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A FINITE ELEMENT METHOD FOR THE GENERALIZED ERICKSEN MODEL
OF NEMATIC LIQUID CRYSTALS

Shawn W. Walker*

Abstract. We consider the generalized Ericksen model of liquid crystals, which is an energy with
8 independent “elastic” constants that depends on two order parameters n (director) and 𝑠 (variable
degree of orientation). In addition, we present a new finite element discretization for this energy, that
can handle the degenerate elliptic part without regularization, with the following properties: it is stable
and it Γ-converges to the continuous energy. Moreover, it does not require the mesh to be weakly acute
(which was an important assumption in our previous work). Furthermore, we include other effects such
as weak anchoring (normal and tangential), as well as fully coupled electro-statics with flexo-electric
and order-electric effects. We also present several simulations (in 2-D and 3-D) illustrating the effects
of the different elastic constants and electric field parameters.
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1. Introduction

Liquid crystals (LCs) are a classic example of anisotropic matter. Indeed, LCs are considered a meso-phase
of matter, between a liquid and a solid, which is directly due to the anisometric shape of the LC molecules
(i.e. LCs are an anisotropic material). The most famous application of LCs are in display devices [47, 78], but
many other novel uses are being found in material science, such as self-assembly of composites, optics, and
biotechnology [53].

The mathematical modeling of LCs is rather sophisticated. The Landau-deGennes macroscopic order param-
eter Q is derived via an ensemble type of averaging [84, 87]. With this, and the tools of classical continuum
mechanics, one can formulate an energy functional which the LC material minimizes at equilibrium. Mathemat-
ical analysis of the Q-tensor model has been done in several works; for instance, see [10–12,59,61,74].

In contrast, the Oseen-Frank model is the simplest model of a nematic LC [37, 49, 87]. This model uses a
unit vector field n called the director as the order parameter. The corresponding energy functional is given by∫︀
Ω
|∇n|2 (in the one-constant case). Much of the mathematical analysis of Oseen-Frank is related to harmonic

mappings [4,15,16,28,41,45,46,57]. The Oseen-Frank model is a work-horse of the display industry [42,75,81],
however its main drawback is that defects (discontinuities in n) usually have infinite energy.

Keywords and phrases. Liquid crystals, defects, finite element method, gamma-convergence, flexo-electric.

Department of Mathematics and Center for Computation and Technology (CCT), Louisiana State University, Baton Rouge,
LA 70803, USA.
*Corresponding author: walker@math.lsu.edu

Article published by EDP Sciences c○ EDP Sciences, SMAI 2020

https://doi.org/10.1051/m2an/2019092
https://www.esaim-m2an.org
mailto:walker@math.lsu.edu
https://www.edpsciences.org


1182 S.W. WALKER

The Ericksen model of LCs was developed to allow for defects with finite energy [34, 87]. Here, two order
parameters are used, n and 𝑠, with a corresponding (one-constant) energy functional given by (5.1). The
preliminary mathematical analysis of the Ericksen model can be found in [5, 6, 55,56] with later work in [25].

Minimizers of the Ericksen model may yield non-trivial defects [18, 20, 23, 55, 56, 80]. The variable degree-of-
orientation variable 𝑠 in (5.1) gives a degenerate Euler–Lagrange equation for n. The advantage here is that
it allows for line and plane defects (of n) in dimension 𝑑 = 3 with finite energy. Defects are important in
applications, especially those that lie on three dimensional space curves [7, 29,43,85].

Many numerical methods have been developed for simulating the statics and dynamics of liquid crystals
[1–3,14,30,77]; see [9] for a survey. The methods in [4,15,28,57] are for harmonic mappings, i.e. nematic liquid
crystals with a fixed degree of orientation. However, until recently, there has not been much numerical work on
the Ericksen model, except for [14,25].

A method was developed in [69, 70] by the author and collaborators to solve the (one-constant) Ericksen
model of nematic liquid crystals (summarized in Sect. 2.1.1). A discrete form of the energy (5.2) was developed
in [69,70] and shown to Γ-converge to (5.2); in addition, a method for computing discrete minimizers was given.
This method was later extended to account for colloidal particle effects and external electric fields [71], as well
as simulating liquid crystal droplets with anisotropic surface tension effects [33, 63]. The two main limitations
of the approach in [33,63,70,71] are: (1) it is for the one-constant Ericksen model, and (2) the method requires
the computational mesh to be weakly acute to guarantee convexity of the discrete energy.

Summary 1.1. In this paper, we consider a new discretization of the Ericksen model that is capable of handling
the general form of Ericksen’s model, i.e. not the one-constant model (see Sect. 2.1.4). In addition, the method
only requires a shape regular mesh; the weakly acute mesh condition is no longer required. This is especially
important in three dimensions because generating a weakly acute mesh of a general non-trivial three dimensional
domain is an open problem. The reason is that the current discretization uses a mass lumping technique, which is
different than in our previous work [70,71], where the weak acuteness condition cannot be dropped. Furthermore,
we fully couple non-linear electro-statics to the Ericksen model, including flexo-electric and order electric effects
[1, 24,64]; previously only a given electric field E was considered.

Moreover, we are able to prove convergence of our finite element method using the tools of Γ-convergence
[21, 31]. The Euler–Lagrange equation for the Ericksen model is not easy to analyze because the PDE for the
director n is degenerate, i.e. the coefficient of the elliptic term is 𝑠2 which can vanish. Regularizing the 𝑠2 term,
with a small positive parameter, is not desirable because it destroys the main purpose of the Ericksen model
(see Rem. 2.3). Using Γ-convergence, we can avoid dealing with the Euler–Lagrange equation entirely.

An outline is as follows. Section 2 describes the continuum equilibrium model and develops several analytic
results needed in our Γ-convergence proof, and Section 3 describes our finite element discretization of the
continuous problem. In Section 4, we prove that our finite element scheme Γ-converges to the continuous
problem; several technical results are built up to accomplish this. Numerical results are given in Section 5,
followed by some concluding remarks in Section 6. Several technical results are collected in Appendix A.

2. Equilibrium model

We describe the different (energetic) parts of the liquid crystal model. Section 2.1 gives the general Ericksen
(free) energy, as well as its basic mathematical formulation. Section 2.2 describes how weak anchoring effects are
modeled, and Section 2.3 gives the non-linear electro-static model with flexo-electric and order-electric effects.
We conclude in Section 2.4 with some analytical results for the continuous model.

2.1. Ericksen’s model

Let Ω be a bounded Lipschitz domain in R𝑑 with 𝑑 = 2, or 3. The director field n : Ω → S𝑑−1 is a vector-
valued function with unit length. The degree-of-orientation 𝑠 : Ω ⊂ R𝑑 → [− 1

2 , 1] is a real valued function. The
variable n, by itself, cannot properly describe a “loss of order” in the liquid crystal material because it has unit
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length. The 𝑠 variable models the “local order” of the liquid crystal molecules. See [71, 87] for a description of
the meaning of n and 𝑠.

Remark 2.1. Since the Ericksen model uses a director (vector) field n, clearly Ericksen cannot model half-
integer defects, which is an obvious limitation in modeling nematic LCs in some situations. Indeed, nematics
are best modeled by using a line field (essentially, vectors without orientation). If a line field is orientable, then
it can be replaced by a vector field with no adverse effect [11, 12], i.e. a vector field is sufficient to model the
nematic state.

For non-orientable line fields, a possible remedy is to adopt the approach in [48, 61, 92] that enforces the
equivalence of ±n. Unfortunately, their method assumes 𝑠 is a constant parameter, which is not true for the
Ericksen model. In addition, their method uses an explicit time-stepping scheme, so is not efficient. However,
the main idea in [48, 61, 92] (also see [17]) could potentially be combined with our approach, but this is left to
future work.

In this paper, we explore the general Ericksen model with the vector field approach because vector fields are
adequate in some situations and the numerical realization of the generalized Ericksen model has not been done
before. Moreover, nematic vector field models may be useful for other physical applications where orientation
is important.

We begin by recalling the Ericksen one-constant model, followed by its theoretical framework and the more
general Ericksen model. In doing so, for a generic domain 𝒟, we will use the following 𝐿2(𝒟), [𝐿2(𝒟)]𝑑,
[𝐿2(𝒟)]𝑑×𝑑 inner products: (𝑢, 𝑣)𝒟 :=

∫︀
𝒟 𝑢𝑣, (u,v)𝒟 :=

∫︀
𝒟 u · v, (M,Y)𝒟 :=

∫︀
𝒟M : Y. For simplicity, we

will write (𝑢, 𝑣) := (𝑢, 𝑣)Ω when integrating over Ω; integrals over co-dimension 1 subsets, e.g. Γ ⊂ 𝜕Ω, will
always have a subscript Γ.

2.1.1. Ericksen’s simple energy

The equilibrium state of the liquid crystal is given by a pair (𝑠,n) that minimizes a bulk free energy functional,
whose simplest form is the following (dimensional) energy:

𝐽(𝑠,n) = 𝐸s(𝑠,n) +
∫︁

Ω

𝜓(𝑠) d𝑥, 𝐸s(𝑠,n) :=
1
2

∫︁
Ω

(︁
𝑏0|∇𝑠|2 + 𝑘0𝑠

2|∇n|2
)︁

d𝑥, (2.1)

where 𝑏0, 𝑘0 > 0 are model parameters. Typical physical values for 𝑘0 are on the order of 10−11 J/m ([76],
Tab. 1, p. 168). Unfortunately, we are unaware of available experimental data for 𝑏0, thus we assume 𝑏0 is of
roughly the same order as 𝑘0.

The double well potential 𝜓 is a 𝐶2 function defined on −1/2 < 𝑠 < 1 that satisfies [5, 34,56]

(i) lim𝑠→1 𝜓(𝑠) = lim𝑠→−1/2 𝜓(𝑠) = ∞,
(ii) 𝜓(0) > 𝜓(𝑠*) = min𝑠∈[−1/2,1] 𝜓(𝑠) = 0 for some 𝑠* ∈ (0, 1),
(iii) 𝜓′(0) = 0.

Remark 2.2. The form of 𝜓 follows from the (uniaxial) Landau-deGennes theory of nematic LCs [32, 87].
Usually, the following choice is made:

𝜓(𝑠) =
𝐴′

2
𝑠2 − 𝐵′

3
𝑠3 +

𝐶 ′

4
𝑠4, (2.2)

where the parameters 𝐴′, 𝐵′, 𝐶 ′ are material dependent with 𝐵′, 𝐶 ′ positive and 𝐴′ has no definite sign. Usually,
𝐴′ depends on temperature 𝑇 [39] having the form 𝐴′ ∝ (𝑇 − 𝑇 *), where 𝑇 * is the super-cooling temperature.
Physical values for 𝐴′, 𝐵′, 𝐶 ′ are on the order of 105 J/m3 ([76], Tab. 1, p. 168).

Property (iii) of 𝜓 is automatically satisfied by (2.2). If 𝐴′ is less than a sufficiently small positive number
𝐴′0, then property (ii) is also satisfied; this corresponds to having a stable nematic phase. In other words, if 𝐴′

is too large (positive), then the only stable phase is the isotropic phase, meaning 𝑠 = 0 everywhere. Property
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(i) is not satisfied by (2.2). However, the 𝑠4 term can be modified near the bounds 𝑠 = −1/2,+1 to enforce
property (i), without affecting the stability of the nematic phases.

For ease in our numerical implementation, we assume the form of (2.2) for 𝜓, but one can certainly add
barrier/penalty functions to enforce property (i) numerically.

When the degree of orientation 𝑠 is a non-zero constant, the energy 𝐸one,𝑏0(𝑠,n) in (5.2) reduces to the
Oseen-Frank free energy

∫︀
Ω
|∇n|2. The degree of orientation avoids singular energies when defects are present.

In fact, discontinuities in n (i.e. defects) have finite energy provided they occur in the singular set

𝒮 := {𝑥 ∈ Ω : 𝑠(𝑥) = 0}. (2.3)

Existence of minimizers was shown in [5,56] and analytic solutions for minimizers with defects were constructed
in [87]. Minimizers with other types of defect structures were discovered numerically in [70].

Remark 2.3. One cannot simply regularize 𝐸s by 𝐸𝜖
s (𝑠,n) = 1

2

∫︀
Ω

(︁
𝑏0|∇𝑠|2 + 𝑘0(𝑠2 + 𝜖2)|∇n|2

)︁
for some

finite 𝜖 > 0 as was done in [14, 25]. This fundamentally changes the Ericksen model into a variant of Oseen-
Frank, i.e. point defects in two dimensions, and line defects in three dimensions, will give 𝐸𝜖

s (𝑠,n) = +∞. If
defects are important in the physical model, then regularization is not appropriate. In a sense, the finite element
discretization automatically regularizes the problem without needing an extra term.

For simplicity throughout this paper, we assume the parameters have been normalized, i.e. 𝑘0 ≡ 1, and 𝑏0
and 𝜓 are non-dimensional (see Sect. 5.1).

2.1.2. Function space framework

An auxiliary variable u := 𝑠n and identity was introduced in [5,56] that allows the energy 𝐸one,𝑏0(𝑠,n) to be
rewritten as

𝐸one,𝑏0(𝑠,n) = ̃︀𝐸one,𝑏0(𝑠,u) :=
1
2

∫︁
Ω

(︁
(𝑏0 − 1)|∇𝑠|2 + |∇u|2

)︁
d𝑥, (2.4)

which uses ∇u = n ⊗ ∇𝑠 + 𝑠∇n and the unit length constraint |n| = 1. Whence, even with 0 < 𝑏0 < 1, the
minimization problem for ̃︀𝐸one,𝑏0(𝑠,u) is well-defined [5, 56] over the following (closed) admissible set:

𝒜 := {(𝑠,n) ∈ 𝐻1(Ω)× [𝐿∞(Ω)]𝑑 : (𝑠,u,n) satisfies (2.6), with u ∈ [𝐻1(Ω)]𝑑}, (2.5)

where
u = 𝑠n, −1/2 ≤ 𝑠 ≤ 1 a.e. in Ω, and n ∈ S𝑑−1 a.e. in Ω, (2.6)

is called the structural condition of 𝒜. If we write (𝑠,u,n) in 𝒜, we mean that (𝑠,n) in 𝒜, u in [𝐻1(Ω)]𝑑, and
(𝑠,u,n) satisfies (2.6). Note: the identity (2.4) only holds for (𝑠,u,n) in 𝒜.

2.1.3. Boundary conditions

Boundary conditions are captured by functions 𝑔 : R𝑑 → R, r,q : R𝑑 → R𝑑 that satisfy the following.

Assumption 2.4 (Boundary data is regular). There exists 𝑔 ∈ 𝑊 1,∞(R𝑑), r ∈ [𝑊 1,∞(R𝑑)]𝑑, q ∈ [𝐿∞(R𝑑)]𝑑,
such that (𝑔, r,q) satisfies (2.6) on R𝑑, i.e. r = 𝑔q and q ∈ S𝑑−1 a.e. in R𝑑. Furthermore, we assume there is
a fixed 𝜌0 > 0 such that

−1/2 + 𝜌0 ≤ 𝑔 ≤ 1− 𝜌0. (2.7)

Note that q ∈ [𝑊 1,∞({|𝑔| > 𝜖})]𝑑, for all 𝜖 > 0.

Next, set Γ := 𝜕Ω and let Γ𝑠 ⊂ Γ be the open set on which we set 𝑠 = 𝑔; further assume Γ𝑠 decomposes as:

Γ𝑠 = int
(︀
Γ|𝑠|≥𝛿0 ∪ Γ|𝑠|≤𝛿0

)︀
, Γ|𝑠|≥𝛿0 := {|𝑠| ≥ 𝛿0}, Γ|𝑠|≤𝛿0 := {|𝑠| ≤ 𝛿0}, (2.8)
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Figure 1. Illustration of liquid crystal domain Ω and boundary conditions on Γ := 𝜕Ω with
unit outer normal vector 𝜈. Note that Γ|𝑠|≥𝛿0 := Γ𝑠>𝛿1 ∪ Γ𝑠<−𝛿2 , where 𝛿1, 𝛿2 > 0 and 𝛿0 :=
min{𝛿1, 𝛿2} (refer to main text for notation). Moreover, Γn := Γ|𝑠|≥𝛿0 .

for some fixed 𝛿0 > 0. Next, let Γn ⊂ Γ be the open set on which we set n = q. For simplicity, we demand that
Γn ⊂ Γ|𝑠|≥𝛿0 , which implies that q is 𝑊 1,∞ in a neighborhood of Γn and n is 𝐻1 in a neighborhood of Γn (see
Fig. 1 for an illustration). So setting boundary conditions for (𝑠,n) is meaningful. Thus, the admissible class,
with boundary conditions, is given by

𝒜(𝑔,q) := {(𝑠,n) ∈ 𝒜 : 𝑠|Γ𝑠
= 𝑔, n|Γn = q} , (2.9)

Note: we use a similar abuse of notation as above when writing (𝑠,u,n) in 𝒜(𝑔,q).
In proving our Γ-convergence result in Section 4, we require the following technical assumption regarding

boundary data.

Assumption 2.5 (Multiple boundary pieces). Suppose 𝜕Ω ≡ Γ = ∪𝑀
𝑖=1Γ𝑖 decomposes into 𝑀 ≥ 1 disconnected

components, where each component Γ𝑖 is connected. We assume that Γ𝑠 = Γ|𝑠|≥𝛿0 = Γn = ∪̃︁𝑀𝑘=1Γ𝑖𝑘
, wherẽ︁𝑀 ≤𝑀 and 𝑖𝑘 ∈ {1, ...,𝑀} for all 1 ≤ 𝑘 ≤ ̃︁𝑀 . Moreover, we further assume that

|𝑔| > 𝛿0 on Γ𝑠 ⊂ Γ, for some 𝛿0 > 0. (2.10)

Note that (2.10) implies that Γ|𝑠|≤𝛿0 = ∅ (recall Fig. 1).

2.1.4. Ericksen’s general energy

The general form of Ericksen’s free energy can be found in [34,87]. Starting from [87] page 325, we have

𝐸erk(𝑠,n) =
1
2

∫︁
Ω

𝒲(𝑠,∇𝑠,n,∇n) d𝑥, (2.11)

where the free energy density 𝒲 : R× R𝑑 × R𝑑 × R𝑑×𝑑 → R is given by:

𝒲(𝑠,g,n,M) := 𝑘1𝑠
2 tr(M)2 + 𝑘2𝑠

2([n]× : M)2 + 𝑘3𝑠
2|Mn|2 + (𝑘2 + 𝑘4)𝑠2

[︀
(M𝑇 : M)− tr(M)2

]︀
+ 𝑏1|g|2 + 𝑏2(g · n)2 + 𝑏3𝑠(g · n)tr(M) + 𝑏4𝑠g ·Mn,

(2.12)
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where [a]× ∈ R𝑑×𝑑 is the anti-symmetric matrix defined by [a]×b := a × b (if a,b ∈ R𝑑), and {𝑘𝑖}4𝑖=1 and
{𝑏𝑖}4𝑖=1 are bounded constants. More specifically, one can show that

𝒲(𝑠,∇𝑠,n,∇n) = 𝑘1𝑠
2(div n)2 + 𝑘2𝑠

2(n · curl n)2 + 𝑘3𝑠
2|n× curl n|2

+ (𝑘2 + 𝑘4)𝑠2[tr([∇n]2)− (div n)2] + 𝑏1|∇𝑠|2 + 𝑏2(∇𝑠 · n)2 + 𝑏3𝑠(div n)(∇𝑠 · n)
+ 𝑏4𝑠∇𝑠 · [∇n]n, (2.13)

where we use the identity tr(M𝑇 Y) = M : Y =
∑︀

𝑖,𝑗 𝑚𝑖𝑗𝑦𝑖𝑗 , and the identities n × curl n = [∇n]n and
n · curl n = [n]× : [∇n], which hold when |n| = 1. Note that the coefficients can be generalized [34, 87], where,
for instance, 𝑘𝑖𝑠

2 is replaced by 𝑘𝑖 = 𝑘𝑖(𝑠), i.e. a general function of 𝑠. However, for simplicity, we take (2.12)
as our model. Note that a derivative of n is always paired with a factor of 𝑠. For simplicity, we assume the
coefficients are non-dimensional (see Sect. 5.1).

For conciseness later, we introduce the following multi-linear forms:

𝑤𝑘1 (𝑠, 𝑧; M,Y) := 𝑘1 (𝑠 tr(M), 𝑧 tr(Y)) , 𝑤𝑘2 (𝑠, 𝑧; n,v; M,Y) := 𝑘2 (𝑠([n]× : M), 𝑧([v]× : Y)) ,

𝑤𝑘3 (𝑠, 𝑧; n,v; M,Y) := 𝑘3 (𝑠Mn, 𝑧Yv) , 𝑤𝑘4 (𝑠, 𝑧; M,Y) := (𝑘2 + 𝑘4)
[︀(︀
𝑠M𝑇 , 𝑧Y

)︀
− (𝑠 tr(M), 𝑧 tr(Y))

]︀
,

(2.14)
𝑤𝑏1 (g,h) := 𝑏1 (g,h) , 𝑤𝑏2 (g,h; n,v) := 𝑏2 (g · n,h · v) ,

𝑤𝑏3 (𝑧; h; v; Y) := 𝑏3 ((h · v), 𝑧 tr(Y)) , 𝑤𝑏4 (𝑧; h; v; Y) := 𝑏4 (h, 𝑧Yv) , (2.15)

where we use “;” to separate disparate terms. With this, we have

𝐸erk(𝑠,n) =
1
2

[︁
𝑤𝑘1 (𝑠, 𝑠;∇n,∇n) + 𝑤𝑘2 (𝑠, 𝑠; n,n;∇n,∇n) + 𝑤𝑘3 (𝑠, 𝑠; n,n;∇n,∇n) + 𝑤𝑘4 (𝑠, 𝑠;∇n,∇n)

+ 𝑤𝑏1 (∇𝑠,∇𝑠) + 𝑤𝑏2 (∇𝑠,∇𝑠; n,n) + 𝑤𝑏3 (𝑠;∇𝑠; n;∇n) + 𝑤𝑏4 (𝑠;∇𝑠; n;∇n)
]︁
.

