SUPPLEMENTARY MATERIALS: FELICITY: A MATLAB/C++
TOOLBOX FOR DEVELOPING FINITE ELEMENT METHODS AND
SIMULATION MODELING*

SHAWN W. WALKER'

SM1. FELICITY Demos. We demonstrate how to implement the example
problems in subsection 4.1 and subsection 4.2 using FELICITY. In order to run these
examples, FELICITY must be installed properly (see the wiki [SM8] for more info).

SM1.1. Laplace-Beltrami With Weak Boundary Conditions. We outline
the implementation of the problem in subsection 4.1; the full example can be found in
the FELICITY sub-directory: ./Demo/Laplace Beltrami_Open_Surface. Executing
the script test_Laplace Beltrami_Open_Surface at the Matlab prompt will run this
example. Note: this script will also compile the mex files that this demo uses.

This example illustrates the following features in FELICITY:

e Surface finite element methods.

e Higher order meshes, e.g. piecewise quadratic.

e Finite element spaces defined on different sub-domains. E.g. implementing
bilinear /linear forms that involve finite element functions from two different
FE spaces defined over different sub-domains.

e Access to domain (and sub-domain) geometric terms when defining forms.

SM1.1.1. Finite Element Formulation. Let 7, be a piecewise quadratic sur-
face triangulation (of mesh size h) of a surface I' := int (Upe7, T); we assume I'
approximates a smooth surface I'y with smooth boundary OI's; parameterized by

T
1
(SM1) U(q1,q2) = (qth, 5((1? - q%)) , for all (q1,q2) € {¢} + a3 < 1};

see Figure 1. Recalling subsection 2.1.5, we define a geometric element space
(SM2) Gu(D) ={ve[C°D)P:vig=noF=", for T € T,n € [La(Trer)]*},

where T represents r (a piecewise linear approximation of I'y). Similar to (7), we
define any quadratic triangle 7' € Tj, via T' = ®7(Tef), P71 := g o F7, where T is
the corresponding linear triangle and gy, € G, (') captures (SM1).

Next, we introduce the following Lagrange FE spaces

Vh = {Uh S CO(F) : Uh|T =no Q;laT S 7;L7n S PQ(Tref)}a

(SM3) i o
Wh = {/.Lh eC (81—‘) : :uh|E =po QE aE S 5}”()0 S Pl(Eref)}v

where &, = {E} is the set of conforming (quadratic) boundary edges that make up
O, ie. O := UgeceE, and @5 : E.of — E is defined as follows. Given E € &, there
exists a T(F) € Ty, such that E C 0T (FE); equivalently, there exists Ey C 0Tyt and
Zg : Eref — OTyer such that Ey = Zp(FErf). Whence, we obtain ®p := ®1(g) 0 Zg.

*Supplementary materials for SISC MS#M112874.
Funding: The author acknowledges funding support from NSF grants DMS-1418994 and DMS-
1555222.
TDepartment of Mathematics, Louisiana State University, —Baton Rouge, LA
(walker@math.lsu.edu).

SM1

mailto:walker@math.lsu.edu

SM2 S. W. WALKER

With this, the discrete variational formulation of (12) follows. Given data f; in
Vi, gn in V3, find uy, in V3, and Ay, in Wy, such that

(Vrun, Vevr)p + (A vn)gr = (fr,vn)ps Yon € Vi,

(SM4)
(tnsun)or = (Hns gn)or s Yin € Wh,

where (up,vn)p = [punvn and (un, vr)gr = [or BRR-
SM1.1.2. Form Files. The abstract definition file for the forms in (SM4) is in
the m-file: MatAssem LapBel Open_Surface.m, which is listed here:
function MATS = MatAssem_LapBel_Open_Surface()
#MatAssem_LapBel_Open_Surface

% define domain (2-D surface in 3-D)
Gamma = Domain(’triangle’,3);
dGamma = Domain(’interval’) < Gamma; % subset

% define finite element spaces
V_h = Element(Gamma, lagrange_deg2_dim2); % piecewise quadratic
W_h = Element(dGamma,lagrange_degl_diml); % piecewise linear

% define functions in FE spaces
v_h = Test(V_h);
u_h = Trial(V_h);
mu_h = Test(W_h);

% define (discrete) forms
M = Bilinear(V_h,V_h);

