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APPROXIMATING THE SHAPE OPERATOR WITH
THE SURFACE HHJ ELEMENT"*

SHAWN W. WALKER'

Abstract. We present a finite element technique for approximating the surface Hessian of a
discrete scalar function on triangulated surfaces embedded in R3, with or without boundary. We
then extend the method to compute convergent approximations of the full shape operator of the
underlying surface using only the known discrete surface. The method is based on the Hellan—
Herrmann—Johnson (HHJ) element and does not require any ad-hoc modifications. Convergence is
established even for piecewise linear surface triangulations, i.e. the L? error of the shape operator
approximation is O(h™), where m > 1 is the polynomial degree of the surface. For surfaces with
boundary, some additional boundary data is needed to establish optimal convergence, e.g. boundary
information about the surface normal vector or the curvature in the co-normal direction. Numerical
examples are given on non-trivial surfaces that demonstrate our error estimates and the efficacy of
the method.

Key words. surface Hessian, shape operator, surface finite elements, open surfaces, geometric
consistency error.

MSC codes. 65D18, 65N30, 68U05

1. Introduction. Approximating curvatures from discrete surfaces has a long
history in computer graphics and computational geometry, e.g. in computer-aided
geometric modeling [44, 41, 45], feature detection/extraction [25, 6], surface fairing
and mesh smoothing [14, 35, 31, 30], and reparameterizing surfaces for texturing
and re-meshing [45, 23]. Often, one needs estimates of normal vectors and curvature
information at mesh vertices, which has spawned many discrete schemes based on local
(weighted) averages, e.g. the well-known co-tangent formula for the mean curvature
vector [29, 20], discrete Laplace-Beltrami operators [9, 16, 15], as well as schemes to
approximate the Gaussian curvature of discrete surfaces using local formulas [42].

The convergence of these schemes, for sequences of refined meshes converging
to the underlying (smooth) surface, is well-studied. Indeed, it is known that any
numerical scheme that uses the 1-ring neighborhood of a vertex to compute curvature
does not converge for general, piecewise linear meshes [20, 43]. For special meshes, one
can construct schemes that do converge (see [42, 7]). Other approaches include surface
fitting techniques [34, 18, 20, 33, 21] that construct polynomial surface “patches” over
the triangulation, which can be directly differentiated to yield accurate curvature
information. However, computing with patches is not trivial, involves complicated
procedures, and depends on the mesh quality (see [19] for unstructured simplex splines
on flat domains).

Other approaches utilize finite element techniques. For instance, using a higher
order approximation of the surface, e.g. a piecewise quadratic triangulation, yields a
convergent approximation of the curvature [24]. In fact, one can just directly compute
the shape operator of the surface on each (curved) triangle in the mesh. See also [22]
for higher order approximation of Gaussian curvature with Regge elements. But in
many applications, only piecewise linear surface triangulations are available.

This paper presents a novel technique that utilizes the surface Hellan-Herrmann—
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2 S. W. WALKER

Johnson (HHJ) method, originally developed for the surface Kirchhoff plate equation
in [39], as a post-processing scheme to approximate the surface Hessian of a scalar
function. Furthermore, we show that this scheme can be used to approximate the
full shape operator of the surface, which is our main goal. For closed, piecewise
linear surface triangulations, the method yields an approximation that is provably
first-order accurate in the L? norm, i.e. O(h) where h is the maximum diameter of
mesh elements. For surfaces with boundary, some additional information is needed
at the boundary, otherwise the accuracy degrades to O(hl/ 2) near the boundary.
The method essentially consists of a matrix-vector product that computes a non-
conforming surface Hessian of the mesh coordinates, followed by an L?-like projection
to an HHJ element. The method also generalizes to higher order triangulations, with
O(h™) accuracy, where m is the polynomial degree of the triangulation. To the best
of our knowledge, no other finite element method can do this. Moreover, the lowest
order version of the method is simple to implement. Given an approximation of the
shape operator, it is then trivial to compute the principle curvatures and principle
directions of the surface.

Section 2 gives the basic background for working on surfaces. In section 3, we
describe a nonconforming formulation for approximating the surface Hessian of a
scalar function by an L? like projection, and discuss the tools for dealing with curved,
parametric surface approximations. In particular, Theorem 3.5 is a crucial extension
of [39, Thm. 4.8]. Section 4 gives the finite element scheme for the L? projection of the
surface Hessian and performs the main error analysis that includes the geometric error
of the surface approximation. Next, we describe our scheme for approximating the
shape operator of the exact surface in section 5, which utilizes an important identity
in Proposition 5.1, and discuss the details of its practical computation. Section 6
presents several numerical results illustrating the method on surfaces with and without
boundary. We close with some remarks in section 7. The supplementary material
provides an overview of essential differential geometry concepts.

2. A Surface FEM for the Surface Hessian.

2.1. Surface Definitions. Let I' be a C*t! connected, 2-dimensional manifold
embedded in R3, where k > 1. If " has a boundary OI' := X, we assume X is piecewise
C*+1 with a finite number of corners, with interior angle «; € (0, 27] of the ith corner
measured with respect to the Euclidean metric in R? (see Figure 1). In particular,
3 is globally continuous and parameterized by a piecewise curve. In addition, we
assume ¥ = %, U X partitions into two mutually disjoint, one dimensional open sets
Y. (clamped) and X (simply supported); either set can be empty.

We note some facts from section SM2. Let idp : I' — T' be the identity map, i.e.
x = idp(x) for all x € T, and let v : I' — R3 be the (locally defined) unit normal
vector of I'. The tangent space projection P : R?® — R?, defined on T, is given by
P=1-v®v (see (SM2.1)), and satisfies the identity Vridr = P (see subsection 2.2
for Vr). Given a vector v € R3, it is in the tangent space Tx(T) if P(x)v = 0.
We define the tangent bundle: T(T') = {(x,v) | x € T, v(x) € Tx(I")}. So, we say
v e T() if v(x) € Tx(T") for every x € T'; in this case, we write v : I' — T(T").

Next, let R3*3 be the space of (extrinsic) 2-tensors in three dimensions, and define
the subset of tensors on the tangent bundle of I':

(2.1) T=TO):={p: T = R¥>3 | Pp=¢p, Ppl ="},
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THE SHAPE OPERATOR WITH HHJ 3

F1G. 1. Illustration of curved surface T’ in R® with mesh. The boundary ¥ = OI' decomposes
as ¥ = X. UXs and has a finite number of corners with interior angles a;. The boundary ¥ has
(outer) conormal vector, n, and oriented unit tangent vector, t. The normal vector of " is v. Part
of the ezact, curved surface triangulation T, is shown with dotted curves.

and define the set of symmetric tensors on the tangent bundle of I':

(2.2) S=S(I)i={peTI) o=}

2.2. Differential Operators on Surfaces. Let v : I' = R be a smooth function
defined on I'. We call Vrv = gradpv : I' — T(T') the surface gradient of v (see
(SM2.2)) and VrVrw = hesspw : I' — S(T") the surface Hessian of v (see (SM2.3)).
Moreover, we have the function space L*(T') := {v : I' = R | [ |[v]*dS < oo}, with
inner product (w, v)papy = J wv dS and norm HU”%z(r) i= (v,v) 2(ry, as well as the
Sobolev (Hilbert) spaces H'(T) := {v € L*(T) | ||[Vroll2ry < oo} and H?*(T) :=
{fv e H'T) | [VrVrol| 2y < oo}, with inner products given by

(W, 0) g (py = / wv + Vrw - VrodS,
(2.3) r
(w7U)H2(F) = (w,v)Hl(F) + /1“ VrVrw : VrVrodS,

and corresponding norms ”””%{1(1“) = (0,0) g1y Hv||%{2(r) = (v,0)ga(r). Other
types of Sobolev spaces are defined in an analogous way.

We denote by HY(I'") ¢ HY(T") the Sobolev space with vanishing boundary condi-
tions up to degree £ — 1. We will need the following subspace of H?(T'):

(2.4) W) :={we H*T) |w=0, on &, n-Vrw =0, on 3.}, if ¥ # 0,
and W(I') = H?(T') when ¥ = (). In addition, we have V(T') := L?(T'; S(T")).

