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Abstract. We present a finite element technique for approximating the surface Hessian of a4
discrete scalar function on triangulated surfaces embedded in R3, with or without boundary. We5
then extend the method to compute convergent approximations of the full shape operator of the6
underlying surface using only the known discrete surface. The method is based on the Hellan–7
Herrmann–Johnson (HHJ) element and does not require any ad-hoc modifications. Convergence is8
established even for piecewise linear surface triangulations, i.e. the L2 error of the shape operator9
approximation is O(hm), where m ≥ 1 is the polynomial degree of the surface. For surfaces with10
boundary, some additional boundary data is needed to establish optimal convergence, e.g. boundary11
information about the surface normal vector or the curvature in the co-normal direction. Numerical12
examples are given on non-trivial surfaces that demonstrate our error estimates and the efficacy of13
the method.14
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1. Introduction. Approximating curvatures from discrete surfaces has a long18

history in computer graphics and computational geometry, e.g. in computer-aided19

geometric modeling [44, 41, 45], feature detection/extraction [25, 6], surface fairing20

and mesh smoothing [14, 35, 31, 30], and reparameterizing surfaces for texturing21

and re-meshing [45, 23]. Often, one needs estimates of normal vectors and curvature22

information at mesh vertices, which has spawned many discrete schemes based on local23

(weighted) averages, e.g. the well-known co-tangent formula for the mean curvature24

vector [29, 20], discrete Laplace-Beltrami operators [9, 16, 15], as well as schemes to25

approximate the Gaussian curvature of discrete surfaces using local formulas [42].26

The convergence of these schemes, for sequences of refined meshes converging27

to the underlying (smooth) surface, is well-studied. Indeed, it is known that any28

numerical scheme that uses the 1-ring neighborhood of a vertex to compute curvature29

does not converge for general, piecewise linear meshes [20, 43]. For special meshes, one30

can construct schemes that do converge (see [42, 7]). Other approaches include surface31

fitting techniques [34, 18, 20, 33, 21] that construct polynomial surface “patches” over32

the triangulation, which can be directly differentiated to yield accurate curvature33

information. However, computing with patches is not trivial, involves complicated34

procedures, and depends on the mesh quality (see [19] for unstructured simplex splines35

on flat domains).36

Other approaches utilize finite element techniques. For instance, using a higher37

order approximation of the surface, e.g. a piecewise quadratic triangulation, yields a38

convergent approximation of the curvature [24]. In fact, one can just directly compute39

the shape operator of the surface on each (curved) triangle in the mesh. See also [22]40

for higher order approximation of Gaussian curvature with Regge elements. But in41

many applications, only piecewise linear surface triangulations are available.42

This paper presents a novel technique that utilizes the surface Hellan-Herrmann–43
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2 S. W. WALKER

Johnson (HHJ) method, originally developed for the surface Kirchhoff plate equation44

in [39], as a post-processing scheme to approximate the surface Hessian of a scalar45

function. Furthermore, we show that this scheme can be used to approximate the46

full shape operator of the surface, which is our main goal. For closed, piecewise47

linear surface triangulations, the method yields an approximation that is provably48

first-order accurate in the L2 norm, i.e. O(h) where h is the maximum diameter of49

mesh elements. For surfaces with boundary, some additional information is needed50

at the boundary, otherwise the accuracy degrades to O(h1/2) near the boundary.51

The method essentially consists of a matrix-vector product that computes a non-52

conforming surface Hessian of the mesh coordinates, followed by an L2-like projection53

to an HHJ element. The method also generalizes to higher order triangulations, with54

O(hm) accuracy, where m is the polynomial degree of the triangulation. To the best55

of our knowledge, no other finite element method can do this. Moreover, the lowest56

order version of the method is simple to implement. Given an approximation of the57

shape operator, it is then trivial to compute the principle curvatures and principle58

directions of the surface.59

Section 2 gives the basic background for working on surfaces. In section 3, we60

describe a nonconforming formulation for approximating the surface Hessian of a61

scalar function by an L2 like projection, and discuss the tools for dealing with curved,62

parametric surface approximations. In particular, Theorem 3.5 is a crucial extension63

of [39, Thm. 4.8]. Section 4 gives the finite element scheme for the L2 projection of the64

surface Hessian and performs the main error analysis that includes the geometric error65

of the surface approximation. Next, we describe our scheme for approximating the66

shape operator of the exact surface in section 5, which utilizes an important identity67

in Proposition 5.1, and discuss the details of its practical computation. Section 668

presents several numerical results illustrating the method on surfaces with and without69

boundary. We close with some remarks in section 7. The supplementary material70

provides an overview of essential differential geometry concepts.71

2. A Surface FEM for the Surface Hessian.72

2.1. Surface Definitions. Let Γ be a Ck+1 connected, 2-dimensional manifold73

embedded in R3, where k ≥ 1. If Γ has a boundary ∂Γ := Σ, we assume Σ is piecewise74

Ck+1 with a finite number of corners, with interior angle αi ∈ (0, 2π] of the ith corner75

measured with respect to the Euclidean metric in R3 (see Figure 1). In particular,76

Σ is globally continuous and parameterized by a piecewise curve. In addition, we77

assume Σ = Σc ∪Σs partitions into two mutually disjoint, one dimensional open sets78

Σc (clamped) and Σs (simply supported); either set can be empty.79

We note some facts from section SM2. Let idΓ : Γ → Γ be the identity map, i.e.80

x = idΓ(x) for all x ∈ Γ, and let ν : Γ → R3 be the (locally defined) unit normal81

vector of Γ. The tangent space projection P : R3 → R3, defined on Γ, is given by82

P = I−ν⊗ν (see (SM2.1)), and satisfies the identity ∇ΓidΓ = P (see subsection 2.283

for ∇Γ). Given a vector v ∈ R3, it is in the tangent space Tx(Γ) if P (x)v = 0.84

We define the tangent bundle: T(Γ) = {(x,v) | x ∈ Γ, v(x) ∈ Tx(Γ)}. So, we say85

v ∈ T(Γ) if v(x) ∈ Tx(Γ) for every x ∈ Γ; in this case, we write v : Γ → T(Γ).86

Next, let R3×3 be the space of (extrinsic) 2-tensors in three dimensions, and define87

the subset of tensors on the tangent bundle of Γ:88

(2.1) T ≡ T(Γ) := {φ : Γ → R3×3 | Pφ ≡ φ, PφT ≡ φT },89
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Fig. 1. Illustration of curved surface Γ in R3 with mesh. The boundary Σ ≡ ∂Γ decomposes
as Σ = Σc ∪ Σs and has a finite number of corners with interior angles αi. The boundary Σ has
(outer) conormal vector, n, and oriented unit tangent vector, t. The normal vector of Γ is ν. Part
of the exact, curved surface triangulation Th is shown with dotted curves.

and define the set of symmetric tensors on the tangent bundle of Γ:90

(2.2) S ≡ S(Γ) := {φ ∈ T(Γ) | φ = φT }.91

2.2. Differential Operators on Surfaces. Let v : Γ → R be a smooth function92

defined on Γ. We call ∇Γv ≡ gradΓ v : Γ → T(Γ) the surface gradient of v (see93

(SM2.2)) and ∇Γ∇Γw ≡ hessΓ w : Γ → S(Γ) the surface Hessian of v (see (SM2.3)).94

Moreover, we have the function space L2(Γ) := {v : Γ → R |
∫
Γ
|v|2dS < ∞}, with95

inner product (w, v)L2(Γ) :=
∫
Γ
wv dS and norm ∥v∥2L2(Γ) := (v, v)L2(Γ), as well as the96

Sobolev (Hilbert) spaces H1(Γ) := {v ∈ L2(Γ) | ∥∇Γv∥L2(Γ) < ∞} and H2(Γ) :=97

{v ∈ H1(Γ) | ∥∇Γ∇Γv∥L2(Γ) < ∞}, with inner products given by98

(w, v)H1(Γ) :=

∫
Γ

wv +∇Γw · ∇Γv dS,

(w, v)H2(Γ) := (w, v)H1(Γ) +

∫
Γ

∇Γ∇Γw : ∇Γ∇Γv dS,

(2.3)99

and corresponding norms ∥v∥2H1(Γ) := (v, v)H1(Γ), ∥v∥2H2(Γ) := (v, v)H2(Γ). Other100

types of Sobolev spaces are defined in an analogous way.101

We denote by H̊ℓ(Γ) ⊂ Hℓ(Γ) the Sobolev space with vanishing boundary condi-102

tions up to degree ℓ− 1. We will need the following subspace of H2(Γ):103

W(Γ) := {w ∈ H2(Γ) | w = 0, on Σ, n · ∇Γw = 0, on Σc}, if Σ ̸= ∅,(2.4)104

and W(Γ) = H2(Γ) when Σ = ∅. In addition, we have V(Γ) := L2(Γ;S(Γ)).105

2.3. Projection of the Surface Hessian. Given w ∈ W, we seek to find σ ∈ V106

such that107

(2.5) (σ, τ )L2(Γ) = (∇Γ∇Γw, τ )L2(Γ) , for all τ ∈ V,108

i.e. σ is the L2 projection of ∇Γ∇Γw, which means σ = ∇Γ∇Γw a.e. in Γ. The109

presence of vanishing boundary conditions in W is not critical; one can pose (2.5) for110

any w ∈ H2(Γ). However, the method we develop handles the slope condition in (2.4)111

as a natural condition, so we keep (2.5) as stated. In subsection 3.4, we show how to112

handle inhomogeneous boundary conditions.113
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3. Nonconforming Formulation of the Surface Hessian. Major difficulties114

arise in solving (2.5) if the surface is only continuous, piecewise smooth, as well as115

when the data w is only a discrete, finite element function. In order to circumvent116

these difficulties, and obtain a convergent approximation of the surface Hessian of a117

discrete function w posed on a discrete surface, we adopt a non-conforming approach118

that is first built on a mesh-dependent version ofH2(Γ). This then leads to the surface119

version of the Hellan–Herrmann–Johnson (HHJ) element (see [39]), which is used to120

approximate the σ variable in (2.5). See also [10, 5, 4, 8, 3] for analysis of the classic121