M = M + Integral(Gamma, v_h.val * u_h.val);
K = Bilinear(V_h,V_h);
K = K + Integral(Gamma, v_h.grad’ * u_h.grad);

B = Bilinear(W_h,V_h);
B = B + Integral(dGamma, mu_h.val * u_h.val);

% set the minimum number of quadrature points to use
Quadrature_Order = 10;

% define geometry representation:

% Domain, piecewise quadratic representation
G_Space = GeoElement (Gamma,lagrange_deg2_dim?2) ;

% define a set of matrices

MATS = Matrices(Quadrature_Order,G_Space);

% collect all of the matrices together

MATS = MATS.Append_Matrix(B);

MATS = MATS.Append_Matrix(K);

MATS = MATS.Append_Matrix(M);

The m-file defines the following three forms: M ~ (up,vp)p, K ~ (Vrup, Veop)p,
and B ~ (g, un)gp- Since B is an integral over oI of functions defined on I' and Or’,
the definition file specifies the two domains by

SUPPLEMENTARY MATERIALS: FELICITY SM3

Gamma = Domain(’triangle’,3); % surface in 3-D

dGamma = Domain(’interval’) < Gamma; % subset of Gamma
i.e. dGamma is specified to be a subset of Gamma. Hence, FELICITY can automatically
handle integrating the trace of a finite element function over a sub-domain.

Next, we have another definition file used to compute numerical errors to check
convergence rates; see the m-file Compute Errors_LapBel Open_Surface.m, which is
listed here:

function MATS = Compute_Errors_LapBel_Open_Surface()

%Compute_Errors_LapBel_Open_Surface

% define domain (2-D surface in 3-D)
Gamma = Domain(’triangle’,3);
dGamma = Domain(’interval’) < Gamma; ’% subset

% define finite element spaces

V_h = Element(Gamma, lagrange_deg2_dim2,1); % piecewise quadratic
W_h = Element(dGamma,lagrange_degl_diml,1); % piecewise linear
G_h = Element(Gamma, lagrange_deg2_dim2,3); % vector PW quadratic

% define functions in FE spaces
u_h = Coef(V_h);
lambda_h = Coef (W_h);

NV_h
TV_h

Coef (G_h);
Coef (G_h);

% geometry access functions
gf_Gamma = GeoFunc (Gamma) ;
gf_dGamma = GeoFunc(dGamma) ;

% define exact solns
u_exact = @(u,v) cos(v.*pi.*2.0).*sin(u.*pi.*2.0);
lambda_exact = <long formula>;

% define (discrete) forms
u_L2_Error_sq = Real(1,1);
u_L2_Error_sq = u_L2_Error_sq + Integral(Gamma,...
(u_h.val - u_exact(gf_Gamma.X(1),gf_Gamma.X(2)))"2);

lambda_L2_Error_sq = Real(1l,1);
lambda_L2_Error_sq = lambda_L2_Error_sq + Integral(dGamma,...
(lambda_h.val - lambda_exact(gf_dGamma.X(1),gf_dGamma.X(2)))"2);

% check normal vector

NV_Error_sq = Real(1,1);

NV_Error_sq = NV_Error_sq + Integral(dGamma,...
sum((gf_Gamma.N - NV_h.val)."2));

% check tangent vector
TV_Error_sq = Real(1,1);

SM4 S. W. WALKER

TV_Error_sq = TV_Error_sq + Integral(dGamma,...
sum((gf_dGamma.T - TV_h.val)."2));

% check Neumann data
xi_h = cross(gf_dGamma.T,gf_Gamma.N) ;
Neumann_L2_FError_sq = Real(1l,1);
Neumann_L2_Error_sq = Neumann L2 _Error_sq + Integral (dGamma,. ..
(lambda_h.val - (-dot(xi_h,u_h.grad)))°2);

% set the minimum order of accuracy for the quad rule
Quadrature_QOrder = 10;

% define geometry representation:

% Domain, piecewise quadratic representation
G_Space = GeoElement (Gamma,lagrange_deg2_dim?2) ;

% define a set of matrices
MATS = Matrices(Quadrature_Order,G_Space);