2.3. Projection of the Surface Hessian. Given w € W, we seek to find o € V
such that

(2.5) (0. 7) 2@y = (VoVrw, 7)oy, forall T eV,

i.e. o is the L? projection of VrVrw, which means ¢ = VrVrw a.e. in I. The
presence of vanishing boundary conditions in W is not critical; one can pose (2.5) for
any w € H?(T'). However, the method we develop handles the slope condition in (2.4)
as a natural condition, so we keep (2.5) as stated. In subsection 3.4, we show how to
handle inhomogeneous boundary conditions.
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4 S. W. WALKER

114 3. Nonconforming Formulation of the Surface Hessian. Major difficulties
115 arise in solving (2.5) if the surface is only continuous, piecewise smooth, as well as
116 when the data w is only a discrete, finite element function. In order to circumvent
117 these difficulties, and obtain a convergent approximation of the surface Hessian of a
118 discrete function w posed on a discrete surface, we adopt a non-conforming approach
119 that is first built on a mesh-dependent version of H2(T"). This then leads to the surface
120 version of the Hellan-Herrmann—Johnson (HHJ) element (see [39]), which is used to
121 approximate the o variable in (2.5). See also [10, 5, 4, 8, 3] for analysis of the classic
122 HHJ element. The initial idea is to triangulate I" and define infinite dimensional,
123 mesh-dependent spaces on that triangulation.

124 3.1. Curved Triangulations. We start with a conforming, shape-regular, piece-ii
125  wise linear triangulation 7, = {T'} of a polyhedral domain I'! that interpolates I' at
126 the vertices; furthermore, the boundary vertices of I'! (namely ') lie on the bound-
127 ary of I". See [13, 12, 17, 15, 39] for more discussion on how this triangulation can be
128 generated. Let ’7'a , be the set of triangles with one side on X! and, for convenience,
129 assume the trlangulatlon satisfies the following technical property (see [39]).

130 PROPERTY 1. Each triangle in 7;1 has at most two vertices on the boundary and
131 so has at most one edge contained in X'.

132 We assume 7;! is homeomorphic to an exact triangulation 7, = {T'} of I'. Specif-
133 ically, we assume there exists a homeomorphic mapping F : I'' — T, such that
134 Fr = F|p1 is a diffeomorphism from 7' € T;! to an exact (curved) triangle T' € 7T, .
135 Moreover, we can generate higher order approximations I'* of I' by simply inter-
136 polating F over I'! with degree m Lagrange polynomials, i.e. we have the map
137 F™ :T! — I'™ given by F™ := I}L’mF, where I}L’m is the Lagrange interpolation
138 operator of degree m given in subsection 4.1, or the standard nodal interpolant can
139 be used. Note that Fk = idp.

140 We also have maps between approximate domains, of degrees [ and m by

o (31 @M=& T - T where ® := Fi o (FL)™!, so @ = F.

142 We also require a map from the approximate domain I'"* to the exact domain I'.
143 Specifically, given a triangle 7™ € 7,;", we define a diffeomorphism W7 : T™ — T €
111 T, by W := Fro (Ff")~!, so then T, = {®F(T™)}pmerm. The U may be pieced
145 together to give a global map ¥™ : '™ — T

146 The notation I' and I'" is inconvenient because the exact domain has no su-
147 perscript, but the polynomial approximation does. Thus, for convenience in later
148 statements, we will abuse notation and make the identification I'** = I", 7,*° = 7,
119 @l = P! F2 = Wl ete. This is motivated by the fact that for most C°° surfaces T,
150 the polynomial approximate domain I'*, with triangulation 7,", would converge to
151 I'as m — oo with h fized. Of course, we do not claim (in general) that I'™ converges
152 T, for fixed h, as m — oo, especially when I' is not C'*.

153 Thus, 7, is a conforming, shape regular triangulation that approximates I' by
154 I™ = Upmerm T™, for all m > 1 (where G is the closure of the set G). Next, we
155 have the skeleton of the mesh, i.e. the set of (curved) mesh edges & := 97;". Let
156 &Y, C & denote the subset of edges that are contained in the boundary ¥™ = oI
157 and respect the boundary partition of X"*. The internal edges are given by 50 Y 1=
158 &M\ ERY,. We assume the meshes are quasi-uniform and shape regular [11], with mesh
159  size h := maxyp hr, where hy := diam(T') for any T' € 7,. We also assume the corners
160 of ¥ are captured by vertices of the mesh.
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THE SHAPE OPERATOR WITH HHJ 5

The main approximation properties for these maps are summarized in the next
theorem (see [39, Thm. 4.1]).

THEOREM 3.1. Suppose I is a C**1 surface for some fived k > 1 (see [1, Para-
graph 4.10]). Then, for all1 <1 <m <k and m = oo (see notation above), the maps
Fr, F% described above satisfy

Hv%l(F’}_idTl)”L“(Tl) < ChQ_sa fO’F s=0,1,2
(32 IVREE — FDlle < CRY, for 0<s <141,
1= Ch <[V Fp] Mgy <14 Ch, [V Fr] ™" = 1| oo (1) < Ch,

where all constants depend on the C'T' norm of T.

Next, recall the tangent t, co-normal n, and surface normal vectors v from Fig-
ure 1 and let -, =, or~ denote quantities defined on T, or using Fy, for s = m, [,
or 1, respectively; e.g. U is the surface normal of T™. Then, the following estimate
holds:

[€o Ff —to Fp|le(r) + |70 Ff* —fvo Frl Lo ()

(3.3) o .
+ oo Fr' — 0o Fpl|pee(r1) < Ch'.

3.2. Skeleton Spaces. The spaces in this section are infinite dimensional, but
“mesh dependent” (see [39]), and were originally motivated by [5, pg. 1043] and [3,
eqn. (2.11)]. In defining the spaces and norms, we only consider the exact triangula-
tion 7, but everything generalizes to the polynomial triangulations 7, in the obvious
way. We make use of standard dG notation for writing inner products and norms over

the triangulation, e.g. (f,9)7 =Y rer. (f,9)7 ||f||ip(Th) =Y rer, I or), ete.
A mesh-dependent version of H?(T') is given by
(3.4) HAT) :={ve HY(T) | v|r € HXT), for T € T;,},

with the following semi-norm
(35) [0l = IVeVeolZagry + b I Vel +h - Trolla,).

where [[] is the jump in quantity 7 across mesh edge F, and n is the unit co-normal
on F € £,. Hence, if the edge E is shared by two triangles 77 and 75 with outward
co-normals n; and ng, then [n-Vrv] = ny - Veoulr, + ne - Vru|p, on E. For E
a boundary edge, we set [] = n|g. We note the following norm equivalence when
mapping between domains I and I'! [39, eqn. (4.9)]. Let u € H?(I'™) and define
@ =wuo®"™ e H2(I'"). Then, for h > 0 sufficiently small, ||ul2,nm = ||il|2,5,, Where
II'“ ll2,n,m is (3.5) defined on I'™.
Next, for any ¢ € HY(T';S), define

2 2
(3.6) 11181 = llZay + R [nTenll e )+ hlnTen] .,

and define Hy to be the completion: H)(I';S) := H'(T; S)H'Ho’h. By the definition of
the norm, HY(T;S) = L*(T';S) & L?(&,; R).

