require interpolation of discrete FE func-

tions.
This sequence of steps may change, such as when solving a nonlinear problem with
Newton's method. Furthermore, various data structures are required in implementing
the above sequence of steps, which are outlined in the following subsections.

Note: in order to run the code of this paper in MATLAB, the user needs to have
FELICITY installed; see the manual [52] or the wiki [53] for more details.

2.1.1. Meshes. The discrete domain is represented by a mesh or triangulation
data. Simplicial meshes are implemented in FELICITY by taking advantage of the
built-in MATLAB class triangulation. Indeed, FELICITY provides three mesh
classes that (essentially) are subclasses of triangulation:

\bullet MeshInterval for polygonal curve meshes.
\bullet MeshTriangle for triangulated surface meshes.
\bullet MeshTetrahedron for triangulated volume meshes consisting of tetrahedra.

To create a mesh object with FELICITY, the user must provide the mesh connectivity
and the mesh point coordinates as standard MATLAB matrices. The general syntax
is
Mesh = Mesh!`TYPE?`(Connect,Points,Name);

where !`TYPE?` is either Interval, Triangle, or Tetrahedron. Connect is an M \times 
(t + 1) matrix where M is the number of mesh elements and t is the topological
dimension, Points is an N \times d matrix where N is the number of points and d is the
geometric dimension, and Name is a string representing the name of the domain. For
example, suppose we have a mesh \scrT of the unit square \Omega in \BbbR 2 consisting of two
triangles defined as \scrT = \{ T1, T2\} , where T1 = \{ v1, v2, v3\} , T2 = \{ v1, v3, v4\} , and the
points (vertices) have the following coordinates: v1 = (0, 0), v2 = (1, 0), v3 = (1, 1),
v4 = (0, 1). With the FELICITY toolbox, we create this mesh using the following
commands at the MATLAB prompt:

Tri = [1 2 3; 1 3 4];

Pts = [0, 0; 1, 0; 1, 1; 0, 1];

Mesh = MeshTriangle(Tri,Pts,'Omega').

Geometrically, T1 and T2 are ``straight"" triangles, meaning that the sides are straight
line segments (in \BbbR 2) joining the vertices. Note that FELICITY only allows for
conforming meshes (defined in subsection 2.1.5), e.g., no ``hanging vertices.""

Remark 2.1 (mesh generation). FELICITY provides several functions for gener-
ating meshes of simple domains:
triangle mesh of disk, triangle mesh of sphere,
bcc triangle mesh (of a square), equilateral triangle mesh,
regular tetrahedral mesh (of a cube), bcc tetrahedral mesh, which are located
in the Misc Routines subdirectory of FELICITY. In addition, FELICITY has an
interface to a general three-dimensional mesh generator (TIGER) based on [49].

A nice feature of FELICITY is that subdomains can be stored within the mesh
object. For example, the boundary of the unit square mesh, \Gamma := \partial \Omega , consists of four
directed edges denoted as E1 = \{ v1, v2\} , E2 = \{ v2, v3\} , E3 = \{ v3, v4\} , E4 = \{ v4, v1\} .
These are stored in the mesh object with the following commands:

Edges = [1 2; 2 3; 3 4; 4 1];

\% alternatively: Edges = Mesh.freeBoundary();

Mesh = Mesh.Append\.Subdomain('1D','Gamma',Edges);
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where the first argument specifies the topological dimension of the subdomain and
the second argument gives it a name, followed by the edge data. Note: the boundary
edges can be extracted using the class method freeBoundary. Furthermore, users
can store embedded subdomains, e.g., the diagonal of the unit square mesh:

DE = [1 3];

Mesh = Mesh.Append\.Subdomain('1D','Diagonal',DE).

Remark 2.2. It is implicit in the mesh data structure above that each triangle
(element) T in the mesh is linear or ``straight,"" instead of curved. This implies the
existence of an affine map FT : Tref \rightarrow T , where Tref is a standard reference domain
[18, 23, 34] (e.g., the unit triangle in \BbbR 2 with ordered vertices (0, 0), (1, 0), (0, 1)). In
subsection 2.1.5, we discuss how to handle meshes containing curved elements.

2.1.2. The reference finite element. FE spaces are concretely defined by first
specifying a reference finite element in the sense of Ciarlet [23, 20], i.e., the reference
domain Tref , the space of shape functions \scrP , and the nodal variables \scrN . This is stored
by FELICITY in several flat m-file scripts that define various elements, such as La-
grange elements, Raviart--Thomas elements, and Nedelec elements (of the first kind),
up to degree 3. For example, the element definition for Lagrange elements of degree 3
on the standard reference tetrahedron is specified in the file lagrange deg3 dim3.m.
Executing the m-file delivers a MATLAB structure (i.e., struct) with several fields
that specify the reference finite element (Tref ,\scrP ,\scrN ); e.g., the reference domain type
is stored as a string, along with other information like the topological dimension.

Remark 2.3. FELICITY stores the reference element for each dimension and de-
gree in separate files. The main reason is readability and openness to the user. This
simple format makes it easy to include new elements, as long as the element falls un-
der one of the transformation classes that FELICITY already has, such as H1 (e.g.,
Lagrange), H(div) (e.g., Raviart--Thomas), and H(curl) (e.g., Nedelec).

The space of shape functions \scrP is a linear space, so it is spanned by a minimal
set of basis functions. Thus, FELICITY identifies \scrP with the nodal basis set, where
the Kronecker delta property is satisfied, i.e., Ni(\phi j) = \delta ij for all 1 \leq i, j \leq dim(\scrP ),
where dim(\scrP ) is the dimension of \scrP and \scrN and Ni \in \scrN , \phi j \in \scrP . The nodal variables
\scrN are stored in the m-file with enough information to allow the user to check the
Kronecker delta property (if they wish) with the given basis functions.

The subscript j in the basis function \phi j is called the local degree-of-freedom
(DoF) index. Each basis function is essentially stored as a string. Note: the local
basis functions are connected to the global basis functions of the FE space by a DoF
map, i.e., DoFmap (see subsection 2.1.4).

Each DoF (equivalently, nodal variable) is associated with a point in Tref , with
specific reference domain coordinates (stored as barycentric coordinates in the flat
m-file). For Lagrange elements, the points correspond to the point evaluation of the
associated nodal variable. For other element types, such as H(div), the nodal variable
involves computing an inner product (integral) of the basis function against a specific
(dual) Lagrange basis function [16]. Thus, the point coordinate corresponds to the
dual Lagrange function. Note that the choice of the dual basis functions fully specifies
the nodal variables.