<similar conclusion code as before>

A few new items appear in this definition file: the geometry FE space Gy, := [V}]?,
given coefficient functions Coef (analogous to Test and Trial), geometry access
functions GeoFunc, and Real forms that are dense matrices where each entry is
defined to be an integral of given data. Essentially, the definition file computes
the following errors: (1) |lup — uH%z(F)7 where u is the exact solution given by
u(z,y) = cos(2mx) sin(2my); (2) ||A\n — /\HQL?(ar)v where A is the corresponding ex-
act solution; (3) |lvp — IhV5||2L2(aF , where v, is the exact normal vector, I} is the
Lagrange interpolation operator of Gy, and vy is the discrete normal vector on T
4) |mn — IhTS||2L2(aF) (analogous to (3)); and (5) || An — (=& - Vpuh)H%Q(aF), where
& = T, X vy, (note that (5) measures the consistency of the Neumann data).

Getting access to the domain geometry is done by, first, including:

gf_Gamma = GeoFunc(Gamma) ;

gf_dGamma = GeoFunc(dGamma) ;
in the definition file. Then, when defining an Integral, we access the normal vector
vy, and tangent vector 1, via gf_Gamma.N and gf_dGamma.T.

REMARK SM1.1 (access to geometry). Other geomelric quantities can be ac-
cessed [SM7] using gf-Gamma.<opt>, where <opt> can be Kappa (summed curvature),
VecKappa (vector curvature), Kappa_Gauss (Gauss curvature), and Shape_Op (shape
operator) [SM6]. The meaning of the different quantities depends on whether the do-
main is a surface or a curve. For instance, for a curve (e.g. OT'), Kappa_Gauss is
not valid and Kappa is the signed curvature; for a surface, Kappa is the sum of the
two principle curvatures. Note that these options are only useful when a higher order
representation of the surface is used (e.g. piecewise quadratic). For a piecewise linear
triangulation, the curvature is zero (point-wise) within each triangular face.

SM1.1.3. Execution. Running the simulation of (SM4) requires several steps:
creating a mesh with sub-domains, generating a higher order surface approximation,
defining FE spaces, assembling matrices, interpolating given data, solving the linear
system, computing the errors, and visualizing the results. For brevity, we do not give

SUPPLEMENTARY MATERIALS: FELICITY SM5

the complete code here, but outline the main parts (see
Execute_LapBel Open Surface.m for the execution script).

We start by using triangle mesh_of_disk (included in FELICITY) to define
a quasi-uniform mesh of the unit disk centered at the origin. Next, apply (SM1) to
create a piecewise linear surface triangulation of a saddle surface, followed by creating
a MeshTriangle object, and adding OI' as a sub-domain. The code is summarized
here:

Refine_Level = <choose>;

[Tri, Pts_ql triangle_mesh_of_disk([0 O 0],1,Refine_Level);

% apply parameterization

Psi = @(q1,92) [ql, g2, 0.5%(ql."2 - g92.72)];

Pts_x_y_z = Psi(Pts_q(:,1), Pts_q(:,2));

Mesh = MeshTriangle(Tri, Pts_x_y_z, ’Gamma’);

% add the boundary

BDY = Mesh.freeBoundary();

Mesh Mesh.Append_Subdomain(’1D’,’dGamma’ ,BDY) ;

Next, define the space Gy, ~ G_Space for the piecewise quadratic approximation:
P2_RefElem = ReferenceFiniteElement(lagrange_deg2_dim2());
G_Space = GeoElementSpace(’G_h’, P2_RefElem, Mesh);

G_DoFmap =
mex_LapBel_DoF_Alloc_G_Space(uint32(Mesh.ConnectivityList));
G_Space = G_Space.Set_DoFmap(Mesh,uint32(G_DoFmap));

Note that we use a mex file to create the DoFmap for G_Space. Next,
Geo_Points_hat =...
G_Space.Get_Mapping_For_Piecewise_Linear_Mesh(Mesh) ;
where Geo_Points_hat are the nodal values representing g, € Gy, which is a piecewise
quadratlc _interpolant of the underlying piecewise linear mesh stored in Mesh, i.e.
gh: T — T is the identity map on T. The script file then processes gy into gy € Gy,
which is the identity map on T' (recall (SM1); see the script for details). This gives a
new variable Geo _Points ~ g;,. Note: generating higher order curved elements that
maintain convergence has been studied in [SM2, SM5].
Now we define the finite element spaces V_Space ~ V},, W_Space ~ Wj:
V_Space = FiniteElementSpace(’V_h’, P2_RefElem, Mesh, ’Gamma’);
V_Space = V_Space.Set_DoFmap(Mesh,uint32(G_DoFmap)) ;