3.3. Mixed Skeleton Formulation. We introduce the following skeleton sub-
spaces

(3.7)  Wi(D):= HXT)NHYT), Vu():={p e H)(T;S)|¢"™ =0 on %},

when ¥ # 0, and W, (T) := H(T'), V,(T) := Hy(I';S) when ¥ = 0; W, and V), are
mesh-dependent versions of W and V), respectively.
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6 S. W. WALKER

The non-conforming version of (2.5) is as follows, which is based on [39, eqn
(3.10)]. For all ¢ € H)(I';S) and v € HZ(T'), define

(3.8) by (@, 0) === > (@, hesspv)p+ > (@™, [n- Vro])y .
TeT, Eeg,

which satisfies the continuity estimate: b, (¢,v) < ||¢|lonllv]|2,n for all ¢ € V;, and
v € Wy, and define

(3.9) a(r,¢):=(T,0)p, V7,p0cH,I;S).
Then, if w € W C W, (T') and we set o := VrVrw, then o and w satisfy:
(3.10) a(o,p)+b,(p,w) =0, VeV

Note that the jump terms in (3.8) vanish because w € W and n - Vrw = 0 on X..
Indeed, restricting ¢ = o, then we have

(3.11) lolZary = alo,0) = by, (0,w) < ||o|l2w) Ve Vrwl| 2y,

so o is the stable L?(I") projection of VrVrw.

Remark 3.2. We also have W, (I'™) := H2(I'") 0 H'(I'"™) and V;,(I'™) := {p €
HY)(T™;S) | o™ = 0 on X} defined on the curved triangulation I'™, with associated
forms b} (¢,v), a™ (T,¢) defined on I'™ in the obvious way. These will be used
in our fully discrete version of (3.10) (see (4.7)) which will enable our method for
approximating the surface Hessian of a discrete function.

3.4. Inhomogeneous Boundary Conditions. We extend the above formu-
lation (3.10) to handle non-vanishing boundary conditions, which is necessary for
approximating the shape operator on surfaces with boundary. First, assume that
w € H3(T') and there exists a function g € H3(T'), such that w = g on ¥ and
Onpw = Opg on .. Next, construct a function p € H'(T;S), such that the conormal-
conormal moment satisfies c™ := n”on = nTpn on ¥,. Since the second term in
(3.8) contains boundary integral portions on Y., where n - Vrw # 0, then o and w
satisfy a modified form of (3.10):

(3.12) a(o,@)+b, (p,w) = (", n-Vrg)y , Y&V

Moreover, writing o = & + p, with o € V},, we have

(313) CL(OQ'7(,D) =—a (pago)_i)h ((,D,U)), Ve € V.

where we defined lo)h (p,v) = by, (p,v) = ("™, n-Vru)y (ie. it has no boundary
term). Clearly, |o||z2y < [|pll2r) + [[VrVrwl|/z2ry. See subsection 4.4 for the
fully discrete method.

3.5. Mapping Properties. In order to analyze the error in our approximation
scheme (4.9), we need a few results on how functions transform between discrete
surfaces I'™ and I'!, for m # [, as well as how the forms b} (-, ), a™ (-,-) and b}, (-, ),
al (-,-) are related.
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THE SHAPE OPERATOR WITH HHJ 7

3.5.1. The Piola Transform. The tangent space on I'"* is element-wise defined
through the mesh 7;”. We require a transformation rule that relates functions in
HY(T™;8™) to HY(TY;S") (with m # 1), such that conormal-conormal continuity
is preserved; this is crucial to ensure that the HHJ finite element space in (4.3) is
continuous. We first recall the surface matrix Piola transform transform from [39,
Defn. 4.6].

DEFINITION 3.3. Recall the curved element mapping discussion in subsection 3.1.
Let J = (Vi FM)P, € R3*2 where V1 is the surface gradient on T' € T,
(Vi FER) € R33 ) and P, c R3*2 s the projection and restriction onto the tan-
gent space of T'. Given an extrinsic tensor @ : I'l — S' on the piecewise linear
surface T'', we map it (element-wise) to a tensor @ : T'™ — S™ for any m, using the
map X = F(X) and

(3.14) @(X) = Piola()(%) = det (Q) ' JP, p(x)P,JT,
where @ = JTJ. The inverse Piola transform is given by
(3.15) @(X) = Piola™ ' (¢)(%) := det (Q) P,Q ' 3(X)JQ'P,” .

Remark 3.4. A tangential tensor ¢ defined on I'! is mapped to a tensor ¢ on I'"™,
for m # [, through the map ®'™ (see (3.1)). In other words, ¢ is mapped to ¢ on I'!
using (3.15), and then ¢ is mapped to ¢ on I'"™ using (3.14).

Adopting the hypothesis of Definition 3.3, we recall [39, Prop. 4.7], which states
(3.16) 50 B = @™ (Vi Py ) 2.

Since F'™ is piecewise smooth and continuous with respect to the mesh 77}, it follows
that (Vi Fj)t is single-valued at interelement edges, so ¢ is conormal-conormal
continuous if and only if ¢ is. This leads to the following norm equivalence (see [39,
eqn. (4.15)]):

(3.17) I@llo.nm = |@lons, Y@ € HP(T™;8™), forall 1<1I,m <k,oc.

3.5.2. Mapping Forms. The following result, which is an improved version of
[39, Thm. 4.8], is essential for analyzing the geometric error between the approximate
solution on an approximate domain and exact solution on the exact domain.

THEOREM 3.5. Let 1 <1 < k such thatl < m, for1 <m <k, or m = oo, and
recall the mapping discussion in subsection 3.1. Let & € H)(I'"™;S™), & € H)(T';SY),
and & € HY(T';S") and assume they are related through the Piola transform (Def-
inition 3.3) in the sense of Remark 3.4. Make the same assumption for @, @, @.
In addition, let © € HE(T™), © € HA(TY), v € HZ(T'Y), where 9|y o ®I™ = v and
0|7 o ®L = v. Then, there holds

(3.18) a™(&,9) =d (6,¢) + O(h)|&| 2@l L2 ),
by (@, 0) = bj, (@,0) + O(hY)[|@llo.nt (I9ll2,n,0 + [9]m1 (re))
(8 - ) yvpn)

+ > (e (B - F) - Pow x &) (B VRTy'n))

El
1
Eeg}

(3.19)
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8 S. W. WALKER

where I}ll’l is the Lagrange interpolation operator onto piecewise linears on I't, Py :
L3(TY) — L2(TY) is the projection onto piecewise constants, and v = v o Fy, is the
unit normal vector of T (see Theorem 3.1).

Proof. We start with the result of [39, Thm. 4.8], which already proves (3.18).
Furthermore, we have the following from [39, eqn. (4.17)]:

by (2,7) = bj, (@,0) + OB @llo.nt (191|200 + 19| g1t
(3.20) — b (@, (F™ — F')-PyVpt) + 3. <@““,5E~ lez}L’1@> ,

E?
1
Eleg;

where 8 = [(t—t) xv]-t = (£—1)- (v x t). Note that the tangent vectors are obtained
from the local element map:

(3.21) t=

where t is the tangent vector of the straight element E* € 51%,}1- Since t- (v x t) =0,
we derive another expression for 3:

_ (I ERE N s
5<(wa%ﬂt i)
= (Vo Fp)t| ™ (Vo FEE— (Vi Fp)t) - (v x &)
= (Vi F)t — (Vi Fp)E) - Po(v x t) + O(h),

(3.22)

where Py (v x f) is the projection onto a piecewise constant vector, and we used (3.2),
(3.3). Moreover, note that (Vo Fj)t — (Vi Fp)t = 05 (F* — FL.), where 05 is the
derivative with respect to arc-length on E'. Thus, we get

Z <¢“n,ﬁf- VT11}1;117>

1
Blegy

E1

(3.23)
< Y {@™ 0 (P = Fr) - Cpr) oy + O |@llo,nal 6l 00y,
Eleg} ),

where Cp1 := Po(v X f) (f- VTlI}lJ'E) is defined on E! € 5(%7,1, and we used equiva-
lence of norms. The result (3.19) then follows. ad

A simple consequence of Theorem 3.5 is

(3.24) by (10.0) = b (,0) + O(H )

lo,n2110]2,m.1-

4. Finite Element Approximation.

4.1. Curved Lagrange Spaces. Let » > 0 be an integer and m > 1 be an
integer or co. The (continuous) Lagrange finite element space of degree r + 1 is
defined on I'" via the mapping F*:

(4.1) Wt = W™ = {v € HE(T™) | v|p o B € Pr (TY), VT € T},

where we will usually suppress the r 4+ 1 superscript, i.e. we make the abbreviation
w," L = W, For the case m = oo (the exact domain) we simply write W,.
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THE SHAPE OPERATOR WITH HHJ 9

Again, owing to the continuous embedding H?(T') < C°(TT) (see [40, Thm.
4.2]), we can define the Lagrange interpolation operator Z} : HZ(I'') — W}, [5]
defined on each element T € T;! by

(4.2) (Ziv)(x) — v(x) = 0, /E1 (Ziv —v)gds = 0, /T1 (Ztv — v)ndS = 0,

for all vertices x of T, all ¢ € P,_1(E?') (and all E' € 9T?), and all n € P,_o(TH).
Then, given v € HZ(I'™), we define the global interpolation operator, Zj™ : H2(I'™) —
Wi, element-wise through I,Tv|Tm oFpt = I,% (vo F). The approximation proper-
ties of Z;™ are standard. We also denote Z;* to be the above Lagrange interpolant

on ' onto continuous piecewise polynomials of degree s, and we make the following
abbreviation Z;"" " = .