The user can create a MATLAB class object for performing queries on the refer-
ence finite element, e.g., by executing the following at the MATLAB prompt:
RFE = ReferenceFiniteElement(lagrange\.deg3\.dim3()).
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2.1.3. FE spaces. The global FE space, defined over a domain (say \Omega ), is
obtained by gluing together local element spaces defined on each element T in \scrT 
[18, 23, 34]. Thus, let V (T ) be an FE space defined on T \in \scrT by V (T ) = \{ v \in 
L1(T ) : v = \eta \circ F - 1

T , where \eta \in \scrP (Tref)\} , where \scrP (Tref) are the nodal basis functions
defined over Tref , and FT : Tref \rightarrow T is the affine map from the reference element to
the ``physical"" element in \scrT . Note that, at this point, we are only considering meshes
containing straight elements (see Remark 2.2); subsection 2.1.5 discusses FE spaces
defined over meshes containing curved elements.

The global FE space then is

(1) V (\Omega ) = \{ v \in C0(\Omega ) : v| T = \eta \circ F - 1
T for some T \in \scrT , \eta \in \scrP (Tref)\} ,

where, in this case, we have assumed a C0 continuity requirement over the entire
domain \Omega . The linear vector space V (\Omega ) is spanned by a finite set of basis functions,
i.e., V (\Omega ) = \{ \phi 1, \phi 2, . . . , \phi J\} . In this case, the index k in \phi k is the global DoF index
of the unique basis function \phi k in (1).

2.1.4. Degree-of-freedom map. FELICITY must know how basis functions
on a mesh element T are ``connected"" to basis functions on a neighboring mesh element
T \prime , in order to guarantee certain continuity requirements in the global FE space, e.g.,
C0 for Lagrange elements [18, 23, 34]. This is done by defining a degree-of-freedom
map (DoFmap) for each element T of \scrT :

(2) DoFmap : \scrT \times \{ 1, 2, . . . ,dim(\scrP )\} \rightarrow \{ 1, 2, . . . , J\} ;

i.e., k = DoFmap(T, j) is the global index of the jth basis function on element T . In
FELICITY, this is implemented as a MATLAB matrix of size M \times dim(\scrP ), where M
is the number of mesh elements.

The DoFmap data may be defined by either the user or FELICITY. For exam-
ple, the DoFmap for a continuous piecewise linear FE space defined on the mesh in
subsection 2.1.1 can simply be taken to be identical to Tri; this is because the DoFs
correspond to the vertices (points) of the mesh. In the case of a piecewise quadratic
space, the DoFs correspond to the mesh vertices and the midpoints of mesh edges. It
is sometimes desirable to preserve this correspondence of the DoFs with mesh vertices
and edges. For instance, it makes accessing the solution at the vertices trivial, which is
convenient for plotting purposes; the alternative is to interpolate the solution, which
requires some additional (minor) coding. In addition, it may be convenient to group
the edge DoFs together for other processing tasks. For more complicated spaces, more
care must be taken in specifying DoFmap. FELICITY provides a way to automate this
(see subsection 2.2.3).

FELICITY provides the class FiniteElementSpace for querying an FE space.
One can create an object of this class with the following commands:

DoFmap = !`user defines or FELICITY allocates?`;

V = FiniteElementSpace('V',RFE,Mesh,'Omega',k\.Tuple);

V = V.Set\.DoFmap(Mesh,DoFmap);

where the first argument names the space, the second argument is the reference finite
element defined earlier, and the third argument is the mesh object defined earlier.
The fourth argument is the name of the domain (or subdomain) on which the space
is defined.

The last argument, k Tuple, is the number of cartesian products to take of the
base FE space, i.e., the FE space will consist of a k-tuple of the base FE space,
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where k is given by k Tuple. So, if k Tuple = 1, then the FiniteElementSpace

object corresponds to (1). If k Tuple = k > 1, then the FiniteElementSpace object
corresponds to

V(\Omega ) = \{ v \in [C0(\Omega )]k : v \cdot ej | T = \eta \circ F - 1
T , 1 \leq j \leq k, T \in \scrT , \eta \in \scrP (Tref)\} 

\equiv V (\Omega )\times \cdot \cdot \cdot \times V (\Omega )\underbrace{}  \underbrace{}  
k terms

.(3)

This provides a convenient way to define ``vector-valued"" Lagrange FE spaces. Note
that one can also take cartesian products of a base FE space containing intrinsically
vector-valued basis functions, such as an H(div,\Omega ) FE space [16, 31].

Remark 2.4 (FE coefficient functions). A standard approach, which we adopt
here, is to represent an FE function v in V (\Omega ) by a vector of coefficients v, which is
an N \times 1 matrix (column vector), where N is the total number of DoFs in the FE
space. Thus, v(i) is the value of the nodal variable for DoF index i.

For a cartesian product (k-tuple) space, e.g., (3), v consists of k column vectors,
i.e., v is an N \times k matrix, where column j gives the nodal values of v \cdot ej . So N is
the number of DoFs for a single component. It is often convenient to concatenate the
column vectors using v(:), which gives a kN \times 1 column vector.

Remark 2.5 (mixed element spaces). For problems involving mixed elements,
such as in solving the Stokes equations, the user must define each FE space sepa-
rately and manually build the block matrix system. A demo describing this for the
Stokes equations is provided in FELICITY. In the future, FELICITY will provide a
MixedElementSpace class (analogous to FiniteElementSpace) to handle this.

2.1.5. Higher order meshes. Piecewise affine simplicial meshes consist of line
segments in one dimension, flat triangles with straight sides in two dimensions, tetra-
hedra with straight edges and flat faces in three dimensions, etc. The mesh example
in subsection 2.1.1 consists of straight triangles. We now review meshes consisting of
curved elements and how to define them in FELICITY.

To this end, we use the notation \widehat \scrT to indicate a mesh consisting of piecewise affine
elements (not curved), where \widehat T \in \widehat \scrT indicates a specific affine element. Moreover, we

write \widehat \Omega = int
\bigl( 
\cup \widehat T\in \widehat \scrT \widehat T \bigr) , i.e., \widehat \Omega is a piecewise linear approximation of the true, curved

domain \Omega s. Note that \widehat T and \widehat \Omega are open sets and \widehat T is the closure of \widehat T . An FE space,
defined on the piecewise linear approximate domain \widehat \Omega , is given by

(4) V (\widehat \Omega ) = \{ v \in C0(\widehat \Omega ) : v| \widehat T = \eta \circ F - 1\widehat T for some \widehat T \in \widehat \scrT , \eta \in \scrP (Tref)\} .