P1_RefElem = ReferenceFiniteElement (lagrange_degl_dim1());
W_Space = FiniteElementSpace(’W_h’, P1_RefElem, Mesh, ’dGamma’);
W_DoFmap = mex_LapBel_DoF_Alloc_W_h(...

uint32(Mesh.Get_Global_Subdomain(’dGamma’))) ;
W_Space = W_Space.Set_DoFmap(Mesh,uint32(W_DoFmap)) ;

We were able to “reuse” the DoFmap from G_Space in V_Space because they have the
same reference finite element. For W_Space, we point out that W_DoFmap is allocated
on the sub-domain 0I" ~ dGamma.

Assembling the FE matrices requires that we know how dGamma is embedded in
Gamma, because of the form B ~ (5, up)sp- So we invoke the following lines

Domain_Names = {’Gamma’; ’dGamma’};

Gamma_Embed = Mesh.Generate_Subdomain_Embedding_Data(Domain_Names) ;

SM6 S. W. WALKER

. Convergence Rates
Solution uy, — :

0.6 ®
N :
05 A .,
S107 E e [|u — w2y
04 ==X = Nl 2y
—— | Invs — vnll z2(r)
03 1051 [Hn7s = 7l 22y
=& - [[An = (=& - Vrun) |l 2y
0.2 —6—0(h?) line
——O(h®) line
0.1 108 ! ! . .
2 3 4 5 6 7
0 Refinement Level

Fig. SM1: Solution of (SM4) and convergence rates for the numerical errors.

which yields the embedding data. Now call the mex file for assembling the matrices:
FEM = mex_MatAssem_LapBel_Open_Surface(...

[1,Geo_Points,G_Space.DoFmap, [],Gamma_Embed, ...
V_Space.DoFmap,W_Space.DoFmap) ;

We see that the matrix assembler needs the domain geometry description, how the

sub-domains are embedded, and the DoFmaps of the FE spaces. Note: no two mex

files for assembling different matrices (with different spaces) will have the same calling

procedure. One must run the mex file at the Matlab prompt with no arguments to

display information on what arguments (and their order) must be passed in.

REMARK SM1.2. Nothing special needs to be done by the user to compute traces of
finite element functions on sub-domains; it is done automatically by the matriz assem-
bly mex file. This requires the sub-domain embedding information (e.g. Gamma_Embed),
which can be automatically calculated with the Mesh method:
Generate_Subdomain_Embedding_Data.

FELICITY provides an accessor class for easily extracting the FE matrices:
LB_Mats = FEMatrixAccessor(’Laplace-Beltrami’ ,FEM);

M = LB_Mats.Get_Matrix(’M’); % pull out matrices
K = LB_Mats.Get_Matrix(’K’);
B = LB_Mats.Get_Matrix(’B’);

Now combine the matrices into the block linear system and solve:
W_Num = W_Space.num_dof;
ZZ = sparse(W_Num,W_Num) ;

MAT = [K, B’;
B, 7272];
RHS = [M *x f_h; B * g_h];

Soln MAT \ RHS; % solve
Here, f h ~ f}, := I f € Vi, gth ~ g5, := I,g € V}, are interpolants of the data f, ¢g in
(12). Next, parse Soln:

V_Num = V_Space.num_dof;

u_h = Soln(1:V_Num,1);

lambda_h = Soln(V_Num+1l:end,1);
where u_h ~ up € Vj, and lambda_h ~ A\, € Wj,.

The rest of the script visualizes the solution and computes the convergence rates
of the error norms discussed in subsection SM1.1.2 (see Figure SM1).

SUPPLEMENTARY MATERIALS: FELICITY SM7

SM1.2. EWOD. For brevity, we only outline the implementation of the prob-
lem in subsection 4.2; the full demo can be found in the FELICITY sub-directory:
. ./FELICITY/Demo/EWOD. Executing the script test _EWOD_FalkWalker at the Matlab
prompt will run this example. Note: this script will also compile the mex files that
this demo uses.