4.2. The HHJ Finite Element Space. We give a brief overview of the surface
HHJ space; see [39, Sec. 5.2] for more details. On the piecewise linear surface trian-
gulation I'', we start with a space of tangential, tensor-valued functions with special
continuity properties. Let

ML (DY) = {p e L2 SY) | ¢l € HY(T';S") VT € T;}, with ¢ cn-cn contin.},

where “cn-cn contin.” means the conormal-conormal continuity condition that holds
at inter-element boundaries, i.e. for any pair of triangles (7!, 7}}) in 7,! that share
an edge E' = TI N T}, we have nlpn,|p = nleny|p, where n, (ny) is the
outer conormal of 9T} (9T}}); note that, in general, n, # —n; (on E'). Clearly,
MY € HY(TY;SY). For 1 <m < k, o0, where I'® =T, we also have the space

MEL(I™) = {ip € LA(T™;S™) | po F™ = Piola(@), @ € ML, (T},

where the Piola transform is defined elementwise, using F™; by (3.16), M7 (I'™) also
satisfies the conormal-conormal continuity property.

The conforming, HHJ finite element space on I'', of degree r > 0, is defined by
V= {p e ML(TY) | @y € P.(TS"), VI € T,'}. Using the Piola transform,
for 1 < m < k, 0o, we also have

(4.3) V= {p € M™(T™) | po F™ := Piola(p), ¢ € Vj'}.
We note the following norm equivalence in [39, eqn. (5.5)]:
(1.4) [ llonm = Iz, Yoo € Vi
There exists an interpolation operator II7* : M (I'™) — V;, defined element-
wise, that satisfies many basic approximation results which can be found in [3, Supp.

Mater.], [39, sec. 5.2]. For simplicity, we describe the operator on I'! only, i.e.
0, : ML (1) — V1, [10, 5] is defined on each element T € 7,1 by

(4.5) / n” o — | ngds =0, / [ — ] :ndS =0,
B T1

for all ¢ € P.(E') (and all E* € 9T'), and all n € P,_1(T*;S). We note that the
Degrees-of-Freedom (DoFs) for V! are given by (4.5), [10, Lem. 3], [27]. On affine
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elements, we have a Fortin like property involving b}, (-,-), [10, 5, 8]:

by (¢ — Mpp,Opv,) =0, Ve € HYTHSY), v, € Wi,
(4.6) by (n, (v —Tpv)0,) =0, Ve, €V, veHpI),
((pgnaaﬁ (vfl.flzv) nh)gl =0, v‘)oh € Vhla vE HizL(Fl)v
9,h

which holds for any piecewise constant functions 6 (1) defined on T,' (£5,,); the
first two properties are noted in [10, 5, 8].

4.3. The HHJ Projection. We pose (3.10) on I'™ with continuous skeleton
spaces denoted V}* = V, (') and W;* = W, (I'™). Fixing the polynomial degree
r > 0, the conforming finite element spaces are V;* C V;*, W C W;", where
we abuse notation by now enforcing essential boundary conditions directly in the
definitions of V™ and W}". The finite element approximation to (3.10) is as follows.
Given any wy € W}", find 63, € V;", such that

(47) a™ (&h, cﬁh) + bzn (@h, UA)h) =0, ngh S V}Zn.
Since a™ (-, -) is continuous and coercive over V", by (4.4), we get

(48) 1h 122 (omy = @™ (6n, 6n) = =03 (Gh,wn) < [16nllo.nm[Dnl2,0m

< Cllanllzm)llwnll2,n,m,

for some independent constant C' > 0. Thus, &}, is a stable L?(I'™) projection. In a
sense, &, can be viewed as a discrete Hessian of wy, (see the error estimate in (4.22)).

4.4. Inhomogeneous Boundary Conditions. We modify (4.7) to incorporate

non-zero boundary conditions, i.e. we give a discrete version of (3.12). For any
w € H™3(T), we define @ := w o ¥™ € H(I'™), and set £ := (Vrw) o ¥™. Then,
we seek 6 = 0y, + pp, with 64, € V), such that

(49) @™ (o @n) = =a" (pnfn) = bl (G 0) + (£ 7€), Vepn € Vi,
where pj, := B"p, with p satisfying po ¥™ = p, and B : H)(I'™) — V;™ is the
projection on I'™| i.e.

(410) (ﬁh - 57 Sah)Thm + (Iﬁ’T[ﬁh - m’ﬁ’a @211)5}7:1 = 07 V()bh 6 tha

which satisfies the approximation property ||pn — pllo,p,m < CAR™RTHL™) (o]l iy,

Choosing @, = &, in (4.9), we have
(4.11)
||‘§-h||%2(l"m) =—a™ (pAh,é'h) - E)Zn (é’h,ﬁ)) - (’fLTé'h'fL,'fL' |:V1'*m’tZJ - é])i]m

o, mll@|2,8,m + Cllon | L2 @0m)l|w 22 (),

<|pullc2@myllonllLzom) + [lon

where, since idllim = I,’L"idlli, applying straightforward change of variables, standard
interpolation estimates, and an inverse estimate, give (see [39])

\(ﬁTémﬁ- {vrmw—é])zm\ < O |on | 2cmm 1wy

c

(4.12)

< Cllonll L2 omyllw]| g2 ry-
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By equivalence of norms, ||’LZJ||27h,m ~ ||w||27h = HVFVFwHLQ(F) and H‘;hHLQ(Fm) ~
llon]10,h,m, We obtain
(4.13) lanllonm < C (lpnllLe@my + lwlla2r)) »

for some constant C' > 0 that does not depend on h. Thus, the projection is stable.

4.5. Error Analysis. The stability of the surface HHJ method, as well as its
convergence, depends crucially on the following choice of surface approximation: let
f‘Tm:TlﬁTm,forallTleﬁandlgmgk,begivenby
(4.14) Fp'=Fp =T "Fp =1, "Wk,

where I,i’m is the Lagrange interpolation operator in (4.2) onto degree m polynomials;
we simplify the notation by writing F' = 1?‘? This choice is necessary to guarantee
optimal convergence of the HHJ method when m = r + 1. If m > r + 1, the standard
Lagrange interpolant can be used.

For the convergence analysis, we assume w € H"3(I"), where r > 0 is the degree
of the HHJ space. Let o := VrVrw € H™1(I;S), and note that o satisfies (3.12),
where p € H™TY(T;S) is such that nToen = n’pn on ¥;. Next, we introduce an
intermediate discrete (finite dimensional) problem posed on the exact surface. Let pj
be the L?(T") projection of p onto Vj,, i.e. py € Vj, satisfies a (pp, pn) = a (p, @) for
all oy, € Vj,. Then, we write o), = o, + pp, where o, € V}, satisfies

(4.15) a(on,n) = —a(p,en) = by (n,w) + (", n - Vrw)y, , Ve € Vi,

where 65, can be viewed as a stable projection. Comparing (4.15) with (3.13), by
standard finite element analysis, utilizing Galerkin orthogonality and interpolation
estimates, we have that ||& — 4|2y < |6 — 1,6 || 2(r) = O(h™ 1), which implies

(4.16) lo = onllrz@) < O(R™).