Let Tref have topological dimension t. Next, assume \Omega s is smooth, embedded in
\BbbR d, and is parameterized by a set of nonoverlapping local charts \{ \Phi Ts

\} [50], where
\Phi Ts

: Tref \rightarrow Ts \subset \Omega s \subset \BbbR d is a nonlinear, bijective map such that Ts := \Phi Ts
(Tref)

(where d \geq t). When d = t, we demand that\Phi Ts have a positive Jacobian determinant
[13]. This gives a partition of the true domain \Omega s into a mesh of nonlinear elements
\scrT s = \{ Ts\} . Then a version of (4), defined on the true geometry, is given by

(5) V (\Omega s) = \{ v \in C0(\Omega s) : v| Ts
= \eta \circ \Phi  - 1

Ts
for some Ts \in \scrT s, \eta \in \scrP (Tref)\} .

However, this is not always practical, so we take an FE (Lagrange) approach to the
local charts (e.g., iso-parametric [13]). Define the FE space

(6) Gk(\widehat \Omega ) = \{ v \in [C0(\widehat \Omega )]d : v| \widehat T = \bfiteta \circ F - 1\widehat T for \widehat T \in \widehat \scrT ,\bfiteta \in [\scrL k(Tref)]
d\} ,
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where \scrL k(Tref), k \geq 1, is the space of (scalar) Lagrange polynomials of degree k on

Tref . For each affine approximation \widehat T of Ts \in \scrT s, we build a higher order version T :

(7) T = \Phi T (Tref), \Phi T := gk \circ F\widehat T for some fixed gk \in Gk(\widehat \Omega ).
Note that \Phi T \in [\scrL k(Tref)]

d. We then obtain \scrT = \{ T\} and define a higher order
approximation \Omega := int(\cup T\in \scrT T ) of \Omega s. We assume the collection of maps \{ \Phi T \} T\in \scrT 
are nonoverlapping and bijective, have positive Jacobian determinant when d = t,
produce a continuous domain embedded in \BbbR d, and are conforming in the sense that

\Phi T1(Tref) \cap \Phi T2(Tref) = \emptyset for all pairs T1, T2 \in \scrT , such that T1 \not = T2,

\Phi T1(T ref) \cap \Phi T2
(T ref) = \emptyset or \Phi T1

(\omega ), such that T1 \not = T2 and \omega \subset T ref ,
(8)

where Tref is considered an open set, T ref is the closure of Tref , and \omega is a topological
entity of T ref of dimension less than t, e.g., a vertex, edge, or facet. Note that
FELICITY only allows for conforming meshes (straight or curved).

Using (6) and (7), we obtain a version of (5) defined over the higher order domain
approximation \Omega :

(9) V (\Omega ) = \{ v \in C0(\Omega ) : v| T = \eta \circ \Phi  - 1
T for some T \in \scrT , \eta \in \scrP (Tref)\} .

The spaces V (\widehat \Omega ), V (\Omega ), and V (\Omega s) differ only in that different local maps are used
to represent the local element geometry; topologically, all three spaces are equiva-
lent. When dealing with higher order domains, FELICITY provides a special class
GeoElementSpace, which is a subclass of FiniteElementSpace. Creating an object
of this class, which represents Gk(\widehat \Omega ), is accomplished by

Gk = GeoElementSpace('Gk',Gk\.RefElem,Mesh);

where the first argument names the space, the second argument is the (Lagrange)
reference finite element \scrL k(Tref) defined earlier, and the third argument is a piecewise
linear mesh object. A function in Gk is a d-tuple valued (Lagrange) FE function; i.e.,
the number of vector components is equal to d. See supplementary section SM1.1 for
an example.

2.1.6. Evaluating boundary and initial conditions. One can define where
boundary conditions are enforced by using the FiniteElementSpace object. For
example, suppose we want to fix all DoFs that are on the boundary of our unit square
mesh. This is accomplished with the following command:

V = V.Append\.Fixed\.Subdomain(Mesh,'Gamma').

The user can then access the DoFs that are attached to the subdomain Gamma with
Fixed\.DoFs = V.Get\.Fixed\.DoFs(Mesh);

where Fixed DoFs is an array of indices. Note that one must usually supply the mesh
when retrieving information about the FE space.

Furthermore, users can access the coordinates of the DoFs through the command:
XC = V.Get\.DoF\.Coord(Mesh);

where XC is an N \times d matrix containing the coordinates of all DoFs in the FE space.
Note: N is the number of DoFs, and d is the geometric dimension.

Next, we show how to set boundary conditions for an FE function represented
by a coefficient vector. Continuing with our example, suppose we want to enforce
u = g on \Gamma , where u is a discrete FE function. Moreover, assume that we have an
m-file g.m that will evaluate the function g given the coordinates. If u denotes the
vector of coefficients representing u, then this can be accomplished with the following
commands:
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g\.values = g(XC); \% evaluates g at *all* DoF nodes

u(Fixed\.DoFs) = g\.values(Fixed\.DoFs);

where we have taken advantage of the indexing abilities of MATLAB. Initial conditions
can be set in a similar way, e.g.,

u\.init = init\.conditions(XC);

where init conditions.m is a user supplied m-file to evaluate the desired initial
condition function.

2.1.7. Other data. Computing FE matrices requires a loop over mesh elements,
computing the local element map, applying various transformations to basis functions,
etc. FELICITY takes care of this (see subsection 2.2.2). The matrices are stored in
the standard sparse matrix format of MATLAB.

Any other data, such as parameters, can be stored using the usual MATLAB
arrays and structs.

2.2. Automating FE implementation. FELICITY automates parts of build-
ing an FE code. A central goal in the design of FELICITY is to allow for some flexi-
bility in ``getting between"" the modules to implement algorithmic aspects that do not
fit a standard pattern. Note that FELICITY requires the MATLAB symbolic toolbox
to take advantage of the automation aspects.

2.2.1. Defining forms/matrices. Suppose \Omega \subset \BbbR 2, define the FE space V =
\{ v \in C0(\Omega ) : v| T is affine\} , and consider the following bilinear and linear forms:

(10) m(u, v) =

\int 
\Omega 

uv, a(u, v) =

\int 
\Omega 

\nabla u \cdot \nabla v, l(v) =

\int 
\Omega 

v for all u, v \in V.