This example illustrates the following features in FELICITY:

e Time dependent problems.
Deforming meshes.
Using H(div,?) elements.
Finite element spaces defined on different sub-domains.
Access to domain (and sub-domain) geometric terms when defining forms.

SM1.2.1. Finite Element Formulation. Let hi be a piecewise linear trian-
gulation of Q! C R? (i denotes a time-index) Withﬁé‘};’ being the set of boundary edges
conforming to 7}/, i.e. I'' = 9Q% and I'" = Upee; L. Next, introduce the following FE

spaces on the “current” domain 7, I':
¢ = BDM,;(Q),

Q= {an € L*(Q) s qulr = noF1', T € Tj,n € Po(Trer) },
(SM5) M}ZL = {:U‘h € CO(Z) /u'h|E = UOFE aE S ghan S Pl(rcf)}>

Y, = {yn € [C°(T)* s ynle = moF', E € &, m € [P1(Ever)]?},

Gj, = {r, € [COUQ) :xp|r =n o F:'\ T € T, m € [Pr(Trer)]*},
where V¢ is the lowest order Brezzi—Douglas—Marini space of piecewise linear vector
functions [SM1, SM4] over . The space G} is the geometric element space for
representing the geometry of the domain QF.

With this, the discrete variational formulation of (14) follows. Given Lipschitz

domains ¢, I'¥, a domain parameterization Xﬁ = idr: in Yﬁ> previous velocity u;l in

Vz 1 and electro -wetting force EZ+1 in M}, find u“rl in Vi, Z+1 inQ, x "H inY?,
and)\“’1 in M} such that

(SM6)
(5 +58) (05 V) - (179)g o (57 =
ot (uiw)Qi - (Elizﬂ’ni 'V>Fi , WveV,

—(Vouyhan)g. =0, Vau € Q)
(VF1X2+17vFiy;l+1)Fi — ()\Zﬂ,nl . yh)r‘i =0, VyrneYy,

1 X . 1)
—5 (7t) o+ (wtt s = — (x5, -1 pn) e s Vpn € My,

where (up, vi)gi = [o: Wh -V is the L2(Q) inner product and (Xp, y5)pi = [ri X -Ya
is the L2(I'") inner product. After solving one time-step, we define the new domain
I+ via the parameterization xh 1. this induces a displacement from I'* to "1 which
we use to update Q¢ to Q! via a harmomc extension [SM3].

SM1.2.2. Form File. The abstract definition file for the forms in (SM6) is in
the m-file: MatAssem_EWOD_FalkWalker.m, which is listed here:

function MATS = MatAssem_EWOD_FalkWalker ()

%MatAssem_EWOD_FalkWalker

SM8 S. W. WALKER

% define domain (2-D domain with 1-D boundary)
Omega = Domain(’triangle’);
Gamma = Domain(’interval’) < Omega; % subset

% define finite element spaces
V_h = Element(Omega,brezzi_douglas_marini_degl_dim2); % BDM_1

Q_h = Element (Omega,lagrange_deg0_dim2); 7 piecewise constant
M_h = Element(Gamma,lagrange_degl_diml); J piecewise linear
Y_h = Element(Gamma,lagrange_degl_diml,2); % vector PW linear

% space that represents the geometry of the domain
G_h = Element(Omega,lagrange_degl_dim2,2); % vector PW linear

% define functions in FE spaces

u_h = Trial(V_h);
v_h = Test(V_h);
g_h = Test(Q_h);

mu_h = Test(M_h);

x_h = Trial(Y_h);

y_h = Test(Y_h);
s_h = Trial(G_h);
r_h = Test(G_h);

% geometric functions
gf = GeoFunc(Gamma) ;

% define (discrete) forms
M = Bilinear(V_h,V_h);
M =M + Integral(Omega, v_h.val’ * u_h.val);

K = Bilinear(Y_h,Y_h);
K = K + Integral(Gamma, sum(sum(x_h.grad .* y_h.grad)));

B = Bilinear(Q_h,V_h);
B = B + Integral(Omega, q_h.val * u_h.div);

C = Bilinear(M_h,V_h);
C = C + Integral(Gamma, mu_h.val * (u_h.val’ * gf.N));

o
1]

Bilinear (M_h,Y_h);
D = D + Integral(Gamma, mu_h.val * (x_h.val’ * gf.N));

chi = Linear(M_h);
chi = chi + Integral(Gamma, mu_h.val * (gf.X’ * gf.N));