We will also consider a “stabilized” form of (2.12), i.e. let 𝜃 > 0 and define

̂︁𝒲(𝑠,g,n,M) := 𝒲(𝑠,g,n,M) + 𝜃𝑠2|M𝑇 n|2, 𝑤𝜃 (𝑠, 𝑧; n,v; M,Y) := 𝜃
(︀
𝑠M𝑇 n, 𝑧Y𝑇 v

)︀
. (2.16)

In this case, the energy functional becomes

̂︀𝐸erk(𝑠,n) =
1
2

∫︁
Ω

̂︁𝒲(𝑠,∇𝑠,n,∇n) d𝑥 = 𝐸erk(𝑠,n) +
1
2
𝑤𝜃 (𝑠, 𝑠; n,n;∇n,∇n) . (2.17)

Note that if |n| = 1 a.e., and n is sufficiently smooth, then n𝑇 [∇n] = 0𝑇 ; thus, |n𝑇∇n| ≡ 0 and ̂︀𝐸erk(𝑠,n) =
𝐸erk(𝑠,n). In Section 3.3, 𝜃|n𝑇∇n|2 will play the role of a stabilization/consistency term.

Proposition 2.6. The energies (2.11), (2.17) are bounded on 𝒜, i.e.

𝐸erk(𝑠,n) ≤ ̂︀𝐸erk(𝑠,n) ≤ 𝐶
(︁
‖∇𝑠‖2𝐿2(Ω) + ‖∇u‖2𝐿2(Ω)

)︁
<∞,

for all (𝑠,u,n) in 𝒜, where 𝐶 > 0 only depends on {𝑘𝑖}4𝑖=1, {𝑏𝑖}4𝑖=1, and 𝜃.

Proof. Follows by straightforward bounds. �

We also need coercivity of (2.11), (2.17) over the admissible class (2.5), which requires certain inequality
conditions [34]. To this end, define the following auxiliary coefficients:

𝑘′1 := 𝑘1 −
𝑏23

4[(𝑏1 + 𝑏2)− 3ℓ0]
, 𝑘′3 := 𝑘3 −

𝑏24
4[𝑏1 − 2ℓ0]

, (2.18)
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where ℓ0 > 0 is the “coercivity” constant. We assume the coefficients obey the following strict inequalities:

𝑘′1 − |𝑘′1 − 𝑘2 − 𝑘4| ≥ 2ℓ0, 𝑘2 − |𝑘4| ≥ 2ℓ0, 𝑘′3 ≥ 2ℓ0, 𝑏1 > 2ℓ0, 𝑏1 + 𝑏2 > 3ℓ0, (2.19)

which implies that 𝑘1, 𝑘3 are bounded. With (2.19), we obtain the following theorem.

Theorem 2.7. Assume the dimension is 𝑑 = 3 and assume (2.19) holds with a fixed constant ℓ0 > 0. Then,̂︁𝒲(𝑠,g,n,M) ≥ ℓ0
(︀
2|g|2 + 𝑠2|M|2

)︀
, (2.20)

for all 𝑠 ∈ R, n ∈ S𝑑−1, all g ∈ R𝑑, and all M ∈ R𝑑×𝑑, provided that 𝜃 > 0 satisfies

𝜃 ≥ max
{︀
ℓ−1
0

(︀
(𝑏24/4) + 2|𝑘1 − 𝑘2 − 𝑘4|2

)︀
− 3ℓ0, ℓ−1

0 (𝑘2 + 𝑘4)2 + ℓ0
}︀
. (2.21)

Furthermore,
𝒲(𝑠,g,n,M) ≥ ℓ0

(︀
2|g|2 + 𝑠2|M|2

)︀
, (2.22)

for all 𝑠 ∈ R, n ∈ S𝑑−1, all g ∈ R𝑑, and all M ∈ 𝐿(n,R𝑑), where 𝐿(n,R𝑑) := {A ∈ R𝑑×𝑑 : n𝑇 A = 0𝑇 }.

Proof. The result follows by following the same arguments in [87], pages 125, 325 with some modification to
account for 𝜃|n𝑇 M|2 and proving strict coercivity.

�

Corollary 2.8. Assume the hypothesis of Theorem 2.7. Then,̂︀𝐸erk(𝑠,n) ≥ 𝐸erk(𝑠,n) ≥ ℓ0𝐸one,2(𝑠,n), for all (𝑠,n) ∈ 𝒜. (2.23)

Proof. Let (𝑠,u,n) ∈ 𝒜. For any 𝜖 > 0, we have that n ∈ 𝐻1({|𝑠| > 𝜖}), which implies that n𝑇 (∇n) = 0𝑇 a.e.
in {|𝑠| > 𝜖}. Hence, (2.22) is true a.e. in {|𝑠| > 𝜖}. Integrating (2.22), we get (for all 𝜖 > 0)

∞ > 2𝐸erk(𝑠,n) ≥
∫︁
{|𝑠|>𝜖}

𝒲(𝑠,∇𝑠,n,∇n) ≥ ℓ0

∫︁
{|𝑠|>𝜖}

(︀
2|∇𝑠|2 + 𝑠2|∇n|2

)︀
= ℓ0

∫︁
{|𝑠|>𝜖}

(︀
|∇𝑠|2 + |∇u|2

)︀
,

where we used Proposition 2.6 and (2.4). Thus, by the monotone convergence theorem,

𝐸erk(𝑠,n) ≥ ℓ0
2

∫︁
Ω∖{𝑠=0}

(︀
|∇𝑠|2 + |∇u|2

)︀
= ℓ0 ̃︀𝐸one,2(𝑠,u) = ℓ0𝐸one,2(𝑠,n),

where we used the fact that |∇𝑠| = 0 a.e. on {𝑠 = 0}, as well as |∇u| = 0 a.e. on {u = 0} ≡ {𝑠 = 0} (see
Lem. A.3). �

Remark 2.9 (Stabilization). In the continuous formulation, because |n| = 1 a.e., we have that n𝑇 [∇n] = 0𝑇 .
In our finite element discretization (see Sect. 3.3), n𝑇 [∇n] ̸= 0𝑇 because n only has unit length at the mesh
nodes. Thus, one can think of 𝜃|n𝑇∇n|2 as a “stabilization” term to handle this inconsistency.

Remark 2.10 (Ericksen inequalities). The non-negativity of (2.13) was proved in [34,87] under the inequalities

𝑘′1 − |𝑘′1 − 𝑘2 − 𝑘4| ≥ 0, 𝑘2 − |𝑘4| ≥ 0, 𝑘′3 ≥ 0, 𝑏1 > 0, 𝑏1 + 𝑏2 > 0, (2.24)

where

𝑘′1 := 𝑘1 −
𝑏23

4(𝑏1 + 𝑏2)
, 𝑘′3 := 𝑘3 −

𝑏24
4𝑏1

· (2.25)

These inequalities are less restrictive than (2.19), but they only ensure non-negativity; stronger assumptions
are needed to enforce full coercivity over the admissible set (2.5). Setting ℓ0 = 0, we see that (2.19) reduces to
(2.24). Therefore, (2.19) is a reasonable modification of (2.24) to ensure coercivity instead of just non-negativity.

Note that one can show that the pair of inequalities 𝑘′1−|𝑘′1−𝑘2−𝑘4| ≥ 2ℓ0 and 𝑘2−|𝑘4| ≥ 2ℓ0 is equivalent
to 2𝑘′1 − 𝑘2 − 𝑘4 ≥ 2ℓ0 and 𝑘2 − |𝑘4| ≥ 2ℓ0.
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The following result is used in proving the weak lower semi-continuity of the discrete version of ̂︀𝐸erk (see
Lem. A.21).

Corollary 2.11. Assume the hypothesis of Theorem 2.7 and note that the directional derivatives of ̂︁𝒲 and 𝒲
are given by

𝐷g𝒲(𝑠,g,n,M) · h = 𝐷g
̂︁𝒲(𝑠,g,n,M) · h = 2𝑏1g · h + 2𝑏2(g · n)(h · n) + 𝑏3𝑠(h · n)tr(M) + 𝑏4𝑠h ·Mn,

(2.26)

𝐷M𝒲(𝑠,g,n,M) ·Y = 2𝑠2
[︀
𝑘1tr(M)tr(Y) + 𝑘2([n]× : M)([n]× : Y) + 𝑘3(Mn) · (Yn)

+ (𝑘2 + 𝑘4)[(M𝑇 : Y)− tr(M)tr(Y)]
]︀

+ 𝑏3𝑠(g · n)tr(Y) + 𝑏4𝑠g ·Yn

𝐷M
̂︁𝒲(𝑠,g,n,M) ·Y = 𝐷M𝒲(𝑠,g,n,M) ·Y + 𝑠2𝜃(M𝑇 n) · (Y𝑇 n). (2.27)

for all (h,Y) in R𝑑 × R𝑑×𝑑. Then, ̂︁𝒲(𝑠,g,n,M) is convex with respect to (g,M) in R𝑑 × R𝑑×𝑑 for all values
of 𝑠 ∈ R and n ∈ S𝑑−1, i.e.

̂︁𝒲(𝑠,g,n,M) ≥ ̂︁𝒲(𝑠,h,n,Y) +𝐷g
̂︁𝒲(𝑠,h,n,Y) · (g − h) +𝐷M

̂︁𝒲(𝑠,h,n,Y) : (M−Y), (2.28)

for all (h,Y) in R𝑑 × R𝑑×𝑑. Similarly, 𝒲(𝑠,g,n,M) is convex with respect to (g,M) in R𝑑 × 𝐿(n,R𝑑) for all
values of 𝑠 ∈ R and n ∈ S𝑑−1.

Proof. For any given 𝑠 and n, ̂︁𝒲(𝑠,g,n,M) and𝒲(𝑠,g,n,M) are quadratic functions of g and M. Furthermore,
by Theorem 2.7, ̂︁𝒲 and 𝒲 are non-negative. Hence, they must be convex. �

2.2. Weak anchoring

For LC droplets, the orientation of the LC molecules are influenced by the two-phase interface. This is usually
modeled by adding a weak anchoring energy to the total energy of the system [87]. In the sharp interface setting,
one adds an energy of the form 𝐸 =

∫︀
Γ
𝛾(𝜈,n) d𝑆, where 𝜈 is the oriented unit normal vector of Γ and 𝛾 is a

weak anchoring energy density function. One possible choice for 𝛾 is given by [87]:

𝛾(𝜈,n) =
1
2
(︀
𝛼⊥(𝜈 · n)2 + 𝛼‖[1− (𝜈 · n)2]

)︀
, 𝛼⊥, 𝛼‖ ≥ 0, (2.29)

where the first (second) term tends to make the minimizing director field n perpendicular (parallel) to 𝜈. The
weak anchoring energy function we take is similar and can be found in [71]. Let 𝐸a(𝑠,n) := 𝛽a,n𝐸a,n(𝑠,n) +
𝛽a,𝑠𝐸a,𝑠(𝑠), where 𝛽a,n, 𝛽a,𝑠 > 0, and

𝐸a,n(𝑠,n) :=
1
2
(︀
𝑎⊥ (𝑠, 𝑠; n,n) + 𝑎‖ (𝑠, 𝑠; n,n)

)︀
, 𝑎⊥ (𝑠, 𝑧; n,v) := (𝛼⊥𝑠(n · 𝜈), 𝑧(v · 𝜈))Γ ,

𝑎‖ (𝑠, 𝑧; n,v) :=
(︀
𝛼‖𝑠(n⊗ 𝜈), 𝑧(v ⊗ 𝜈)

)︀
Γ
−
(︀
𝛼‖𝑠(n · 𝜈), 𝑧(v · 𝜈)

)︀
Γ
,

(2.30)

where we included the degree-of-orientation 𝑠 to model the loss of anisotropy when orientational order vanishes,
and we add an energetic term penalizing 𝑠 to agree with 𝑠a on the interface:

𝐸a,𝑠(𝑠) :=
1
2

∫︁
Γ

𝛼ori(𝑠− 𝑠a)2 d𝑆(𝑥) =
1
2
𝑎ori (𝑠− 𝑠a, 𝑠− 𝑠a) , 𝑎ori (𝑠, 𝑧) := (𝛼ori𝑠, 𝑧)Γ , (2.31)

which is needed to ensure that 𝑠 does not trivially vanish on the interface, and so cause (2.30) to vanish as well
[33,63,71]. The parameters 𝛼⊥, 𝛼‖, 𝛼ori : Γ → [0,∞) allow for different weighting and the ability to model more
general physical settings; throughout the paper, we assume 𝛼⊥, 𝛼‖, 𝛼ori in 𝐿∞(Γ). The derivation of (2.30),
(2.31) (found in [71], Sect. 5.2.3) follows from the classic Rapini-Papoular type anchoring energy [13, 64] for
Q-models. Note that other types of anchoring energies could be considered as well. For simplicity, we take the
weight parameters 𝛽a,n, 𝛽a,𝑠 to be non-dimensional (see Sect. 5.1).
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Remark 2.12. The part of the weak anchoring energy that is defined over sub-domains Γ𝑠 and Γn of Γ (i.e.
where Dirichlet conditions on 𝑠 and n are set) only contributes a constant part to the energy; thus, those parts
can be removed from the total energy if one desires. However, for convenience, we define the weak anchoring
over the whole boundary Γ ≡ 𝜕Ω.

2.3. Electro-statics

The LC can be coupled to other effects, such as external fields, which we now illustrate by incorporating
electro-statics.

2.3.1. Dielectric permittivity

Due to the anisotropic nature of the LC molecules, the relative dielectric permittivity tensor of the material
is modeled by [1, 19,38,64]

𝜀(𝑠,n) := 𝜀I + 𝜀a𝑠

(︂
n⊗ n− 1

3
I
)︂

=
(︁
𝜀− 𝑠

𝜀a
3

)︁
I + 𝜀a𝑠 (n⊗ n) = 𝜀 (1− 𝑠𝛾a) I + 𝜀a𝑠 (n⊗ n) , (2.32)

which is a symmetric matrix, where 𝜀 = (𝜀‖ + 2𝜀⊥)/3, 𝜀a = 𝜀‖ − 𝜀⊥, 𝛾a = 𝜀a/(3𝜀), and 𝜀‖, 𝜀⊥ are positive.
The eigenvalues of 𝜀 are 𝜀 (1− 𝑠𝛾a), 𝜀 (1− 𝑠𝛾a), 𝜀 (1− 𝑠𝛾a) + 𝜀a𝑠, thus, since −1/2 < 𝑠 < 1, defining 𝜀min =
min

{︀
𝜀⊥, 𝜀‖

}︀
, 𝜀max = max

{︀
𝜀⊥, 𝜀‖

}︀
we see that 𝜀 is uniformly positive definite and satisfies

𝜀min ≤ |𝜀(𝑠,n)|2 ≤ 𝜀max. (2.33)

2.3.2. Electro-static energy

The electric field E, in the LC domain, can be described by a potential function 𝜙 : Ω → R [36], with
E = −∇𝜙. Indeed, 𝜙 can be associated with an energy minimization principle [54]. Given (𝑠,n) ∈ 𝒜 (fixed),
define the dimensional electro-static energy as 𝛽el𝐽el, where 𝛽el = 𝜀0𝐿0𝑉

2
0 , 𝜀0 is the permittivity of vacuum, 𝑉0

is the voltage scale, and 𝐽el is dimensionless [89]:

𝐽el(𝜙; 𝑠,n) :=
1
2

∫︁
Ω

∇𝜙 · 𝜀(𝑠,n)∇𝜙dx−
∫︁

Ω

P(𝑠,n) · ∇𝜙dx, (2.34)

where the (non-dimensional) polarization vector P = P(𝑠,n) is given by

P(𝑠,n) := Pf(𝑠,n) + Pr(𝑠,n), Pf(𝑠,n) := 𝑓1𝑠 tr(∇n)n + 𝑓3𝑠(∇n)n, Pr(𝑠,n) := 𝑟1(n · ∇𝑠)n + 𝑟2∇𝑠,
(2.35)

where Pf(𝑠,n) ≡ 𝑓1𝑠(div n)n + 𝑓3𝑠(n× curl n), 𝑓1, 𝑓3 are relative (indefinite) flexoelectric parameters, and 𝑟1,
𝑟2 are relative (indefinite) order electric parameters (all non-dimensional), which models flexo electric and order
electric effects induced by the LC [1, 24, 64]. The dimensional versions of 𝑓1, 𝑓3, 𝑟1, 𝑟2 are obtained by scaling
with 𝜀0𝑉0; possible physical values for |𝑓1|, |𝑓3| are on the order of 5× 10−12 C/m [62].

Note that P ≡ 0 a.e. in {𝑠 = 0} ⊂ Ω, i.e. P vanishes when the material is isotropic. Furthermore, if (𝑠,n) ∈ 𝒜,
then

‖P(𝑠,n)‖𝐿2(Ω) ≤ 𝐶𝑓‖𝑠∇n‖𝐿2(Ω) + 𝐶𝑟‖∇𝑠‖𝐿2(Ω) ≤ 𝐶P

(︀
‖∇𝑠‖𝐿2(Ω) + ‖∇u‖𝐿2(Ω)

)︀
<∞, (2.36)

where 𝐶P > 0 is a uniform constant; thus, P(𝑠,n) ∈ 𝐿2(Ω) for all (𝑠,n) ∈ 𝒜.
Let 𝜙0 in 𝐻1(Ω) and assume 𝜙 = 𝜙0 on the boundary Γ, i.e. we fix the potential on Γ. Then, for fixed (𝑠,n) in

𝒜, the electrical potential 𝜙 is characterized as the unique minimizer of (2.34): 𝜙 = arg min𝜂∈𝐻1
𝜙0

(Ω) 𝐽el(𝜂; 𝑠,n),
where the admissible set 𝐻1

𝜙0
(Ω) := {𝜂 ∈ 𝐻1(Ω) : 𝜂 = 𝜙0, on Γ} accounts for the boundary conditions. It is

convenient to define 𝜙 = 𝜙 − 𝜙0 and separate the boundary condition. In this case, minimization problem is
equivalent to finding 𝜙 in 𝐻1

0 (Ω) such that

𝐽el(𝜙; 𝑠,n) ≡ 1
2
𝑒 (𝜙+ 𝜙0, 𝜙+ 𝜙0; 𝜀(𝑠,n))− (P(𝑠,n),∇(𝜙+ 𝜙0)) , (2.37)
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is minimized over 𝐻1
0 (Ω), where 𝑒 (𝜙, 𝜂; 𝜀(𝑠,n)) := (∇𝜙𝜀(𝑠,n),∇𝜂). Setting the first variation of (2.37) to zero,

while holding (𝑠,n) fixed, we obtain the Euler–Lagrange equation in weak form: find 𝜙 in 𝐻1
0 (Ω) such that

𝑒 (𝜙, 𝜂; 𝜀(𝑠,n)) = −𝑒 (𝜙0, 𝜂; 𝜀(𝑠,n)) + (P(𝑠,n),∇𝜂) , for all 𝜂 ∈ 𝐻1
0 (Ω). (2.38)

For later use, we let 𝑇 : 𝒜 → 𝐻1
0 (Ω) denote the solution operator for (2.38), i.e. 𝜙 ≡ 𝑇 (𝑠,n) solves (2.38). Note

that the strong form solution of (2.38) is given by:

−∇ ·
(︀
𝜀(𝑠,n)∇𝜙𝑇

)︀
= ∇ ·

(︀
𝜀(𝑠,n)∇𝜙𝑇

0

)︀
−∇ ·P(𝑠,n), in Ω, 𝜙 = 0, on Γ. (2.39)

2.3.3. Contribution to LC energy

The electrical energy contribution to the total liquid crystal energy is given by [1, 19,38,64]:

𝐸el(𝑠,n) := −𝐽el(𝑇 (𝑠,n); 𝑠,n) = −𝐽el(𝜙; 𝑠,n)

= −1
2
𝑒 (𝜙,𝜙; 𝜀(𝑠,n))− 1

2
𝑒 (𝜙0, 𝜙0; 𝜀(𝑠,n))− 𝑒 (𝜙0, 𝜙; 𝜀(𝑠,n)) + (P(𝑠,n),∇(𝜙+ 𝜙0)) .

(2.40)

Note the minus sign, which is connected to the fact that the potential 𝜙 is fixed on the boundary [36]; see [89]
for a first principles derivation.