Next, let &y, solve (4.9). To facilitate estimating the error between & _and the
exact surface Hessian o, we map o7, to the discrete surface I'", i.e. by letting 6, € V"

satisfy &, o @™ = Piola(ay,) (recall (3.14)), and then compare &, to o
So, we apply the results of Theorem 3.5 to (4.15) to find that &), € V" satisfies

a" (on,@n) = —a" (p. 1) = bl (@) + (G0 7€)

(4.17) +O(h™) (”&hHL?(F"”) + HﬁHL?(I"")) lenllLzm)

+ O(W™)|@nllo.nm (1@]|2,n,m + @] g1 0m))
— b}, (@n, (F — F™) - PoVriwy) + (@i, 0s (Fp — Fp*) - Cpiey

for all ¢p, in V;™, where Cp: is a constant vector for each E' € Egvh. We also used
that

(4.18)
|(eim - Vrw), = (A €) | < O0™)@nllonm (I

for all E' € & ), where E™ = E o ™. Next, we make note of the assumption on F™
(4.14), use (4.6), and take advantage of equivalent norms to obtain

@™ (6 pn) = —a" (b, pn) — W' (0. 0) + (217 €)

+ O(hW™)||l@nll2omy (lollz2wy + lwlae @), Ven € Vi,

|2,h,m + @] 1 omy)

(4.19) =
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where we also note that C”é’h”LQ(F'm) < onllemy < llplle2@y + Ve Vrwl| 2y, for
some independent constant C' > 0. Comparing (4.19) against (4.9), we get

(4.20)
@ (1= Gn,@n) = a™ (pn = B, @n) + O™ [@nllarm) (Iollary + ol mrery)
< lnllzz@my [OR" ) pllg-+1 @y + OR™) (lpll 2y + |wllm2r))]

for all ¢y in V;. Therefore, we get lon — é'hHL2(Fm) < Ch™in(r+Lm) where the
constant C' depends on the H"™3(T) norm of I'. Thus, we obtain

(4.21) 164 — &nllL2m) < CR™PHL™),

Combining the above results yields the following theorem.

THEOREM 4.1. Assume r > 0 is an integer, let w € H"™3(I), and set o =
VrVrw € S. Furthermore, assume r > 0 is the degree of V", and let &}, = & + P,
with &y, € Vi satisfying (4.9) and py, defined through (4.10). If m > r + 1, then

(4.22) o — &5 0 (B™) g < CHL,

where C' > 0 depends on the domain I' and the shape reqularity of the mesh.

Proof. Let o}, be the discrete solution (defined on the exact surface) computed
through (4.15), and let &, € V™ satisty o, 0 ¥™ = Piola(&y,). It is straightforward to
derive the estimate ||o), — a0 (™) |on < OW" ) |G wll0,n,m (see [39, Thm. 6.4]).
Then, combining with (4.16) and (4.21) through the triangle inequality, we obtain
(4.22). o

Remark 4.2. The “exact” data w and é can be replaced by their interpolants,
I and Z;€, without affecting the stability or accuracy of the scheme in (4.9).

In a sense, our scheme is a kind of Hessian recovery of the given discrete data
I, including boundary data Z;"§ and p. We note that another method of Hessian
recovery for the HHJ element, developed for flat domains, is given in [28].

5. Approximating the Shape Operator. Recall that, for any C? surface T,
we have the identity map idr : I' — I’ given by x = idp(x) for all x € I', and
Vridr = P (tangent space projection). In addition, we have the shape operator Vrv
that satisfies (SM2.4): Vrv = kldy ® di + K?dy ® ds, where k!, k2 are the principle
curvatures of T, with k! > k2, and d;, dy are the principle directions (which are
tangent to I).

5.1. An Identity. We exploit the following result in our method.
PROPOSITION 5.1. IfT is C2, then at every point of I', there holds
(5.1) VrVridf = —vF[Vrv], fork=1,2,3.

Proof. Let {U,x} be a local chart such that the open set T := x(U) is contained
in I'. Without loss of generality, we derive the identity on T only. Furthermore, since
VrVr, v, and Vv, are independent of the parametrization, we take advantage of a
particular choice and assume x has the form x = (Xl, X2, XS) with

(5-2) X' w?) =ul, Pl u?) =t P (ulu®) = hu'u?),
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where h € C? is a height function. With this, the metric, gag, and its inverse, g*?
are given by

(aah) (aﬂh)

_ aBf _ saB _
(5.3) G = dap + (9ah)Osh), g™ = 0% = 7=

which then yields the following simplified form of the Christoffel symbols Ffj (of the
second kind) (see (SM1.1)):
1

(5.4) Ios = W(

8Vh)(aozaﬂh)7 ISQ,B,VSQ

Let e, = 04X, for a = 1,2. Using (SM2.3), we have that el (Vrvpidlli> eg =
(0a05X") = Tl 5(8ux"), s0
— (14 (8,0)2) " (0kh) (Dadph), f1<k<2,

s 1k —
(5:5) el (VrVridt) es = {(1 +(0uh)2) " (0a05h), if k= 3.

Next, note that the normal vector is given by

(—=01h, —02h, 1)

(5.6) voyx = a+ (aﬂh)2)1/2 .

In local coordinates, [Vrv] o x = (9,2)g°% (0sx)” by (SM2.2), so then

el [Vrvles = (0aX) - (0.1)g"°(86X) - (95X) = —(00aX) - v9*’ 905

0,05h
:—aaan:faaahyS:fL’
(9a95x) (0a0sh) NI DE

(5.7)

which implies that
1+ (0,0)2) " (9xh)(0a0sh), if1<k <2
(58) e§<yk[vpy1>eg:{(+u>) (0:1)(003h), 1< k<2,

— (14 (8,1)2) " (9a0sh),  ifk=3.

Thus, for each kK =1,2,3,
(5.9) el (l/k[VFV] + Vprid?) eg=0, forl <o,f<2.

Since {e1, ez} spans the tangent space, and both Vrv and VFVFidIE are tangential
tensors, we obtain (5.1). |

5.2. The Scheme. The first step in the method is to approximate the surface
Hessian of idr. For the convergence analysis, we assume I' is C™3, where r > 0 is
the degree of the HHJ space. This implies that idp € [W"+3°°(T")]3, which means
of = VpVridk € Wrtheo(I;8), for k = 1,2,3. Upon recalling (3.12), a direct
calculation shows that

(5.10) a (ak,cp) + by, ((p,idlli) = ((p““,n . Vpid{i)z , Vo eV, fork=1,23.

c

Thus, we take id{i as given data, and o* is the L?(I") projection of vapid{i. Indeed,
(5.10) comes from replacing o in (3.12) with o*, and replacing w, g with id%. In
addition, we have p¥ € W7"+tL>(T';S), such that the conormal-conormal moment
satisfies n”o¥n = n” pFn on 3.
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The fully discrete method is as follows. Let pf be given by pf := B p*, with p*
satisfying p* o ™ = Piola(p"), and B} : HO(I‘m) — V™ is the projection defined
by (4.10), which satisfies the following approximation properties: [pf — p¥|lo.nm <
Ch  p" || rr(ry, and [|pf; = Pl oe(mmy < CR™FH|pM lwrsroory (cf. [3, Supp.
Mater.: Sec. SM4.3]).

Then we let &,]i = &,’i + f)ﬁ, and impose that &,’j e V", for k =1,2,3, satisfies

(5.11) am(é,’i,sah):fam(ﬁii,sah)—bzl(m,id’;m) (ormm-€5)

for all ¢, € V;", where idf.,. € Wy and £F .= (Vridk) o ™. Note that (5 11) is
sunply (4.9) with a’h replaced with Uh, Ph replaced by ph7 w replaced by 1dFm, and
£ replaced by €*. Similar to (4.13), we have that the discrete projection is stable:

<cC (Ilphlle<rm> + vavrid’;||L2(F))
The last step in the method is to use (5.1), i.e. let S}, approximate Vrv through

(5.12) Sy, := —i*ey € L2(T™;8™),

where & = (', 02, 03) is the unit normal vector of I'". From (3.3), and the discussion

in subsection 3.1, || o W™ — D||pec(pm)y < Ch™. Then, by the error analysis of
subsection 4.5, and the triangle inequality, we obtain Theorem 5.2.