Computing the matrix representation of bilinear and linear forms is a common task
in FE codes, usually referred to as matrix assembly. FELICITY can automate the
implementation of this task by first defining an m-file that defines the forms abstractly.
An example m-file is as follows:

function MATS = MatAssem()

\% define domain (2-D)

Omega = Domain('triangle');

\% define finite element (FE) space

V = Element(Omega,lagrange\.deg1\.dim2);

\% define functions on FE space

v = Test(V);

u = Trial(V);

\% define FE matrices

M = Bilinear(V,V);

I1 = Integral(Omega, v.val * u.val);

M = M.Add\.Integral(I1);

A = Bilinear(V,V);

I2 = Integral(Omega, v.grad' * u.grad);

A = A + I2;
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L = Linear(V);

L = L + Integral(Omega, v.val);

\% set the minimum number of quadrature points in quadrature rule

Quad\.Order = 10;

\% define geometry representation - Domain, (default is linear)

G\.Space = GeoElement(Omega);

\% define a set of matrices

MATS = Matrices(Quad\.Order,G\.Space);

\% collect all of the matrices together

MATS = MATS.Append\.Matrix(M);

MATS = MATS.Append\.Matrix(A);

MATS = MATS.Append\.Matrix(L);

end

This m-file uses a kind of DSL similar in spirit to the unified-form-language (UFL)
of FEniCS [8]. First, the domain of the problem is defined (abstractly); i.e., it is a
mesh of triangles with no other information given. The next command defines the FE
space V. Then, Test and Trial functions (in the FE sense) are defined on the space
V.

Next, we define the FE matrices by first specifying whether it is a Bilinear

or Linear form on V. Then, the form is fully defined by specifying the integral
computation to be performed involving the Test and Trial functions. We show three
different ways to ``add"" an integral to a form. Note that the domain of the integral
is specified. In particular, multiple integrals, on different subdomains of varying co-
dimension, can contribute to the form.

In the remaining part of the m-file, we specify the minimum number of quadrature
points to use, how the primary domain is represented (e.g., is the domain comprised of
piecewise linear triangles or piecewise quadratic triangles?); in this case, the default is
used (piecewise linear triangles). The MATS object serves to output all the information
in the m-file. See subsection 3.1 and the FELICITY manual [52] for more details.

Remark 2.6. The abstract m-file may have input arguments, e.g.,
function MATS = MatAssem(dim,deg).

This allows for parameterizing the form definitions, which can be useful in setting up
a general method to solve many kinds of problems.

2.2.2. Matrix assembly. FELICITY can take the m-file above and process
it into a stand-alone matrix assembly C++ code, which is then compiled into a
MATLAB mex file that is callable from the MATLAB prompt. Assuming the m-
file is named MatAssem.m, the following command generates the mex file:

[status, Path\.To\.Mex] =...

Convert\.Form\.Definition\.to\.MEX(@MatAssem,--\H ,'mex\.MatAssem').

The first argument is a function handle to MatAssem (this requires MatAssem.m to be
in a directory that is in the MATLAB path). The second argument is a cell array of
possible inputs to pass to MatAssem (see Remark 2.6). The last argument specifies
the filename of the mex file, which is placed in the same directory as MatAssem.m.
More options are available for the conversion script; see [53, 52] for more details.

Using the matrix assembly code requires the user to supply various pieces of
information, such as the mesh, FE space (DoFmap), etc. Supplementary section SM1
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shows examples of how to call the mex file.

2.2.3. Allocating DoFs. As mentioned in subsection 2.1.4, a DoFmap is a data
structure used to store the ``connectivity"" of the basis functions in an FE space. It is
certainly possible for users to define the DoFmap by writing their own special purpose
code, but this can be cumbersome for elements more complicated than piecewise
linear. Fortunately, FELICITY provides a way to do this automatically.

The following commands will create a mex file to generate a DoFmap for Elem:
\% get struct of reference element data

Elem = lagrange\.deg2\.dim2(); \% piecewise quadratic on triangles

Main\.Dir = !`user specified directory?`;

[status, Path\.To\.Mex] =...

Create\.DoF\.Allocator(Elem,'mexDoF\.P2',Main\.Dir).

Note: lagrange deg2 dim2.m is contained in the directory /FELICITY/Elem Defn.
Running this will create a mex file (in Main Dir) named mexDoF P2 (with a file ex-
tension dependent on your system type).

Running the mex file is done with the following command:
P2\.DoFmap = mexDoF\.P2(uint32(Tri));

where Tri is the connectivity matrix of the underlying triangular mesh. The output
P2 DoFmap is of size M \times dim(\scrP ), where M is the number of mesh elements in Tri

and \scrP is the space of shape functions in the reference finite element. Examples of
using the mex DoF allocator are given in supplementary section SM1.

2.2.4. Interpolation. Suppose we want to interpolate an expression involving a
function p in V at a set of arbitrary points in \Omega . For example, consider the expression
\nabla p\cdot x defined on \Omega , where x is the coordinate function on \Omega . One can use a similar type
of abstract m-file to define the interpolation and then use FELICITY to automatically
generate a mex file to evaluate FE data at the interpolation points. A sample m-file
for this expression follows:

function INTERP = Interpolate\.FE\.Data()

\% define domain

Omega = Domain('triangle');

\% define FE spaces

V = Element(Omega,lagrange\.deg1\.dim2,1);

\% define functions on FE spaces

p = Coef(V);

\% define a geometric function on 'Omega' domain

gf = GeoFunc(Omega);

\% define expressions to interpolate

Interp\.Expr = Interpolate(Omega, p.grad' * gf.X);

\% define geometry representation - Domain, reference element

G1 = GeoElement(Omega);

\% define a set of interpolation expressions to perform

INTERP = Interpolations(G1);

\% collect all of the interpolations together

INTERP = INTERP.Append\.Interpolation(Interp\.Expr);
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end

Generating the mex file is similar to the matrix assembly case. Assuming the
m-file is named Interpolate FE Data.m, the mex file is generated by

[status, Path\.To\.Mex] =...

Convert\.Interp\.Definition\.to\.MEX(...

@Interpolate\.FE\.Data,--\H ,'mex\.Interpolate\.FE\.Data').

Using the mex file requires the user to supply various pieces of information, such as
the mesh, FE space (DoFmap), etc. Note that the mex file requires the interpolation
points to be given in a certain format.

Remark 2.7 (point searching). In order to interpolate an FE function, a user
needs to search the mesh to locate which mesh element (e.g., triangle) contains a given
point [7]. FELICITY offers utilities to do this as well. Moreover, curved meshes, where
each mesh element is described by a Lagrange element of degree > 1, may be searched.
Again, FELICITY utilizes code generation to generate a special purpose code for point
searching. We omit the details for brevity (see [52] for more information).