HHJ element. The initial idea is to triangulate Γ and define infinite dimensional,122

mesh-dependent spaces on that triangulation.123

3.1. Curved Triangulations. We start with a conforming, shape-regular, piece-124

wise linear triangulation T 1
h = {T 1} of a polyhedral domain Γ1 that interpolates Γ at125

the vertices; furthermore, the boundary vertices of Γ1 (namely Σ1) lie on the bound-126

ary of Γ. See [13, 12, 17, 15, 39] for more discussion on how this triangulation can be127

generated. Let T 1
∂,h be the set of triangles with one side on Σ1 and, for convenience,128

assume the triangulation satisfies the following technical property (see [39]).129

Property 1. Each triangle in T 1
h has at most two vertices on the boundary and130

so has at most one edge contained in Σ1.131

We assume T 1
h is homeomorphic to an exact triangulation Th = {T} of Γ. Specif-132

ically, we assume there exists a homeomorphic mapping F : Γ1 → Γ, such that133

FT ≡ F|T 1 is a diffeomorphism from T 1 ∈ T 1
h to an exact (curved) triangle T ∈ Th.134

Moreover, we can generate higher order approximations Γm of Γ by simply inter-135

polating F over Γ1 with degree m Lagrange polynomials, i.e. we have the map136

Fm : Γ1 → Γm given by Fm := I1,m
h F, where I1,m

h is the Lagrange interpolation137

operator of degree m given in subsection 4.1, or the standard nodal interpolant can138

be used. Note that F 1
T ≡ idT 1 .139

We also have maps between approximate domains, of degrees l and m by140

Φlm|T = Φlm
T : T l → Tm, where Φlm

T := Fm
T ◦ (F l

T )
−1, so Φ1m

T ≡ Fm
T .(3.1)141

We also require a map from the approximate domain Γm to the exact domain Γ.142

Specifically, given a triangle Tm ∈ T m
h , we define a diffeomorphism Ψm

T : Tm → T ∈143

Th by Ψm
T := FT ◦ (Fm

T )−1, so then Th ≡ {Ψm
T (Tm)}Tm∈T m

h
. The Ψm

T may be pieced144

together to give a global map Ψm : Γm → Γ.145

The notation Γ and Γm is inconvenient because the exact domain has no su-146

perscript, but the polynomial approximation does. Thus, for convenience in later147

statements, we will abuse notation and make the identification Γ∞ ≡ Γ, T ∞
h ≡ Th,148

Φl∞ ≡ Ψl, F∞
T ≡ Ψ1, etc. This is motivated by the fact that for most C∞ surfaces Γ,149

the polynomial approximate domain Γm, with triangulation T m
h , would converge to150

Γ as m → ∞ with h fixed. Of course, we do not claim (in general) that Γm converges151

Γ, for fixed h, as m → ∞, especially when Γ is not C∞.152

Thus, T m
h is a conforming, shape regular triangulation that approximates Γ by153

Γm :=
⋃

Tm∈T m
h

Tm, for all m ≥ 1 (where G is the closure of the set G). Next, we154

have the skeleton of the mesh, i.e. the set of (curved) mesh edges Em
h := ∂T m

h . Let155

Em
∂,h ⊂ Em

h denote the subset of edges that are contained in the boundary Σm = ∂Γm156

and respect the boundary partition of Σm. The internal edges are given by Em
0,h :=157

Em
h \Em

∂,h. We assume the meshes are quasi-uniform and shape regular [11], with mesh158

size h := maxT hT , where hT := diam(T ) for any T ∈ Th. We also assume the corners159

of Σ are captured by vertices of the mesh.160
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The main approximation properties for these maps are summarized in the next161

theorem (see [39, Thm. 4.1]).162

Theorem 3.1. Suppose Γ is a Ck+1 surface for some fixed k ≥ 1 (see [1, Para-163

graph 4.10]). Then, for all 1 ≤ l ≤ m ≤ k and m = ∞ (see notation above), the maps164

Fm
T , F l

T described above satisfy165

∥∇s
T 1(F l

T − idT 1)∥L∞(T 1) ≤ Ch2−s, for s = 0, 1, 2,

∥∇s
T 1(Fm

T − F l
T )∥L∞(T 1) ≤ Chl+1−s, for 0 ≤ s ≤ l + 1,

1− Ch ≤ ∥[∇T 1F l
T ]

−1∥L∞(T 1) ≤ 1 + Ch, ∥[∇T 1F l
T ]

−1 − I∥L∞(T 1) ≤ Ch,

(3.2)166

where all constants depend on the Cl+1 norm of Γ.167

Next, recall the tangent t, co-normal n, and surface normal vectors ν from Fig-168

ure 1 and let ·̃, ·̂, or ·̄ denote quantities defined on T s, or using F s
T , for s = m, l,169

or 1, respectively; e.g. ν̃ is the surface normal of Tm. Then, the following estimate170

holds:171

∥t̃ ◦ Fm
T − t̂ ◦ F l

T ∥L∞(T 1) + ∥ñ ◦ Fm
T − n̂ ◦ F l

T ∥L∞(T 1)

+ ∥ν̃ ◦ Fm
T − ν̂ ◦ F l

T ∥L∞(T 1) ≤ Chl.
(3.3)172

3.2. Skeleton Spaces. The spaces in this section are infinite dimensional, but173

“mesh dependent” (see [39]), and were originally motivated by [5, pg. 1043] and [3,174

eqn. (2.11)]. In defining the spaces and norms, we only consider the exact triangula-175

tion Th, but everything generalizes to the polynomial triangulations T m
h in the obvious176

way. We make use of standard dG notation for writing inner products and norms over177

the triangulation, e.g. (f, g)Th
:=

∑
T∈Th

(f, g)T , ∥f∥
p
Lp(Th)

:=
∑

T∈Th
∥f∥pLp(T ), etc.178

A mesh-dependent version of H2(Γ) is given by179

(3.4) H2
h(Γ) := {v ∈ H1(Γ) | v|T ∈ H2(T ), for T ∈ Th},180

with the following semi-norm181

∥v∥22,h := ∥∇Γ∇Γv∥2L2(Th)
+ h−1 ∥Jn · ∇ΓvK∥2L2(E0,h)

+ h−1 ∥Jn · ∇ΓvK∥2L2(Σc)
,(3.5)182

where JηK is the jump in quantity η across mesh edge E, and n is the unit co-normal183

on E ∈ Eh. Hence, if the edge E is shared by two triangles T1 and T2 with outward184

co-normals n1 and n2, then Jn · ∇ΓvK = n1 · ∇Γv|T1
+ n2 · ∇Γv|T2

on E. For E185

a boundary edge, we set JηK = η|E . We note the following norm equivalence when186

mapping between domains Γm and Γl [39, eqn. (4.9)]. Let u ∈ H2
h(Γ

m) and define187

û = u ◦Φlm ∈ H2
h(Γ

l). Then, for h > 0 sufficiently small, ∥u∥2,h,m ≈ ∥û∥2,h,l, where188

∥ · ∥2,h,m is (3.5) defined on Γm.189

Next, for any φ ∈ H1(Γ;S), define190

(3.6) ∥φ∥20,h := ∥φ∥2L2(Γ) + h
∥∥nTφn

∥∥2
L2(E0,h)

+ h
∥∥nTφn

∥∥2
L2(Σc)

,191

and define H0
h to be the completion: H0

h(Γ;S) := H1(Γ;S)
∥·∥0,h

. By the definition of192

the norm, H0
h(Γ;S) ≡ L2(Γ;S)⊕ L2(Eh;R).193

3.3. Mixed Skeleton Formulation. We introduce the following skeleton sub-194

spaces195

Wh(Γ) := H2
h(Γ) ∩ H̊1(Γ), Vh(Γ) := {φ ∈ H0

h(Γ;S) | φnn = 0 on Σs},(3.7)196

when Σ ̸= ∅, and Wh(Γ) := H2
h(Γ), Vh(Γ) := H0

h(Γ;S) when Σ = ∅; Wh and Vh are197

mesh-dependent versions of W and V, respectively.198
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The non-conforming version of (2.5) is as follows, which is based on [39, eqn199