SUPPLEMENTARY MATERIALS: FELICITY SM9

=
]

Bilinear(G_h,G_h);
A + Integral(Omega, sum(sum(s_h.grad .* r_h.grad)));

=
]

% set the minimum order of accuracy for the quad rule
Quadrature_Order = 5;

% define geometry representation (piecewise linear)
G_Space = GeoElement (Omega) ;

% define a set of matrices
MATS = Matrices(Quadrature_Order,G_Space);

<similar conclusion code as before>

The m-file defines several bilinear/linear forms: M ~ (up, va)qi, K ~ (Vrxn, Voya)pi,
B ~ (qh,V_~ up)gi, C~ (th,up -np)pi, D~ (p,Xp - 0p)pi, A ~ (Vsy, Vry)g: for
sh, Ty in Gj,, and chi ~ (pp, X -np)p;. Similar to subsection SM1.1.2, the definition
file specifies two sub-domains by

Omega = Domain(’triangle’);

Gamma = Domain(’interval’) < Omega; 7% subset
So this is another example of how FELICITY can automatically handle integrating
the trace of a finite element function over a sub-domain.

SM1.2.3. Execution. An implementation of a time-dependent simulation of
(SM6) is given in Execute EWOD_FalkWalker.m. For brevity, we do not give the
complete code here but only outline the main parts.

The problem parameters are given by: alpha = 0.01, beta = 1.0, dt = 0.1. The
initial velocity is u% = 0. The initial domain QU is taken to be a unit disk centered at
the origin, with boundary I'? := 99, and is stored as a MeshTriangle object named
Mesh. Throughout this section, the time-index ¢ refers to the current time-index in
the time-stepping loop below.

Next, define the space G} ~ G_Space to handle the piecewise linear mesh:

P1_RefElem_2D = ReferenceFiniteElement(lagrange_degl_dim2());

G_Space = GeoElementSpace(’G_h’,P1_RefElem_2D,Mesh);

G_Space = G_Space.Set_DoFmap(Mesh,uint32(Mesh.ConnectivityList));
This is simpler than in subsection SM1.1.3 because we can use the mesh connectivity
directly as the DoFmap. We also set a fixed sub-domain of G_Space to be I' ~ Gamma:

(SMT7) G_Space = G_Space.Append Fixed Subdomain(’Gamma’) ;

this is used later to extend the boundary displacement to the entire domain 2 by a
Laplace extension (see (SM9)).

With this, we get the domain coordinates that represent ':

x_h_i = G_Space.Get_Mapping_For_Piecewise_Linear_Mesh(Mesh);

x_h_evolve(Num_Steps+1).data = []; % init

x_h_evolve(l).data = x_h_i;
where we allocated a struct named x_h_evolve to store the domain coordinates for
several time-steps. Note that x_h_i represents the identity map on Q.

Next, we define the finite element spaces V_Space ~ Vi, Q_Space ~ Q¢ , Y_Space
~ Y}, MSpace ~ M;, as in subsection SM1.1.3, in addition to other processing. For
example, we create the space V7§ by:

SM10 S. W. WALKER

BDM1_RefElem =...

ReferenceFiniteElement (brezzi_douglas_marini_degl_dim2());
V_Space = FiniteElementSpace(’V_h’, BDM1_RefElem, Mesh, ’Omega’);
V_DoFmap = mex_EWOD_DoF_Alloc_V_h(uint32(Mesh.ConnectivityList));
V_Space V_Space.Set_DoFmap(Mesh,uint32(V_DoFmap)) ;

REMARK SM1.3. The DoFmaps for the finite element spaces do not depend on
the time index because the topology of the underlying mesh is assumed not to depend
on time. Of course, new DoFmaps must be generated if the mesh topology is ever
regenerated; this is necessary when mesh elements are close to singular or invalid
(e.g. inverted elements).