2.3. Other software aspects. Solver support is somewhat limited to what
MATLAB offers (such as backslash, generic iterative solvers, etc.). However, sev-
eral other packages offer interfaces to MATLAB, e.g., MUMPS [9], Pardiso [45, 44],
SuperLU [36], and AGMG [42, 41]. These can all be used in conjunction with FE-
LICITY.

Other software pieces included in FELICITY are as follows: a tetrahedral mesh
generator [49], performing closest point searches of higher order meshes (e.g., for a
surface mesh embedded in three dimensions), available search-trees (bitree, quadtree,
octree) implemented directly in C++ (which can enable fast nearest neighbor searches
and speed up point searching in a mesh), simulation management (e.g., saving and
loading data, visualization), and extensive help/documentation.

3. Under the hood. We describe some of the details of how the automation
aspects of FELICITY were implemented.

3.1. Generating matrix assembly code. Automatically generating a matrix
assembly code starts with the abstract form file; running the form file (as an m-
function) creates an object called MATS, which collects all the relevant meta-data
(subsection 3.1.1). The next step processes MATS further to put the meta-data into
a more convenient format as well as optimize various aspects of the matrix assembly
code (subsection 3.1.2). Then, the C++ code is automatically generated from the
processed meta-data; this consists of ``pasting"" together snippets of standard code
with customized portions that take advantage of the specificity of the form file (sub-
section 3.1.3). Finally, the C++ code is compiled with the MATLAB mex command
to create an executable that is callable from the MATLAB prompt.

3.1.1. Define abstract forms. Subsection 2.2.1 showed how to abstractly de-
fine the forms in (10). The m-file MatAssem.m is actual MATLAB code that creates
several simple objects which build on one another.

The first command in MatAssem.m uses a MATLAB class (provided by FELIC-
ITY) called Domain. So the command

Omega = Domain('triangle');

creates an object called Omega of type Domain, using the constructor of the class; the
argument simply specifies the type of domain (in this case, the domain is a mesh of
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triangles in \BbbR 2). At this stage, no other information is given, such as the number of
triangles, mesh geometry, etc.

The next command defines an FE space using the class Element; i.e., the com-
mand

V = Element(Omega,lagrange\.deg1\.dim1);

creates an object called V of type Element using the default constructor of the class.
The first argument is a Domain object that (abstractly) indicates the domain on
which the FE space is defined; the second argument is a struct output from running
the command lagrange deg1 dim1, which gives a complete specification of the local
FE space. Hence, V is a continuous piecewise linear Lagrange FE space, defined over
the mesh of triangles that represents Omega. Since no specific mesh is given, V is
abstract; i.e., the specific form of the global basis functions is not known (because
they depend on the mesh geometry, which is not known). Note that V stores a copy
of Omega inside it.

Next, v is defined as an object from the class Test that abstractly represents a
test function in V. It also keeps a copy of V inside, which is useful for error checking
the form definition m-file. Similarly, we have u as an object of type Trial (i.e., a trial
function in V).

Defining the FE forms follows a similar procedure. For example, M is an object of
type Bilinear (i.e., a bilinear form) defined on the test space V and the trial space
V. Note that M keeps an internal copy of the test and trial spaces, which is necessary
for code generation and useful for error checking.

The next command
I1 = Integral(Omega, v.val * u.val);

is the most complex part of the m-file MatAssem.m in terms of its implementation; it
specifies how to compute the value of M when given a test function and a trial function.
The object I1 is of type Integral created with the default constructor, which takes
two arguments. The first argument is the (abstract) domain on which the integral is
to be computed. The second is a MATLAB symbolic expression (from the Symbolic
Computing Toolbox of MATLAB), which represents the integrand.

In other words, v.val and u.val output symbolic variables that represent point
evaluation of the basis functions. In particular, val is a method of the Test and Trial

classes (as well as Coef). The output of u.val is a MATLAB symbolic variable, with
the name u v1 t1, that captures the signature of the basis function and the specific
quantity to evaluate. In general, for the val method, the format is

!`function name?`\.v!`vector component?`\.t!`tuple index?`

The ``vector component"" refers to the intrinsic vector component of the function,
e.g., if the basis function is intrinsically vector valued, such as with Raviart--Thomas
elements. The ``tuple index"" refers to a specific component in the cartesian product
FE space (recall (3)). In the current example, the FE space has only one cartesian
component, and the base FE space has only one component (i.e., scalar-valued). As
another example, the output of u.grad is

u\.v1\.t1\.grad1

u\.v1\.t1\.grad2

i.e., it is a vector-valued symbolic variable whose components refer to the components
of the gradient of u, so it represents the point evaluation of the gradient of the basis
function u.

Hence, the syntax v.val * u.val results in the symbolic expression
v\.v1\.t1 * u\.v1\.t1

which completely encodes how to evaluate the bilinear form M given the test and trial
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functions v and u. The expression could be quite complicated depending on the form,
e.g., if nonlinear terms are present. MATLAB can convert a symbolic expression into
optimized C code by using the command ccode; this is used by FELICITY during
the C++ code generation segment.

By taking advantage of the MATLAB command inputname, as well as some text
processing tricks (e.g., regexpr), the Bilinear and Linear forms (abstractly) know
what the domain of integration is, what the integrand is (as a symbolic expression),
and what functions appear in the integrand and the FE spaces they belong to.

The last main part of MatAssem is the command
G\.Space = GeoElement(Omega);

which creates an object G Space of class GeoElement that indicates how the geometry
of Omega is represented. In this case, the default constructor is used, so the geometry
is assumed to be piecewise linear (i.e., each triangle in Omega is flat with straight
sides). Another, equivalent, way to create G Space is

G\.Space = GeoElement(Omega,lagrange\.deg1\.dim2);

where we explicitly define (in the second argument) the local FE space to use for
parameterizing a triangle in the mesh. Higher order Lagrange elements may also be
used for modeling curved elements. Note that only Lagrange elements are allowed.

After all forms are defined, the user creates a special catch-all object
MATS = Matrices(Quad\.Order,G\.Space);

that holds a copy of G Space and the (minimum) number of quadrature points to use
in numerically evaluating all integrals. The next several lines simply store copies of
the (previously defined) forms inside the MATS object.

Hence, Element, Test, Trial, Bilinear, Linear, Integral, GeoElement, and
Matrices are all MATLAB classes within the FELICITY toolbox. These classes are
very lightweight; not much information is stored in each. The main purpose they serve
is to collect all the ``meta-data"" necessary to completely determine a stand-alone C++
code that will assemble sparse matrices representing discrete versions of the forms on
a given mesh. All the meta-data is stored in MATS, which is the only output from the
MatAssem.m m-file.