THEOREM 5.2. Assume r > 0 is the degree of V;™ and that T is C™3. Moreover,
let Vv be the shape operator of T, and let Sy be given by (5.12). If m > r+ 1, then

(513) ||VFV — S o0 (\I’m)_lan(F) < Chr+l,

where C > 0 depends on the domain I' and the shape regularity of the mesh.

5.3. Practical Computation. Usually, we choose m = r 4+ 1 when implement-
ing the method. For r» = 0, this corresponds to piecewise linear surface triangulations
and piecewise linear Lagrange space, as well as a piecewise constant HHJ space.

5.3.1. Closed Surfaces. The method is simplest when posed on closed surface
triangulations. In this case, ﬁﬁ and £F are unnecessary, so (5.11) reduces to the
following: find 6'2 ey, for k =1,2,3, such that

(5.14) @™ (&%, ) = b (@nidhn ), Ve € Vi,

The matrix representations of a™ (-,-) and b} (-,-) are straightforward to assemble
using standard finite element software, even for m > 1, although the m = 1 case is
especially simple. Indeed, the HHJ element, though not as well known as some other
elements, is implemented in several software packages, e.g. FELICITY [38], FEniCS [2],
Firedrake [32], NGSolve [36].

Let A™ and B™ be the matrix realizations of a™ (-,-) and b} (-, -), respectively.
Then the right-hand-side of (5.14) is simply —B™X* where X* is a column vector
containing the kth coordinate of the Degrees-of-Freedom of the Lagrange space W;".

Let S* be the coefficient vector corresponding to &,’i. Then, one needs to solve the
linear system: A™S* = —B™XP* for S*, which is similar to computing a standard L?

projection.

However, the matrix A™ is slightly different from the usual mass matrix because
of the mesh dependent space HY(I'™), i.e. because of the edge terms. Effectively, this
causes the condition number of A™ to have a slight growth as the mesh size decreases.
See Table 1 for a listing of the condition number of A™ in the numerical experiments.
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5.3.2. Surfaces with Boundary. Surfaces with boundary pose some difficulty,
because extra information about the surface is needed on the boundary ¥ = OI.
Applying the scheme (5.11) requires £&* = (Vpid{i) o W™ on X7*, which implies that

we need a good approximation of Vridp = P =1 — v ® v on X, or, equivalently, a
good approximation of v on .. Thus, let & € [L>°(X")]® with the property that

(5.15) lv =0 (B™) | e (s, = O™,

Note that this precludes directly using the discrete normal & of I'™.

Next, we must account for boundary values on X,. Let p* € W"+1>(T;S), be
given by p* := —kVrv = oF, for k = 1,2,3 (see (5.1)), and evaluate (4.10), i.e.
define f)ﬁ e V", for k =1,2,3, as the unique solution of

A~ ANn

(516) (ﬁg - 5k7¢h)7—hm + (,ﬁ'T[pA;CL - ﬁk]n?sph )ng =0, v@h € V}:nv

where 7 is the co-normal vector on ™ and p* is given by p* o ¥ = p¥. Then use
p¥ to enforce boundary conditions on 6¥. However, for solving the discrete problem
(5.11), we only need the values of pf on X™. Ergo, we can restrict (5.16) to a
boundary integral on XI*. Furthermore, we can utilize a good approximation of the
boundary curvature in the following sense. Let &} € L°°(X7") be an approximation
of the normal curvature, in the co-normal direction mn, with the property that

(5.17) |nt[Vrvin — &} o (\Ilm)_lﬂLoo(gS) = O(h™).
Then, we define f)]h“ e V", for k =1,2,3, as the unique solution of
(5.18) (2" i, 2 pur) g, = — (P'RR, AT o) g, s Y € VT

where we use the discrete normal & of I'™ and we set all degrees-of-freedom (DoF's) of
Pk not on ™ to zero. Note that the matrix realization of the left-hand-side of (5.18)
is block diagonal, where each block corresponds to an edge of X™; hence, (5.18) is a
trivial linear system to solve.

We now summarize the method. Let p¥ be given by (5.18) and & satisfy (5.15).
Then, find 6% € V™, for k = 1,2,3, such that

(519) " (of.n) = —a™ (6 @) = bt (@nsidhn ) + (21,0 — (- 2)i*) .,

c

k sk

for all ¢, € V;*. Then, set &ﬁ = &Z + f)’g and define Sj, := —0"67y.

THEOREM 5.3. Adopt the hypothesis of Theorem 5.2, but let Sy, be computed by
the scheme in (5.19). If m > r + 1, then

(5.20) [Vrv — S0 (™) g2y < Ch™H,

where C' > 0 depends on the domain I and the shape regularity of the mesh.

Note that, by the properties of the projection and the HHJ interpolant (see sub-
section 4.2), we have ||pf — p¥|| oo (smy < Ch™ | p¥ ||y rs1.00(ry (c.f. [3, Supp. Mater.:
Sec. SM4.3]).

Remark 5.4. The partition of the boundary, ¥ = X, U 3, depends on the geo-
metric information available at the boundary. One can have ¥ = ¥, or ¥ =X, or a
combination, so the method has some flexibility.

This manuscript is for review purposes only.



ot

ot

B
o =

or Ot ot Ut Ot ot Ot Ot Ut Ot

ot Ot Ot Ot Ut Ut Ut Ut

ot

ot

ut

5

ot Ot Ut

ot

[S1 S G, I |

[S1 SN TG B |

ot Ot Ot

e
= W N

=
S Ot

=
o ©

S TR R~

ot
o

(S
©

64

D O
S Gt

3

68

J

16 S. W. WALKER

6. Numerical Results. We present numerical results for several different do-
mains, both with and without boundary. The discrete domains were generated by
either interpolating charts on a sequence of uniformly refined grids, or by creating an
initial piecewise linear triangulation of the implicit, closed surface (using [37]) and
interpolating the closest point map. As above, the finite element spaces V}, and W},
are of degree r and r + 1 respectively, where > 0, and the geometric approximation
degree is denoted m, and satisfies m = r 4+ 1. All computations were done with the
Matlab/C++ finite element toolbox FELICITY [38], where we used the “backslash”
command in Matlab to solve the linear systems.

From (4.14), recall that F™ := Ifll’m\Ill, which is possible to implement, but
inconvenient. Instead, we first compute F™*! by standard nodal interpolation, then
we define F™ := Iflb’mFmH, which is easy to implement over the piecewise linear
triangulation of I'' and does not affect the accuracy.

As for the boundary data, v and Vpv are known through the exact surface
geometry. Moreover, these functions are easily extended away from the surface by
analytic continuation. Thus, we use  := I"v and &} = A’ (I"[Vrv])f, where
I H3(I'™) — W™ (different from Z;") is the standard, pointwise, nodal interpolant
onto W}™. Note: when m = 1, then I} = I,ll’l.

In order to illustrate the effectiveness of the method, we compute the following
ervors: |17 (10 ©™) — B[ (e, | I [(Vewr) 0 7] — Sy aomy |17 (Vrwr) o %) —
Shllpoemmys 17 (K40 ®™) =K L2(omy, |17 (K9 0 ®™) — K] || 2(rm), where k% = k! 452
(additive curvature), k9 = k! - k2 (Gauss curvature), and

(6.1) Kf =1tr Sy, ki :=det[S, +0®UD].

Again, the geometric information is extended away from the surface by analytic con-
tinuation. These errors can be related to the ones in (5.13), (5.20) by equivalence
of norms and a triangle inequality. The estimated order of convergence (EOC) is
computed by using the ratio of the error between two successive uniform refinements.

In order to avoid spurious results in the numerical convergence tests, the meshes
in the examples were generated from the non-uniform/non-symmetric meshes shown
in Figure 2. The condition numbers of the “mass” matrix to invert in projecting to
the HHJ space are listed in Table 1.