(3.10)]. For all φ ∈ H0
h(Γ;S) and v ∈ H2

h(Γ), define200

(3.8) bh (φ, v) := −
∑
T∈Th

(φ,hessΓ v)T +
∑
E∈Eh

⟨φnn, Jn · ∇ΓvK⟩E ,201

which satisfies the continuity estimate: bh (φ, v) ≤ ∥φ∥0,h∥v∥2,h for all φ ∈ Vh and202

v ∈ Wh, and define203

(3.9) a (τ ,φ) := (τ ,φ)Γ , ∀ τ ,φ ∈ H0
h(Γ;S).204

Then, if w ∈ W ⊂ Wh(Γ) and we set σ := ∇Γ∇Γw, then σ and w satisfy:205

a (σ,φ) + bh (φ, w) = 0, ∀φ ∈ Vh.(3.10)206

Note that the jump terms in (3.8) vanish because w ∈ W and n · ∇Γw = 0 on Σc.207

Indeed, restricting φ = σ, then we have208

∥σ∥2L2(Γ) = a (σ,σ) = −bh (σ, w) ≤ ∥σ∥L2(Γ)∥∇Γ∇Γw∥L2(Γ),(3.11)209

so σ is the stable L2(Γ) projection of ∇Γ∇Γw.210

Remark 3.2. We also have Wh(Γ
m) := H2

h(Γ
m) ∩ H̊1(Γm) and Vh(Γ

m) := {φ ∈211

H0
h(Γ

m;S) | φnn = 0 on Σm
s } defined on the curved triangulation Γm, with associated212

forms bmh (φ, v), am (τ ,φ) defined on Γm in the obvious way. These will be used213

in our fully discrete version of (3.10) (see (4.7)) which will enable our method for214

approximating the surface Hessian of a discrete function.215

3.4. Inhomogeneous Boundary Conditions. We extend the above formu-216

lation (3.10) to handle non-vanishing boundary conditions, which is necessary for217

approximating the shape operator on surfaces with boundary. First, assume that218

w ∈ H3(Γ) and there exists a function g ∈ H3(Γ), such that w = g on Σ and219

∂nw = ∂ng on Σc. Next, construct a function ρ ∈ H1(Γ;S), such that the conormal-220

conormal moment satisfies σnn := nTσn = nTρn on Σs. Since the second term in221

(3.8) contains boundary integral portions on Σc, where n · ∇Γw ̸= 0, then σ and w222

satisfy a modified form of (3.10):223

a (σ,φ) + bh (φ, w) = (φnn,n · ∇Γg)Σc
, ∀φ ∈ Vh.(3.12)224

Moreover, writing σ = σ̊ + ρ, with σ̊ ∈ Vh, we have225

a (σ̊,φ) = −a (ρ,φ)− b̊h (φ, w) , ∀φ ∈ Vh.(3.13)226

where we defined b̊h (φ, v) := bh (φ, v) − (φnn,n · ∇Γv)Σc
(i.e. it has no boundary227

term). Clearly, ∥σ̊∥L2(Γ) ≤ ∥ρ∥L2(Γ) + ∥∇Γ∇Γw∥L2(Γ). See subsection 4.4 for the228

fully discrete method.229

3.5. Mapping Properties. In order to analyze the error in our approximation230

scheme (4.9), we need a few results on how functions transform between discrete231

surfaces Γm and Γl, for m ̸= l, as well as how the forms bmh (·, ·), am (·, ·) and blh (·, ·),232

al (·, ·) are related.233
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3.5.1. The Piola Transform. The tangent space on Γm is element-wise defined234

through the mesh T m
h . We require a transformation rule that relates functions in235

H0
h(Γ

m;Sm) to H0
h(Γ

l;Sl) (with m ̸= l), such that conormal-conormal continuity236

is preserved; this is crucial to ensure that the HHJ finite element space in (4.3) is237

continuous. We first recall the surface matrix Piola transform transform from [39,238

Defn. 4.6].239

Definition 3.3. Recall the curved element mapping discussion in subsection 3.1.240

Let J = (∇T 1Fm
T )P̄⋆ ∈ R3×2 where ∇T 1 is the surface gradient on T 1 ∈ T 1

h ,241

(∇T 1Fm
T ) ∈ R3×3, and P̄⋆ ∈ R3×2 is the projection and restriction onto the tan-242

gent space of T 1. Given an extrinsic tensor φ̄ : Γ1 → S1 on the piecewise linear243

surface Γ1, we map it (element-wise) to a tensor φ̃ : Γm → Sm, for any m, using the244

map x̃ = Fm
T (x̄) and245

(3.14) φ̃(x̃) = Piola(φ̄)(x̄) := det (Q)
−1

JP̄⋆
T
φ̄(x̄)P̄⋆J

T ,246

where Q = JTJ . The inverse Piola transform is given by247

(3.15) φ̄(x̄) = Piola−1(φ̃)(x̃) := det (Q) P̄⋆Q
−1JT φ̃(x̃)JQ−1P̄⋆

T
.248

Remark 3.4. A tangential tensor φ̂ defined on Γl is mapped to a tensor φ̃ on Γm,249

for m ̸= l, through the map Φlm (see (3.1)). In other words, φ̂ is mapped to φ̄ on Γ1250

using (3.15), and then φ̄ is mapped to φ̃ on Γm using (3.14).251

Adopting the hypothesis of Definition 3.3, we recall [39, Prop. 4.7], which states252

(3.16) φ̃nn ◦ Fm
T = φ̄nn |(∇T 1Fm

T )t̄|−2.253

Since Fm is piecewise smooth and continuous with respect to the mesh T 1
h , it follows254

that (∇T 1Fm
T )t̄ is single-valued at interelement edges, so φ̃ is conormal-conormal255

continuous if and only if φ̄ is. This leads to the following norm equivalence (see [39,256

eqn. (4.15)]):257

(3.17) ∥φ̃∥0,h,m ≈ ∥φ̂∥0,h,l, ∀ φ̃ ∈ H0
h(Γ

m;Sm), for all 1 ≤ l,m ≤ k,∞.258

3.5.2. Mapping Forms. The following result, which is an improved version of259

[39, Thm. 4.8], is essential for analyzing the geometric error between the approximate260

solution on an approximate domain and exact solution on the exact domain.261

Theorem 3.5. Let 1 ≤ l ≤ k such that l < m, for 1 < m ≤ k, or m = ∞, and262

recall the mapping discussion in subsection 3.1. Let σ̃ ∈ H0
h(Γ

m;Sm), σ̂ ∈ H0
h(Γ

l;Sl),263

and σ̄ ∈ H0
h(Γ

1;S1) and assume they are related through the Piola transform (Def-264

inition 3.3) in the sense of Remark 3.4. Make the same assumption for φ̃, φ̂, φ̄.265

In addition, let ṽ ∈ H2
h(Γ

m), v̂ ∈ H2
h(Γ

l), v̄ ∈ H2
h(Γ

1), where ṽ|T ◦ Φ1m
T = v̄ and266

v̂|T ◦Φ1l
T = v̄. Then, there holds267

am (σ̃, φ̃) = al (σ̂, φ̂) +O(hl)∥σ̂∥L2(Γl)∥φ̂∥L2(Γl),(3.18)268

269
bmh (φ̃, ṽ) = blh (φ̂, v̂) +O(hl)∥φ̂∥0,h,l

(
∥v̂∥2,h,l + |v̂|H1(Γl)

)
− b1h

(
φ̄, (Fm − F l) · P0∇Γ1 v̄

)
+

∑
E1∈E1

∂,h

〈
φ̄nn, ∂s̄

(
Fm
T − F l

T

)
· P0(ν × t̃)

(
t̄ · ∇T 1I1,1

h v̄
)〉

E1
,

(3.19)270
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where I1,1
h is the Lagrange interpolation operator onto piecewise linears on Γ1, P0 :271

L2(Γ1) → L2(Γ1) is the projection onto piecewise constants, and ν ≡ ν ◦ FT is the272

unit normal vector of T (see Theorem 3.1).273

Proof. We start with the result of [39, Thm. 4.8], which already proves (3.18).274

Furthermore, we have the following from [39, eqn. (4.17)]:275

bmh (φ̃, ṽ) = blh (φ̂, v̂) +O(hl)∥φ̂∥0,h,l
(
∥v̂∥2,h,l + |v̂|H1(Γl)

)
− b1h

(
φ̄, (Fm − F l) · P0∇Γ1 v̄

)
+

∑
E1∈E1

∂,h

〈
φ̄nn, βt̄ · ∇T 1I1,1

h v̄
〉
E1

,(3.20)276

where β = [(t̃− t̂)×ν] · t̃ = (t̃− t̂) ·(ν× t̃). Note that the tangent vectors are obtained277

from the local element map:278

t̃ =
(∇T 1Fm

T )t̄

|(∇T 1Fm
T )t̄|

, t̂ =
(∇T 1F l

T )t̄

|(∇T 1F l
T )t̄|

,(3.21)279

where t̄ is the tangent vector of the straight element E1 ∈ E1
∂,h. Since t̃ · (ν × t̃) = 0,280

we derive another expression for β:281

β =

(
|(∇T 1Fm

T )t̄|
|(∇T 1F l

T )t̄|
t̃− t̂

)
· (ν × t̃)

= |(∇T 1F l
T )t̄|−1

(
(∇T 1Fm

T )t̄− (∇T 1F l
T )t̄

)
· (ν × t̃)

=
(
(∇T 1Fm

T )t̄− (∇T 1F l
T )t̄

)
· P0(ν × t̃) +O(hl+1),

(3.22)282

where P0(ν× t̃) is the projection onto a piecewise constant vector, and we used (3.2),283

(3.3). Moreover, note that (∇T 1Fm
T )t̄ − (∇T 1F l

T )t̄ = ∂s̄
(
Fm
T − F l

T

)
, where ∂s̄ is the284

derivative with respect to arc-length on E1. Thus, we get285 ∑
E1∈E1

∂,h

〈
φ̄nn, βt̄ · ∇T 1I1,1

h v̄
〉
E1

≤
∑

E1∈E1
∂,h

〈
φ̄nn, ∂s̄

(
Fm
T − F l

T

)
·CE1

〉
E1 +O(hl)∥φ̂∥0,h,l|v̂|H1(Γl),

(3.23)286

where CE1 := P0(ν × t̃)
(
t̄ · ∇T 1I1,1

h v̄
)
is defined on E1 ∈ E1

∂,h, and we used equiva-287

lence of norms. The result (3.19) then follows.288

A simple consequence of Theorem 3.5 is289

bmh (φ, v) = blh (φ̂, v̂) +O(hl−1)∥φ̂∥0,h,l∥v̂∥2,h,l.(3.24)290

4. Finite Element Approximation.291

4.1. Curved Lagrange Spaces. Let r ≥ 0 be an integer and m ≥ 1 be an292

integer or ∞. The (continuous) Lagrange finite element space of degree r + 1 is293

defined on Γm via the mapping Fm
T :294

(4.1) Wm,r+1
h ≡ Wm,r+1

h (Γm) := {v ∈ H2
h(Γ

m) | v|T ◦ Fm
T ∈ Pr+1(T

1), ∀T ∈ T m
h },295

where we will usually suppress the r + 1 superscript, i.e. we make the abbreviation296