Remark 3.1. The FEniCS project uses a custom parser to read a UFL code that
defines FE forms, which has the advantage of not being limited in the kind of syntax
that it allows. In comparison, FELICITY uses the MATLAB scripting language,
execution engine, and lightweight classes to abstractly define FE forms. This has the
advantage of doing immediate error checking of the syntax as well as the (relative)
ease of creating data structures to contain the meta-data.

3.1.2. Process abstract form data. The next stage of generating code to
build FE forms is an initial compile step. This starts by running the abstract m-file
(e.g., MatAssem.m), as any MATLAB function, to build the MATS object, which is
essentially a giant MATLAB struct.

Then, MATS is processed further; i.e., FELICITY makes multiple passes through
MATS in order to correlate various items. For example, the M and A forms (in MatAssem)
utilize the same Test and Trial FE spaces. Therefore, when generating the C++
code, the global basis functions can be computed once (on a given mesh element) no
matter how many forms use those basis functions.

In addition, the integrands of the forms are processed to determine what actually
needs to be computed for the basis functions, as well as any geometric information. For
instance, it checks whether the gradient is needed, or whether the normal vector on a
surface is needed, or whether the trace of a basis function on a subdomain is required,
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etc. This is accomplished by processing the signatures (see subsection 3.1.1) that
appear in the integrands. The main tools in making this work are text processing
with regexpr and using MATLAB's symbolic toolbox. This processing gradually
builds a list of various ``quantities"" that the C++ code must implement.

Furthermore, FELICITY checks for possible efficiencies that the C++ implemen-
tation can take advantage of, such as whether the form is symmetric or whether the
mesh consists of piecewise linear elements (instead of curved triangles). It also checks
whether the form is defined over a cartesian product FE space, i.e., the matrix cor-
responding to the discrete form may contain block submatrices, with some blocks
identical. Other checks are made as well.

After the initial compile step, FELICITY (internally) produces several data struc-
tures containing detailed information that the C++ code generator will use.

3.1.3. Generate C++ code. Once FELICITY has processed the abstract form
file, it takes this information and generates a stand-alone C++ code that assembles
the specified matrices given certain information, such as the mesh data, FE space
data (i.e., the DoFmap(s)), any FE coefficient data, etc.

First, it creates a specialized mesh class to read the mesh connectivity data, vertex
coordinates, as well as compute local mesh element maps, and other quantities, e.g.,
the Jacobian of the map. Portions of the code that define this class never change from
problem to problem. Other parts do depend on the problem, such as the specific FE
space to use in representing the mesh geometry (as well as what quadrature points to
evaluate the local element map).

In addition, it creates specialized classes to do the following:
\bullet access subdomain data in the mesh,
\bullet transform basis functions and FE coefficient functions,
\bullet compute local FE matrices, and
\bullet assemble global FE matrices (i.e., discrete forms) from local matrices.

In all cases, each class is a mix of standard (static) code, essentially stored as small
snippets within various (internal) m-files, and custom generated code that takes ad-
vantage of the specific information of the problem. For example, the following quan-
tities are fixed and known when the code is generated:

\bullet number of quadrature points,
\bullet number of basis functions,
\bullet evaluation of basis functions at quadrature points,
\bullet number and type of subdomains in the mesh,
\bullet types of transformations to perform on basis function, and
\bullet the block structure of FE matrices.

The generated code is tailored to the specific problem of interest by taking advan-
tage of the above information. Specific classes are easier to implement, and the C++
compiler can take advantage of the known information, e.g., by using fixed length ar-
rays, in contrast to developing a generic multipurpose C++ FE code. After the C++
code is generated, it is compiled into a mex file that can be called from MATLAB.

3.1.4. Sparse matrix assembly. Built into the C++ code is a generic sparse
matrix assembly class that interfaces to the MATLAB sparse matrix format. It orig-
inally started from this code [15] but has diverged from it. It is more convenient
to do the matrix assembly in C++, without the user's involvement, than to use the
MATLAB sparse command to build the sparse matrices from array data. This is
especially the case if iso-parametric (curved) elements are used with complicated FE
basis functions.
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The embedded matrix assembly class determines the sparsity structure as the local
FE matrices are computed and inserted into the structure. Of course, this can be slow
for large matrices. FELICITY provides a way to reuse the sparsity structure when
reassembling matrices, such as in time-dependent problems. This is accomplished
by calling the mex matrix assembly code with the (previously assembled) FE matrix
struct as the first input.

The assembly strategy of FELICITY is to loop through the elements of a given
subdomain and assemble those contributions separate from other subdomains. This
is done for each subdomain. Note: FELICITY never traverses the ``edges"" in a
subdomain; only the elements of the subdomain (those mesh entities with largest
topological dimension in the subdomain) are traversed. Put differently, the only way
FELICITY will traverse mesh edges is if they are defined as a subdomain and an FE
form is defined over that subdomain.

In the case of H(div) elements, where a choice of sign must be made on each
facet in the mesh, FELICITY knows the chosen orientation of the facets. Hence, it is
trivial to include appropriate sign changes of basis functions on a given element when
transforming the basis functions on that element. This is in contrast to traversing a
unique list of facets in the mesh.

A future alternative for sparse matrix assembly could be to use an open source
linear algebra package, such as armadillo [48], to build the sparse matrix structure.

3.2. Allocating DoFs. Allocating DoFs (see subsection 2.2.3) for an FE space
defined over a subdomain of a mesh requires a loop through the mesh elements.
On each element, a new set of indices is allocated for the DoFs on that element.
However, the DoF indices on neighboring elements must match in order to ensure
certain continuity requirements of the FE space [23, 20].

The structure of the allocation algorithm is mostly generic, except when ensuring
DoFs match, e.g., across facets, edges, and vertices of a tetrahedral mesh. For a
specific element, the m-file that defines the reference element (see subsection 2.1.2)
contains the barycentric coordinates of the DoFs on the reference domain. This
information is used by FELICITY to generate a special purpose C++ code that will
allocate DoFs for that element while ensuring that neighboring DoFs match. This
requires the DoF coordinates to be invariant under permutations of the reference
domain's vertices [20]. If this property is not satisfied, FELICITY will output an
error message.

3.3. Interpolation. Defining the abstract definition file for an interpolation
(recall subsection 2.2.4) is not much different from defining the abstract form definition
(see subsection 2.2.1). The same techniques described in subsection 3.1 are used,
such as lightweight MATLAB classes, text processing, and the symbolic toolbox. In
fact, some of the exact same code generation utilities for forms are also used for
interpolation.