(d) Initial Mesh

(c) Initial Mesh

Fic. 2. All initial meshes. (a,b) These meshes are uniformly refined twice to give the k = 0
case in Table 2, Table 3; (c,d) These meshes correspond to the k =0 case in Table 4, Table 5.

6.1. Saddle Surface on a Square. The domain is given by (U,x), where
U = [0,1] x [0,1] is the unit square and x(u',u?) = (u',u?, 0.5(sin(3.5(u! — 0.5)) +
cos(4.2(u? — 0.5)))). Figure 3 shows the surface with curvature data obtained from
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TABLE 1

Listing of the 2-norm condition number of the matriz A™ discussed in subsection 5.3.1. Num-
bers correspond to the convergence tables in the associated sections for m = 1; for m = 2,3, the
condition numbers were larger by factors of approzimately 102 and 103, respectively. The number
in parenthesis is the condition number of (D™)™1A™, where D™ is a diagonal matriz obtained by
mass-lumping of A™.

k subsection 6.1 subsection 6.2 subsection 6.3 subsection 6.4

0 T7.61E02 (4.89E02) 3.90E02 (1.80E02) 2.89E02 (2.15E01) 4.39E02 (3.13E01)
1 9.65E02 (6.93E02) 4.87E02 (2.41E02) 4.55E02 (3.80E01) 7.10E02 (6.23E01)
2 1.11E03 (8.93E02) 5.69E02 (3.04E02) 5.88E02 (5.42E01) 8&.75E02 (1.01E02)
3 1.18E03 (1.05E03) 6.39E02 (3.62E02) 7.00E02 (6.74E01) 9.64E02 (1.31E02)
4 1.26E03 (1.15E03) 6.95E02 (4.05E02) 7.72E02 (7.57E01) 1.00E03 (1.53E02)

Gauss Curvature

1
0.5 0.5

Principle Directions
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Fic. 3. Illustration of the saddle surface in subsection 6.1 corresponding tom =1 and k =1 in
Table 2. Left: color corresponds to the discrete Gauss curvature ni. Right: zoom-in of the surface
where line segments indicate the principle directions of the surface, i.e. red (black) is di (d2), which
correspond to the minimum (mazimum) curvature direction.

the discrete approximation. Table 2 shows the convergence behavior for the case of
clamped boundary data (i.e. using ), which confirms the error estimate in (5.20).

6.2. Wavy Dumbbell. The domain is given by (U, x), where the boundary of

U is piecewise parametrized by

(6.2)

The surface parametrization is given by x(u,v) = (u,v, e~ sin(20)

(cos(t) + 1,sin(t)),

(=t +41,0.6 4 0.4 cos(nt)) ,
(

(

(z(t),y(t)) =

cos(t) — 1,sin(t)),
t—1,—(0.8 + 0.2cos(nt))),

if —w/2<t<7/2,
if0<t<?2,
if 1/2 <t < 3m/2,
ifo<t¢t<2.

The curved

element mapping is composed from two maps (recall (4.14)). The first map is a Lenoir
type map, [26] described in [3] that creates a curved triangulation that optimally
approximates U; the second map is the parametrization x. We then apply (4.14) to
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TABLE 2
Convergence errors for the saddle surface (subsection 6.1) using clamped boundary data; EOC
is shown in parenthesis. The number of triangles in the mesh is Ny = 448 - 4% where k is the
refinement index. Cases are shown for m = 1,2,3, where m is the polynomial degree of the geometry.

k L? error: v L? error: Vrv L™ error: Vrv L? error: k% L? error: k9
m = 1:
0 L.09E-0L (1.02) LOAE 00 (0.84) LI3E 00 (L77) 5.94E-01 (0.89) 2.48E 00 (1.02)
1 5.44E-02 (1.01) 5.48E-01 (0.92) 4.45E-01 (1.35) 3.09E-01 (0.94) 1.26E 00 (0.97)
2 2.72E-02 (1.00) 2.81E-01 (0.96) 2.31E-01 (0.95) 1.57E-01 (0.97) 6.44E-01 (0.97)
3 1.36E-02 (1.00) 142E-01 (0.98) 1.27E-01 (0.86) 7.97E-02 (0.98) 3.26E-01 (0.98)
4 6.79E-03 (1.00) 7.15E-02 (0.99) 6.65E-02 (0.94) 4.02E-02 (0.99) 1.64E-01 (0.99)
=2:
RN (2.19)  1.52E-01 (1.87) R.80E-01 (0.04) 9.77E-02 (1.78) 4.69F-01 (1.57)
1 9.13E-04 (2.08) 3.71E-02 (2.03) 2.83E-01 (1.65) 2.49E-02 (1.97) 1.23E-01 (1.93)
2 2.25F-04 (2.02) 9.07E-03 (2.03) 8.35E-02 (1.76) 6.10E-03 (2.03) 3.08E-02 (2.00)
3 5.50E-05 (2.01) 2.25E-03 (2.01) 2.14E-02 (1.96) 1.51E-03 (2.01) T7.68E-03 (2.00)
4 1.40E-05 (2.00) 5.62E-04 (2.00) 5.41E-03 (1.99) 3.77E-04 (2.00) 1.92E-03 (2.00)
=3:
o 130E0 (351) LA1E-02 (2.05) 2.00E-0L (2.56) LOSE-02 (2.72) 5.10E-02 (2.81)
1 1.15E-05 (3.38) 1.86E-03 (2.93) 2.12E-02 (3.24) 1.50E-03 (2.85) T7.47E-03 (2.77)
2 1.28E-06 (3.16) 2.37E-04 (2.97) 1.77E-03 (3.58) 1.92E-04 (2.97) 9.68E-04 (2.95)
3 1.55E-07 (3.05) 2.98E-05 (2.99) 2.20E-04 (3.01) 2.42E-05 (2.99) 1.22E-04 (2.99)
4 1.92E-08 (3.01) 3.73E-06 (3.00) 2.73E-05 (3.01) 3.03E-06 (3.00) 1.53E-05 (3.00)

Gauss Curvature

Principle Directions

Fic. 4. Illustration of the wavy dumbbell in subsection 6.2 corresponding to m =1 and k =1
in Table 3. The format is similar to Figure 3. Right figure is zoomed in on the top, curved edge of
the surface.

585 the composed map.

586 Figure 4 shows the surface with curvature data obtained from the discrete ap-
587 proximation. Table 3 shows the convergence behavior for the case of simply-supported
588  boundary data (i.e. using &}'), which confirms the error estimate in (5.20).

589 6.3. Torus. The domain is a torus described by the zero level set of the function:
500 b(w,y, 2) = (2% + 3% — (6/10))? + (3/2)2% — (1/4). The parameterization is built from
591  the closest point map. Figure 5 shows the surface with curvature data obtained from

592
593

the discrete approximation. Table 4 shows the convergence behavior, which confirms
the error estimate in (5.13).

This manuscript is for review purposes only.