We emphasize that 𝜙 is not an independent variable in the liquid crystal energy minimization we consider in
(2.43); 𝜙 is determined uniquely for any given (𝑠,n) in 𝒜. In fact, this leads to a useful identity. Setting 𝜂 = 𝜙
in (2.38) implies 𝑒 (𝜙,𝜙; 𝜀(𝑠,n)) = −𝑒 (𝜙0, 𝜙; 𝜀(𝑠,n)) + (P(𝑠,n),∇𝜙), and plugging into (2.40) yields

𝐸el(𝑠,n) =
1
2
𝑒 (𝜙,𝜙; 𝜀(𝑠,n))− 1

2
𝑒 (𝜙0, 𝜙0; 𝜀(𝑠,n)) + (P(𝑠,n),∇𝜙0) , (2.41)

which essentially states that 𝐸el is convex in ∇𝜙. This is used in Section 2.4 to show that the total energy is
bounded below.

2.4. Total energy

The total energy we seek to minimize is defined to be

𝐸(𝑠,n) = 𝛽erk

(︂
𝐸erk(𝑠,n) +

1
𝜖2dw

𝐸dw(𝑠)
)︂

+ 𝛽a,n𝐸a,n(𝑠,n) + 𝛽a,𝑠𝐸a,𝑠(𝑠) + 𝛽el𝐸el(𝑠,n), (2.42)

for constant weights 𝛽erk, 𝜖dw > 0, 𝛽a,n, 𝛽a,𝑠, 𝛽el ≥ 0 defined earlier. The minimization problem for 𝐸 is then

(𝑠*,n*) = arg min
(𝑠,n)∈𝒜(𝑔,q)

𝐸(𝑠,n). (2.43)

The energy (2.42) is bounded below by the following argument. From (2.41) and (2.33), and using a Cauchy
inequality, we have

𝐸el(𝑠,n) ≥ 1
2
𝜀min‖∇𝜙‖2𝐿2(Ω) −

1
2
𝜀max‖∇𝜙0‖2𝐿2(Ω) −

1
2𝛿
‖P(𝑠,n)‖2𝐿2(Ω) −

𝛿

2
‖∇𝜙0‖2𝐿2(Ω),

for some 𝛿 > 0. And by (2.36), this reduces to

𝐸el(𝑠,n) ≥ 1
2
𝜀min‖∇𝜙‖2𝐿2(Ω) − (𝐶0 + 𝛿)‖∇𝜙0‖2𝐿2(Ω) −

𝐶P

𝛿

(︁
‖∇𝑠‖2𝐿2(Ω) + ‖∇u‖2𝐿2(Ω)

)︁2

. (2.44)

Next, since 𝐸dw, 𝐸a,n, and 𝐸a,𝑠 are non-negative, we bound (2.42) below by

𝐸(𝑠,n) ≥ 𝛽erk𝐸erk(𝑠,n) + 𝛽el𝐸el(𝑠,n) ≥
(︂
𝛽erk

ℓ0
2
− 𝛽el

𝐶P

𝛿

)︂(︁
‖∇𝑠‖2𝐿2(Ω) + ‖∇u‖2𝐿2(Ω)

)︁
− 𝛽el(𝐶0 + 𝛿)‖∇𝜙0‖2𝐿2(Ω),

using (2.23), (2.4) and (2.44). Choosing 𝛿 > 0 sufficiently large (depending on fixed parameters), we find that
the total energy is bounded below by a uniform constant 𝐶1 > 0 that only depends on the fixed parameters of
the problem, i.e. 𝐸(𝑠,n) ≥ −𝐶1, for all (𝑠,n) ∈ 𝒜.
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3. Finite element scheme

3.1. Domain approximation

Let Ω be a Lipschitz domain. Moreover, we assume Ω is polyhedral and discretize it by a conforming set of
simplicial elements, denoted 𝒯ℎ = {𝑇}, and let 𝒩ℎ be the set of nodes of 𝒯ℎ with cardinality |𝒩ℎ|. Moreover,
the boundary Γ is represented by simplicial elements of co-dimension 1 that are embedded in 𝒯ℎ. Furthermore,
the mesh is assumed to be shape regular [22,26]. We do not assume the mesh is weakly acute, which was needed
in [70] to prove convergence of the finite element scheme.

Remark 3.1. The polyhedral assumption allows us to avoid dealing with a variational crime [22,26] related to
the approximation of the domain.

3.2. Finite element spaces

The following finite element spaces are used in discretizing the energy:

𝑆ℎ := {𝑠ℎ ∈ 𝐻1(Ω) : 𝑠ℎ|𝑇 is affine for all 𝑇 ∈ 𝒯ℎ},
𝑈ℎ := {uℎ ∈ [𝐻1(Ω)]𝑑 : uℎ|𝑇 is affine in each component for all 𝑇 ∈ 𝒯ℎ},
𝑁ℎ := {nℎ ∈ 𝑈ℎ : |nℎ(𝑥𝑖)| = 1 for all nodes 𝑥𝑖 ∈ 𝒩ℎ},
𝑉ℎ := {𝑣ℎ ∈ 𝐻1(Ω) : 𝑣ℎ|𝑇 is affine for all 𝑇 ∈ 𝒯ℎ},

(3.1)

where 𝑁ℎ imposes the unit length constraint at the vertices of the mesh.
Let 𝐼ℎ denote the piecewise linear Lagrange interpolation operator on the mesh 𝒯ℎ with values in either 𝑆ℎ,

𝑈ℎ, or 𝑉ℎ. Mimicking (2.5) at the discrete level, we have

𝒜ℎ := {(𝑠ℎ,nℎ) ∈ 𝑆ℎ ×𝑁ℎ : (𝑠ℎ,uℎ,nℎ) satisfies (3.3), with uℎ ∈ 𝑈ℎ}, where (3.2)
uℎ = 𝐼ℎ(𝑠ℎnℎ), −1/2 ≤ 𝑠ℎ ≤ 1 in Ω, and nℎ ∈ 𝑁ℎ, (3.3)

is called the discrete structural condition of 𝒜ℎ. Note: if we write (𝑠ℎ,uℎ,nℎ) in 𝒜ℎ, we mean that (𝑠ℎ,nℎ) in
𝒜ℎ, uℎ in 𝑈ℎ, and (𝑠ℎ,uℎ,nℎ) satisfies (3.3).

Next, let 𝑔ℎ := 𝐼ℎ𝑔, rℎ := 𝐼ℎr, and qℎ := 𝐼ℎq be the discrete Dirichlet data, where 𝑔ℎ automatically satisfies
(2.7). Note that the interpolant of q is well defined in an open neighborhood of Γn (because q ∈ [𝑊 1,∞]𝑑 near
Γn ⊂ Γ|𝑠|≥𝛿0). Wherever q lacks the regularity [𝑊 1,∞(Ω)]𝑑, set qℎ := e1. Therefore, the discrete spaces that
include (Dirichlet) boundary conditions are

𝑆ℎ(Γ𝑠, 𝑔ℎ) := {𝑠ℎ ∈ 𝑆ℎ : 𝑠ℎ|Γ𝑠
= 𝑔ℎ}, 𝑈ℎ(Γu, rℎ) := {uℎ ∈ 𝑈ℎ : uℎ|Γu = rℎ},

𝑁ℎ(Γn,qℎ) := {nℎ ∈ 𝑁ℎ : nℎ|Γn = qℎ}.
The discrete admissible class with boundary conditions is given by

𝒜ℎ(𝑔ℎ,qℎ) := {(𝑠ℎ,nℎ) ∈ 𝒜ℎ : 𝑠ℎ ∈ 𝑆ℎ(Γ𝑠, 𝑔ℎ),nℎ ∈ 𝑁ℎ(Γn,qℎ)} . (3.4)

Note: we use a similar abuse of notation as before when writing (𝑠ℎ,uℎ,nℎ) in 𝒜ℎ(𝑔ℎ,qℎ). Boundary conditions
for the electric field are enforced via the space 𝑉ℎ ∩𝐻1

0 (Ω).

3.3. Discrete Ericksen energy

We will utilize the following discrete 𝐿2 inner products:

(𝑢, 𝑣)ℎ
𝒟ℎ

:=
∑︁

𝑇∈̃︀𝒯ℎ

∫︁
𝑇

𝐼ℎ(𝑢𝑣), (u,v)ℎ
𝒟ℎ

:=
∑︁

𝑇∈̃︀𝒯ℎ

∫︁
𝑇

𝐼ℎ(u · v), (M,Y)ℎ
𝒟ℎ

:=
∑︁

𝑇∈̃︀𝒯ℎ

∫︁
𝑇

𝐼ℎ(M : Y), (3.5)

where 𝑇 ∈ 𝒯ℎ are tetrahedral elements in the mesh of Ω, ̃︀𝒯 ⊂ 𝒯ℎ, 𝒟ℎ = ∪𝑇∈̃︀𝒯ℎ
𝑇 , and the function arguments are

polynomial functions over each element (possibly discontinuous across element edges). We write (𝑢, 𝑣)ℎ := (𝑢, 𝑣)ℎ
Ω

when integrating over Ω; integrals over subsets will have a subscript.
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3.3.1. Lumping

We require a “lumped” form of the discrete Ericksen energy. Let 𝑠ℎ ∈ 𝑆ℎ, nℎ ∈ 𝑁ℎ and consider their
restriction to an element 𝑇 ∈ 𝒯ℎ (note that ∇𝑠ℎ and ∇nℎ are discontinuous across 𝜕𝑇 ). By Theorem 2.7 and
(2.20), and setting 𝑠 = 𝑠ℎ|𝑇 , n = nℎ|𝑇 , g = ∇𝑠ℎ|𝑇 , M = ∇nℎ|𝑇 , we have that

̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇nℎ)(𝑥𝑖) ≥ ℓ0
(︀
2|∇𝑠ℎ|2 + 𝑠2ℎ|∇nℎ|2

)︀ ⃒⃒⃒
𝑥=𝑥𝑖

(3.6)

holds at each node 𝑥𝑖 ∈ 𝑇 , because |nℎ| = 1 at the nodes. Therefore, we define the discrete (stabilized) Ericksen
energy to be

̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) :=

1
2

∑︁
𝑇∈𝒯ℎ

∫︁
𝑇

𝐼ℎ̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇nℎ) d𝑥 =
1
2

(︁̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇nℎ), 1
)︁ℎ

. (3.7)

By (3.6), (A.5), we see that

̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) ≥ ℓ0

2

∫︁
Ω

(︀
2|∇𝑠ℎ|2 + 𝑠2ℎ|∇nℎ|2

)︀
d𝑥 = ℓ0𝐸one,2(𝑠ℎ,nℎ), (3.8)

where we used that ∇𝑠ℎ, ∇nℎ are constant on 𝑇 . Clearly, (3.7) is non-negative for all ℎ. So, by finite dimensional
optimization theory [68], ̂︀𝐸ℎ

erk has a minimizer.
It will be useful later to write (3.7) in terms of various forms. We define the discrete forms {𝑤ℎ

𝑘𝑖
}4𝑖=1 in the

same way as (2.14), (2.15), except we use the discrete inner products (3.5). Therefore, we obtain

̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) =

1
2

[︁
𝑤ℎ

𝑘1
(𝑠ℎ, 𝑠ℎ;∇nℎ,∇nℎ) + 𝑤ℎ

𝑘2
(𝑠ℎ, 𝑠ℎ; nℎ,nℎ;∇nℎ,∇nℎ) + 𝑤ℎ

𝑘3
(𝑠ℎ, 𝑠ℎ; nℎ,nℎ;∇nℎ,∇nℎ)

+ 𝑤ℎ
𝑘4

(𝑠ℎ, 𝑠ℎ;∇nℎ,∇nℎ) + 𝑤ℎ
𝜃 (𝑠ℎ, 𝑠ℎ; nℎ,nℎ;∇nℎ,∇nℎ) + 𝑤ℎ

𝑏1 (∇𝑠ℎ,∇𝑠ℎ)

+ 𝑤ℎ
𝑏2 (∇𝑠ℎ,∇𝑠ℎ; nℎ,nℎ) + 𝑤ℎ

𝑏3 (𝑠ℎ;∇𝑠ℎ; nℎ;∇nℎ) + 𝑤ℎ
𝑏4 (𝑠ℎ;∇𝑠ℎ; nℎ;∇nℎ)

]︁
.

(3.9)

Next, we express each of the terms in (3.9) in a slightly modified form that will be convenient in later sections.
For instance, defining 𝑊ℎ = {𝑣 ∈ 𝐿2(Ω) : 𝑣 is constant on each 𝑇 ∈ 𝒯ℎ}, and taking 𝑠ℎ, 𝑧ℎ ∈ 𝑆ℎ, nℎ,vℎ ∈ 𝑈ℎ,
and Mℎ,Yℎ ∈ [𝑊ℎ]𝑑×𝑑, we have for 𝑤ℎ

𝑘3
:

𝑘−1
3 𝑤ℎ

𝑘3
(𝑠ℎ, 𝑧ℎ; nℎ,vℎ; Mℎ,Yℎ) = (𝑠ℎ(Mℎ)nℎ, 𝑧ℎ(Yℎ)vℎ)ℎ =

∑︁
𝑇∈𝒯ℎ

∫︁
𝑇

𝐼ℎ {𝑠ℎ𝑧ℎ[(Mℎ)nℎ] · [(Yℎ)vℎ]}

=
∑︁

𝑇∈𝒯ℎ

∫︁
𝑇

𝐼ℎ {𝑠ℎ𝑧ℎnℎ ⊗ vℎ} : (M𝑇
ℎ Yℎ) =

(︀
𝐼ℎ {𝑠ℎ𝑧ℎnℎ ⊗ vℎ} ,M𝑇

ℎ Yℎ

)︀
,

(3.10)

where Mℎ,Yℎ are pulled out of 𝐼ℎ because they are constant on each element 𝑇 ∈ 𝒯ℎ. Similar arguments yield
the discrete versions of (2.14)–(2.16):

𝑤ℎ
𝑘1

(𝑠ℎ, 𝑧ℎ; Mℎ,Yℎ) := 𝑘1 (𝐼ℎ{𝑠ℎ𝑧ℎ}, tr(Mℎ)tr(Yℎ)) ,

𝑤ℎ
𝑘2

(𝑠ℎ, 𝑧ℎ; nℎ,vℎ; Mℎ,Yℎ) := 𝑘2 (𝐼ℎ {𝑠ℎ𝑧ℎ[nℎ]× ⊗ [vℎ]×} ,Mℎ ⊗Yℎ) ,

𝑤ℎ
𝑘3

(𝑠ℎ, 𝑧ℎ; nℎ,vℎ; Mℎ,Yℎ) := 𝑘3

(︀
𝐼ℎ {𝑠ℎ𝑧ℎnℎ ⊗ vℎ} ,M𝑇

ℎ Yℎ

)︀
,

𝑤ℎ
𝑘4

(𝑠ℎ, 𝑧ℎ; Mℎ,Yℎ) := (𝑘2 + 𝑘4)
[︀(︀
𝐼ℎ{𝑠ℎ𝑧ℎ},M𝑇

ℎ Yℎ

)︀
− (𝐼ℎ{𝑠ℎ𝑧ℎ}, tr(Mℎ)tr(Yℎ))

]︀
,

𝑤ℎ
𝜃 (𝑠ℎ, 𝑧ℎ; nℎ,vℎ; Mℎ,Yℎ) := 𝜃

(︀
𝐼ℎ {𝑠ℎ𝑧ℎnℎ ⊗ vℎ} ,MℎY𝑇

ℎ

)︀
,

(3.11)
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𝑤ℎ
𝑏1 (gℎ,hℎ) := 𝑏1 (gℎ,hℎ) , 𝑤ℎ

𝑏2 (gℎ,hℎ; nℎ,vℎ) := 𝑏2 (𝐼ℎ {nℎ ⊗ vℎ} ,gℎ ⊗ hℎ) ,

𝑤ℎ
𝑏3 (𝑧ℎ; hℎ; vℎ; Yℎ) := 𝑏3 (𝐼ℎ {𝑧ℎvℎ} , tr(Yℎ)hℎ) , 𝑤ℎ

𝑏4 (𝑧ℎ; hℎ; vℎ; Yℎ) := 𝑏4
(︀
𝐼ℎ {𝑧ℎvℎ} ,Y𝑇

ℎ hℎ

)︀
,

(3.12)

where we also take gℎ,hℎ ∈ [𝑊ℎ]𝑑.

3.3.2. Double well energy

The double well energy 𝐸dw(·) is discretized in the usual way: 𝐸ℎ
dw(𝑠ℎ) :=

∫︀
Ω
𝜓(𝑠ℎ(𝑥)) d𝑥. In our numerical

minimization scheme (Sect. 5), we use a convex splitting [82,83,91] of 𝐸ℎ
dw(𝑠ℎ).

3.4. Discrete weak anchoring energy

Let 𝑠ℎ ∈ 𝑆ℎ, nℎ ∈ 𝑁ℎ and define the discrete (weak) anchoring energy for the director similarly to (2.30):
𝐸ℎ

a,n(𝑠ℎ,nℎ) := 𝐸a,n(𝑠ℎ,nℎ) = 1
2

(︀
𝑎⊥ (𝑠ℎ, 𝑠ℎ; nℎ,nℎ) + 𝑎‖ (𝑠ℎ, 𝑠ℎ; nℎ,nℎ)

)︀
. For the degree of orientation, we

have 𝐸ℎ
a,𝑠(𝑠ℎ) := 𝐸a,𝑠(𝑠ℎ) = 1

2

∫︀
Γ
𝛼ori(𝑠ℎ − 𝑠a)2 d𝑆(𝑥) = 1

2𝑎ori (𝑠ℎ − 𝑠a, 𝑠ℎ − 𝑠a). Therefore, the total anchoring
energy is

𝐸ℎ
a (𝑠ℎ,nℎ) := 𝛽a,n𝐸

ℎ
a,n(𝑠ℎ,nℎ) + 𝛽a,𝑠𝐸

ℎ
a,𝑠(𝑠ℎ). (3.13)

3.5. Discrete electric energy

We discretize the dielectric permittivity tensor in the obvious way, i.e. 𝜀 = 𝜀(𝑠ℎ,nℎ) (recall (2.32)), which
satisfies the same bounds in (2.33):

𝜀min ≤ |𝜀(𝑠ℎ,nℎ)|2 ≤ 𝜀max, for all (𝑠ℎ,nℎ) ∈ 𝒜ℎ. (3.14)

For the electro-static problem, we use a standard discretization, i.e. replace (𝑠,n) with (𝑠ℎ,nℎ). Hence,
the discrete electro-static problem is as follows. Let 𝜙0,ℎ ∈ 𝑉ℎ be the elliptic projection of 𝜙0 (A.6). Given
(𝑠ℎ,nℎ) ∈ 𝒜ℎ (fixed), find 𝜙ℎ in 𝑉ℎ,0 := 𝑉ℎ ∩𝐻1

0 (Ω) such that

𝐽ℎ
el(𝜙ℎ; 𝑠ℎ,nℎ) :=

1
2
𝑒 (𝜙ℎ + 𝜙0,ℎ, 𝜙ℎ + 𝜙0,ℎ; 𝜀(𝑠ℎ,nℎ))− (P(𝑠ℎ,nℎ),∇(𝜙ℎ + 𝜙0,ℎ)) , (3.15)

is minimized over 𝑉ℎ,0.
The corresponding discrete version of (2.38) is: find 𝜙ℎ in 𝑉ℎ,0 such that

𝑒 (𝜙ℎ, 𝜂ℎ; 𝜀(𝑠ℎ,nℎ)) = −𝑒 (𝜙0,ℎ, 𝜂ℎ; 𝜀(𝑠ℎ,nℎ)) + (P(𝑠ℎ,nℎ),∇𝜂ℎ) , (3.16)

for all 𝜂ℎ ∈ 𝑉ℎ,0. Let 𝑇ℎ : 𝒜ℎ → 𝑉ℎ,0 denote the solution operator for (3.16), i.e. 𝜙ℎ ≡ 𝑇ℎ(𝑠ℎ,nℎ) solves (3.16).
As before, the contribution to the LC energy is 𝐸ℎ

el(𝑠ℎ,nℎ) := −𝐽ℎ
el(𝑇ℎ(𝑠ℎ,nℎ); 𝑠ℎ,nℎ) = −𝐽ℎ

el(𝜙ℎ; 𝑠ℎ,nℎ).
Moreover, we have a result similar to (2.41). Setting 𝜂ℎ = 𝜙ℎ in (3.16) implies

𝑒 (𝜙ℎ, 𝜙ℎ; 𝜀(𝑠ℎ,nℎ)) = −𝑒 (𝜙0,ℎ, 𝜙ℎ; 𝜀(𝑠ℎ,nℎ)) + (P(𝑠ℎ,nℎ),∇𝜙ℎ) ,

and plugging into 𝐸ℎ
el(𝑠ℎ,nℎ) yields

𝐸ℎ
el(𝑠ℎ,nℎ) =

1
2
𝑒 (𝜙ℎ, 𝜙ℎ; 𝜀(𝑠ℎ,nℎ))− 1

2
𝑒 (𝜙0,ℎ, 𝜙0,ℎ; 𝜀(𝑠ℎ,nℎ)) + (P(𝑠ℎ,nℎ),∇𝜙0,ℎ) , (3.17)

which essentially states that 𝐸ℎ
el is convex in ∇𝜙ℎ. This is used in Section 4.2 to show that the total discrete

energy is bounded below.
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3.6. Discrete total energy

The total (discrete) energy we seek to minimize is defined to be

𝐸ℎ(𝑠ℎ,nℎ) = 𝛽erk

(︂ ̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) +

1
𝜖2dw

𝐸ℎ
dw(𝑠ℎ)

)︂
+ 𝛽a,n𝐸

ℎ
a,n(𝑠ℎ,nℎ) + 𝛽a,𝑠𝐸

ℎ
a,𝑠(𝑠ℎ) + 𝛽el𝐸

ℎ
el(𝑠ℎ,nℎ). (3.18)

The minimization problem for 𝐸ℎ is: (𝑠*ℎ,n
*
ℎ) = arg min(𝑠ℎ,nℎ)∈𝒜ℎ(𝑔ℎ,qℎ)𝐸

ℎ(𝑠ℎ,nℎ). We show that the total
discrete energy is bounded below in Section 4.2.