Wm,r+1
h ≡ Wm

h . For the case m = ∞ (the exact domain) we simply write Wh.297
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Again, owing to the continuous embedding H2
h(Γ

1) ↪→ C0(Γ1) (see [40, Thm.298

4.2]), we can define the Lagrange interpolation operator I1
h : H2

h(Γ
1) → W 1

h , [5]299

defined on each element T 1 ∈ T 1
h by300

(I1
hv)(x)− v(x) = 0,

∫
E1

(I1
hv − v)q ds = 0,

∫
T 1

(I1
hv − v)η dS = 0,(4.2)301

for all vertices x of T 1, all q ∈ Pr−1(E
1) (and all E1 ∈ ∂T 1), and all η ∈ Pr−2(T

1).302

Then, given v ∈ H2
h(Γ

m), we define the global interpolation operator, Im
h : H2

h(Γ
m) →303

Wm
h , element-wise through Im

h v
∣∣
Tm ◦Fm

T := I1
h(v ◦Fm

T ). The approximation proper-304

ties of Im
h are standard. We also denote Im,s

h to be the above Lagrange interpolant305

on Γm onto continuous piecewise polynomials of degree s, and we make the following306

abbreviation Im,r+1
h ≡ Im

h .307

4.2. The HHJ Finite Element Space. We give a brief overview of the surface308

HHJ space; see [39, Sec. 5.2] for more details. On the piecewise linear surface trian-309

gulation Γ1, we start with a space of tangential, tensor-valued functions with special310

continuity properties. Let311

M1
nn(Γ

1) := {φ ∈ L2(Γ1;S1) | φ|T 1 ∈ H1(T 1;S1) ∀T 1 ∈ T 1
h , with φ cn-cn contin.},312

where “cn-cn contin.” means the conormal-conormal continuity condition that holds313

at inter-element boundaries, i.e. for any pair of triangles (T 1
a , T

1
b ) in T 1

h that share314

an edge E1 = T 1
a ∩ T 1

b , we have nT
aφna|E1 = nT

b φnb|E1 , where na (nb) is the315

outer conormal of ∂T 1
a (∂T 1

b ); note that, in general, na ̸= −nb (on E1). Clearly,316

M1
nn(Γ

1) ⊂ H0
h(Γ

1;S1). For 1 ≤ m ≤ k,∞, where Γ∞ ≡ Γ, we also have the space317

Mm
nn(Γ

m) := {φ ∈ L2(Γm;Sm) | φ ◦ Fm := Piola(φ̄), φ̄ ∈ M1
nn(Γ

1)},318

where the Piola transform is defined elementwise, using Fm; by (3.16), Mm
nn(Γ

m) also319

satisfies the conormal-conormal continuity property.320

The conforming, HHJ finite element space on Γ1, of degree r ≥ 0, is defined by321

V 1
h := {φ ∈ M1

nn(Γ
1) | φ|T 1 ∈ Pr(T

1;S1), ∀T 1 ∈ T 1
h }. Using the Piola transform,322

for 1 ≤ m ≤ k,∞, we also have323

V m
h := {φ ∈ Mm

nn(Γ
m) | φ ◦ Fm := Piola(φ̄), φ̄ ∈ V 1

h }.(4.3)324

We note the following norm equivalence in [39, eqn. (5.5)]:325

(4.4) ∥φ∥0,h,m ≈ ∥φ∥L2(Γm), ∀φ ∈ V m
h .326

There exists an interpolation operator Πm
h : Mm

nn(Γ
m) → V m

h , defined element-327

wise, that satisfies many basic approximation results which can be found in [3, Supp.328

Mater.], [39, sec. 5.2]. For simplicity, we describe the operator on Γ1 only, i.e.329

Π1
h : M1

nn(Γ
1) → V 1

h , [10, 5] is defined on each element T 1 ∈ T 1
h by330 ∫

E1

nT
[
Π1

hφ−φ
]
n q ds = 0,

∫
T 1

[
Π1

hφ−φ
]
: η dS = 0,(4.5)331

for all q ∈ Pr(E
1) (and all E1 ∈ ∂T 1), and all η ∈ Pr−1(T

1;S). We note that the332

Degrees-of-Freedom (DoFs) for V 1
h are given by (4.5), [10, Lem. 3], [27]. On affine333
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elements, we have a Fortin like property involving b1h (·, ·), [10, 5, 8]:334

b1h
(
φ−Π1

hφ, θhvh
)
= 0, ∀φ ∈ H0

h(Γ
1;S1), vh ∈ W 1

h ,

b1h
(
φh, (v − I1

hv)θh
)
= 0, ∀φh ∈ V 1

h , v ∈ H2
h(Γ

1),(
φnn
h , ∂s̄

(
v − I1

hv
)
ηh

)
E1
∂,h

= 0, ∀φh ∈ V 1
h , v ∈ H2

h(Γ
1),

(4.6)335

which holds for any piecewise constant functions θh (ηh) defined on T 1
h (E1

∂,h); the336

first two properties are noted in [10, 5, 8].337

4.3. The HHJ Projection. We pose (3.10) on Γm with continuous skeleton338

spaces denoted Vm
h ≡ Vh(Γ

m) and Wm
h ≡ Wh(Γ

m). Fixing the polynomial degree339

r ≥ 0, the conforming finite element spaces are V m
h ⊂ Vm

h , Wm
h ⊂ Wm

h , where340

we abuse notation by now enforcing essential boundary conditions directly in the341

definitions of V m
h and Wm

h . The finite element approximation to (3.10) is as follows.342

Given any ŵh ∈ Wm
h , find σ̂h ∈ V m

h , such that343

am (σ̂h, φ̂h) + bmh (φ̂h, ŵh) = 0, ∀ φ̂h ∈ V m
h .(4.7)344

Since am (·, ·) is continuous and coercive over V m
h , by (4.4), we get345

∥σ̂h∥2L2(Γm) = am (σ̂h, σ̂h) = −bmh (σ̂h, wh) ≤ ∥σ̂h∥0,h,m∥ŵh∥2,h,m
≤ C∥σ̂h∥L2(Γm)∥ŵh∥2,h,m,

(4.8)346

for some independent constant C > 0. Thus, σ̂h is a stable L2(Γm) projection. In a347

sense, σ̂h can be viewed as a discrete Hessian of ŵh (see the error estimate in (4.22)).348

4.4. Inhomogeneous Boundary Conditions. We modify (4.7) to incorporate349

non-zero boundary conditions, i.e. we give a discrete version of (3.12). For any350

w ∈ Hr+3(Γ), we define w̃ := w ◦Ψm ∈ H2
h(Γ

m), and set ξ̃ := (∇Γw) ◦Ψm. Then,351

we seek σ̂h = ˚̂σh + ρ̂h, with ˚̂σh ∈ V m
h , such that352

am
(
˚̂σh, φ̂h

)
= −am (ρ̂h, φ̂h)− bmh (φ̂h, w̃) +

(
φ̂nn
h , n̂ · ξ̃

)
Σm

c

, ∀φ̂h ∈ V m
h ,(4.9)353

where ρ̂h := Bm
h ρ̃, with ρ̃ satisfying ρ ◦ Ψm = ρ̃, and Bm

h : H0
h(Γ

m) → V m
h is the354

projection on Γm, i.e.355

(ρ̂h − ρ̃, φ̂h)T m
h

+
(
n̂T [ρ̂h − ρ̃]n̂, φ̂nn

h

)
Em
h

= 0, ∀ φ̂h ∈ V m
h ,(4.10)356

which satisfies the approximation property ∥ρ̂h − ρ̃∥0,h,m ≤ Chmin(r+1,m)∥ρ∥Hr+1(Γ).357

Choosing φ̂h = ˚̂σh in (4.9), we have358

∥˚̂σh∥2L2(Γm) = −am
(
ρ̂h, ˚̂σh

)
− b̊mh

(
˚̂σh, w̃

)
−

(
n̂T ˚̂σhn̂, n̂ ·

[
∇Γmw̃ − ξ̃

])
Σm

c

≤ ∥ρ̂h∥L2(Γm)∥˚̂σh∥L2(Γm) + ∥˚̂σh∥0,h,m∥w̃∥2,h,m + C∥˚̂σh∥L2(Γm)∥w∥H2(Γ),

(4.11)

359

where, since idkΓm = Im
h idkΓ, applying straightforward change of variables, standard360

interpolation estimates, and an inverse estimate, give (see [39])361 ∣∣∣∣(n̂T ˚̂σhn̂, n̂ ·
[
∇Γmw̃ − ξ̃

])
Σm

c

∣∣∣∣ ≤ O(h1/2)∥˚̂σh∥L2(Σm)∥w∥H2(Γ)

≤ C∥˚̂σh∥L2(Γm)∥w∥H2(Γ).