4. Examples. We demonstrate how to implement with FELICITY two example
problems in the following sections. In order to run these examples, FELICITY must
be installed properly (see the wiki [53] for more info).

4.1. Example: Laplace--Beltrami with weak boundary conditions. We
consider the Laplace--Beltrami problem on a smooth surface \Gamma s with smooth boundary



FELICITY C251

-0.5

0

0.5

1

0.5

0
1

-0.5 0.5
0

-1 -0.5
-1

τs

νs

ξs

x
y

z

Surface Γs With Open Boundary ∂Γs

Fig. 1. Surface diagram. Hypothetical surface \Gamma s with boundary \partial \Gamma s highlighted by a thick
black curve. The oriented normal vector of \Gamma s is \bfitnu s. The oriented tangent vector of the boundary
curve \partial \Gamma s is \bfittau s. The co-normal vector (pointing out of the boundary) is denoted by \bfitxi s := \bfittau s \times \bfitnu s.

\partial \Gamma s, with given boundary condition g:

 - \Delta \Gamma s
u = f in \Gamma s,

u = g on \partial \Gamma s,
(11)

where u is the solution, and f is the right-hand-side data; see Figure 1 for an example
surface. Note that \Delta \Gamma s is the Laplace--Beltrami operator defined by \Delta \Gamma s := \nabla \Gamma s \cdot \nabla \Gamma s ,
where \nabla \Gamma s

is the tangential (or ``surface"") gradient on \Gamma s. The weak form of these
equations is given as follows. Given data f in H - 1(\Gamma s), g in H1/2(\partial \Gamma s), find u in
H1(\Gamma s), and \lambda in H - 1/2(\partial \Gamma s) such that\int 

\Gamma s

\nabla \Gamma su \cdot \nabla \Gamma sv +

\int 
\partial \Gamma s

\lambda v =

\int 
\Gamma s

fv \forall v \in H1(\Gamma s),\int 
\partial \Gamma s

\mu u =

\int 
\partial \Gamma s

\mu g \forall \mu \in H - 1/2(\partial \Gamma s),

(12)

where we have imposed the boundary conditions via the Lagrange multiplier \lambda . If the
solution is sufficiently smooth, then an integration by parts shows that \lambda =  - \bfitxi s \cdot \nabla \Gamma s

u,
where \bfitxi s is defined in Figure 1 (i.e., \lambda is given by the Neumann data). The formulation
(12) is an example of how one can have separate function spaces defined on the domain
\Gamma s and its boundary \partial \Gamma s.

The implementation of this example is given in supplementary section SM1.1; the
output for this example is shown in Figure 2.

4.2. Example: EWOD. We consider a problem of droplet motion in micro-
fluidics applications driven by electro-wetting-on-dielectric (EWOD) [22, 40, 55]. The
model is essentially Hele--Shaw flow with surface tension and electric effects [56, 54]:

\alpha \partial tu+ \beta u+\nabla p = 0, \nabla \cdot u = 0 in \Omega (t),

p = \kappa (t) + E(t), \partial tx \cdot n = u \cdot n on \Gamma (t) \equiv \partial \Omega (t),
(13)

where \Omega (t) \subset \BbbR 2 is the time-dependent droplet domain, \Gamma (t) \equiv \partial \Omega (t) is the liquid-gas
interface (a closed one dimensional curve), u is the fluid velocity, p is the pressure,
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Fig. 2. Visualization of the solution of (SM4) and convergence rates for the numerical error
norms discussed in supplementary section SM1.1.2.

\kappa (t) is the signed curvature of \Gamma (t), E(t) is the electro-wetting force, n(t) is the outer
unit normal vector of \Gamma (t), and x(t) is the parameterization of \Gamma (t); hence, this is a
moving interface problem. The constants \alpha , \beta are material parameters.

With this, we introduce a time-discrete weak formulation proposed in [30]. Given
Lipschitz domains \Omega i, \Gamma i, xi \equiv id\Gamma i in H1(\Gamma i), and Ei+1 in H1/2(\Gamma i), find ui+1 in
H(div,\Omega i), pi+1 in L2(\Omega i), xi+1 in H1(\Gamma i), and \lambda i+1 in H1/2(\Gamma i) such that

\alpha 

\int 
\Omega i

ui+1  - ui

\delta t
\cdot v + \beta 

\int 
\Omega i

ui+1 \cdot v

 - 
\int 
\Omega i

pi+1\nabla \cdot v +

\int 
\Gamma i

\lambda i+1ni \cdot v =  - 
\int 
\Gamma i

Ei+1ni \cdot v \forall v \in H(div,\Omega i),\int 
\Omega i

q\nabla \cdot ui+1 = 0 \forall q \in L2(\Omega i),\int 
\Gamma i

\nabla \Gamma ixi+1 \cdot \nabla \Gamma iy  - 
\int 
\Gamma i

\lambda i+1ni \cdot y = 0 \forall y \in H1(\Gamma i),

 - 
\int 
\Gamma i

xi+1  - xi

\delta t
\cdot ni\mu +

\int 
\Gamma i

ui+1 \cdot ni\mu = 0 \forall \mu \in H1/2(\Gamma i),

(14)

where we use a superscript i to denote the time-index. Note that we have implicitly
used the following backward Euler method for updating x:

(15) xi+1(s) = xi(s) + \delta t[ui+1(xi(s)) \cdot ni(xi(s))]ni(xi(s))

for all arc-length parameters s in \Gamma i.
The curvature is approximated by \lambda i+1, i.e., \kappa i+1 \equiv \lambda i+1, where \lambda i+1 acts as a

Lagrange multiplier enforcing the condition (15). Indeed, the third equation in (14)
is the weak form of the curvature [28, 12]: starting from  - \Delta \Gamma x = \kappa n and using a
simple integration by parts [50] gives

(16)

\int 
\Gamma 

\kappa n \cdot y =  - 
\int 
\Gamma 

\Delta \Gamma x \cdot y =

\int 
\Gamma 

\nabla \Gamma x \cdot \nabla \Gamma y,

where \kappa is the curvature of the closed curve \Gamma and n is the normal vector. Note that,
for a one dimensional curve, \Delta \Gamma \equiv \partial 2

s , where \partial s is the arc-length derivative. If \Gamma is a
surface, then (16) holds with \kappa being the summed curvature of \Gamma .
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Fig. 3. Illustration of the evolution of the droplet boundary \Gamma i, from solving (SM6), at time
index i = 0, 1, 4, 30. Solution \lambda 30

h is also shown.