4. Γ-convergence of the FEM

We show that the finite element approximation of the discrete energy (3.18) Γ-converges to the continuous
energy (2.42). The result presented here is not the same as the result shown in [70,71] or in [33], all of which used a
special discretization of the Ericksen energy that is limited to the one constant approximation (5.2). Furthermore,
their discretization requires the underlying mesh to be weakly acute in order to prove Γ-convergence of their
method; the weakly acute assumption is quite severe for three-dimensional meshes [51,52,86].

In contrast, our method has the following advantages: (a) no assumption is made on the mesh structure (other
than being shape regular); (b) the Ericksen energy can be very general (not just the one-constant approximation);
(c) the method non-linearly couples full electro-statics, which was not done previously. Therefore, our result is
more general than in [33,70,71].

4.1. Main result

We begin with some preliminaries before stating the main Γ-convergence result. The discrete energy
𝐸ℎ(𝑠ℎ,nℎ) is defined on Zℎ := 𝑆ℎ × 𝑁ℎ, but convergence cannot be insured for a sequence (𝑠ℎ,nℎ) ∈ Zℎ,
because nℎ will not (in general) converge on the singular set 𝒮. However, we can guarantee convergence for
(𝑠ℎ,uℎ) ∈ Xℎ := 𝑆ℎ × 𝑈ℎ, i.e. uℎ is well-behaved. Thus, Theorem 4.1 is a minor modification of the usual
definition of Γ-convergence [21,31].

To this end, we define the continuous space to be X := 𝐿2(Ω)× [𝐿2(Ω)]𝑑, and note that Xℎ ⊂ X and Zℎ ⊂ X.
Next, the continuous energy 𝐸 : X → R is defined as follows: 𝐸(𝑠,n) is given by (2.42) if (𝑠,n) ∈ 𝒜(𝑔,q), and
set 𝐸(𝑠,n) = ∞ if (𝑠,n) ∈ X ∖ 𝒜(𝑔,q). Likewise, define the discrete energy 𝐸ℎ(𝑠ℎ,nℎ) by (3.18) if (𝑠ℎ,nℎ) ∈
𝒜ℎ(𝑔ℎ,qℎ), and set 𝐸ℎ(𝑠,n) = ∞ if (𝑠,n) ∈ X ∖ 𝒜ℎ(𝑔ℎ,qℎ).

Theorem 4.1 (Γ-convergence). Given (𝑠,n) ∈ X, where |n| = 1 a.e., define the corresponding element (𝑠,u) ∈
X, where u := 𝑠n. In addition, given (𝑠ℎ,nℎ) ∈ Zℎ, define the corresponding element (𝑠ℎ,uℎ) ∈ Xℎ, where
uℎ := 𝐼ℎ(𝑠ℎnℎ). Let {𝒯ℎ} be a sequence of shape regular meshes. Then, under Assumptions 2.4 and 2.5, the
following properties hold:

– Lim-inf inequality. For every sequence (𝑠ℎ,nℎ) ∈ Zℎ ⊂ X, such that the corresponding sequence (𝑠ℎ,uℎ) ∈
Xℎ ⊂ X converges strongly to the corresponding pair (𝑠,u), we have

𝐸(𝑠,n) ≤ lim inf
ℎ→0

𝐸ℎ(𝑠ℎ,nℎ); (4.1)

– Lim-sup inequality. There exists a sequence (𝑠ℎ,nℎ) ∈ Zℎ ⊂ X such that the corresponding sequence
(𝑠ℎ,uℎ) ∈ Xℎ ⊂ X converges strongly to the corresponding pair (𝑠,u), and

𝐸(𝑠,n) ≥ lim sup
ℎ→0

𝐸ℎ(𝑠ℎ,nℎ). (4.2)

In the following sections, we build up several intermediate results which are used to prove Theorem 4.1.
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4.2. Bounded below

Lemma 4.2 (Coercivity). Adopt the hypothesis of Lemma A.13. Then,

𝐸one,1(𝑠ℎ,nℎ) ≥ ‖∇𝑠ℎ‖2𝐿2(Ω), 𝐸one,1(𝑠ℎ,nℎ) ≥ 𝛾0‖∇uℎ‖2𝐿2(Ω), (4.3)

where 𝛾0 > 0 only depends on the shape regularity of the mesh 𝒯ℎ.

Proof. The first inequality is trivial. For the second, we use (A.8) to get

‖∇uℎ‖𝐿2(Ω) ≤ ‖∇(uℎ − 𝑠ℎnℎ)‖𝐿2(Ω) + ‖∇(𝑠ℎnℎ)‖𝐿2(Ω) ≤ 𝐶‖∇𝑠ℎ‖𝐿2(Ω) + ‖∇𝑠ℎ ⊗ nℎ‖𝐿2(Ω) + ‖𝑠ℎ∇nℎ‖𝐿2(Ω)

≤ (𝐶 + 1)‖∇𝑠ℎ‖𝐿2(Ω) + ‖𝑠ℎ∇nℎ‖𝐿2(Ω).

Since 𝐸one,1(𝑠ℎ,nℎ) = 1
2 (‖∇𝑠ℎ‖2𝐿2(Ω) + ‖𝑠ℎ∇nℎ‖2𝐿2(Ω)), we obtain the assertion with 𝛾0 = 1/(4(𝐶 + 1)2). �

The discrete energy (3.18) is bounded below by the following argument. From (3.17) and (2.33), and using a
Cauchy inequality, we have

𝐸ℎ
el(𝑠ℎ,nℎ) ≥ 1

2
𝜀min‖∇𝜙ℎ‖2𝐿2(Ω) −

1
2
𝜀max‖∇𝜙0,ℎ‖2𝐿2(Ω) −

1
2𝛿
‖P(𝑠ℎ,nℎ)‖2𝐿2(Ω) −

𝛿

2
‖∇𝜙0,ℎ‖2𝐿2(Ω),

for some 𝛿 > 0. And by the discrete version of (2.36), this reduces to

𝐸ℎ
el(𝑠ℎ,nℎ) ≥ 1

2
𝜀min‖∇𝜙ℎ‖2𝐿2(Ω) − (𝐶0 + 𝛿)‖∇𝜙0,ℎ‖2𝐿2(Ω) −

𝐶P

𝛿

(︁
‖∇𝑠ℎ‖2𝐿2(Ω) + ‖∇uℎ‖2𝐿2(Ω)

)︁2

. (4.4)

Next, since 𝐸ℎ
dw, 𝐸ℎ

a,n, and 𝐸ℎ
a,𝑠 are non-negative, we bound (3.18) below by

𝐸ℎ(𝑠ℎ,nℎ) ≥ 𝛽erk
̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) + 𝛽el𝐸

ℎ
el(𝑠ℎ,nℎ)

≥
(︂
𝛽erk

ℓ0
2
𝐴− 𝛽el

𝐶P

𝛿

)︂(︁
‖∇𝑠ℎ‖2𝐿2(Ω) + ‖∇uℎ‖2𝐿2(Ω)

)︁
− 𝛽el(𝐶0 + 𝛿)‖∇𝜙0,ℎ‖2𝐿2(Ω),

using (3.8), Lemma 4.2, and (4.4); note: 𝐴 > 0 is a uniform constant independent of ℎ > 0. Choosing 𝛿 > 0
sufficiently large (depending on fixed parameters), and noting that ‖∇𝜙0,ℎ‖𝐿2(Ω) ≤ 𝐶‖∇𝜙0‖2𝐿2(Ω), we find that

the total discrete energy is bounded below: 𝐸ℎ(𝑠ℎ,nℎ) ≥ − ̃︀𝐶1, for all (𝑠ℎ,nℎ) ∈ 𝒜ℎ, where ̃︀𝐶1 > 0 is a
uniform constant independent of ℎ.

4.3. Recovery sequence

In proving the lim-sup part of Theorem 4.1, we break it up into the following lemmas. The existence of a
discrete sequence is given by Lagrange interpolation, which is then shown to deliver a recovery sequence for the
Ericksen energy, double-well energy, weak anchoring energy, and the electrical energy.

Lemma 4.3. Assume the hypothesis of Lemma A.17. Moreover, assume that (𝑠,u,n) ∈ 𝒜(𝑔,q) also satisfies
−1/2 + 1/𝑘 ≤ 𝑠 ≤ 1 − 1/𝑘 for some 𝑘 ≥ 1. Then there exists a sequence (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ(𝑔ℎ,qℎ), converging
in the sense of Lemma A.17, such that

𝐸erk(𝑠,n) = ̂︀𝐸erk(𝑠,n) = lim
ℎ→0

̂︀𝐸ℎ
erk(𝑠ℎ,nℎ), 𝐸dw(𝑠) = lim

ℎ→0
𝐸ℎ

dw(𝑠ℎ), 𝐸a(𝑠,n) = lim
ℎ→0

𝐸ℎ
a (𝑠ℎ,nℎ).

Proof. First, we show that limℎ→0
̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) = ̂︀𝐸erk(𝑠,n). By Lemma A.18, we only need to show that

lim
ℎ→0

⃒⃒⃒(︁̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇nℎ), 1
)︁
−
(︁̂︁𝒲(𝑠,∇𝑠,n,∇n), 1

)︁⃒⃒⃒
→ 0. (4.5)
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We demonstrate this for one of the terms in (3.9); the other terms follow by similar arguments. First, we
consider 𝑤ℎ

𝑘3
and show that 𝐺ℎ

𝑘3
:= | (𝑠ℎ(∇nℎ)nℎ, 𝑠ℎ(∇nℎ)nℎ) − (𝑠(∇n)n, 𝑠(∇n)n) | → 0. Fix 𝜖 > 0. Since

𝑠ℎ → 𝑠, nℎ → n in 𝑊 1,∞(Ω ∖ 𝒮𝜖), it is clear that
∫︀
Ω∖𝒮𝜖

𝑠2ℎ|(∇nℎ)nℎ|2 →
∫︀
Ω∖𝒮𝜖

𝑠2|(∇n)n|2. On the other hand,
using (A.8), for ℎ > 0 sufficiently small, we have∫︁

𝒮𝜖

𝑠2ℎ|(∇nℎ)nℎ|2 ≤ ‖𝑠ℎ∇nℎ‖2𝐿2(𝒮𝜖)
≤ 𝐶

(︁
‖∇𝑠ℎ‖2𝐿2(𝒮2𝜖)

+ ‖∇uℎ‖2𝐿2(𝒮2𝜖)

)︁
≤ 𝐶

(︁
‖∇𝑠‖2𝐿2(𝒮2𝜖)

+ ‖∇u‖2𝐿2(𝒮2𝜖)

)︁
,

for all 𝜖 > 0. Ergo, limℎ→0 ‖𝑠ℎ(∇nℎ)nℎ‖2𝐿2(𝒮𝜖)
≤ 𝐶

(︁
‖∇𝑠‖2𝐿2(𝒮2𝜖)

+ ‖∇u‖2𝐿2(𝒮2𝜖)

)︁
, for all 𝜖 > 0. So, taking 𝜖→ 0

and using the monotone convergence theorem, we get

lim
ℎ→0

𝐺ℎ
𝑘3
≤ 𝐶

(︃∫︁
{𝑠=0}

|∇𝑠|2 +
∫︁
{u=0}

|∇u|2
)︃

= 0,

where we used Lemma A.3. Therefore, this shows that

𝑤ℎ
𝑘3

(𝑠ℎ, 𝑠ℎ; nℎ,nℎ;∇nℎ,∇nℎ) → 𝑤𝑘3 (𝑠, 𝑠; n,n;∇n,∇n) , as ℎ→ 0.

By similar reasoning, we get that 𝑤ℎ
𝑘𝑖
→ 𝑤𝑘𝑖

, for 1 ≤ 𝑖 ≤ 4, 𝑤ℎ
𝜃 → 𝑤𝜃, and 𝑤ℎ

𝑏𝑖
→ 𝑤𝑏𝑖

, for 1 ≤ 𝑖 ≤ 4.
Thus, we have shown that ̂︀𝐸ℎ

erk(𝑠ℎ,nℎ) → ̂︀𝐸erk(𝑠,n) as ℎ → 0. Furthermore, note that
𝑤𝜃 (𝑠, 𝑠; n,n;∇n,∇n) = 0, because (𝑠,u,n) ∈ 𝒜(𝑔,q), which implies that ̂︀𝐸erk(𝑠,n) = 𝐸erk(𝑠,n).

Next, we show that 𝐸ℎ
dw(𝑠ℎ) → 𝐸dw(𝑠) as ℎ → 0, i.e.

∫︀
Ω
𝜓(𝑠ℎ) →

∫︀
Ω
𝜓(𝑠), as ℎ → 0. Since 𝑠ℎ is piecewise

linear, by hypothesis −1/2 + 1/𝑘 ≤ 𝑠ℎ ≤ 1 − 1/𝑘 for all ℎ > 0. Thus, 𝜓(𝑠ℎ) is bounded uniformly in ℎ,
and 𝜓(𝑠) is also bounded. Since 𝜓(𝑠ℎ) → 𝜓(𝑠) a.e. in Ω, the dominated convergence theorem implies that∫︀
Ω
𝜓(𝑠ℎ) →

∫︀
Ω
𝜓(𝑠).

Finally, taking advantage of strong convergence in 𝐿2(Γ), we get convergence of the anchoring energy:
limℎ→0𝐸

ℎ
a (𝑠ℎ,nℎ) = 𝐸a(𝑠,n).

�

Lemma 4.4 (Recovery of electrical energy). Assume the hypothesis of Lemma A.17. Moreover, assume that
(𝑠,u,n) ∈ 𝒜(𝑔,q) also satisfies −1/2 + 1/𝑘 ≤ 𝑠 ≤ 1 − 1/𝑘 for some 𝑘 ≥ 2. Then there exists a sequence
(𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ(𝑔ℎ,qℎ), converging in the sense of Lemma A.17, such that 𝐸el(𝑠,n) = limℎ→0𝐸

ℎ
el(𝑠ℎ,nℎ).

Proof. First, we must show that the sequence of solutions to (3.16) {𝜙ℎ}ℎ>0 converges as ℎ → 0, and that
the limit solves the electro-static problem. Let 𝜂ℎ = 𝐼ℎ(𝜂), where 𝜂 ∈ 𝐶∞𝑐 (Ω); clearly 𝜂ℎ → 𝜂 in 𝐻1

0 (Ω). Next,
we show that (Pf(𝑠ℎ,nℎ),∇𝜂ℎ) → (Pf(𝑠,n),∇𝜂) and (Pr(𝑠ℎ,nℎ),∇𝜂ℎ) → (Pr(𝑠,n),∇𝜂). The arguments are
similar to the proof of Lemma 4.3, so we will focus on one term in Pr, i.e. show that

𝐺ℎ
𝑟1

(Ω) := (∇𝑠ℎ · nℎ,∇𝜂ℎ · nℎ)− (∇𝑠 · n,∇𝜂 · n) → 0, as ℎ→ 0.

Fix 𝜖 > 0. Since 𝑠ℎ → 𝑠, nℎ → n in 𝑊 1,∞(Ω ∖𝒮𝜖), it is clear that 𝐺ℎ
𝑟1

(Ω ∖𝒮𝜖) → 0 as ℎ→ 0. On the other hand,
by the stability of the interpolant, we have∫︁

𝒮𝜖

(∇𝑠ℎ · nℎ)∇𝜂ℎ · nℎ ≤ ‖∇𝑠ℎ‖𝐿2(𝒮𝜖)‖∇𝜂ℎ‖𝐿2(𝒮𝜖) ≤ 𝐶1‖∇𝑠‖𝐿2(𝒮𝜖)‖∇𝜂‖𝐿2(𝒮𝜖).

Ergo, limℎ→0

⃒⃒
𝐺ℎ

𝑟1
(Ω)
⃒⃒
≤ (𝐶1 + 1)‖∇𝑠‖𝐿2(𝒮𝜖)‖∇𝜂‖𝐿2(𝒮𝜖), for all 𝜖 > 0. So, taking 𝜖→ 0 and using the monotone

convergence theorem, we get limℎ→0 |𝐺ℎ
𝑟1

(Ω)| ≤ (𝐶1 + 1)
(︁∫︀
{𝑠=0} |∇𝑠|

2
)︁1/2

‖∇𝜂‖𝐿2(Ω) = 0, because ∇𝑠 = 0 a.e.
in {𝑠 = 0} (see Lem. A.3).
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Note that the permittivity tensor 𝜀(𝑠ℎ,nℎ) converges to 𝜀(𝑠,n) a.e. in Ω, using similar arguments as in
Lemma 4.3. Next, choosing 𝜂ℎ = 𝜙ℎ in (3.16) and using (3.14), we find that

𝜀min‖∇𝜙ℎ‖2𝐿2(Ω) ≤ 𝜀max

(︂
𝑐1
2
‖∇𝜙0,ℎ‖2𝐿2(Ω) +

1
2𝑐1

‖∇𝜙ℎ‖2𝐿2(Ω)

)︂
+
𝑐2
2
‖P(𝑠ℎ,nℎ)‖2𝐿2(Ω) +

1
2𝑐2

‖∇𝜙ℎ‖2𝐿2(Ω),

where 𝑐1, 𝑐2 > 0 are to be chosen. Upon recalling (2.36), and using the stability of the interpolant, we have that
‖P(𝑠ℎ,nℎ)‖𝐿2(Ω) is uniformly bounded for all ℎ > 0. Choosing 𝑐1, 𝑐2 sufficiently large, we find that ‖∇𝜙ℎ‖𝐿2(Ω) ≤
𝐶 <∞, for all ℎ > 0 for some fixed constant 𝐶 > 0. Thus, 𝜙ℎ ⇀ 𝜙 in 𝐻1

0 (Ω).
Furthermore, 𝜀(𝑠ℎ,nℎ)∇𝜂𝑇

ℎ → 𝜀(𝑠,n)∇𝜂𝑇 in 𝐿2(Ω) by Lebesgue’s dominated convergence theorem. So,
combining with the weak convergence of 𝜙ℎ, we see that

∫︀
Ω
∇𝜙ℎ𝜀(𝑠ℎ,nℎ)∇𝜂𝑇

ℎ →
∫︀
Ω
∇𝜙𝜀(𝑠,n)∇𝜂𝑇 . Thus,

combining with the convergence of the other terms in (3.16), we see that 𝜙 = 𝑇 (𝑠,n) solves (2.38) with data
(𝑠,n).

Next, we must show that 𝐽el(𝜙ℎ; 𝑠ℎ,nℎ) → 𝐽el(𝜙; 𝑠,n). For this, we must show that 𝜙ℎ → 𝜙 in 𝐻1
0 (Ω) (strong

convergence). Let 𝒫ℎ𝜙 ∈ 𝑉ℎ be the elliptic projection of 𝜙 (A.6). Similar to the previous inequality, we have

𝜀min‖∇𝜙ℎ −∇𝜙‖2𝐿2(Ω) ≤
∫︁

Ω

∇(𝜙ℎ − 𝜙)𝜀(𝑠ℎ,nℎ)∇(𝜙ℎ − 𝜙)𝑇

=
∫︁

Ω

∇𝜙ℎ𝜀(𝑠ℎ,nℎ)∇(𝒫ℎ𝜙− 𝜙)𝑇 +
∫︁

Ω

∇𝜙ℎ𝜀(𝑠ℎ,nℎ)∇(𝜙ℎ − 𝒫ℎ𝜙)𝑇

+
∫︁

Ω

∇𝜙𝜀(𝑠ℎ,nℎ)∇(𝜙− 𝜙ℎ)𝑇 = 𝑇ℎ
1 + 𝑇ℎ

2 + 𝑇ℎ
3 .

Since 𝒫ℎ𝜙→ 𝜙 in 𝐻1
0 (Ω), and 𝜀(𝑠ℎ,nℎ) is uniformly bounded, limℎ→0 𝑇

ℎ
1 = 0. For 𝑇ℎ

2 , use the discrete problem
(3.16) with data (𝑠ℎ,nℎ):∫︁

Ω

∇𝜙ℎ𝜀(𝑠ℎ,nℎ)∇(𝜙ℎ − 𝒫ℎ𝜙)𝑇 = −
∫︁

Ω

∇𝜙0,ℎ𝜀(𝑠ℎ,nℎ)∇(𝜙ℎ − 𝒫ℎ𝜙)𝑇

+ (Pf(𝑠ℎ,nℎ),∇(𝜙ℎ − 𝒫ℎ𝜙)) + (Pr(𝑠ℎ,nℎ),∇(𝜙ℎ − 𝒫ℎ𝜙)) → 0,

by utilizing both weak and strong convergence, i.e. P(𝑠ℎ,nℎ) → P(𝑠,n) strongly in 𝐿2(Ω). Lastly, 𝑇ℎ
3 → 0

because ∇𝜙𝜀(𝑠ℎ,nℎ) → ∇𝜙𝜀(𝑠,n) strongly in 𝐿2(Ω), and ∇(𝜙− 𝜙ℎ) → 0 weakly in 𝐿2(Ω).
Therefore, we find that ∇𝜙ℎ → ∇𝜙 strongly in 𝐿2(Ω). From this, we obtain that 𝐽el(𝜙ℎ; 𝑠ℎ,nℎ) → 𝐽el(𝜙; 𝑠,n),

which of course implies 𝐸el(𝜙ℎ; 𝑠ℎ,nℎ) → 𝐸el(𝜙; 𝑠,n). �

Theorem 4.5 (Recovery sequence). Suppose Assumptions 2.4 and 2.5 hold. Let (𝑠,u,n) ∈ 𝒜(𝑔,q). Then there
exists a sequence (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ(𝑔ℎ,qℎ), such that (𝑠ℎ,uℎ) converges to (𝑠,u) in 𝐻1(Ω), as well as nℎ ∈ 𝑁ℎ

converging to n in 𝐿2(Ω ∖ 𝒮), such that

𝐸(𝑠,n) = lim
ℎ→0

𝐸ℎ(𝑠ℎ,nℎ).