(4.12)362
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By equivalence of norms, ∥w̃∥2,h,m ≈ ∥w∥2,h ≡ ∥∇Γ∇Γw∥L2(Γ) and ∥˚̂σh∥L2(Γm) ≈363

∥˚̂σh∥0,h,m, we obtain364

∥˚̂σh∥0,h,m ≤ C
(
∥ρ̂h∥L2(Γm) + ∥w∥H2(Γ)

)
,(4.13)365

for some constant C > 0 that does not depend on h. Thus, the projection is stable.366

4.5. Error Analysis. The stability of the surface HHJ method, as well as its367

convergence, depends crucially on the following choice of surface approximation: let368

F̃m
T : T 1 → Tm, for all T 1 ∈ T 1

h and 1 ≤ m ≤ k, be given by369

Fm
T ≡ F̃m

T := I1,m
h FT ≡ I1,m

h Ψ1
T ,(4.14)370

where I1,m
h is the Lagrange interpolation operator in (4.2) onto degree m polynomials;371

we simplify the notation by writing Fm
T ≡ F̃m

T . This choice is necessary to guarantee372

optimal convergence of the HHJ method when m = r+1. If m > r+1, the standard373

Lagrange interpolant can be used.374

For the convergence analysis, we assume w ∈ Hr+3(Γ), where r ≥ 0 is the degree375

of the HHJ space. Let σ := ∇Γ∇Γw ∈ Hr+1(Γ;S), and note that σ satisfies (3.12),376

where ρ ∈ Hr+1(Γ;S) is such that nTσn = nTρn on Σs. Next, we introduce an377

intermediate discrete (finite dimensional) problem posed on the exact surface. Let ρh378

be the L2(Γ) projection of ρ onto Vh, i.e. ρh ∈ Vh satisfies a (ρh,φh) = a (ρ,φh) for379

all φh ∈ Vh. Then, we write σh = σ̊h + ρh, where σ̊h ∈ Vh satisfies380

a (σ̊h,φh) = −a (ρ,φh)− bh (φh, w) + (φnn
h ,n · ∇Γw)Σc

, ∀φh ∈ Vh,(4.15)381

where σ̊h can be viewed as a stable projection. Comparing (4.15) with (3.13), by382

standard finite element analysis, utilizing Galerkin orthogonality and interpolation383

estimates, we have that ∥σ̊ − σ̊h∥L2(Γ) ≤ ∥σ̊ −Πhσ̊∥L2(Γ) = O(hr+1), which implies384

∥σ − σh∥L2(Γ) ≤ O(hr+1).(4.16)385

Next, let σ̂h solve (4.9). To facilitate estimating the error between σ̂h and the386

exact surface Hessian σ, we map σh to the discrete surface Γm, i.e. by letting ˚̃σh ∈ V m
h387

satisfy σ̊h ◦Ψm = Piola(˚̃σh) (recall (3.14)), and then compare ˚̃σh to ˚̂σh.388

So, we apply the results of Theorem 3.5 to (4.15) to find that ˚̃σh ∈ V m
h satisfies389

am
(
˚̃σh, φ̂h

)
= −am (ρ̃, φ̂h)− bmh (φ̂h, w̃) +

(
φ̂nn
h , n̂ · ξ̃

)
Σm

c

+O(hm)
(
∥˚̃σh∥L2(Γm) + ∥ρ̃∥L2(Γm)

)
∥φ̂h∥L2(Γm)

+O(hm)∥φ̂h∥0,h,m
(
∥w̃∥2,h,m + |w̃|H1(Γm)

)
− b1h (φ̄h, (F − Fm) · P0∇Γ1w̄h) + (φ̄nn

h , ∂s̄ (FT − Fm
T ) ·CE1)E1

∂,h
,

(4.17)390

for all φ̂h in V m
h , where CE1 is a constant vector for each E1 ∈ E1

∂,h. We also used391

that392

∣∣∣(φnn
h ,n · ∇Γw)E −

(
φ̂nn
h , n̂ · ξ̃

)
Em

∣∣∣ ≤ O(hm)∥φ̂h∥0,h,m
(
∥w̃∥2,h,m + |w̃|H1(Γm)

)
,

(4.18)
393

for all E ∈ E∂,h where Em = E ◦Ψm. Next, we make note of the assumption on Fm394

(4.14), use (4.6), and take advantage of equivalent norms to obtain395

am
(
˚̃σh, φ̂h

)
= −am (ρ̃, φ̂h)− bmh (φ̂h, w̃) +

(
φ̂nn
h , n̂ · ξ̃

)
Σm

c

+O(hm)∥φ̂h∥L2(Γm)

(
∥ρ∥L2(Γ) + ∥w∥H2(Γ)

)
, ∀ φ̂h ∈ V m

h ,
(4.19)396
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where we also note that C∥˚̃σh∥L2(Γm) ≤ ∥σ̊h∥L2(Γ) ≤ ∥ρ∥L2(Γ) + ∥∇Γ∇Γw∥L2(Γ), for397

some independent constant C > 0. Comparing (4.19) against (4.9), we get398

am
(
˚̃σh − ˚̂σh, φ̂h

)
= am (ρ̂h − ρ̃, φ̂h) +O(hm)∥φ̂h∥L2(Γm)

(
∥ρ∥L2(Γ) + ∥w∥H2(Γ)

)
≤ ∥φ̂h∥L2(Γm)

[
O(hr+1)∥ρ∥Hr+1(Γ) +O(hm)

(
∥ρ∥L2(Γ) + ∥w∥H2(Γ)

)]
,

(4.20)

399

for all φ̂h in V m
h . Therefore, we get ∥˚̃σh − ˚̂σh∥L2(Γm) ≤ Chmin(r+1,m), where the400

constant C depends on the Hr+3(Γ) norm of Γ. Thus, we obtain401

∥σ̃h − σ̂h∥L2(Γm) ≤ Chmin(r+1,m).(4.21)402

Combining the above results yields the following theorem.403

Theorem 4.1. Assume r ≥ 0 is an integer, let w ∈ Hr+3(Γ), and set σ :=404

∇Γ∇Γw ∈ S. Furthermore, assume r ≥ 0 is the degree of V m
h , and let σ̂h = ˚̂σh + ρ̂h,405

with ˚̂σh ∈ V m
h satisfying (4.9) and ρ̂h defined through (4.10). If m ≥ r + 1, then406

∥σ − σ̂h ◦ (Ψm)−1∥0,h ≤ Chr+1,(4.22)407

where C > 0 depends on the domain Γ and the shape regularity of the mesh.408

Proof. Let σh be the discrete solution (defined on the exact surface) computed409

through (4.15), and let σ̃h ∈ V m
h satisfy σh◦Ψm = Piola(σ̃h). It is straightforward to410

derive the estimate ∥σh − σ̃h ◦ (Ψm)−1∥0,h ≤ O(hr+1)∥σ̃h∥0,h,m (see [39, Thm. 6.4]).411

Then, combining with (4.16) and (4.21) through the triangle inequality, we obtain412

(4.22).413

Remark 4.2. The “exact” data w̃ and ξ̃ can be replaced by their interpolants,414

Im
h w̃ and Im

h ξ̃, without affecting the stability or accuracy of the scheme in (4.9).415

In a sense, our scheme is a kind of Hessian recovery of the given discrete data416

Im
h w̃, including boundary data Im

h ξ̃ and ρ̂h. We note that another method of Hessian417

recovery for the HHJ element, developed for flat domains, is given in [28].418

5. Approximating the Shape Operator. Recall that, for any C2 surface Γ,419

we have the identity map idΓ : Γ → Γ given by x = idΓ(x) for all x ∈ Γ, and420

∇ΓidΓ = P (tangent space projection). In addition, we have the shape operator ∇Γν421

that satisfies (SM2.4): ∇Γν = κ1d1 ⊗ d1 + κ2d2 ⊗ d2, where κ1, κ2 are the principle422

curvatures of Γ, with κ1 ≥ κ2, and d1, d2 are the principle directions (which are423

tangent to Γ).424

5.1. An Identity. We exploit the following result in our method.425

Proposition 5.1. If Γ is C2, then at every point of Γ, there holds426

(5.1) ∇Γ∇Γid
k
Γ = −νk[∇Γν], for k = 1, 2, 3.427

Proof. Let {U,χ} be a local chart such that the open set Υ := χ(U) is contained428

in Γ. Without loss of generality, we derive the identity on Υ only. Furthermore, since429

∇Γ∇Γ, ν, and ∇Γν, are independent of the parametrization, we take advantage of a430

particular choice and assume χ has the form χ =
(
χ1, χ2, χ3

)
with431

χ1(u1, u2) = u1, χ2(u1, u2) = u2, χ3(u1, u2) = h(u1, u2),(5.2)432
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where h ∈ C2 is a height function. With this, the metric, gαβ , and its inverse, gαβ433

are given by434

gαβ = δαβ + (∂αh)(∂βh), gαβ = δαβ − (∂αh)(∂βh)

1 + (∂µh)2
,(5.3)435

which then yields the following simplified form of the Christoffel symbols Γk
ij (of the436

second kind) (see (SM1.1)):437

(5.4) Γγ
αβ =

1

1 + (∂µh)2
(∂γh)(∂α∂βh), 1 ≤ α, β, γ ≤ 2.438

Let eα = ∂αχ, for α = 1, 2. Using (SM2.3), we have that eTα

(
∇Γ∇Γid

k
Γ

)
eβ =439

(∂α∂βχ
k)− Γµ

αβ(∂µχ
k), so440

eTα

(
∇Γ∇Γid

k
Γ

)
eβ =

{
−
(
1 + (∂µh)

2
)−1

(∂kh)(∂α∂βh), if 1 ≤ k ≤ 2,(
1 + (∂µh)

2
)−1

(∂α∂βh), if k = 3.
(5.5)441

Next, note that the normal vector is given by442

(5.6) ν ◦ χ =
(−∂1h,−∂2h, 1)

(1 + (∂µh)2)
1/2

.443

In local coordinates, [∇Γν] ◦ χ = (∂ων)g
ωθ(∂θχ)