After solving one time-step, we define the new domain \Gamma i+1 via the parameter-
ization xi+1; the domain \Omega i+1 is defined so that \partial \Omega i+1 \equiv \Gamma i+1. Note that ui+1

h is
implicitly mapped from \Omega i to \Omega i+1 for use at the next time-step. Again, the formu-
lation (14) is an example of how one can have variables defined on interfaces (e.g., \Gamma )
interacting with variables defined in the bulk (e.g., \Omega ).

The implementation of this example is given in supplementary section SM1.2; the
output for this example is shown in Figure 3.

5. Conclusions. We have described the FELICITYMATLAB/C++ toolbox for
modeling and simulating coupled PDE systems and for developing FEMs in general.
It provides a convenient platform to rapidly develop an FE code, experiment with
an algorithm, and solve complicated multiphysics problems with multiple interacting
subdomains. The code generation aspect of FELICITY is central to its flexibility and
ease of use. In this regard, we were inspired by the FEniCS project [37, 39].

FELICITY allows for building a stand-alone application where parts of the imple-
mentation are automated. Complete automation hides details that must be accessed
if the user goes outside the main ``interface"" of a package. On the other hand, doing
everything oneself is tedious, especially for sections of code that almost never need
modification. Our philosophy is to strike a balance between these two extremes.

5.1. Successes. The biggest success of FELICITY is the code generation, which
enables the toolbox to tackle diverse problems while preserving a user-friendly inter-
face. Complicated expressions in a bilinear form are easy to implement at a high
level in the abstract definition file; the user does not need to look at the special pur-
pose matrix assembly code that is generated, although the generated C++ code is
commented and readable. The code generation capability for DoF allocation, interpo-
lation, and point searching have analogous advantages. Thus, a user can easily build
an infrastructure to solve a variety of problems by the FEM. Other successes include
the following:

\bullet Handling of multiple FE spaces on subdomains of varying co-dimension; FE
forms can have contributions from multiple subdomains.

\bullet Mesh geometry can be higher order, and users can access explicit higher order
geometry (e.g., curvature) when defining FE forms.

\bullet Lagrange, H(div), and H(curl) elements are implemented.
\bullet Mesh classes with useful methods, including adaptive refinement in one and
two dimensions. Some mesh generation utilities are included.

\bullet ``Manager"" classes, such as FiniteElementSpace, provide fundamental tools
for managing DoFs, boundary conditions, and other FEM details.

\bullet Efficient C++ implementations of search trees (bitree, quadtree, octree) are
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available for interpolation and closest point searching on higher order meshes.
\bullet Users can couple their FELICITY code directly with other MATLAB code
or toolboxes, such as the optimization toolbox.

\bullet Several demos, help documentation, a manual, and online wikis are available.
No other FE toolbox automatically handles subdomains of varying co-dimension em-
bedded in higher order meshes (to the best of our knowledge). Moreover, the avail-
able elements in FELICITY are stored in a ``flat"" m-file that is directly readable by
the user. The mesh classes are easy to use and take advantage of the MATLAB
triangulation class. The ``manager"" classes are object oriented, flexible, and simple
to use. The search tree implementations are independent of any FEM so they can be
used in many applications; closest point searching of meshes is also useful outside of
FEMs [47]. Furthermore, the ability to leverage other MATLAB functionality cannot
be overstated.

5.2. Areas of improvement. One drawback of FELICITY is that MATLAB
is proprietary software. However, it is professionally maintained and an industry
standard. Another limitation is that FELICITY is mainly meant for solving elliptic
and parabolic PDEs by the FEM. Other limitations are not fundamental, but due
to limited development resources. Indeed, the functionality in FELICITY is a conse-
quence of the author's interests, a fact for most open-source software. Some future
improvements include the following:

\bullet Put in automated parallelism. In principle, one can use the MATLAB parallel
toolbox, but this requires a significant amount of low-level implementation
that has yet to be done.

\bullet Implement more interfaces to external libraries, such as PETSc [10]. Access
to robust, fast solvers is limited to packages that have a MATLAB interface.

\bullet Add new classes of FEs; this is not easy for the casual user to do.
\bullet Develop a better mesh class. The current setup uses the MATLAB triangula-

tion class, which is convenient but makes the following difficult to implement:
Three dimensional adaptive refinement/coarsening, discontinuous Galerkin
(DG) methods, and computing multimesh intersections (such as for cutFEM).

\bullet Implement higher order differentiation of basis functions in FE form defini-
tions. This is difficult because the transformation rule, when mapping from
the reference element, is complicated and hard to automate when computing
higher order derivatives (e.g., third order) on higher order meshes.

\bullet Add more helper classes to lower the barrier for users, such as methods to
build higher order meshes from parameterizations.

\bullet Have an option to hide the implementation details when calling FELICITY
generated mex files.

Another improvement could be to translate FELICITY to use Python or perhaps
Julia, which are open-source. This would alleviate some of the limitations listed here,
as there are PETSc and parallel tools readily available in Python. Unfortunately, the
development time/cost to do this is extremely high.

As for the other improvements, implementing new classes of FEs is difficult for
any FE toolbox; it is not clear how to make this user-friendly. Designing a better
mesh class, within C++, is a viable option. The author has an initial implementation
[51] of the array-based half-facet (AHF) data structure [27, 46, 57] that will be in-
terfaced to MATLAB as a replacement for the current mesh classes. Arbitrary order
differentiation is not often needed in applications (currently FELICITY can compute
the hessian of Lagrange basis functions, including the surface hessian). More helper
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classes can further automate FE implementations, but still allow the user to ignore
them and ``roll their own code.""

Calling the auto-generated mex files is somewhat tedious because of all the input
arguments that must be supplied. One option to alleviate this would be to auto-
generate the script that calls the mex file, but the script needs to be interfaced with
the rest of the code so it is only a partial solution. Another option is to make the
mex file input arguments more flexible so that the ordering of the arguments does not
matter.

A more powerful option, which would be far-reaching into many other aspects of
FELICITY, is to take advantage of the future replacement of the mesh class. Since
the mesh class is developed in C++, the auto-generated matrix assembly code could
be directly integrated into the mesh class. Similarly, other parts could be directly
integrated. Indeed, one could envisage auto-generating a special purpose mesh class
(built on the standard mesh class) that handles the FE spaces (e.g., allocating DoFs,
getting DoF indices on subdomains), includes the matrix assembly routines, and has
the point-searching and interpolation capability built-in. Of course, care must be
taken to ensure that the code integration is not so tight that the user cannot get
between the modules.

In conclusion, FELICITY has immense potential to expand and solve many kinds
of complicated computational problems with the FEM.
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