Proof. This follows by combining Lemmas A.17, 4.3, 4.4, with Lemma A.9. First, note that we can assume
𝐸(𝑠,n) < ∞ (otherwise, the result is trivial). Given 𝑘 ≥ 1, by Lemma A.9, there exists (𝑠𝛿𝑘

,u𝛿𝑘
,n𝛿𝑘

) ∈
𝒜(𝑔,q), with 𝛿𝑘 > 0 sufficiently small, so that |𝐸(𝑠𝛿𝑘

,n𝛿𝑘
)− 𝐸(𝑠,n)| ≤ 1

𝑘 , and moreover (𝑠𝛿𝑘
,u𝛿𝑘

) → (𝑠,u)
in [𝐻1(Ω)]𝑑+1, and n𝛿𝑘

→ n in [𝐿2(Ω ∖ 𝒮)]𝑑. Thus, with 𝑘 > 0 being a given integer, one can choose 𝛿𝑘 > 0
sufficiently small so that ‖(𝑠,u)− (𝑠𝛿𝑘

,u𝛿𝑘
)‖𝐻1(Ω) < 𝑘−1, ‖n− n𝛿𝑘

‖𝐿2(Ω∖𝒮) < 𝑘−1.
Next, by Lemma A.17, for each fixed 𝑘 there exists discrete functions (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ(𝑔ℎ,qℎ) such that

(𝑠ℎ,uℎ) → (𝑠𝛿𝑘
,u𝛿𝑘

) in [𝐻1(Ω)]𝑑+1, and nℎ → n𝛿𝑘
in [𝐿2(Ω ∖ 𝒮)]𝑑 as ℎ→ 0. Moreover, Lemmas 4.3, 4.4 imply

that
lim
ℎ→0

𝐸ℎ(𝑠ℎ,nℎ) = 𝐸(𝑠𝛿𝑘
,n𝛿𝑘

).

Whence, for each 𝛿𝑘, we may choose ℎ𝑘 sufficiently small so that |𝐸(𝑠ℎ𝑘
,nℎ𝑘

)− 𝐸(𝑠𝛿𝑘
,n𝛿𝑘

)| ≤ 𝑘−1, and
‖(𝑠𝛿𝑘

,u𝛿𝑘
)− (𝑠ℎ𝑘

,uℎ𝑘
)‖𝐻1(Ω) < 𝑘−1, ‖n𝛿𝑘

− nℎ𝑘
‖𝐿2(Ω∖𝒮) < 𝑘−1. The assertion then follows by applying the

triangle inequality. �



1198 S.W. WALKER

4.4. Proof of main result

Proof of Theorem 4.1. Lim-inf. Let (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ(𝑔ℎ,qℎ) be any sequence. Without loss of generality,
assume there is a constant Λ > 0 such that lim infℎ→0𝐸

ℎ(𝑠ℎ,nℎ) ≤ Λ, for otherwise there is nothing to
prove.

Combining (3.8) with Lemma 4.2, yields that ‖𝑠ℎ‖𝐻1(Ω), ‖uℎ‖𝐻1(Ω) are uniformly bounded with respect
to ℎ > 0. Whence, there is a subsequence (not relabeled) (𝑠ℎ,uℎ) that converges weakly to (𝑠,u) ∈ 𝒜. By
Lemma A.16, there exists a n ∈ 𝐿2(Ω) such that |n| = 1 a.e. in Ω and u = 𝑠n a.e. in Ω. Furthermore, by a
trace Sobolev embedding, we have that 𝑠 = 𝑔 on Γ𝑠, and n = q on Γn, ergo (𝑠,u,n) ∈ 𝒜(𝑔,q).

Note that Fatou’s lemma implies that lim infℎ→0𝐸dw(𝑠ℎ) ≥ 𝐸dw(𝑠), because 𝑠ℎ → 𝑠 a.e. in Ω. Therefore,
combining Lemmas A.21–A.23, we obtain

lim inf
ℎ→0

𝐸ℎ(𝑠ℎ,nℎ) ≥ 𝐸(𝑠,n).

Lim-sup. Let (𝑠,u,n) ∈ 𝒜(𝑔,q), for otherwise 𝐸(𝑠,n) = +∞ so the result is trivial. The existence of a convergent
sequence satisfying the necessary properties follows by Theorem 4.5. �

Corollary 4.6 (convergence of global discrete minimizers). Let {𝒯ℎ} be a sequence of conforming shape-regular
triangulations. If (𝑠ℎ,nℎ) ∈ 𝒜ℎ(𝑔ℎ,qℎ) is a sequence of global minimizers of 𝐸ℎ(𝑠ℎ,nℎ) in (3.18), then every
cluster point is a global minimizer of the continuous energy 𝐸(𝑠,n) in (2.42).

Proof. Follows from the usual Γ-convergence arguments [21,31]. �

This implies existence of global minimizers of (2.42), and convergence of global minimizers of (3.18) to global
minimizers of (2.42), along with convergence of the discrete energy to the continuous energy. Note that this
result does not yield a rate of convergence, though first order is expected for (𝑠ℎ,uℎ) in most situations (see
[71] for an example).

5. Numerical results

We use an alternating direction minimization algorithm, similar to what is in [33, 63, 70, 71], for finding
discrete (local) minimizers of 𝐸ℎ. In addition, we use a line search to ensure that the energy decreases at
each step. This is due to two reasons: the lack of monotonicity when projecting (normalizing) n to unit length
(c.f. [71], Thm. 8) and the presence of the electro-static PDE-constraint. An alternative method could be to use
a Newton iteration, as described in [40,77].

We implemented our method using the MATLAB/C++ finite element toolbox FELICITY [88]. For all
3-D simulations, we used the algebraic multi-grid solver (AGMG) [65, 66, 72, 73] to solve the linear sys-
tems for updating n and 𝑠, as well as solving the electro-static equation (3.16). In 2-D, we simply used the
“backslash” command in MATLAB.

5.1. Non-dimensionalization

We assume the following dimensional scales in the numerical experiments: 𝑘0 = 1.5 × 10−11 J/m and 𝐿0 =
77.5 × 10−9 m, which gives 𝛽erk = 1.1625 × 10−18 J. The other constants are 𝐴′0 = 104 J/m3, which gives the
(dimensionless) double well coefficient 𝜖dw = (0.5)−2, 𝛼0 = 9.5 × 10−3 J/m2, 𝑉0 = 1.84 or 2.9 Volts, and recall
that 𝜀0 = 8.854187817× 10−12C/(V ·m).

Next, we non-dimensionalize the simple Ericksen energy in (2.1) following a similar procedure as in [39]. Note
that 𝑠 and n are already non-dimensional. Let 𝐴′0 be the characteristic scale for the double well (see Rem. 2.2),
and define 𝜖dw :=

√︀
𝑘0/(𝐴′0𝐿

2
0), where 𝐿0 = diam(Ω) is the length scale. Then, (2.1) can be written as

𝐽(𝑠,n) = 𝑘0𝐿0

(︂
𝐸one,�̄�0(𝑠,n) +

1
𝜖2dw

𝐸dw(𝑠)
)︂
, 𝐸dw(𝑠) :=

∫︁
Ω

𝜓(𝑠) d𝑥 =
(︀
𝜓(𝑠), 1

)︀
, 𝜓(𝑠) =

1
𝐴′0

𝜓(𝑠), (5.1)
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Figure 2. Disk domain with two holes (Sect. 5.2.1). Arrows depict the director n. Color scale
is based on the degree-of-orientation parameter 𝑠. Weak (normal) anchoring is imposed on all
boundaries. Some “defect” regions can be seen around the upper right hole. (A) Erk. coefs:
𝑘1 = 𝑘2 = 𝑘3 = 1. (B) Erk. coefs: 𝑘1 = 1, 𝑘2 = 𝑘3 = 0.25.

𝐸one,�̄�0(𝑠,n) :=
1
2

∫︁
Ω

(︁
�̄�0|∇𝑠|2 + 𝑠2|∇n|2

)︁
d𝑥 =

1
2
[︀
�̄�0 (∇𝑠,∇𝑠) + (𝑠∇n, 𝑠∇n)

]︀
, (5.2)

where �̄�0 = 𝑏0/𝑘0, 𝜓(𝑠), 𝐸one,�̄�0 , and 𝐸dw are non-dimensional, as well as the domains. The general energy
density (2.13) is non-dimensionalized in a similar way, i.e. define 𝑘0 := max(𝑘1, 𝑘2, 𝑘3) and set 𝑘𝑖 := 𝑘𝑖/𝑘0,
and �̄�𝑖 := 𝑏𝑖/𝑘0, for 1 ≤ 𝑖 ≤ 4. For the weak anchoring, 𝛽a,n = 𝛽a,𝑠 = 𝛼0𝐿

2
0, where 𝛼0 has units of J/m2,

and Γ and 𝛼⊥, 𝛼‖, 𝛼ori are already non-dimensional. We normalize 𝛽a,n, 𝛽a,𝑠, and 𝛽el by 𝛽erk; hence, the non-
dimensional value for 𝛽erk is always unity. For each experiment, we list dimensionless values for 𝛽a,n, 𝛽a,𝑠, and
𝛽el. All domains are (at least approximately) unit size. For simplicity of notation, we drop the “bar” from the
non-dimensional quantities.

5.2. Disk with holes

5.2.1. Normal anchoring

The domain is taken to be a disk (of radius 0.6) with two holes (see Fig. 2). Weak anchoring is used on all
boundaries with parameters given by

𝛽a,n = 𝛽a,𝑠 = 50, 𝛼‖ = 1, 𝛼⊥ = 0, 𝛼ori = 1, (5.3)

which yields normal (homeotropic) anchoring. The (non-dimensional) double well potential 𝜓(𝑠), for− 1
2 < 𝑠 < 1,

is

𝜓(𝑠) := 5.2403− 11.6667𝑠2 − 27.7778𝑠3 + 41.6667𝑠4, (5.4)
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Figure 3. Disk domain with two holes (Sect. 5.2.2); similar format to Figure 2. Weak (planar)
anchoring is imposed on all boundaries. Some “defect” regions can be seen around both holes
in (a); only the lower left hole has a decreases order parameter in (b). (A) Erk. coefs: 𝑘1 =
𝑘2 = 𝑘3 = 1. (B) Erk. coefs: 𝑘1 = 1, 𝑘2 = 𝑘3 = 0.25.

Figure 4. Disk domain with two holes (Sect. 5.2.3); similar format to Figure 2. Electro-static
effects are turned on and weak (normal) anchoring is imposed on all boundaries. Some “defect”
regions can be seen around the lower left hole. (A) Erk. coefs: 𝑘1 = 𝑘2 = 𝑘3 = 1. (B) Erk. coefs:
𝑘1 = 1, 𝑘2 = 𝑘3 = 0.25.
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Figure 5. Disk domain with two holes (Sect. 5.2.4); similar format to Figure 2. Electro-
static effects are turned on and weak (planar) anchoring is imposed on all boundaries. Some
“defect” regions are depicted in blue. (A) Erk. coefs: 𝑘1 = 𝑘2 = 𝑘3 = 1. (B) Erk. coefs:
𝑘1 = 1, 𝑘2 = 𝑘3 = 0.25.

with a local maximum at 𝑠 = 0 and global minimum at 𝑠 = 𝑠a := 0.7. The initial conditions in Ω for the
gradient flow are: 𝑠 = 𝑠a and n given by a point defect at (0.552, 0.46)𝑇 .

The first set of values for the Ericksen constants are

𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 1, 𝑘4 = 0, 𝑏1 = 1, 𝑏2 = 𝑏3 = 𝑏4 = 0, (5.5)

with stabilization parameter 𝜃 = 3.3341, effective coercivity constant is ℓ0 = 0.3332, and 𝛽erk = 1. The results
of this simulation are shown in Figure 2a.

The next simulation changes two parameters only: 𝑘2 = 𝑘3 = 0.25; the rest are identical. This yields a
stabilization parameter 𝜃 = 8.6316 and effective coercivity constant ℓ0 = 0.1249. The results are shown in
Figure 2b which is not very different from Figure 2a.

5.2.2. Planar anchoring

In this numerical experiment, the exact same setup is used as in Figure 2a, except the weak anchoring
coefficients are

𝛽a,n = 𝛽a,𝑠 = 50, 𝛼‖ = 0, 𝛼⊥ = 1, 𝛼ori = 1, (5.6)

which yields planar anchoring. The double well potential is the same as in (5.4). Same initial conditions are
used.

The first set of values for the Ericksen constants are the same as in (5.5). The results of this simulation are
shown in Figure 3a.

The next simulation changes two parameters only: 𝑘2 = 𝑘3 = 0.25; the rest are identical. The results are
shown in Figure 3b which vary significantly from Figure 3a. The director field “swirls” more because 𝑘2, 𝑘3 are
lower so bending is not penalized as much.
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Figure 6. Cube domain without electric field (Sect. 5.3.1). Arrows depict the director n, which
smoothly transitions from n = (1, 0, 0)𝑇 on the bottom plane to n = (0, 1, 0)𝑇 on the top plane.
Color scale is based on the degree-of-orientation parameter 𝑠 (which is nearly constant here).
There are no defect regions. (A) View of the 𝑦-𝑧 plane. (B) Oblique view.

5.2.3. Normal anchoring with electric effect

This example uses the exact same setup as in Section 5.2.1, except now the electric field is turned on. The
electro-static parameters are

𝛽el = 2, 𝜀‖ = 5, 𝜀⊥ = 1, 𝑓1 = 1, 𝑓3 = −1, 𝑟1 = 𝑟2 = 0, (5.7)

with the boundary condition given by: 𝜙0 = 𝑥 + 𝑦. We start with the “one-constant” approximation, i.e.
𝑘1 = 𝑘2 = 𝑘3 = 1. The results of this simulation are shown in Figure 4a.

The next simulation changes two parameters only: 𝑘2 = 𝑘3 = 0.25; the rest are identical. The results are
shown in Figure 4b which is not very different from Figure 4a.

5.2.4. Planar anchoring with electric effect

This example uses the exact same setup as in Section 5.2.2, except now the electric field is turned on.
The electro-static parameters are the same as in (5.7). We start with the “one-constant” approximation, i.e.
𝑘1 = 𝑘2 = 𝑘3 = 1. The results of this simulation are shown in Figure 5a.

The next simulation changes two parameters only: 𝑘2 = 𝑘3 = 0.25; the rest are identical. The results are
shown in Figure 5b which vary somewhat from Figure 5a. The anisotropic electric field parameters drastically
affect the solution relative to no electric field in Figure 3.

5.3. Freedericksz transition

5.3.1. Off and On

The domain is taken to be a unit cube: Ω := [0, 1]3 (see Fig. 6). Weak anchoring is not used; the boundary
conditions are:
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Figure 7. Cube domain with electric field (Sect. 5.3.1). Similar format to Figure 6. The director
field n is driven to point vertically because of the electric effect, which demonstrates the classic
Freedericksz Transition. Again, the 𝑠 variable is nearly constant here. (A) View of the 𝑦-𝑧 plane.
(B) Oblique view.

Figure 8. Cube domain with flexo-electric effect 𝑓1 = 1 (Sect. 5.3.2). Similar format to
Figure 7. The director field is drastically affected by the flexo-electric effect. There are no
defect regions. (A) View of the 𝑦-𝑧 plane. (B) Oblique view.
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Figure 9. Cube domain with flexo-electric effect 𝑓3 = 1 (Sect. 5.3.2). Similar format to
Figure 7. The director field is again drastically affected by the flexo-electric effect. There are
no defect regions. (A) View of the 𝑦-𝑧 plane. (B) Oblique view.

n = (1, 0, 0)𝑇 , 𝑠 = 𝑠a, on [0, 1]2 × {0}, n = (0, 1, 0)𝑇 , 𝑠 = 𝑠a, on [0, 1]2 × {1}, (5.8)

with a vanishing Neumann condition on the other sides of the cube. The double well potential is the same as
in (5.4) with 𝜖dw := (0.5)−2. The initial conditions in Ω for the gradient flow are: 𝑠 = 𝑠a and n = (0, 1, 0)𝑇

constant.
The Ericksen constants are

𝑘1 = 𝑘2 = 𝑘3 = 1, 𝑘4 = 0, 𝑏1 = 1, 𝑏2 = 𝑏3 = 𝑏4 = 0, (5.9)

with stabilization parameter 𝜃 = 3.3341, effective coercivity constant is ℓ0 = 0.3332, and 𝛽erk = 1. The results
of this simulation are shown in Figure 6. Essentially, n · e𝑧 = 0 throughout, with a smooth rotation from the
bottom plane to the top plane.

Next, we turn the electric field on with parameters given by

𝛽el = 5, 𝜀‖ = 5, 𝜀⊥ = 1, 𝑓1 = 0, 𝑓3 = 0, 𝑟1 = 𝑟2 = 0, (5.10)

i.e. no flexo-electric effects are present. The boundary condition is given by: 𝜙0 = 𝑧. The results of this simulation
are shown in Figure 7.

5.3.2. Flexo-electric

In this numerical experiment, we use the same conditions as in Section 5.3.1, except that the flexo-electric
parameters are

𝑓1 = 1, 𝑓3 = 0, 𝑟1 = 𝑟2 = 0. (5.11)
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Figure 10. Torus domain (Sect. 5.4.1), with different views (A) and (B). Arrows depict the
director n. Color scale is based on the degree-of-orientation parameter 𝑠. Weak (planar) anchor-
ing is imposed on the boundary. No defects are present. Erk. coefs: 𝑘1 = 𝑘2 = 𝑘3 = 1.

The results of this simulation are shown in Figure 8. The director field is significantly affected by the flexo-electric
effect. Recall (2.35), where 𝑓1 is connected with div n.

Next, we change the flexo-electric parameters to

𝑓1 = 0, 𝑓3 = 1, 𝑟1 = 𝑟2 = 0. (5.12)

The results of this simulation are shown in Figure 9. The director field exhibits a twisting motion with axis
aligned along the 𝑥 direction. Note that 𝑓3 is connected with n× curl n.

5.4. Torus

5.4.1. Planar anchoring

The domain is taken to be a torus with two radii 0.155 and 0.3 (see Fig. 10). Weak anchoring is used on all
boundaries with parameters given by

𝛽a,n = 𝛽a,𝑠 = 50, 𝛼‖ = 0, 𝛼⊥ = 1, 𝛼ori = 1, (5.13)

which yields planar anchoring. The double well potential is the same as in (5.4). The initial conditions in Ω for
the gradient flow are: 𝑠 = 𝑠a and n a perturbed rotating vector field.

The first set of values for the Ericksen constants are

𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 1, 𝑘4 = 0, 𝑏1 = 1, 𝑏2 = 𝑏3 = 𝑏4 = 0, (5.14)

with stabilization parameter 𝜃 = 3.3341, effective coercivity constant is ℓ0 = 0.3332, and 𝛽erk = 1. The results
of this simulation are shown in Figure 10.
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Figure 11. Torus domain (Sect. 5.4.1), with different views (A) and (B). Similar format as in
Figure 10. The director field twists along the torus in order to avoid bending, which is more
heavily penalized by the 𝑘3 term. No defects are present. Erk. coefs: 𝑘1 = 𝑘2 = 0.1, 𝑘3 = 1.

Figure 12. Torus domain with electric field (Sect. 5.4.2), with different views (A) and (B).
Similar format as in Figure 10. The electric field has no significant effect relative to Figure 10.
Erk. coefs: 𝑘1 = 𝑘2 = 𝑘3 = 1.

The next simulation changes two parameters only: 𝑘1 = 𝑘2 = 0.1; the rest are identical. This yields a
stabilization parameter 𝜃 = 0.2503 and effective coercivity constant ℓ0 = 0.049905. The results are shown in
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Figure 13. Torus domain with electric field (Sect. 5.4.2), with different views (A) and (B).
Similar format as in Figure 10. The director field twists along the torus in order to avoid
bending, which is more heavily penalized by the 𝑘3 term. No defects are present, but 𝑠 varies
more than the previous cases. Erk. coefs: 𝑘1 = 𝑘2 = 0.1, 𝑘3 = 1.

Figure 11 which shows the director field developing a “twist” along the torus. This is understandable since 𝑘1

and 𝑘2 are much smaller than 𝑘3, i.e. it is energetically favorable for the director field to develop a twist in
order to avoid bending around the torus.