T by (SM2.2), so then444

eTα [∇Γν]eβ = (∂αχ) · (∂ων)gωθ(∂θχ) · (∂βχ) = −(∂ω∂αχ) · νgωθgθβ

= −(∂α∂βχ) · ν = −(∂α∂βh)ν
3 = − ∂α∂βh

(1 + (∂µh)2)
1/2

,
(5.7)445

which implies that446

eTα
(
νk[∇Γν]

)
eβ =

{(
1 + (∂µh)

2
)−1

(∂kh)(∂α∂βh), if 1 ≤ k ≤ 2,

−
(
1 + (∂µh)

2
)−1

(∂α∂βh), if k = 3.
(5.8)447

Thus, for each k = 1, 2, 3,448

eTα

(
νk[∇Γν] +∇Γ∇Γid

k
Γ

)
eβ = 0, for 1 ≤ α, β ≤ 2.(5.9)449

Since {e1, e2} spans the tangent space, and both ∇Γν and ∇Γ∇Γid
k
Γ are tangential450

tensors, we obtain (5.1).451

5.2. The Scheme. The first step in the method is to approximate the surface452

Hessian of idΓ. For the convergence analysis, we assume Γ is Cr+3, where r ≥ 0 is453

the degree of the HHJ space. This implies that idΓ ∈ [W r+3,∞(Γ)]3, which means454

σk := ∇Γ∇Γid
k
Γ ∈ W r+1,∞(Γ;S), for k = 1, 2, 3. Upon recalling (3.12), a direct455

calculation shows that456

a
(
σk,φ

)
+ bh

(
φ, idkΓ

)
=

(
φnn,n · ∇Γid

k
Γ

)
Σc

, ∀φ ∈ Vh, for k = 1, 2, 3.(5.10)457

Thus, we take idkΓ as given data, and σk is the L2(Γ) projection of ∇Γ∇Γid
k
Γ. Indeed,458

(5.10) comes from replacing σ in (3.12) with σk, and replacing w, g with idkΓ. In459

addition, we have ρk ∈ W r+1,∞(Γ;S), such that the conormal-conormal moment460

satisfies nTσkn = nTρkn on Σs.461
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14 S. W. WALKER

The fully discrete method is as follows. Let ρ̂k
h be given by ρ̂k

h := Bm
h ρ̃k, with ρ̃k462

satisfying ρk ◦ Ψm = Piola(ρ̃k), and Bm
h : H0

h(Γ
m) → V m

h is the projection defined463

by (4.10), which satisfies the following approximation properties: ∥ρ̂k
h − ρ̃k∥0,h,m ≤464

Chr+1∥ρk∥Hr+1(Γ), and ∥ρ̂k
h − ρ̃k∥L∞(Σm) ≤ Chr+1∥ρk∥W r+1,∞(Γ) (c.f. [3, Supp.465

Mater.: Sec. SM4.3]).466

Then we let σ̂k
h = ˚̂σk

h + ρ̂k
h, and impose that ˚̂σk

h ∈ V m
h , for k = 1, 2, 3, satisfies467

am
(
˚̂σk
h, φ̂h

)
= −am

(
ρ̂k
h, φ̂h

)
− bmh

(
φ̂h, id

k
Γm

)
+

(
φ̂nn
h , n̂ · ξ̃k

)
Σm

c

,(5.11)468

for all φ̂h ∈ V m
h , where idkΓm ∈ Wm

h and ξ̃k := (∇Γid
k
Γ) ◦ Ψm. Note that (5.11) is469

simply (4.9) with ˚̂σh replaced with ˚̂σk
h, ρ̂h replaced by ρ̂k

h, w̃ replaced by idkΓm , and470

ξ̃ replaced by ξ̃k. Similar to (4.13), we have that the discrete projection is stable:471

∥˚̂σk
h∥0,h,m ≤ C

(
∥ρ̂k

h∥L2(Γm) + ∥∇Γ∇Γid
k
Γ∥L2(Γ)

)
.472

The last step in the method is to use (5.1), i.e. let Sh approximate ∇Γν through473

(5.12) Sh := −ν̂kσ̂k
h ∈ L2(Γm;Sm),474

where ν̂ =
(
ν̂1, ν̂2, ν̂3

)
is the unit normal vector of Γm. From (3.3), and the discussion475

in subsection 3.1, ∥ν ◦ Ψm − ν̂∥L∞(Tm) ≤ Chm. Then, by the error analysis of476

subsection 4.5, and the triangle inequality, we obtain Theorem 5.2.477

Theorem 5.2. Assume r ≥ 0 is the degree of V m
h and that Γ is Cr+3. Moreover,478

let ∇Γν be the shape operator of Γ, and let Sh be given by (5.12). If m ≥ r+ 1, then479

∥∇Γν − Sh ◦ (Ψm)−1∥L2(Γ) ≤ Chr+1,(5.13)480

where C > 0 depends on the domain Γ and the shape regularity of the mesh.481

5.3. Practical Computation. Usually, we choose m = r+1 when implement-482

ing the method. For r = 0, this corresponds to piecewise linear surface triangulations483

and piecewise linear Lagrange space, as well as a piecewise constant HHJ space.484

5.3.1. Closed Surfaces. The method is simplest when posed on closed surface485

triangulations. In this case, ρ̂k
h and ξ̃k are unnecessary, so (5.11) reduces to the486

following: find σ̂k
h ∈ V m

h , for k = 1, 2, 3, such that487

am
(
σ̂k
h, φ̂h

)
= −bmh

(
φ̂h, id

k
Γm

)
, ∀ φ̂h ∈ V m

h .(5.14)488

The matrix representations of am (·, ·) and bmh (·, ·) are straightforward to assemble489

using standard finite element software, even for m > 1, although the m = 1 case is490

especially simple. Indeed, the HHJ element, though not as well known as some other491

elements, is implemented in several software packages, e.g. FELICITY [38], FEniCS [2],492

Firedrake [32], NGSolve [36].493

Let Am and Bm be the matrix realizations of am (·, ·) and bmh (·, ·), respectively.494

Then the right-hand-side of (5.14) is simply −BmXk, where Xk is a column vector495

containing the kth coordinate of the Degrees-of-Freedom of the Lagrange space Wm
h .496

Let Sk be the coefficient vector corresponding to σ̂k
h. Then, one needs to solve the497

linear system: AmSk = −BmXk for Sk, which is similar to computing a standard L2498

projection.499

However, the matrix Am is slightly different from the usual mass matrix because500

of the mesh dependent space H0
h(Γ

m), i.e. because of the edge terms. Effectively, this501

causes the condition number of Am to have a slight growth as the mesh size decreases.502

See Table 1 for a listing of the condition number of Am in the numerical experiments.503
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5.3.2. Surfaces with Boundary. Surfaces with boundary pose some difficulty,504

because extra information about the surface is needed on the boundary Σ ≡ ∂Γ.505

Applying the scheme (5.11) requires ξ̃k = (∇Γid
k
Γ) ◦Ψm on Σm

c , which implies that506

we need a good approximation of ∇ΓidΓ ≡ P = I − ν ⊗ ν on Σc or, equivalently, a507

good approximation of ν on Σc. Thus, let ν̃ ∈ [L∞(Σm
c )]3 with the property that508

(5.15) ∥ν − ν̃ ◦ (Ψm)−1∥L∞(Σc) = O(hm+1/2).509

Note that this precludes directly using the discrete normal ν̂ of Γm.510

Next, we must account for boundary values on Σs. Let ρk ∈ W r+1,∞(Γ;S), be511

given by ρk := −νk∇Γν ≡ σk, for k = 1, 2, 3 (see (5.1)), and evaluate (4.10), i.e.512

define ρ̂k
h ∈ V m

h , for k = 1, 2, 3, as the unique solution of513 (
ρ̂k
h − ρ̃k, φ̂h

)
T m
h

+
(
n̂T [ρ̂k

h − ρ̃k]n̂, φ̂nn
h

)
Em
h

= 0, ∀ φ̂h ∈ V m
h ,(5.16)514

where n̂ is the co-normal vector on Σm
s and ρ̃k is given by ρk ◦Ψm = ρ̃k. Then use515

ρ̂k
h to enforce boundary conditions on σ̂k

h. However, for solving the discrete problem516

(5.11), we only need the values of ρ̂k
h on Σm

s . Ergo, we can restrict (5.16) to a517

boundary integral on Σm
s . Furthermore, we can utilize a good approximation of the518

boundary curvature in the following sense. Let κ̃n
h ∈ L∞(Σm

s ) be an approximation519

of the normal curvature, in the co-normal direction n, with the property that520

(5.17) ∥nT [∇Γν]n− κ̃n
h ◦ (Ψm)−1∥L∞(Σs) = O(hm).521

Then, we define ρ̂k
h ∈ V m

h , for k = 1, 2, 3, as the unique solution of522 (
n̂T ρ̂k

hn̂, n̂
T φ̂hn̂

)
Σm

s
= −

(
ν̂kκ̃n

h, n̂
T φ̂hn̂

)
Σm

s
, ∀ φ̂h ∈ V m

h ,(5.18)523

where we use the discrete normal ν̂ of Γm and we set all degrees-of-freedom (DoFs) of524

ρ̂k
h not on Σm

s to zero. Note that the matrix realization of the left-hand-side of (5.18)525

is block diagonal, where each block corresponds to an edge of Σm
s ; hence, (5.18) is a526

trivial linear system to solve.527

We now summarize the method. Let ρ̂k
h be given by (5.18) and ν̃ satisfy (5.15).528