The next part of the code computes the map from DoF indices in M fl to DoF
indices in Gﬁl, and similarly the map from DoF indices in be to DoF indices in GZ.
This is necessary for purposes of interpolation, as well as extending the boundary
velocity to the interior bulk mesh in order to smoothly update the domain Q (see
(SM9)). We start by putting the coordinates of the DoFs for GY into a quadtree:
BB 2x[-1.001, 1.001, -1.001, 1.001]; % bounding box
QT = mexQuadtree(x_h_i,BB);
Recall x_h_i from earlier. Then we find the coordinates of the DoF's for the initial
finite element spaces M and Y?:

M_Points = M_Space.Get_DoF_Coord(Mesh) ;

Y_Points = Y_Space.Get_DoF_Coord(Mesh) ;
We then search for the closest DoF in GY to each point in M} (Y9):

[M_h_to_G_h, QT_dist] = QT.kNN_Search(M_Points,1);

[Y_h_to_G_h, QT_dist] = QT.kNN_Search(Y_Points,1);

delete(QT); % delete quadtree object
where we used a nearest neighbor search with the quadtree object. The column vector
M_h_to_G_h has the following meaning. Given the ith DoF in M 2, the corresponding
DoF index in GY is given by M_h_to_G_h(i); a similar format holds for Y_h_to_G_h.

REMARK SM1.4. Note that the above code is evaluated before the time-stepping
loop below because the DoF index maps do not depend on time (so long as the mesh
connectivity does not change).

We also store the DoF indices of G, that do not lie on I" (recall (SM7)):
(SMS8) G_.h Free DoFs = G_Space.Get _Free DoFs(Mesh,’all’);

Assembling the FE matrices requires the mesh embedding information (c.f. sub-
section SM1.1.3):

Domain_Names = {’Omega’; °’Gamma’l};

Omega_Embed = Mesh.Generate_Subdomain_Embedding_Data(Domain_Names) ;
In addition, the BDM; space requires choosing a consistent orientation of all facets
(i.e. edges) in the mesh [SM1, SM4]. This is accomplished by:

Edges = Mesh.edges;

[*, Omega_Orient] = Mesh.Get_Facet_Info(Edges);
Note that both Omega_Embed and Omega Orient only depend on mesh topology, so
they do not need to be recomputed at each time-step.

SUPPLEMENTARY MATERIALS: FELICITY SM11

Next, start the time-stepping loop and assemble matrices on 2’
for ii = 1:Num_Steps

FEM = mex_MatAssem_EWOD_FalkWalker(...
[1,x_h_i,G_Space.DoFmap,Omega_Orient,Omega_Embed, ...
G_Space.DoFmap,M_Space.DoFmap,Q_Space.DoFmap, . ..
V_Space.DoFmap,Y_Space.DoFmap) ;

where we use the current domain coordinates x-h_i. We then extract the matrices,
M, K, B, C, D, chi, as we did in subsection SM1.1.3, and form the matrix system for

(SM6):

VN = V_Space.num_dof;

QN = Q_Space.num_dof;

YN = 2%Y_Space.num_dof;

MN = M_Space.num_dof;

MAT =...

[((alpha/dt)+beta)*M, -B’, sparse(VN,YN), C’;
-B, sparse(QN,QN), sparse(QN,YN), sparse(QN,MN);

sparse (YN,VN), sparse(YN,QN), K, -D’;

C, sparse(MN,QN), -(1/dt)*D, sparse(MN,MN)];

RHS=[(alpha/dt)*M*u_h-C’*E_h; zeros(QN,1);
zeros(YN,1); -(1/dt)*chi];
Then we solve: Soln = MAT \ RHS and parse the solution, analogously to subsec-
tion SM1.1.3, to obtain uh ~ uﬁj‘l, p-h ~ pZ‘H, x_h new bdy ~ xﬁj‘l, lambda_h
~)\}fl. Again, nothing special had to be done for the embedded sub-domain I'; recall
Remark SM1.2.

Using x_h new_bdy, we update the domain coordinates x_h_i for the next time
step using a harmonic extension, which we now describe. Note that the coordinates
of the new boundary I'"*! is in x_h_new_bdy, which is ordered according to the DoF
indices in YZ~ So, upon recalling the DoF index map Y_h_to_G.h from earlier, we
extract the coordinates of the previous boundary I'? by

x_h_old_bdy = x_h_i(Y_h_to_G_h,:);
which is also ordered according to the DoF indices in Y} . Therefore, we can compute
the displacement of the boundary by:

Displace_bdy = x_h_new_bdy - x_h_old_bdy;

Next, we create a two-column matrix that will eventually contain the vector-
valued displacement of the domain 2:

Displace = G_Space.Get_Zero_Function; 7% init

Displace(Y_h_to_G_h,:) = Displace_bdy;
where we set the boundary values of the displacement to Displace_bdy. We then
reshape the two-column matrix into a long column vector:

D_Soln = Displace(:);

We now extend the boundary displacement via Laplace’s equation, i.e. we solve
the following PDE (given in strong form):

—Ad" =0, in QF,

i+1 _ gi+1
artt = ditt,

SM9 .
() on I',

; i+1
where Displace bdy ~ df} .