5.4.2. Planar anchoring with electric field

In this case, everything is the same as in Figure 10, except now we turn the electric field on with parameters
given by

𝛽el = 5, 𝜀‖ = 5, 𝜀⊥ = 1, 𝑓1 = 1, 𝑓3 = 0, 𝑟1 = 𝑟2 = 0, (5.15)

The boundary condition is given by: 𝜙0 = 𝑧. The results of this simulation are shown in Figure 12. Note that
the flexo-electric term 𝑓1 does not really play a role here because |div n| ≈ 0.

The next simulation changes the following parameters only: 𝑘1 = 𝑘2 = 0.1, and 𝑓1 = 0, 𝑓3 = 1; the rest are
identical. The results are shown in Figure 13. Similar to Figure 11, the director field twists along the torus in
order to avoid pure bending. However, the 𝑓3 flexo-electric term causes the director field to distort further (note
the lighter colored areas in Fig. 13b).

6. Conclusions

We have presented a finite element method for the generalized Ericksen model of liquid crystals, which can
account for electro-static effects and weak anchoring conditions. The method is shown to converge in the sense of
Γ-convergence for global minimizers, without requiring the mesh to be weakly acute. A key part of the method
uses mass lumping (different from what is in [70,71]) to give stability.
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Using a simple iterative minimization scheme with line search, we computed discrete minimizers for three
different examples to illustrate the method. The numerical experiments illustrate the effect of varying the
Ericksen constants; this has a direct effect on the form of the minimizers. Furthermore, the electric field can
augment the director field considerably if 𝛽el is large enough.

The main advantage of the method is that it does not need a weakly acute mesh. This allows for modeling
LCs with the Ericksen system on general geometries, without the need for a separate treatment of the boundary
(such as in [33,63]). This has the potential for enabling shape optimization problems related to liquid crystals,
such as optimizing colloidal particles interacting with LCs.

One future direction of our method is to extend it to handle line fields, i.e. enforce the equivalence of ±n (see
Rem. 2.1). Moreover, our approach could be extended to modeling and simulating the packing of DNA strands
inside viral capsids [8, 60]. The idea here is to treat the DNA strand like an anisotropic material and model
the material state with a director field [50]. There are many applications for this kind of modeling, from basic
science [58,79] to more practical applications [44].

Appendix A. Auxiliary results

A.1. Elementary analysis

The following convergence result is basic to everything that follows.

Lemma A.1. Let (𝑠,u,n) ∈ 𝒜, and suppose {(𝑠𝛿,u𝛿,n𝛿)}𝛿>0 ⊂ 𝒜 is a sequence such that (𝑠𝛿,u𝛿) → (𝑠,u) in
[𝐻1(Ω)]𝑑+1, as 𝛿 → 0. Then, for any subset 𝐷 of Ω, we have∫︁

𝐷

𝑠2𝛿 |∇n𝛿|2 →
∫︁

𝐷

𝑠2|∇n|2, as 𝛿 → 0.

Proof. This follows easily from the identity (2.4). �

We note a basic compactness result regarding traces (see [67], Cor. 7.2, [27], Thm. 6.6-3, and [27], Thm. 6.6-5).

Theorem A.2. Let Ω be a bounded Lipschitz domain in R𝑑. Then, for 𝑑 = 2 or 3,

‖𝑢‖𝐿2(Γ) ≤ 𝐶‖𝑢‖𝑊 1,𝑝(Ω), for all 2 ≤ 𝑝 ≤ ∞,

where 𝐶 > 0 only depends on Ω and Γ. Moreover, the trace operator on Γ, as a map from 𝑊 1,2(Ω) → 𝐿2(Γ), is
compact.

The singular set {𝑠 = 0} plays a critical role in the analysis throughout the paper. The following basic result
from [35], Chapter 5, Exercise 17 is used repeatedly to handle the singular set.

Lemma A.3. Let 𝑢 ∈ 𝐻1(Ω). Then, ∇𝑢 = 0 a.e. on the set {𝑢 = 𝑐}, where 𝑐 ∈ R.

The following lemma is used to handle the vanishing set 𝒵𝜖 in Proposition A.6 (see [90]) during the proof of
Lemma A.7.

Lemma A.4. Let 𝑓 ∈ 𝐿1(Ω) be non-negative, and suppose that for each 𝜖 > 0 the set 𝐵𝜖 ⊂ Ω satisfies |𝐵𝜖| < 𝜖.
Then, lim𝜖→0

∫︀
𝐵𝜖
𝑓 = 0.
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A.2. Truncation and regularization in the admissible set

Since the double well function 𝜓 diverges at 𝑠 = −1/2 and 𝑠 = 1, it is convenient to truncate 𝑠 away from
𝑠 = −1/2, 1. The next result, from Lemma 3.1 of [70], indicates that this is only a small perturbation (also see
Lem. A.8).

Lemma A.5 (Truncate 𝑠). Assume (𝑔, r,q) satisfies Assumption 2.4. Let (𝑠,u,n) ∈ 𝒜(𝑔,q) and define 𝑠𝜌 :=
max

{︀
− 1

2 + 𝜌,min{𝑠, 1− 𝜌}
}︀
, for any 𝜌 ≥ 0, and set u𝜌 := 𝑠𝜌n. Then, (𝑠𝜌,u𝜌,n) ∈ 𝒜(𝑔,q) for all 𝜌 ≤ 𝜌0 and

‖(𝑠,u)− (𝑠𝜌,u𝜌)‖𝐻1(Ω) → 0, as ℎ→ 0.

The following proposition is a variant of Proposition 3.2 from [70] and is needed to construct a recovery
sequence (see Lem. A.17 and Thm. 4.5).

Proposition A.6 (Regularization in 𝒜(𝑔,q)). Suppose the boundary data satisfies Assumptions 2.4 and 2.5.
Let (𝑠,u,n) ∈ 𝒜(𝑔,q), with − 1

2 + 𝜌 ≤ 𝑠 ≤ 1 − 𝜌 a.e. in Ω for any 𝜌 such that 0 ≤ 𝜌 ≤ 𝜌0. Then, given 𝛿 > 0,
there exists a triple (𝑠𝛿,u𝛿,n𝛿) ∈ 𝒜(𝑔,q), such that 𝑠𝛿 ∈𝑊 1,∞(Ω), u𝛿 ∈ [𝑊 1,∞(Ω)]𝑑, and

‖(𝑠,u)− (𝑠𝛿,u𝛿)‖𝐻1(Ω) ≤ 𝛿, −1
2

+ 𝜌 ≤ 𝑠𝛿(𝑥) ≤ 1− 𝜌, ∀𝑥 ∈ Ω.

This implies there exists 𝒵𝜖 ⊂ Ω such that |𝒵𝜖| < 𝜖 and (𝑠𝛿,u𝛿) converges uniformly on Ω ∖ 𝒵𝜖.
In addition, n𝛿 ≡ u𝛿/𝑠𝛿 if 𝑠𝛿 ̸= 0, and n𝛿 can be taken to be any unit vector if 𝑠𝛿 = 0. Then, n𝛿 → n in

[𝐿2(Ω ∖ 𝒮)]𝑑 (recall (2.3)). Moreover, for each fixed 𝜖 > 0:

(i) n𝛿 is Lipschitz on Ω ∖ {|𝑠𝛿| ≤ 𝜖} with Lipschitz constant proportional to 𝜖−1;
(ii) n𝛿 → n in [𝐻1(Ω ∖Υ𝜖)]𝑑, as 𝛿 → 0, where Υ𝜖 := {|𝑠| ≤ 𝜖} ∪ 𝒵𝜖.

A.3. Perturbing the energy

The following results show that we can perturb the energy (2.42) within the admissible set. This is used to
construct a recovery sequence in Theorem 4.5

Lemma A.7. Assume the hypothesis of Proposition A.6. Then,

𝐸erk(𝑠𝛿,n𝛿) → 𝐸erk(𝑠,n), 𝐸a(𝑠𝛿,n𝛿) → 𝐸a(𝑠,n), 𝐸el(𝑠𝛿,n𝛿) → 𝐸el(𝑠,n), (A.1)

as 𝛿 → 0.

Proof. First note that 𝑠𝛿 → 𝑠, a.e. in Ω, n𝛿 → n a.e. in Ω ∖ {𝑠 = 0}, and ∇n𝛿 → ∇n in 𝐿2(Ω𝜖), where
Ω𝜖 := Ω∖Υ𝜖 for any fixed 𝜖 > 0, where Υ𝜖 := {|𝑠| ≤ 𝜖}∪𝒵𝜖 and 𝒵𝜖 is taken from Proposition A.6. Now consider
the 𝑘3 term 𝐼𝛿

𝑘3
(𝒟) :=

∫︀
𝒟 𝑠

2
𝛿 |n𝛿 × curl n𝛿|2 =

∫︀
𝒟 𝑠

2
𝛿 |[n𝛿]×curl n𝛿|2 in 𝐸erk, for any subset 𝒟 ⊂ Ω, and estimate

the difference⃒⃒⃒⃒
𝐼𝛿
𝑘3

(Ω𝜖)−
∫︁

Ω𝜖

𝑠2𝛿 |[n𝛿]×curl n|2
⃒⃒⃒⃒

=
⃒⃒⃒⃒∫︁

Ω𝜖

[︀
𝑠2𝛿 [n𝛿]𝑇×[n𝛿]×

]︀
: [(curl n⊗ curl n)− (curl n𝛿 ⊗ curl n𝛿)]

⃒⃒⃒⃒
≤
(︀
‖curl n‖𝐿2(Ω𝜖) + ‖curl n𝛿‖𝐿2(Ω𝜖)

)︀
‖curl n𝛿 − curl n‖𝐿2(Ω𝜖) ≤ 𝐶‖curl n‖𝐿2(Ω𝜖)‖∇n𝛿 −∇n‖𝐿2(Ω𝜖),

which clearly goes to zero as 𝛿 → 0. Moreover, we have that 𝑠2𝛿 |[n𝛿]×curl n|2 → 𝑠2|[n]×curl n|2 a.e. in Ω𝜖 and
𝑠2𝛿 |[n𝛿]×curl n|2 ≤ 𝐶|∇n|2 ∈ 𝐿1(Ω𝜖) a.e. in Ω𝜖, which implies that 𝑠2𝛿 |[n𝛿]×curl n|2 → 𝑠2|[n]×curl n|2 in 𝐿1(Ω𝜖)
by the Lebesgue dominated convergence theorem. Therefore, lim𝛿→0

⃒⃒
𝐼𝛿
𝑘3

(Ω𝜖)− 𝐼0
𝑘3

(Ω𝜖)
⃒⃒

= 0, for all 𝜖 > 0.
Next, using u = 𝑠n, note that

𝐼𝛿
𝑘3

(Υ𝜖) ≤ 𝐶

∫︁
ϒ𝜖

𝑠2𝛿 |∇n𝛿|2 ≤ 𝐶

∫︁
ϒ𝜖

|∇𝑠𝛿|2 + |∇u𝛿|2, and so

lim
𝛿→0

⃒⃒
𝐼𝛿
𝑘3

(Υ𝜖)− 𝐼0
𝑘3

(Υ𝜖)
⃒⃒
≤ 2𝐶

∫︁
Ω

𝜒ϒ𝜖
(|∇𝑠|2 + |∇u|2) =: 𝐼*𝑘3

(Υ𝜖),
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for some independent constant 𝐶 > 0. Taking 𝜖→ 0, we have that

𝐼*𝑘3
(Υ𝜖) →

∫︁
{𝑠=0}

(︀
|∇𝑠|2 + |∇u|2

)︀
+ lim

𝜖→0

∫︁
𝒵𝜖

(︀
|∇𝑠|2 + |∇u|2

)︀
= 0,

because ∇𝑠 = 0 = ∇u a.e. on the set {𝑠 = 0} (see Lem. A.3), and lim𝜖→0 |𝒵𝜖| = 0 (see Lem. A.4). Hence,
lim𝛿→0

⃒⃒
𝐼𝛿
𝑘3

(Ω)− 𝐼0
𝑘3

(Ω)
⃒⃒

= 0, so then
∫︀
Ω
𝑠2𝛿 |n𝛿 × curl n𝛿|2 →

∫︀
Ω
𝑠2|n× curl n|2. The other terms in 𝐸erk can be

handled similarly.
For the weak anchoring energy 𝐸a, we only consider

∫︀
Γ
𝑠2(𝜈 ·n)2 d𝑆(𝑥); the other terms are handled similarly.

By Theorem A.2, 𝑠𝛿n𝛿 ≡ u𝛿 → u ≡ 𝑠n in 𝐿2(Γ). Thus,
∫︀
Γ
𝑠2𝛿(𝜈 · n𝛿)2 d𝑆(𝑥) →

∫︀
Γ
𝑠2(𝜈 · n)2 d𝑆(𝑥).

For the electric field, we first note that the polarization vector P(𝑠𝛿,n𝛿) → P(𝑠,n) in 𝐿2(Ω) by arguments
similar to the above. Next, let 𝜙𝛿 solve (2.38) given the data (𝑠𝛿,n𝛿), i.e. 𝜙𝛿 ≡ 𝑇 (𝑠𝛿,n𝛿). We must now show
that 𝜙𝛿 converges to a limit 𝜙 = 𝑇 (𝑠,n).

Clearly, 𝜀(𝑠𝛿,n𝛿) converges to 𝜀(𝑠,n) a.e. in Ω ∖ 𝒮. Moreover, 𝜀(𝑠𝛿,n𝛿) → 𝜀I a.e. in 𝒮, and 𝜀(𝑠,n) = 𝜀I in 𝒮.
Thus, 𝜀(𝑠𝛿,n𝛿) converges to 𝜀(𝑠,n) a.e. in Ω. Furthermore, choosing 𝜂 = 𝜙𝛿 in (2.38) and using (2.33), we find
that

𝜀min‖∇𝜙𝛿‖2𝐿2(Ω) ≤ 𝜀max

(︂
𝑐1
2
‖∇𝜙0‖2𝐿2(Ω) +

1
2𝑐1

‖∇𝜙𝛿‖2𝐿2(Ω)

)︂
+
𝑐2
2
‖P(𝑠𝛿,n𝛿)‖2𝐿2(Ω) +

1
2𝑐2

‖∇𝜙𝛿‖2𝐿2(Ω),

where 𝑐1, 𝑐2 > 0 are to be chosen. Upon recalling (2.36), and since (𝑠𝛿,u𝛿) → (𝑠,u) in 𝐻1(Ω), we have that
‖P(𝑠𝛿,n𝛿)‖𝐿2(Ω) is uniformly bounded for all 𝛿 > 0. Choosing 𝑐1, 𝑐2 sufficiently large, we find that ‖∇𝜙𝛿‖𝐿2(Ω) ≤
𝐶 <∞, for all 𝛿 > 0 for some fixed constant 𝐶 > 0. Thus, 𝜙𝛿 ⇀ 𝜙 in 𝐻1

0 (Ω).
Furthermore, 𝜀(𝑠𝛿,n𝛿)∇𝜂𝑇 → 𝜀(𝑠,n)∇𝜂𝑇 in 𝐿2(Ω) by Lebesgue’s dominated convergence theorem. So, com-

bining with the weak convergence of 𝜙𝛿, we see that∫︁
Ω

∇𝜙𝛿𝜀(𝑠𝛿,n𝛿)∇𝜂𝑇 →
∫︁

Ω

∇𝜙𝜀(𝑠,n)∇𝜂𝑇 .

Thus, combining with the convergence of the other terms in (2.38), we see that 𝜙 solves (2.38) with data (𝑠,n).
The following argument shows that 𝜙𝛿 → 𝜙 in 𝐻1

0 (Ω) (strong convergence). Similar to the previous inequality,
we have

𝜀min‖∇𝜙𝛿 −∇𝜙‖2𝐿2(Ω) ≤
∫︁

Ω

∇(𝜙𝛿 − 𝜙)𝜀(𝑠𝛿,n𝛿)∇(𝜙𝛿 − 𝜙)𝑇

= −
∫︁

Ω

∇𝜙0𝜀(𝑠𝛿,n𝛿)∇(𝜙𝛿 − 𝜙)𝑇 +
∫︁

Ω

P(𝑠𝛿,n𝛿) · ∇(𝜙𝛿 − 𝜙)

+
∫︁

Ω

∇𝜙𝜀(𝑠𝛿,n𝛿)∇(𝜙− 𝜙𝛿)𝑇 ,

(A.2)

where we used the PDE constraint (2.38) with data (𝑠𝛿,n𝛿). By Lebesgue’s dominated convergence theorem,
we have that ∇𝜙0𝜀(𝑠𝛿,n𝛿) → ∇𝜙0𝜀(𝑠,n) and ∇𝜙𝜀(𝑠𝛿,n𝛿) → ∇𝜙𝜀(𝑠,n) strongly in 𝐿2(Ω). Moreover, we know
that P(𝑠𝛿,n𝛿) → P(𝑠,n) strongly in 𝐿2(Ω). So combining with the weak convergence of ∇𝜙𝛿 implies that the
right-hand-side of (A.2) goes to zero. Therefore, we find that ∇𝜙𝛿 → ∇𝜙 strongly in 𝐿2(Ω).

This then implies that 𝐸el(𝜙𝛿; 𝑠𝛿,n𝛿) → 𝐸el(𝜙; 𝑠,n) and that the limit 𝜙 solves the electro-static equation
(2.38) with data (𝑠,n). We have thus proven (A.1). �

The next result shows the effect of truncating 𝑠 on the total energy 𝐸.

Lemma A.8. Assume the hypothesis of Lemma A.5. Then, 𝐸(𝑠𝜌,n) → 𝐸(𝑠,n), as 𝜌→ 0, where 𝑠𝜌 is given in
Lemma A.5.
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Proof. The result follows by the monotone convergence theorem, and similar techniques as in the proof of
Lemma A.7.

�

We now combine Proposition A.6 and Lemmas A.7, A.8 to obtain the following energy perturbation result.

Lemma A.9. Suppose the boundary data satisfies Assumptions 2.4 and 2.5. Let (𝑠,u,n) ∈ 𝒜(𝑔,q). Then,
given 𝑘 ≥ 1, there exists a triple (𝑠𝑘,u𝑘,n𝑘) ∈ 𝒜(𝑔,q), such that 𝑠𝑘 ∈𝑊 1,∞(Ω), u𝑘 ∈ [𝑊 1,∞(Ω)]𝑑, ‖(𝑠𝑘,u𝑘)−
(𝑠,u)‖𝐻1(Ω) → 0 as 𝑘 → ∞, and − 1

2 + 1
𝑘 ≤ 𝑠𝑘 ≤ 1 − 1

𝑘 a.e. in Ω. Moreover, ‖n𝑘 − n‖𝐿2(Ω∖{𝑠=0}) → 0,
n𝑘 ∈ [𝑊 1,∞(Ω ∖ {|𝑠𝑘| ≤ 𝜖})]𝑑, and ‖n𝑘−n‖𝐻1(Ω∖ϒ𝜖) → 0 as 𝑘 →∞ for any fixed 𝜖 > 0, where Υ𝜖 is taken from
Proposition A.6, and

𝐸(𝑠𝑘,n𝑘) → 𝐸(𝑠,n), as 𝑘 →∞. (A.3)

Proof. Let 𝑘 ≥ 1, such that 0 < 1/𝑘 ≤ 𝜌0 and define 𝑠𝑘 := max{−1/2 + 1/𝑘,min{𝑠, 1− 1/𝑘}}, and ũ𝑘 := 𝑠𝑘n.
Then the hypothesis of Lemma A.5 is satisfied, so (𝑠𝑘, ũ𝑘,n) ∈ 𝒜(𝑔,q) for all 𝑘 such that 0 < 1/𝑘 ≤ 𝜌0,
and there exist numbers {𝑎𝑘}∞𝑘=1 such that ‖(𝑠𝑘, ũ𝑘) − (𝑠,u)‖𝐻1(Ω) = 𝑎𝑘 and lim𝑘→∞ 𝑎𝑘 = 0. Furthermore,
Lemma A.8 implies that there exists numbers {𝑐𝑎𝑘

}∞𝑘=1 such that

|𝐸(𝑠𝑘,n)− 𝐸(𝑠,n)| = 𝑐𝑎𝑘
, and lim

𝑘→∞
𝑐𝑎𝑘

= 0. (A.4)

Next, apply Proposition A.6 to (𝑠𝑘, ũ𝑘,n), i.e. given 𝛿 < 1/𝑘, there exists a triple: (𝑠𝛿,u𝛿,n𝛿) ∈ 𝒜(𝑔,q), such
that (𝑠𝛿,u𝛿) ∈ [𝑊 1,∞(Ω)]1+𝑑, ‖(𝑠𝛿,u𝛿) − (𝑠𝑘, ũ𝑘)‖𝐻1(Ω) ≤ 𝛿, and −1/2 + 1/𝑘 ≤ 𝑠𝛿 ≤ 1 − 1/𝑘 in Ω. Moreover,
‖n𝛿 −n‖𝐿2(Ω∖{𝑠=0}) → 0, n𝛿 ∈ [𝑊 1,∞(Ω ∖ {|𝑠𝛿| ≤ 𝜖})]𝑑, and ‖n𝛿 −n‖𝐻1(Ω∖ϒ𝜖) → 0 as 𝛿 → 0 for any fixed 𝜖 > 0.