Then, find ˚̂σk
h ∈ V m

h , for k = 1, 2, 3, such that529

am
(
˚̂σk
h, φ̂h

)
= −am

(
ρ̂k
h, φ̂h

)
− bmh

(
φ̂h, id

k
Γm

)
+

(
φ̂nn
h , n̂k − (n̂ · ν̃)ν̃k

)
Σm

c
,(5.19)530

for all φ̂h ∈ V m
h . Then, set σ̂k

h := ˚̂σk
h + ρ̂k

h and define Sh := −ν̂kσ̂k
h.531

Theorem 5.3. Adopt the hypothesis of Theorem 5.2, but let Sh be computed by532

the scheme in (5.19). If m ≥ r + 1, then533

∥∇Γν − Sh ◦ (Ψm)−1∥L2(Γ) ≤ Chr+1,(5.20)534

where C > 0 depends on the domain Γ and the shape regularity of the mesh.535

Note that, by the properties of the projection and the HHJ interpolant (see sub-536

section 4.2), we have ∥ρ̂k
h− ρ̃k∥L∞(Σm) ≤ Chr+1∥ρk∥W r+1,∞(Γ) (c.f. [3, Supp. Mater.:537

Sec. SM4.3]).538

Remark 5.4. The partition of the boundary, Σ = Σc ∪ Σs, depends on the geo-539

metric information available at the boundary. One can have Σ ≡ Σc, or Σ ≡ Σs, or a540

combination, so the method has some flexibility.541
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6. Numerical Results. We present numerical results for several different do-542

mains, both with and without boundary. The discrete domains were generated by543

either interpolating charts on a sequence of uniformly refined grids, or by creating an544

initial piecewise linear triangulation of the implicit, closed surface (using [37]) and545

interpolating the closest point map. As above, the finite element spaces Vh and Wh546

are of degree r and r+ 1 respectively, where r ≥ 0, and the geometric approximation547

degree is denoted m, and satisfies m = r + 1. All computations were done with the548

Matlab/C++ finite element toolbox FELICITY [38], where we used the “backslash”549

command in Matlab to solve the linear systems.550

From (4.14), recall that Fm := I1,m
h Ψ1, which is possible to implement, but551

inconvenient. Instead, we first compute Fm+1 by standard nodal interpolation, then552

we define Fm := I1,m
h Fm+1, which is easy to implement over the piecewise linear553

triangulation of Γ1 and does not affect the accuracy.554

As for the boundary data, ν and ∇Γν are known through the exact surface555

geometry. Moreover, these functions are easily extended away from the surface by556

analytic continuation. Thus, we use ν̃ := Imh ν and κ̃n
h := n̂T (Imh [∇Γν]) n̂, where557

Imh : H2
h(Γ

m) → Wm
h (different from Im

h ) is the standard, pointwise, nodal interpolant558

onto Wm
h . Note: when m = 1, then I1h ≡ I1,1

h .559

In order to illustrate the effectiveness of the method, we compute the following560

errors: ∥Imh (ν ◦Ψm)− ν̂∥L2(Γm), ∥Imh [(∇Γν) ◦Ψm]−Sh∥L2(Γm), ∥Imh [(∇Γν) ◦Ψm]−561

Sh∥L∞(Γm), ∥Imh (κa◦Ψm)−κa
h∥L2(Γm), ∥Imh (κg◦Ψm)−κg

h∥L2(Γm), where κ
a = κ1+κ2562

(additive curvature), κg = κ1 · κ2 (Gauss curvature), and563

κa
h := trSh, κg

h := det [Sh + ν̂ ⊗ ν̂] .(6.1)564

Again, the geometric information is extended away from the surface by analytic con-565

tinuation. These errors can be related to the ones in (5.13), (5.20) by equivalence566

of norms and a triangle inequality. The estimated order of convergence (EOC) is567

computed by using the ratio of the error between two successive uniform refinements.568

In order to avoid spurious results in the numerical convergence tests, the meshes569

in the examples were generated from the non-uniform/non-symmetric meshes shown570

in Figure 2. The condition numbers of the “mass” matrix to invert in projecting to571

the HHJ space are listed in Table 1.572

Fig. 2. All initial meshes. (a,b) These meshes are uniformly refined twice to give the k = 0
case in Table 2, Table 3; (c,d) These meshes correspond to the k = 0 case in Table 4, Table 5.

6.1. Saddle Surface on a Square. The domain is given by (U,χ), where573

U = [0, 1] × [0, 1] is the unit square and χ(u1, u2) = (u1, u2, 0.5(sin(3.5(u1 − 0.5)) +574

cos(4.2(u2 − 0.5)))). Figure 3 shows the surface with curvature data obtained from575
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Table 1
Listing of the 2-norm condition number of the matrix Am discussed in subsection 5.3.1. Num-

bers correspond to the convergence tables in the associated sections for m = 1; for m = 2, 3, the
condition numbers were larger by factors of approximately 102 and 103, respectively. The number
in parenthesis is the condition number of (Dm)−1Am, where Dm is a diagonal matrix obtained by
mass-lumping of Am.

k subsection 6.1 subsection 6.2 subsection 6.3 subsection 6.4
0 7.61E02 (4.89E02) 3.90E02 (1.80E02) 2.89E02 (2.15E01) 4.39E02 (3.13E01)
1 9.65E02 (6.93E02) 4.87E02 (2.41E02) 4.55E02 (3.80E01) 7.10E02 (6.23E01)
2 1.11E03 (8.93E02) 5.69E02 (3.04E02) 5.88E02 (5.42E01) 8.75E02 (1.01E02)
3 1.18E03 (1.05E03) 6.39E02 (3.62E02) 7.00E02 (6.74E01) 9.64E02 (1.31E02)
4 1.26E03 (1.15E03) 6.95E02 (4.05E02) 7.72E02 (7.57E01) 1.00E03 (1.53E02)

Fig. 3. Illustration of the saddle surface in subsection 6.1 corresponding to m = 1 and k = 1 in
Table 2. Left: color corresponds to the discrete Gauss curvature κg

h. Right: zoom-in of the surface
where line segments indicate the principle directions of the surface, i.e. red (black) is d1 (d2), which
correspond to the minimum (maximum) curvature direction.

the discrete approximation. Table 2 shows the convergence behavior for the case of576

clamped boundary data (i.e. using ν̃), which confirms the error estimate in (5.20).577

6.2. Wavy Dumbbell. The domain is given by (U,χ), where the boundary of578

U is piecewise parametrized by579

(6.2) (x(t), y(t)) =


(cos(t) + 1, sin(t)) , if − π/2 ≤ t ≤ π/2,

(−t+ 1, 0.6 + 0.4 cos(πt)) , if 0 ≤ t ≤ 2,

(cos(t)− 1, sin(t)) , if π/2 ≤ t ≤ 3π/2,

(t− 1,−(0.8 + 0.2 cos(πt))) , if 0 ≤ t ≤ 2.

580

The surface parametrization is given by χ(u, v) =
(
u, v, e−u2

sin(2v)
)
. The curved581

element mapping is composed from two maps (recall (4.14)). The first map is a Lenoir582

type map, [26] described in [3] that creates a curved triangulation that optimally583

approximates U ; the second map is the parametrization χ. We then apply (4.14) to584
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Table 2
Convergence errors for the saddle surface (subsection 6.1) using clamped boundary data; EOC

is shown in parenthesis. The number of triangles in the mesh is NT = 448 · 4k, where k is the
refinement index. Cases are shown for m = 1, 2, 3, where m is the polynomial degree of the geometry.

k L2 error: ν L2 error: ∇Γν L∞ error: ∇Γν L2 error: κa L2 error: κg

m = 1:
0 1.09E-01 (1.02) 1.04E 00 (0.84) 1.13E 00 (1.77) 5.94E-01 (0.89) 2.48E 00 (1.02)
1 5.44E-02 (1.01) 5.48E-01 (0.92) 4.45E-01 (1.35) 3.09E-01 (0.94) 1.26E 00 (0.97)
2 2.72E-02 (1.00) 2.81E-01 (0.96) 2.31E-01 (0.95) 1.57E-01 (0.97) 6.44E-01 (0.97)
3 1.36E-02 (1.00) 1.42E-01 (0.98) 1.27E-01 (0.86) 7.97E-02 (0.98) 3.26E-01 (0.98)
4 6.79E-03 (1.00) 7.15E-02 (0.99) 6.65E-02 (0.94) 4.02E-02 (0.99) 1.64E-01 (0.99)

m = 2:
0 3.87E-03 (2.19) 1.52E-01 (1.87) 8.89E-01 (0.94) 9.77E-02 (1.78) 4.69E-01 (1.57)
1 9.13E-04 (2.08) 3.71E-02 (2.03) 2.83E-01 (1.65) 2.49E-02 (1.97) 1.23E-01 (1.93)
2 2.25E-04 (2.02) 9.07E-03 (2.03) 8.35E-02 (1.76) 6.10E-03 (2.03) 3.08E-02 (2.00)
3 5.59E-05 (2.01) 2.25E-03 (2.01) 2.14E-02 (1.96) 1.51E-03 (2.01) 7.68E-03 (2.00)
4 1.40E-05 (2.00) 5.62E-04 (2.00) 5.41E-03 (1.99) 3.77E-04 (2.00) 1.92E-03 (2.00)

m = 3:
0 1.20E-04 (3.51) 1.41E-02 (2.95) 2.00E-01 (2.56) 1.08E-02 (2.72) 5.10E-02 (2.81)
1 1.15E-05 (3.38) 1.86E-03 (2.93) 2.12E-02 (3.24) 1.50E-03 (2.85) 7.47E-03 (2.77)
2 1.28E-06 (3.16) 2.37E-04 (2.97) 1.77E-03 (3.58) 1.92E-04 (2.97) 9.68E-04 (2.95)
3 1.55E-07 (3.05) 2.98E-05 (2.99) 2.20E-04 (3.01) 2.42E-05 (2.99) 1.22E-04 (2.99)
4 1.92E-08 (3.01) 3.73E-06 (3.00) 2.73E-05 (3.01) 3.03E-06 (3.00) 1.53E-05 (3.00)