SM12 S. W. WALKER

Evolution of I'

A, at Final Time
15

05 0° \/ !
05

= 0 _
> 0 o
05 /\ 05
05 1

2 ,1‘_5 ‘1 ,0‘5 0 0_‘5 1‘ 1‘5 2‘ -1‘.5 -1 -O‘.S (; O.‘S Z‘l l.‘5
Fig. SM2: Tllustration of the evolution of I'?, from solving (SM6), at i = 0, 1, 4, 30.
Solution A3Y is also shown.

This extension is achieved by the following commands:

A = EWOD_Mats.Get_Matrix(’A’);

R1 = -A * D_Soln; % set boundary conditions

D_Soln(G_h_Free_DoFs,1) =...

A(G_h_Free_DoFs,G_h_Free_DoFs) \ R1(G_h_Free_DoFs,1);

Displace(:) = D_Soln; % put back into two-column matrix format
Recall (SM8). This now yields Displace ~ d**!, which is used to update the Q
coordinates:

x_h_new = x_h_i + Displace;
Then, we store the new domain coordinates and update the coordinates for the next
time-step:

% store solution

x_h_evolve(ii+l).data = x_h_new; % store it

x_h_i = x_h_new; % update for next time-step
Finally, we close the time-stepping loop: end.

Plots of the evolution of the droplet boundary, and Ay, are shown in Figure SM2.

REFERENCES

[SM1] D. Borri, F. BrREzzl, AND M. FORTIN, Mized Finite Element Methods and Applications,
vol. 44 of Springer Series in Computational Mathematics, Springer-Verlag, New York, NY,
2013.

[SM2] P. CIARLET AND P.-A. RAVIART, Interpolation theory over curved elements, with appli-
cations to finite element methods, Computer Methods in Applied Mechanics and En-
gineering, 1 (1972), pp. 217 — 249, https://doi.org/10.1016/0045-7825(72)90006-0, http:
/ /www.sciencedirect.com/science/article/pii/0045782572900060.

[SM3] R. S. FALK AND S. W. WALKER, A mized finite element method for EWOD that directly
computes the position of the moving interface, STAM Journal on Numerical Analysis, 51
(2013), pp. 1016-1040.

[SM4] G. N. Gatica, A Simple Introduction to the Mized Finite Element Method: Theory and
Applications, SpringerBriefs in Mathematics, Springer, Jan 2014.

[SM5] M. LENOIR, Optimal isoparametric finite elements and error estimates for domains involving
curved boundaries, SIAM Journal of Numerical Analysis, 23 (1986), pp. 562-580.

[SM6] S. W. WALKER, The Shapes of Things: A Practical Guide to Differential Geometry and the
Shape Derivative, vol. 28 of Advances in Design and Control, STAM, 1st ed., 2015.

[SM7] S. W. WALKER, FELICITY: manual, 2017, https://www.mathworks.com/matlabcentral/
fileexchange/31141-felicity /.

[SM8] S. W. WALKER, Felicity wiki documentation, 2017, https://github.com/walkersw/
felicity-finite-element-toolbox /wiki.

https://doi.org/10.1016/0045-7825(72)90006-0
http://www.sciencedirect.com/science/article/pii/0045782572900060
http://www.sciencedirect.com/science/article/pii/0045782572900060
https://www.mathworks.com/matlabcentral/fileexchange/31141-felicity/
https://www.mathworks.com/matlabcentral/fileexchange/31141-felicity/
https://github.com/walkersw/felicity-finite-element-toolbox/wiki
https://github.com/walkersw/felicity-finite-element-toolbox/wiki

	FELICITY Demos
	Laplace-Beltrami With Weak Boundary Conditions
	Finite Element Formulation
	Form Files
	Execution

	EWOD
	Finite Element Formulation
	Form File
	Execution

	References