Thus, the hypothesis of Lemma A.7 is fulfilled. In addition, to see the convergence of 𝐸dw, note that for
fixed 𝑠𝑘, 𝜓(𝑠𝑘) is bounded on Ω and 𝜓(𝑠𝛿) is uniformly bounded for all 𝛿. Hence, by Lebesgue’s dominated
convergence theorem, we see that 𝐸dw(𝑠𝛿) → 𝐸dw(𝑠𝑘) as 𝛿 → 0. Therefore, |𝐸(𝑠𝛿,n𝛿)− 𝐸(𝑠𝑘,n)| = 𝑐𝛿, where
𝑐𝛿 → 0 as 𝛿 → 0.

Now, choose 𝛿 ≡ 𝛿𝑘 < 1/𝑘 sufficiently small so that 𝛿𝑘 < 𝑎𝑘, 𝑐𝛿𝑘
< 𝑐𝑎𝑘

, and define 𝑠𝑘 := 𝑠𝛿𝑘
, u𝑘 := u𝛿𝑘

,
n𝑘 := n𝛿𝑘

. Whence, ‖(𝑠𝑘,u𝑘)− (𝑠,u)‖𝐻1(Ω) ≤ ‖(𝑠𝛿𝑘
,u𝛿𝑘

)− (𝑠𝑘, ũ𝑘)‖𝐻1(Ω) + ‖(𝑠𝑘, ũ𝑘)− (𝑠,u)‖𝐻1(Ω) = 𝛿𝑘 + 𝑎𝑘,
and |𝐸(𝑠𝑘,n𝑘)− 𝐸(𝑠,n)| ≤ |𝐸(𝑠𝛿𝑘

,n𝛿𝑘
)− 𝐸(𝑠𝑘,n)|+|𝐸(𝑠𝑘,n)− 𝐸(𝑠,n)| = 𝑐𝛿𝑘

+𝑐𝑎𝑘
. Taking 𝑘 →∞, we obtain

the assertion. �

A.4. Interpolation estimates

The next basic result is used in Section 3.3.1.

Proposition A.10 (Lagrange interpolant inequality). Let 𝑝 be a linear function over a 𝑑-dimensional simplex
𝑇 , where 1 ≤ 𝑑 ≤ 3. Then, ∫︁

𝑇

(𝑝(𝑥))2 d𝑥 ≤
∫︁

𝑇

𝐼ℎ(𝑝2)(𝑥) d𝑥 ≤ 𝑑!(𝑑+ 2)
∫︁

𝑇

(𝑝(𝑥))2 d𝑥. (A.5)

The following result is useful throughout the paper.

Proposition A.11 (Elliptic projection). Define the bilinear form 𝑎(𝑠, 𝑧) = (𝑠, 𝑧) + (∇𝑠,∇𝑧) and let 𝒫ℎ :
𝐻1(Ω) → 𝑆ℎ be the elliptic projection defined by

𝑎(𝒫ℎ𝑠, 𝑧ℎ) = 𝑎(𝑠, 𝑧ℎ), for all 𝑧ℎ ∈ 𝑆ℎ. (A.6)

Then ‖𝒫ℎ𝑠− 𝑠‖𝐻1(Ω) → 0 as ℎ→ 0; similar results hold for the elliptic projections onto 𝑈ℎ and 𝑉ℎ.

We collect here several interpolation and inverse type inequalities, all of which follow by basic finite element
theory.
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Lemma A.12. Let 𝑣ℎ : 𝑇 → R be a polynomial on an element 𝑇 ∈ 𝒯ℎ, of dimension 𝑑, where 𝑑 = 2 or 3.
Then, the following trace estimate holds

‖𝑣ℎ‖𝐿2(𝜕𝑇 ) ≤ 𝐶2ℎ
𝑑(1/2−1/𝑝)

(︁
ℎ−1/2‖𝑣ℎ‖𝐿𝑝(𝑇 ) + ℎ1/2‖∇𝑣ℎ‖𝐿𝑝(𝑇 )

)︁
, for all 2 ≤ 𝑝 ≤ ∞, (A.7)

where ℎ𝑇 = diam(𝑇 ) (for any 𝑇 ∈ 𝒯ℎ), ℎ = max𝑇 ℎ𝑇 , and 𝐶 > 0 only depends on the shape regularity of the
mesh 𝒯ℎ.

Lemma A.13. Let (𝑠ℎ,uℎ,nℎ) in 𝒜ℎ and let 𝐷 = ∪𝑇∈̃︀𝒯ℎ
𝑇 ⊂ Ω, where ̃︀𝒯ℎ is any subset of elements of 𝒯ℎ.

Then, for 1 ≤ 𝑝 ≤ ∞, the following error estimates hold

‖𝑠ℎnℎ − uℎ‖𝐿𝑝(𝐷) + ℎ‖∇(𝑠ℎnℎ − uℎ)‖𝐿𝑝(𝐷) ≤ 𝐶ℎ‖∇𝑠ℎ‖𝐿𝑝(𝐷),

‖𝑠−1
ℎ uℎ − nℎ‖𝐿𝑝(𝐷) + ℎ‖∇(𝑠−1

ℎ uℎ − nℎ)‖𝐿𝑝(𝐷) ≤ 𝐶ℎ‖𝑠−2
ℎ ‖𝐿∞(𝐷)

(︀
‖∇𝑠ℎ‖𝐿𝑝(𝐷) + ‖∇uℎ‖𝐿𝑝(𝐷)

)︀
.

(A.8)

where ℎ𝑇 = diam(𝑇 ) (for any 𝑇 ∈ 𝒯ℎ), ℎ = max𝑇 ℎ𝑇 , and 𝐶 > 0 only depends on the shape regularity of the
mesh 𝒯ℎ.

Lemma A.14. Assume the hypothesis of Lemma A.13 and let wℎ ∈ 𝑈ℎ. Then,

‖𝑠2ℎ − 𝐼ℎ{𝑠2ℎ}‖𝐿𝑝(𝐷) ≤ 𝐶ℎ‖𝑠ℎ∇𝑠ℎ‖𝐿𝑝(𝐷), or 𝐶ℎ2‖∇𝑠ℎ‖2𝐿2𝑝(𝐷),

‖wℎ ⊗wℎ − 𝐼ℎ{wℎ ⊗wℎ}‖𝐿𝑝(𝐷) ≤ 𝐶ℎ‖wℎ ⊗∇wℎ‖𝐿𝑝(𝐷), or 𝐶ℎ2‖∇wℎ‖2𝐿2𝑝(𝐷), (A.9)

‖𝑠2ℎ(nℎ ⊗ nℎ)− 𝐼ℎ{𝑠2ℎ(nℎ ⊗ nℎ)}‖𝐿𝑝(𝐷) ≤ 𝐶ℎ‖𝑠ℎ‖𝐿∞(𝐷)𝐾1, or 𝐶ℎ2𝐾2,

‖𝑠2ℎ ([nℎ]× ⊗ [nℎ]×)− 𝐼ℎ{𝑠2ℎ ([nℎ]× ⊗ [nℎ]×)}‖𝐿𝑝(𝐷) ≤ 𝐶ℎ‖𝑠ℎ‖𝐿∞(𝐷)𝐾1, or 𝐶ℎ2𝐾2,

𝐾1 :=
(︀
‖∇𝑠ℎ‖𝐿𝑝(𝐷) + ‖∇uℎ‖𝐿𝑝(𝐷)

)︀
, 𝐾2 :=

(︁
‖∇𝑠ℎ‖2𝐿2𝑝(𝐷) + ‖∇uℎ‖2𝐿2𝑝(𝐷)

)︁
, (A.10)

where 𝐶 > 0 only depends on the shape regularity of the mesh 𝒯ℎ.

Lemma A.15. Let (𝑠ℎ,uℎ,nℎ) in 𝒜ℎ and let 𝛴 = ∪𝐹∈ ̃︀ℱℎ
𝐹 ⊂ Γ, where ̃︀ℱℎ is any subset of ℱℎ, which is the

set of all face elements contained in 𝒯ℎ. Then, for 𝑑 = 2 or 3, the following estimate holds

‖𝑠ℎnℎ − uℎ‖𝐿2(𝛴) ≤ 𝐶ℎ1/2‖∇𝑠ℎ‖𝐿2(𝐷), (A.11)

where 𝐷 = ∪𝑇∈̃︀𝒯ℎ
𝑇 ⊂ Ω, with ̃︀𝒯ℎ := {𝑇 ∈ 𝒯ℎ : 𝑇 ∩𝛴 ̸= ∅}, and 𝐶 > 0 only depends on the shape regularity of

the mesh 𝒯ℎ.

A.5. Γ-convergence intermediate results

A.5.1. Characterizing limits

The following result is taken from Lemma 3.6 of [70]. Note that we only get convergence (in general) for 𝑠ℎ

and uℎ; the convergence of nℎ is somewhat limited.

Lemma A.16 (Characterizing limits). Let (𝑠ℎ,uℎ) in 𝒜ℎ converge weakly to (𝑠,u) in [𝐻1(Ω)]1+𝑑. Then,
(𝑠ℎ,uℎ) converges to (𝑠,u) strongly in [𝐿2(Ω)]1+𝑑, a.e. in Ω, and the limit (𝑠,u) satisfies |𝑠| = |u| a.e. in
Ω (i.e. (𝑠,u) ∈ 𝒜). In addition, there exists 𝒵 ′𝜖 ⊂ Ω such that |𝒵 ′𝜖| < 𝜖 and (𝑠ℎ,uℎ) converges uniformly to
(𝑠,u) on Ω ∖ 𝒵 ′𝜖.

Furthermore, the associated sequence nℎ in 𝑁ℎ, defined by uℎ = 𝐼ℎ{𝑠ℎnℎ}, satisfies the following properties
for each fixed 𝜖 > 0.

(i) There exists a director field n : Ω → S𝑑−1, with n ∈ [𝐿2(Ω)]𝑑∩ [𝐿∞(Ω)]𝑑, |n| = 1 a.e., such that nℎ converges
to n in [𝐿2(Ω ∖𝒮)]𝑑 and a.e. in Ω ∖𝒮 and u = 𝑠n a.e. in Ω. In addition, nℎ → n uniformly on Ω ∖ (𝒮𝜖 ∪𝒵 ′𝜖),
where 𝒮𝜖 = {|𝑠(𝑥)| ≤ 𝜖}.
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(ii) nℎ converges weakly to n in [𝐻1(Ω ∖Υ′𝜖)]
𝑑, where Υ′𝜖 := 𝒮𝜖 ∪ 𝒵 ′𝜖 (c.f. Prop. A.6).

Lemma A.17. Suppose Assumptions 2.4 and 2.5 hold. Let (𝑠,u,n) ∈ 𝒜(𝑔,q) such that (𝑠,u) ∈
[︀
𝑊 1,∞(Ω)

]︀𝑑+1.

Then there exists a sequence (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ(𝑔ℎ,qℎ), such that (𝑠ℎ,uℎ) converges to (𝑠,u) in
[︀
𝑊 1,∞(Ω)

]︀𝑑+1,

as well as nℎ ∈ 𝑁ℎ converging to n in 𝐿2(Ω ∖ 𝒮), and nℎ converging to n in
[︀
𝑊 1,∞(Ω ∖ 𝒮𝜖)

]︀𝑑+1, for every fixed
𝜖 > 0.

Proof. We introduce the Lagrange interpolants 𝑠ℎ := 𝐼ℎ{𝑠}, uℎ := 𝐼ℎ{u}; moreover, define

nℎ(𝑥𝑖) = uℎ(𝑥𝑖)/𝑠ℎ(𝑥𝑖), if 𝑠ℎ(𝑥𝑖) ̸= 0, otherwise nℎ(𝑥𝑖) = any unit vector.

for each 𝑥𝑖 ∈ 𝒩ℎ. Thus, (𝑠ℎ,nℎ) ∈ 𝒜ℎ(𝑔ℎ,qℎ).
Let 𝑠𝛿 = 𝑠*𝜑𝛿, where 𝜑𝛿 is a mollifier; hence, 𝑠𝛿 ∈ 𝐶∞ and ‖𝑠𝛿−𝑠‖𝐻1(Ω) → 0 as 𝛿 → 0. Next, use interpolation

theory, and the triangle inequality:

‖𝐼ℎ{𝑠} − 𝑠‖𝐻1(Ω) ≤ ‖𝐼ℎ{𝑠− 𝑠𝛿}‖𝐻1(Ω) + ‖𝐼ℎ{𝑠𝛿} − 𝑠𝛿‖𝐻1(Ω) + ‖𝑠𝛿 − 𝑠‖𝐻1(Ω)

≤ 𝐶1‖𝑠− 𝑠𝛿‖𝐻1(Ω) + 𝐶2ℎ‖𝐷2𝑠𝛿‖𝐿2(Ω),

where we used the stability of the interpolant. Taking the limit as ℎ → 0, we have limℎ→0 ‖𝐼ℎ{𝑠} − 𝑠‖𝐻1(Ω) ≤
𝐶1‖𝑠 − 𝑠𝛿‖𝐻1(Ω), for all 𝛿 > 0. So, taking 𝛿 → 0, we see that ‖𝑠ℎ − 𝑠‖𝐻1(Ω) → 0 as ℎ → 0. Similarly,
‖uℎ − u‖𝐻1(Ω) → 0.

Next, we check nℎ. Let Ω𝜖 := Ω ∖ 𝒮𝜖, and note that n ∈ [𝑊 1,∞(Ω𝜖)]𝑑 for every fixed 𝜖 > 0. Since nℎ =
𝐼ℎ{𝑠−1u} = 𝐼ℎ{n} on Ω𝜖, again by interpolation theory, we have that nℎ → n in 𝐻1(Ω𝜖). To prove the
convergence in 𝐿2(Ω ∖ 𝒮), one can follow the argument in the proof of Proposition A.6. �

A.5.2. Estimates for mass-lumping

Lemma A.18 (Remove 𝐼ℎ for lim-sup.). Recall (3.7) and (3.9). Let (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ such that (𝑠ℎ,uℎ)
converges strongly to (𝑠,u) in [𝑊 1,∞(Ω)]1+𝑑. Moreover, assume nℎ → n in

[︀
𝑊 1,∞(Ω𝜖)

]︀𝑑 for every fixed 𝜖 > 0,
where Ω𝜖 = Ω ∖ 𝒮𝜖. Then,

lim
ℎ→0

⃒⃒⃒⃒(︁̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇nℎ), 1
)︁ℎ

−
(︁̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇nℎ), 1

)︁⃒⃒⃒⃒
→ 0. (A.12)

Proof. Note that the hypothesis implies ‖(𝑠ℎ,uℎ)‖𝐻1(Ω) ≤ 𝐴0, for some constant 𝐴0, for all ℎ. We demonstrate
the result for one of the terms in (3.9); the other terms follow by similar arguments. We first show that
|𝑤ℎ

𝑘3
− 𝑤𝑘3 | → 0 as ℎ→ 0. After recalling (3.11), consider the difference:

𝐺ℎ
𝑘3

(Ω) :=
(︀
𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
,∇n𝑇

ℎ∇nℎ

)︀
−
(︀
𝑠2ℎnℎ ⊗ nℎ,∇n𝑇

ℎ∇nℎ

)︀
. (A.13)

Throughout, we let 𝐶 > 0 denote a generic constant. Now fix 𝜖 > 0 and note that, for ℎ sufficiently small, we
have

|𝐺ℎ
𝑘3

(Ω ∖ 𝒮𝜖)| =

⃒⃒⃒⃒
⃒
∫︁

Ω∖𝒮𝜖

[︀
𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
− (𝑠2ℎnℎ ⊗ nℎ)

]︀
: [(∇n𝑇

ℎ∇nℎ)]

⃒⃒⃒⃒
⃒

≤ ‖𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
− (𝑠2ℎnℎ ⊗ nℎ)‖𝐿2(Ω)‖|∇nℎ|2‖𝐿2(Ω∖𝒮𝜖)

≤ 𝐶ℎ
(︀
‖∇𝑠ℎ‖𝐿2(Ω) + ‖∇uℎ‖𝐿2(Ω)

)︀
‖∇n‖2𝐿∞(Ω∖𝒮𝜖)

≤ 𝐶𝐴0ℎ‖∇n‖2𝐿∞(Ω∖𝒮𝜖)
,

(A.14)

where we used (A.10).
Next, we examine the difference over 𝒮𝜖. For all ℎ > 0, let 𝒯 𝜖

ℎ = {𝑇 ∈ 𝒯ℎ : 𝑇 ∩ 𝒮𝜖 ̸= ∅} ⊂ 𝒯ℎ, and note that
for ℎ sufficiently small, we have 𝒮𝜖 ⊂ 𝒟𝜖 := ∪𝑇∈𝒯 𝜖

ℎ
𝑇 ⊂ 𝒮2𝜖, because 𝒮𝜖 and ∖𝒮2𝜖 are disjoint compact sets, so

they are a positive distance apart.
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We obtain for sufficiently small ℎ:

|𝐺ℎ
𝑘3

(𝒮𝜖)| =
⃒⃒⃒⃒∫︁
𝒮𝜖

[︀
𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
− (𝑠2ℎnℎ ⊗ nℎ)

]︀
: [(∇n𝑇

ℎ∇nℎ)]
⃒⃒⃒⃒

≤ 𝐶‖𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
− (𝑠2ℎnℎ ⊗ nℎ)‖𝐿1(𝒟𝜖)

̃︀𝐶2ℎ−2

≤ 𝐶 ̃︀𝐶2
(︁
‖∇𝑠ℎ‖2𝐿2(𝒮2𝜖)

+ ‖∇uℎ‖2𝐿2(𝒮2𝜖)

)︁
≤ 𝐶

(︁
‖∇𝑠‖2𝐿2(𝒮2𝜖)

+ ‖∇u‖2𝐿2(𝒮2𝜖)

)︁
,

where we used an inverse inequality ‖∇nℎ‖𝐿∞(Ω) ≤ ̃︀𝐶‖nℎ‖𝐿∞(Ω), as well as (A.10). Thus,

lim
ℎ→0

|𝐺ℎ
𝑘3

(Ω)| ≤ 𝐶
(︁
‖∇𝑠‖2𝐿2(𝒮2𝜖)

+ ‖∇u‖2𝐿2(𝒮2𝜖)

)︁
, ∀𝜖 > 0.

Therefore, taking 𝜖→ 0 and using the monotone convergence theorem, we get

lim
ℎ→0

|𝐺ℎ
𝑘3

(Ω)| ≤ 𝐶

(︃∫︁
{𝑠=0}

|∇𝑠|2 +
∫︁
{u=0}

|∇u|2
)︃

= 0,

because ∇𝑠 = 0 and ∇u = 0 a.e. in {𝑠 = 0} (see Lem. A.3).
Therefore,

⃒⃒
𝑤ℎ

𝑘3
(𝑠ℎ, 𝑠ℎ; nℎ,nℎ;∇nℎ,∇nℎ)−𝑤𝑘3 (𝑠ℎ, 𝑠ℎ; nℎ,nℎ;∇nℎ,∇nℎ)

⃒⃒
→ 0, as ℎ→ 0. The convergence

of the remaining terms follows by similar arguments.
�

Lemma A.19 (Remove 𝐼ℎ for lim-inf.). Recall (3.7) and (3.9). Let (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ such that (𝑠ℎ,uℎ)
converges weakly to (𝑠,u) in [𝐻1(Ω)]𝑑+1. Moreover, let (𝑠ℎ, n̂ℎ) ∈ 𝑆ℎ × 𝑈ℎ such that (𝑠ℎ, n̂ℎ) → (𝑠, n̂) in
[𝑊 1,∞(Ω)]𝑑+1, and ‖n̂ℎ‖𝐿∞(Ω) ≤ ̂︀𝐶 for all ℎ. Let 𝐹𝜖 := Ω ∖Υ′𝜖 where Υ′𝜖 is taken from Lemma A.16. Then, for
every fixed 𝜖 > 0,

lim
ℎ→0

⃒⃒⃒⃒(︁̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ), 1
)︁ℎ

𝐹𝜖

−
(︁̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ), 1

)︁
𝐹𝜖

⃒⃒⃒⃒
→ 0. (A.15)

Proof. Without loss of generality, the hypothesis implies that ‖(𝑠ℎ,uℎ)‖𝐻1(Ω) ≤ 𝐴0, for some constant 𝐴0, for
all ℎ. We demonstrate the result for one of the terms in (3.9); the other terms follow by similar arguments.