Fig. 4. Illustration of the wavy dumbbell in subsection 6.2 corresponding to m = 1 and k = 1
in Table 3. The format is similar to Figure 3. Right figure is zoomed in on the top, curved edge of
the surface.

the composed map.585

Figure 4 shows the surface with curvature data obtained from the discrete ap-586

proximation. Table 3 shows the convergence behavior for the case of simply-supported587

boundary data (i.e. using κ̃n
h), which confirms the error estimate in (5.20).588

6.3. Torus. The domain is a torus described by the zero level set of the function:589

b(x, y, z) = (x2 + y2 − (6/10))2 + (3/2)z2 − (1/4). The parameterization is built from590

the closest point map. Figure 5 shows the surface with curvature data obtained from591

the discrete approximation. Table 4 shows the convergence behavior, which confirms592

the error estimate in (5.13).593
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Table 3
Convergence errors for the wavy dumbbell (subsection 6.2) using simply-supported boundary

data (similar format as Table 2). The number of triangles in the mesh is NT = 608 · 4k, where k is
the refinement index.

k ∥νh∥L2 ∥Sh∥L2 ∥Sh∥L∞ ∥Hh∥L2 ∥Kh∥L2

m = 1:
0 1.65E-01 (1.00) 5.62E-01 (0.95) 4.37E-01 (1.01) 3.67E-01 (1.01) 4.05E-01 (1.01)
1 8.25E-02 (1.00) 2.86E-01 (0.97) 2.13E-01 (1.04) 1.84E-01 (1.00) 2.05E-01 (0.98)
2 4.12E-02 (1.00) 1.44E-01 (0.99) 1.00E-01 (1.09) 9.22E-02 (1.00) 1.04E-01 (0.98)
3 2.06E-02 (1.00) 7.23E-02 (0.99) 4.79E-02 (1.06) 4.63E-02 (1.00) 5.22E-02 (0.99)
4 1.03E-02 (1.00) 3.62E-02 (1.00) 2.33E-02 (1.04) 2.32E-02 (1.00) 2.62E-02 (1.00)

m = 2:
0 8.31E-03 (2.00) 3.79E-02 (1.99) 1.08E-01 (1.62) 2.35E-02 (2.04) 2.81E-02 (2.00)
1 2.07E-03 (2.01) 9.41E-03 (2.01) 2.78E-02 (1.95) 5.68E-03 (2.05) 6.95E-03 (2.01)
2 5.16E-04 (2.00) 2.34E-03 (2.01) 6.60E-03 (2.08) 1.39E-03 (2.03) 1.73E-03 (2.01)
3 1.29E-04 (2.00) 5.83E-04 (2.00) 1.55E-03 (2.09) 3.45E-04 (2.01) 4.30E-04 (2.01)
4 3.22E-05 (2.00) 1.46E-04 (2.00) 3.69E-04 (2.07) 8.59E-05 (2.01) 1.07E-04 (2.00)

m = 3:
0 3.92E-04 (3.04) 3.78E-03 (2.83) 1.30E-02 (2.42) 2.12E-03 (2.72) 2.64E-03 (2.84)
1 4.85E-05 (3.02) 4.94E-04 (2.93) 2.26E-03 (2.53) 2.95E-04 (2.85) 3.49E-04 (2.92)
2 6.04E-06 (3.01) 6.28E-05 (2.98) 3.29E-04 (2.78) 3.83E-05 (2.94) 4.46E-05 (2.97)
3 7.53E-07 (3.00) 7.88E-06 (2.99) 4.42E-05 (2.89) 4.85E-06 (2.98) 5.60E-06 (2.99)
4 9.41E-08 (3.00) 9.87E-07 (3.00) 5.72E-06 (2.95) 6.09E-07 (2.99) 7.01E-07 (3.00)

Fig. 5. Illustration of the torus in subsection 6.3 corresponding to m = 1 and k = 1 in Table 4.
The format is similar to Figure 3. Right figure is zoomed in on the inner hole region.

6.4. A Genus-3 Surface. The domain is closed surface described by the zero594

level set of the function:595

b(x, y, z) = (a0x− 2)2(a0x+ 2)2 + (a0y − 2)2(a0y + 2)2

+ (a0z − 2)2(a0z + 2)2 + 3a40(x
2y2 + x2z2 + y2z2)

+ 6a30xyz − 10a20(x
2 + y2 + z2) + 11.5,

(6.3)596

where a0 = 3.25. The parameterization is built from the closest point map. Figure 6597

shows the surface with curvature data obtained from the discrete approximation.598

Table 5 shows the convergence behavior, which confirms the error estimate in (5.13).599

7. Conclusion. We have presented an effective finite element technique that can600

post-process a scalar Lagrange finite element function on a discrete surface to produce601

an accurate approximation of the surface Hessian of the function. The method is602

straightforward and does not require any ad-hoc modifications. Furthermore, the603
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Table 4
Convergence errors for the torus (subsection 6.3) (similar format as Table 2). The number of

triangles in the mesh is NT = 1904 · 4k, where k is the refinement index.

k ∥νh∥L2 ∥Sh∥L2 ∥Sh∥L∞ ∥Hh∥L2 ∥Kh∥L2

m = 1:
0 3.16E-01 (0.00) 2.03E 00 (0.00) 6.05E-01 (0.00) 1.05E 00 (0.00) 2.55E 00 (0.00)
1 1.59E-01 (1.00) 1.07E 00 (0.92) 3.80E-01 (0.67) 5.58E-01 (0.91) 1.41E 00 (0.85)
2 7.93E-02 (1.00) 5.54E-01 (0.96) 1.81E-01 (1.07) 2.97E-01 (0.91) 7.54E-01 (0.91)
3 3.97E-02 (1.00) 2.81E-01 (0.98) 1.01E-01 (0.84) 1.56E-01 (0.94) 3.90E-01 (0.95)
4 1.98E-02 (1.00) 1.42E-01 (0.99) 5.25E-02 (0.94) 7.98E-02 (0.96) 1.99E-01 (0.97)

m = 2:
0 1.76E-02 (0.00) 1.98E-01 (0.00) 3.24E-01 (0.00) 1.60E-01 (0.00) 3.70E-01 (0.00)
1 4.35E-03 (2.01) 4.94E-02 (2.00) 1.04E-01 (1.64) 4.21E-02 (1.93) 9.95E-02 (1.89)
2 1.08E-03 (2.00) 1.23E-02 (2.01) 3.29E-02 (1.66) 1.06E-02 (1.98) 2.58E-02 (1.95)
3 2.71E-04 (2.00) 3.08E-03 (2.00) 8.54E-03 (1.95) 2.67E-03 (1.99) 6.54E-03 (1.98)

m = 3:
0 5.06E-03 (0.00) 3.96E-02 (0.00) 5.69E-02 (0.00) 2.82E-02 (0.00) 5.79E-02 (0.00)
1 6.64E-04 (2.93) 5.12E-03 (2.95) 1.10E-02 (2.38) 3.64E-03 (2.96) 6.77E-03 (3.10)
2 8.38E-05 (2.99) 6.46E-04 (2.99) 1.63E-03 (2.75) 4.60E-04 (2.99) 8.30E-04 (3.03)
3 1.05E-05 (3.00) 8.10E-05 (2.99) 2.14E-04 (2.93) 5.78E-05 (2.99) 1.03E-04 (3.01)

Fig. 6. Illustration of the genus-3 surface in subsection 6.4 corresponding to m = 1 and k = 1
in Table 5. The format is similar to Figure 3. Right figure is zoomed in on the edge of the right
hole.

method is directly applicable to computing convergent approximations of the full604

shape operator of the underlying surface (even piecewise linear triangulations) by605

setting the scalar function to the identity map of the discrete surface.606

An important aspect of our scheme is that it solves a global problem when com-607

puting the projection onto an HHJ element, which is contrary to the methods in608

[29, 20, 42] that compute the mean and gauss curvature of discrete surfaces (at a609

vertex) using the 1-ring neighborhood of that vertex. Our scheme is convergent for610

general meshes, whereas these purely local schemes are not. This also implies that one611

should use an iterative method when solving the HHJ projection, including precon-612

ditioning to account for the small growth in the condition number of the HHJ mass613

matrix (see Table 1). Finding effective preconditioners is a point of future work.614
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[29] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, Discrete differential-geometry oper-701
ators for triangulated 2-manifolds, in Visualization and Mathematics III, H.-C. Hege and702
K. Polthier, eds., Berlin, Heidelberg, 2003, Springer Berlin Heidelberg, pp. 35–57.703

[30] Y. Ohtake, A. Belyaev, and A. Pasko, Dynamic meshes for accurate polygonization of im-704
plicit surfaces with sharp features, in SMI ’01: Proceedings of the International Conference705
on Shape Modeling & Applications, Washington, DC, USA, 2001, IEEE Computer Society,706
p. 74.707

[31] Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski, Polyhedral surface smoothing with si-708
multaneous mesh regularization, Geometric Modeling and Processing, 0 (2000), p. 229,709
https://doi.org/10.1109/GMAP.2000.838255.710

[32] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-711
T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite712
element method by composing abstractions, ACM Trans. Math. Softw., 43 (2016), https:713
//doi.org/10.1145/2998441, https://doi.org/10.1145/2998441.714

[33] A. Razdan and M. Bae, Curvature estimation scheme for triangle meshes using biquadratic715
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