We first show that |𝑤ℎ
𝑘3
− 𝑤𝑘3 | → 0 as ℎ→ 0. Consider the difference 𝐺ℎ

𝑘3
(𝐹𝜖) (as in (A.13)) where we have

for each 𝜖 > 0, and for ℎ sufficiently small,

|𝐺ℎ
𝑘3

(𝐹𝜖)| =
⃒⃒⃒⃒∫︁

𝐹𝜖

[︀
𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
− (𝑠2ℎnℎ ⊗ nℎ)

]︀
: [(∇n̂𝑇

ℎ∇n̂ℎ)]
⃒⃒⃒⃒

≤ ‖𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
− (𝑠2ℎnℎ ⊗ nℎ)‖𝐿2(Ω)‖|∇n̂ℎ|2‖𝐿2(𝐹𝜖)

≤ 𝐶ℎ
(︀
‖∇𝑠ℎ‖𝐿2(Ω) + ‖∇uℎ‖𝐿2(Ω)

)︀
‖∇n̂‖2𝐿∞(𝐹𝜖)

≤ 𝐶𝐴0ℎ‖∇n̂‖2𝐿∞(𝐹𝜖)
,

(A.16)

where we used (A.10). Therefore,
⃒⃒
𝑤ℎ

𝑘3
(𝑠ℎ, 𝑠ℎ; nℎ,nℎ;∇n̂ℎ,∇n̂ℎ)𝐹𝜖

− 𝑤𝑘3 (𝑠ℎ, 𝑠ℎ; nℎ,nℎ;∇n̂ℎ,∇n̂ℎ)𝐹𝜖

⃒⃒
→ 0, as

ℎ→ 0. The convergence of the other terms follows similarly.
�

Lemma A.20. Assume the hypothesis of Lemma A.19. Then,

lim
ℎ→0

⃒⃒⃒⃒(︁
𝐷M

̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ),∇yℎ

)︁ℎ

𝐹𝜖

−
(︁
𝐷M

̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ),∇yℎ

)︁
𝐹𝜖

⃒⃒⃒⃒
→ 0, (A.17)

lim
ℎ→0

⃒⃒⃒⃒(︁
𝐷g
̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ),∇𝑡ℎ

)︁ℎ

𝐹𝜖

−
(︁
𝐷g
̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ),∇𝑡ℎ

)︁
𝐹𝜖

⃒⃒⃒⃒
→ 0, (A.18)

where (𝑡ℎ,yℎ) ∈ 𝑆ℎ × 𝑈ℎ and ‖(𝑡ℎ,yℎ)‖𝐻1(Ω) ≤ 𝐴2 for all ℎ.
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Proof. We follow similar arguments as in the proof of Lemma A.19. First note that

𝐷M
̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ) = 2𝑠2ℎ

[︀
𝑘1tr(∇n̂ℎ)I + 𝑘2([nℎ]× : ∇n̂ℎ)[nℎ]× + 𝑘3(∇n̂ℎnℎ)⊗ nℎ

+ (𝑘2 + 𝑘4)(∇n̂𝑇
ℎ − tr(∇n̂ℎ)I) + 𝜃nℎ ⊗ (∇n̂𝑇

ℎ nℎ)
]︀

+ 𝑏3𝑠ℎ(∇𝑠ℎ · nℎ)I + 𝑏4𝑠ℎ∇𝑠ℎ ⊗ nℎ,

𝐷g
̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ) = 2𝑏1∇𝑠ℎ + 2𝑏2(∇𝑠ℎ · nℎ)nℎ + 𝑏3𝑠ℎnℎtr(∇n̂ℎ) + 𝑏4𝑠ℎ(∇n̂ℎ)nℎ.

(A.19)

We demonstrate (A.17) for the 𝑘3 term in (A.19); the other terms follow by similar arguments. Define the
difference:

𝐺ℎ
𝑘3

(Ω) :=
(︀
𝑠2ℎ(∇n̂ℎnℎ)⊗ nℎ,∇yℎ

)︀ℎ − (︀𝑠2ℎ(∇n̂ℎnℎ)⊗ nℎ,∇yℎ

)︀
,

and note that (similar to (A.13))
(︀
𝑠2ℎ(∇n̂ℎnℎ)⊗ nℎ,∇yℎ

)︀ℎ =
∫︀
Ω
𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
: (∇n̂𝑇

ℎ∇yℎ). Then,

|𝐺ℎ
𝑘3

(Ω)| =
⃒⃒⃒⃒∫︁

Ω

[︀
𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
− (𝑠2ℎnℎ ⊗ nℎ)

]︀
: [(∇n̂𝑇

ℎ∇yℎ)]
⃒⃒⃒⃒

≤ ‖𝐼ℎ
{︀
𝑠2ℎnℎ ⊗ nℎ

}︀
− (𝑠2ℎnℎ ⊗ nℎ)‖𝐿2(Ω)‖∇n̂ℎ‖𝐿∞(Ω)‖∇yℎ‖𝐿2(Ω)

≤ 𝐶𝐴2ℎ
(︀
‖∇𝑠ℎ‖𝐿2(Ω) + ‖∇uℎ‖𝐿2(Ω)

)︀
‖∇n̂‖𝐿∞(Ω) ≤ 𝐶𝐴0𝐴2ℎ‖∇n̂‖𝐿∞(Ω),

(A.20)

where we used (A.10). Clearly, limℎ→0 |𝐺ℎ
𝑘3

(Ω)| = 0. The other terms follow by similar arguments. �

A.5.3. Weak lower-semicontinuity

Lemma A.21 (Weak L.S.C. for ̂︀𝐸erk). Assume the hypothesis of Lemma A.16. If (2.19) holds, then ̂︀𝐸ℎ
erk is

weakly lower semi-continuous, i.e.

lim inf
ℎ→0

̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) ≥ ̂︀𝐸erk(𝑠,n) = 𝐸erk(𝑠,n), (A.21)

for any sequence (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ, such that (𝑠,u,n) ∈ 𝒜, and (𝑠ℎ,uℎ) ⇀ (𝑠,u) in [𝐻1(Ω)]1+𝑑.

Proof. Step 1: Egorov. Set 𝐿 := lim infℎ→0𝐸erk(𝑠ℎ,nℎ); we must show that 𝐸erk(𝑠,n) ≤ 𝐿. Without loss of
generality, we can assume 𝐿 < ∞. By Lemma A.16, we have that 𝑠ℎ → 𝑠, uℎ → u a.e. in Ω, and nℎ → n a.e.
in Ω ∖ 𝒮. Fix 𝜖 > 0. Lemma A.16 gives that nℎ converges weakly to n in [𝐻1(Ω ∖ Υ′𝜖)]

𝑑, where Υ′𝜖 = 𝒮𝜖 ∪ 𝒵 ′𝜖,
(𝑠ℎ,uℎ) → (𝑠,u) uniformly on Ω ∖ 𝒵 ′𝜖, and nℎ → n uniformly on 𝐹𝜖 := Ω ∖Υ′𝜖.
Step 2: convexity. Let 𝑠𝛿 = 𝑠 * 𝜑𝛿, where 𝜑𝛿 is a mollifier; hence, 𝑠𝛿 ∈ 𝐶∞(Ω) and ‖𝑠𝛿 − 𝑠‖𝐻1(Ω) → 0 as 𝛿 → 0.
Next, define n𝛿 = n * 𝜑𝛿, thus, n𝛿 ∈ 𝐶∞(Ω) and ‖n𝛿 − n‖𝐿2(Ω) → 0 as 𝛿 → 0, and ‖n𝛿 − n‖𝐻1(Ω∖𝒮𝜖) → 0 as
𝛿 → 0. Next, define 𝑠ℎ := 𝐼ℎ𝑠𝛿 ∈ 𝑆ℎ, n̂ℎ := 𝐼ℎn𝛿 ∈ 𝑈ℎ, and note that 𝑠ℎ → 𝑠𝛿 in 𝑊 1,∞(Ω), ‖n̂ℎ‖𝐿∞(Ω) ≤ 1,
n̂ℎ → n𝛿 in [𝑊 1,∞(Ω)]𝑑.

Now combine the convexity result (2.28) with the interpolation operator 𝐼ℎ to obtain

𝐼ℎ̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇nℎ) ≥ 𝐼ℎ̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ) + 𝐼ℎ{Ψℎ
1}+ 𝐼ℎ{Ψℎ

2} (A.22)

Ψℎ
1 := 𝐷M

̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ) : (∇nℎ −∇n̂ℎ),

Ψℎ
2 := 𝐷g

̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ) · (∇𝑠ℎ −∇𝑠ℎ).
(A.23)

on every 𝑇 ∈ 𝒯ℎ. Whence, ̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) ≥ 1

2

∫︀
𝐹𝜖

[︁
𝐼ℎ̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ) + 𝐼ℎ{Ψℎ

1}+ 𝐼ℎ{Ψℎ
2}
]︁
. In lieu of (A.15),

(A.17), (A.18), we may drop the interpolation operator 𝐼ℎ.



1216 S.W. WALKER

Step 3: ℎ→ 0 for lower bound. We demonstrate

lim
ℎ→0

∫︁
𝐹𝜖

̂︁𝒲(𝑠ℎ,∇𝑠ℎ,nℎ,∇n̂ℎ) =
∫︁

𝐹𝜖

̂︁𝒲(𝑠,∇𝑠𝛿,n,∇n𝛿). (A.24)

We start with the 𝑘3 term in (A.24), which has the form 𝐼ℎ
𝑘3

:= (𝑠ℎ(∇n̂ℎ)nℎ, 𝑠ℎ(∇n̂ℎ)nℎ)𝐹𝜖
. By uniform

convergence in Step (1), and the strong convergence of ∇n̂ℎ in 𝐿2(Ω), we have that 𝑠2ℎ|(∇n̂ℎ)nℎ|2 → 𝑠2|(∇n𝛿)n|2
in 𝐿2(𝐹𝜖). Thus, we obtain limℎ→0 𝐼

ℎ
𝑘3

= (𝑠(∇n𝛿)n, 𝑠(∇n𝛿)n)𝐹𝜖
=: 𝐼𝛿

𝑘3
.

Next, we consider the 𝑏2 term in (A.24), which has the form 𝐼ℎ
𝑏2

:= (∇𝑠ℎ · nℎ,∇𝑠ℎ · nℎ)𝐹𝜖
. Again, by uniform

convergence in 𝐹𝜖 and the strong convergence of ∇𝑠ℎ in 𝐿2(Ω), we have that (∇𝑠ℎ ·nℎ)2 → (∇𝑠𝛿 ·n)2 in 𝐿2(𝐹𝜖).
Whence, limℎ→0 𝐼

ℎ
𝑏2

= (∇𝑠𝛿 · n,∇𝑠𝛿 · n)𝐹𝜖
=: 𝐼𝛿

𝑏2
. The other terms are similarly dealt with. So, we have proved

(A.24).
Step 4: ℎ→ 0 for residual terms. Next, we show that

lim
ℎ→0

∫︁
𝐹𝜖

Ψℎ
1 =

(︁
𝐷M

̂︁𝒲(𝑠,∇𝑠𝛿,n,∇n𝛿),∇n−∇n𝛿

)︁
𝐹𝜖

, lim
ℎ→0

∫︁
𝐹𝜖

Ψℎ
2 =

(︁
𝐷g
̂︁𝒲(𝑠,∇𝑠𝛿,n,∇n𝛿),∇𝑠−∇𝑠𝛿

)︁
𝐹𝜖

.

(A.25)

We start with the 𝑘3 term in
∫︀

𝐹𝜖
Ψℎ

1 , which, after recalling (A.19), has the form

𝑅ℎ
𝑘3

:=
(︀
𝑠2ℎ(∇n̂ℎnℎ)⊗ nℎ,∇nℎ −∇n̂ℎ

)︀
𝐹𝜖
.

Again by uniform convergence and strong convergence of ∇n̂ℎ in 𝐿2(Ω), we have that 𝑠2ℎ(∇n̂ℎnℎ) ⊗ nℎ →
𝑠2(∇n𝛿n) ⊗ n in 𝐿2(𝐹𝜖). Since ∇n̂ℎ → ∇n𝛿 in 𝐿2(Ω), and ∇nℎ converges weakly to ∇n on 𝐹𝜖, we have that
∇nℎ −∇n̂ℎ converges weakly to ∇n−∇n𝛿 in 𝐿2(𝐹𝜖). Combining strong and weak convergence, we obtain

lim
ℎ→0

𝑅ℎ
𝑘3

=
(︀
𝑠2(∇n𝛿n)⊗ n,∇n−∇n𝛿

)︀
𝐹𝜖

=: 𝑅𝛿
𝑘3
.

The remaining terms in (A.25) follow similarly.
Step 5: take the limit 𝛿 → 0. The strong 𝐿2(𝐹𝜖) convergence of ∇n𝛿 to ∇n, together with the boundedness
of 𝑠 and n, give 𝐼𝛿

𝑘3
→ (𝑠(∇n)n, 𝑠(∇n)n)𝐹𝜖

, as 𝛿 → 0. Moreover, we have 𝐼𝛿
𝑏2
→ (∇𝑠 · n,∇𝑠 · n)𝐹𝜖

, as 𝛿 → 0
(similarly for the other terms). Furthermore, the residual terms vanish, e.g. 𝑅𝛿

𝑘3
→ 0 as 𝛿 → 0.

Step 6: conclude. We have shown that

lim inf
ℎ→0

̂︀𝐸ℎ
erk(𝑠ℎ,nℎ) ≥ 1

2

∫︁
𝐹𝜖

̂︁𝒲(𝑠,∇𝑠,n,∇n) =
1
2

∫︁
𝐹𝜖

𝒲(𝑠,∇𝑠,n,∇n),

where the equality follows from (∇n)𝑇 n = 0 because |n| = 1 a.e. in 𝐹𝜖 and (𝑠,u,n) ∈ 𝒜. Taking 𝜖 → 0
yields 𝐹𝜖 → Ω ∖ (𝑍 ′ ∪ 𝒮), where 𝑍 ′ ⊂ Ω is a set of measure zero. By Lemmas A.3 and A.4, ‖∇𝑠‖𝐿2(𝑍′∪𝒮) =
‖∇u‖𝐿2(𝑍′∪𝒮) = 0, so ‖𝑠∇n‖𝐿2(𝑍′∪𝒮) ≤ 𝐶

(︀
‖∇u‖𝐿2(𝑍′∪𝒮) + ‖∇𝑠‖𝐿2(𝑍′∪𝒮)

)︀
= 0. Therefore,

lim
𝜖→0

∫︁
𝐹𝜖

𝒲(𝑠,∇𝑠,n,∇n) =
∫︁

Ω

𝒲(𝑠,∇𝑠,n,∇n),

i.e. we proved (A.21). �

Lemma A.22 (Continuity of 𝐸ℎ
a ). Assume the hypothesis of Lemma A.16. Then 𝐸ℎ

a is continuous, i.e.

lim
ℎ→0

𝐸ℎ
a (𝑠ℎ,nℎ) = 𝐸a(𝑠,n), (A.26)

for any sequence (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ, such that (𝑠,u,n) ∈ 𝒜, and (𝑠ℎ,uℎ) ⇀ (𝑠,u) in [𝐻1(Ω)]1+𝑑.
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Proof. The result essentially follows by strong convergence in 𝐿2(Γ). �

Lemma A.23 (Weak L.S.C. for 𝐸el). Assume the hypothesis of Lemma A.16. Then 𝐸ℎ
el is weakly lower semi-

continuous, i.e.
lim inf

ℎ→0
𝐸ℎ

el(𝑠ℎ,nℎ) ≥ 𝐸el(𝑠,n), (A.27)

for any sequence (𝑠ℎ,uℎ,nℎ) ∈ 𝒜ℎ, such that (𝑠,u,n) ∈ 𝒜, and (𝑠ℎ,uℎ) ⇀ (𝑠,u) in [𝐻1(Ω)]1+𝑑.

Proof. Since ‖(𝑠ℎ,uℎ)‖𝐻1(Ω) is uniformly bounded, and recalling (2.36), we have that ‖P(𝑠ℎ,nℎ)‖𝐿2(Ω) is uni-
formly bounded, thus there exists a sub-sequence (not relabeled) such that P(𝑠ℎ,nℎ) ⇀ P(𝑠,n) in 𝐿2(Ω). Next,
let 𝜙ℎ solve (3.16) given the data (𝑠ℎ,nℎ), i.e. 𝜙ℎ ≡ 𝑇ℎ(𝑠ℎ,nℎ).

Next, we show that 𝜙ℎ converges to 𝜙 = 𝑇 (𝑠,n). Clearly, 𝜀(𝑠ℎ,nℎ) converges to 𝜀(𝑠,n) a.e. in Ω∖𝒮. Moreover,
𝜀(𝑠ℎ,nℎ) → 𝜀I a.e. in 𝒮, and 𝜀(𝑠,n) = 𝜀I in 𝒮. Thus, 𝜀(𝑠ℎ,nℎ) converges to 𝜀(𝑠,n) a.e. in Ω. Furthermore,
choosing 𝜂ℎ = 𝜙ℎ in (3.16) and using (3.14), we find that

𝜀min‖∇𝜙ℎ‖2𝐿2(Ω) ≤ 𝜀max

(︂
𝑐1
2
‖∇𝜙0,ℎ‖2𝐿2(Ω) +

1
2𝑐1

‖∇𝜙ℎ‖2𝐿2(Ω)

)︂
+
𝑐2
2
‖P(𝑠ℎ,nℎ)‖2𝐿2(Ω) +

1
2𝑐2

‖∇𝜙ℎ‖2𝐿2(Ω),

where 𝑐1, 𝑐2 > 0 are to be chosen. Since ‖P(𝑠ℎ,nℎ)‖𝐿2(Ω) is uniformly bounded, choosing 𝑐1, 𝑐2 sufficiently large,
we find that ‖∇𝜙ℎ‖𝐿2(Ω) ≤ 𝐶 <∞, for all ℎ > 0 for some fixed constant 𝐶 > 0. Thus, 𝜙ℎ ⇀ 𝜙 in 𝐻1

0 (Ω).
Furthermore, 𝜀(𝑠ℎ,nℎ)∇𝜂𝑇 → 𝜀(𝑠,n)∇𝜂𝑇 (in 𝐿2(Ω)) by Lebesgue’s dominated convergence theorem, ergo⃦⃦

𝜀(𝑠ℎ,nℎ)∇𝜂𝑇
ℎ − 𝜀(𝑠,n)∇𝜂𝑇

⃦⃦
𝐿2(Ω)

≤
⃦⃦
𝜀(𝑠ℎ,nℎ)(∇𝜂𝑇

ℎ −∇𝜂𝑇 )
⃦⃦

𝐿2(Ω)

+
⃦⃦
𝜀(𝑠ℎ,nℎ)∇𝜂𝑇 − 𝜀(𝑠,n)∇𝜂𝑇

⃦⃦
𝐿2(Ω)

→ 0, as ℎ→ 0,

because ∇𝜂ℎ → ∇𝜂 in 𝐿2(Ω), where we chose 𝜂 ∈ 𝐶∞0 (Ω) and take 𝜂ℎ = 𝐼ℎ𝜂. So, combining with the weak con-
vergence of ∇𝜙ℎ, we see that

∫︀
Ω
∇𝜙ℎ𝜀(𝑠ℎ,nℎ)∇𝜂𝑇

ℎ →
∫︀
Ω
∇𝜙𝜀(𝑠,n)∇𝜂𝑇 . Thus, combining with the convergence

of the other terms in (3.16), we see that 𝜙 solves (3.16) with data (𝑠,n).
Next, we recall (2.41) and (3.17) which make the convexity of 𝐸el and 𝐸ℎ

el more apparent:

𝐸el(𝑠,n) =
1
2

∫︁
Ω

∇𝜙𝜀(𝑠,n)∇𝜙𝑇 − 1
2

∫︁
Ω

∇𝜙0𝜀(𝑠,n)∇𝜙𝑇
0 +

∫︁
Ω

P(𝑠,n) · ∇𝜙0,

𝐸ℎ
el(𝑠ℎ,nℎ) =

1
2

∫︁
Ω

∇𝜙ℎ𝜀(𝑠ℎ,nℎ)∇𝜙𝑇
ℎ −

1
2

∫︁
Ω

∇𝜙0,ℎ𝜀(𝑠ℎ,nℎ)∇𝜙𝑇
0,ℎ +

∫︁
Ω

P(𝑠ℎ,nℎ) · ∇𝜙0,ℎ.

The convergence of the last two terms is clear, since 𝜙0,ℎ is the elliptic projection (see Prop. A.11), so it converges
strongly in 𝐻1(Ω).

For the first term, given 𝜖 > 0, by Egorov’s Theorem there exists 𝐴𝜖 ⊂ Ω such that |Ω ∖ 𝐴𝜖| < 𝜖 and
𝜀(𝑠ℎ,nℎ) → 𝜀(𝑠,n) uniformly on 𝐴𝜖. Ergo,∫︁

Ω

∇𝜙ℎ𝜀(𝑠ℎ,nℎ)∇𝜙𝑇
ℎ ≥

∫︁
𝐴𝜖

∇𝜙ℎ(𝜀(𝑠ℎ,nℎ)− 𝜀(𝑠,n))∇𝜙𝑇
ℎ +

∫︁
𝐴𝜖

∇𝜙ℎ𝜀(𝑠,n)∇𝜙𝑇
ℎ ,

where the first term vanishes by uniform convergence of 𝜀(𝑠ℎ,nℎ). For the last term, we use weak lower semi-
continuity to obtain

lim inf
ℎ→0

∫︁
Ω

∇𝜙ℎ𝜀(𝑠ℎ,nℎ)∇𝜙𝑇
ℎ ≥

∫︁
𝐴𝜖

∇𝜙𝜀(𝑠,n)∇𝜙𝑇 , for all 𝜖 > 0.

Taking 𝜖→ 0, and combining with the other convergences, we arrive at (A.27). �
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liquid crystals. J. Math. Anal. Appl. 255 (2001) 391–403.

[42] J.W. Goodby, Introduction to defect textures in liquid crystals. In: Handbook of Visual Display Technology. Edited by J.
Chen, W. Cranton and M. Fihn. Springer (2012) 1290–1314.

[43] Y. Gu and N.L. Abbott, Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev.
Lett. 85 (2000) 4719–4722.

[44] I.U. Haq, W.N. Chaudhry, M.N. Akhtar, S. Andleeb and I. Qadri, Bacteriophages and their implications on future biotechnol-
ogy: a review. Virol. J. 9 (2012) 9.

[45] R. Hardt, D. Kinderlehrer and F.-H. Lin, Stable defects of minimizers of constrained variational principles. Ann. Inst. Henri
Poincare (C) Anal. Non linéaire 5 (1988) 297–322.
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