THE SHAPE OPERATOR WITH HHJ 19

TABLE 3
Convergence errors for the wavy dumbbell (subsection 6.2) using simply-supported boundary
data (similar format as Table 2). The number of triangles in the mesh is Ny = 608 - 4%, where k is

the refinement index.

k llvell2 ISkl 2 ISkl L= | Hpll L2 [EAPE
m = 1:
0 1.65E-01 (1.00) 5.62E-01 (0.95) 4.37E-01 (1.01) 3.67E-01 (1.01) 4.05E-01 (1.01)
1 8.25E-02 (1.00) 2.86E-01 (0.97) 2.13E-01 (1.04) 1.84E-01 (1.00) 2.05E-01 (0.98)
2 4.12E-02 (1.00) 1.44E-01 (0.99) 1.00E-01 (1.09) 9.22E-02 (1.00) 1.04E-01 (0.98)
3 2.06E-02 (1.00) 7.23E-02 (0.99) 4.79E-02 (1.06) 4.63E-02 (1.00) 5.22E-02 (0.99)
4 1.03E-02 (1.00) 3.62E-02 (1.00) 2.33E-02 (1.04) 2.32E-02 (1.00) 2.62E-02 (1.00)
=2
0 8. 31E 03 (2.00) 3.79E-02 (1.99) 1.08E-01 (1.62) 2.35E-02 (2.04) 2.81E-02 (2.00)
1 2.07E-03 (2.01) 9.41E-03 (2.01) 2.78E-02 (1.95) 5.68E-03 (2.05) 6.95E-03 (2.01)
2 5.16E-04 (2.00) 2.34E-03 (2.01) 6.60E-03 (2.08) 1.39E-03 (2.03) 1.73E-03 (2.01)
3 1.29E-04 (2.00) 5.83E-04 (2.00) 1.55E-03 (2.09) 3.45E-04 (2.01) 4.30E-04 (2.01)
4  3.22E-05 (2.00) 1.46E-04 (2.00) 3.69E-04 (2.07) 8.59E-05 (2.01) 1.07E-04 (2.00)
=3
0 3. 92E 04 (3.04) 3.78E-03 (2.83) 1.30E-02 (2.42) 2.12E-03 (2.72) 2.64E-03 (2.84)
1 4.85E-05 (3.02) 4.94E-04 (2.93) 2.26E-03 (2.53) 2.95E-04 (2.85) 3.49E-04 (2.92)
2 6.04E-06 (3.01) 6.28E-05 (2.98) 3.29E-04 (2.78) 3.83E-05 (2.94) 4.46E-05 (2.97)
3 7.53E-07 (3.00) 7.88E-06 (2.99) 4.42E-05 (2.89) 4.85E-06 (2.98) 5.60E-06 (2.99)
4  9.41E-08 (3.00) 9.87E-07 (3.00) 5.72E-06 (2.95) 6.09E-07 (2.99) 7.01E-07 (3.00)
Gauss Curvature Principle Directions
0.4 0
0.2
0.
" 02
-0.4/ -5 I
1 \\
\\
-10
°\
\\ K/O
vy 0.5

Fi1G. 5. Illustration of the torus in subsection 6.3 corresponding to m =1 and k = 1 in Table 4.
The format is similar to Figure 3. Right figure is zoomed in on the inner hole region.

6.4. A Genus-3 Surface. The domain is closed surface described by the zero
level set of the function:
b(z,y, 2) = (aor — 2)*(aoz + 2)* + (aoy — 2)*(aoy + 2)°
+ (a0z — 2)%(apz + 2)* + 3ag (x2y? + 2222 + y*2?)

+ 6agryz — 10a3 (x? + y? + 2%) + 11.5,

506 (6.3)

597  where ag = 3.25. The parameterization is built from the closest point map. Figure 6
shows the surface with curvature data obtained from the discrete approximation.
Table 5 shows the convergence behavior, which confirms the error estimate in (5.13).

0 7. Conclusion. We have presented an effective finite element technique that can
1 post-process a scalar Lagrange finite element function on a discrete surface to produce
2 an accurate approximation of the surface Hessian of the function. The method is
3 straightforward and does not require any ad-hoc modifications. Furthermore, the
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TABLE 4
Convergence errors for the torus (subsection 6.3) (similar format as Table 2). The number of
triangles in the mesh is Np = 1904 - 4%, where k is the refinement index.

z AP [Sull2 [SullL~= [Hnll2 [Knll2
m = 1:
0 3.16E-01 (0.00) 2.03E 00 (0.00) 6.05E-01 (0.00) 1.05E 00 (0.00) 2.55E 00 (0.00)
1 1.59E-01 (1.00) 1.07E 00 (0.92) 3.80E-01 (0.67) 5.58E-01 (0.91) 1.41E 00 (0.85)
2 7.93E-02 (1.00) 5.54E-01 (0.96) 1.81E-01 (1.07) 2.97E-01 (0.91) 7.54E-01 (0.91)
3 3.97E-02 (1.00) 2.81E-01 (0.98) 1.01E-01 (0.84) 1.56E-01 (0.94) 3.90E-01 (0.95)
4 1.98E-02 (1.00) 1.42E-01 (0.99) 5.25E-02 (0.94) 7.98E-02 (0.96) 1.99E-01 (0.97)
=2
0 1 76E 02 (0.00) 1.98E-01 (0.00) 3.24E-01 (0.00) 1.60E-01 (0.00) 3.70E-01 (0.00)
1 4.35E-03 (2.01) 4.94E-02 (2.00) 1.04E-01 (1.64) 4.21E-02 (1.93) 9.95E-02 (1.89)
2 1.08E-03 (2.00) 1.23E-02 (2.01) 3.29E-02 (1.66) 1.06E-02 (1.98) 2.58E-02 (1.95)
3 2.71E-04 (2.00) 3.08E-03 (2.00) 8.54E-03 (1.95) 2.67E-03 (1.99) 6.54E-03 (1.98)
=3
0 5. 06E 03 (0.00) 3.96E-02 (0.00) 5.69E-02 (0.00) 2.82E-02 (0.00) 5.79E-02 (0.00)
1 6.64E-04 (2.93) 5.12E-03 (2.95) 1.10E-02 (2.38) 3.64E-03 (2.96) 6.77E-03 (3.10)
2 8.38E-05 (2.99) 6.46E-04 (2.99) 1.63E-03 (2.75) 4.60E-04 (2.99) 8.30E-04 (3.03)
3 1.05E-05 (3.00) 8.10E-05 (2.99) 2.14E-04 (2.93) 5.78E-05 (2.99) 1.03E-04 (3.01)
Gauss Curvature Principle Directions

Fic. 6. Illustration of the genus-8 surface in subsection 6.4 corresponding to m =1 and k =1
in Table 5. The format is similar to Figure 3. Right figure is zoomed in on the edge of the right
hole.

04 method is directly applicable to computing convergent approximations of the full
605 shape operator of the underlying surface (even piecewise linear triangulations) by
06 setting the scalar function to the identity map of the discrete surface.

607 An important aspect of our scheme is that it solves a global problem when com-
608 puting the projection onto an HHJ element, which is contrary to the methods in
609 [29, 20, 42] that compute the mean and gauss curvature of discrete surfaces (at a
610 vertex) using the 1-ring neighborhood of that vertex. Our scheme is convergent for
611 general meshes, whereas these purely local schemes are not. This also implies that one
612 should use an iterative method when solving the HHJ projection, including precon-
613 ditioning to account for the small growth in the condition number of the HHJ mass
614 matrix (see Table 1). Finding effective preconditioners is a point of future work.

615 REFERENCES

616 [1] R. A. ApamMs AND J. J. F. FOURNIER, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics
617 Series, Elsevier, 2nd ed., 2003.

This manuscript is for review purposes only.



618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

THE SHAPE OPERATOR WITH HHJ

TABLE 5
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Convergence errors for the genus-8 surface (subsection 6.4) (similar format as Table 2). The
number of triangles in the mesh is Np = 2808 - 4%, where k is the refinement index.

k

[EAFE

[EAIPE

ISkl L=

[ Hnll 2

[EAPE

m = 1:

Gk W N+~ O

5.77E-01 (0.00)
2.93E-01 (0.98)
1.47E-01 (0.99)
7.36E-02 (1.00)
3.68E-02 (1.00)

)

1.84E-02 (1.00

4.44F 00 (0.00)
2.39E 00 (0.89)
1.24E 00 (0.95)
6.34E-01 (0.97)
3.20E-01 (0.99)

(0.99)

1.61E-01 (0.99

2.06E 00 (0.00)
1.04E 00 (0.99)
5.95E-01 (0.80)
2.95E-01 (1.01)
1.42E-01 (1.06)
7.00E-02 (1.02)

1.88E 00 (0.00)
1.15E 00 (0.72)
6.46E-01 (0.83)
3.44E-01 (0.91)
1.78E-01 (0.95)
9.03E-02 (0.98)

9.14E 00 (0.00)
4.79F 00 (0.93)
2.62E 00 (0.87)
1.39E 00 (0.91)
7.12E-01 (0.97)

(0.99)

3.58E-01 (0.99

W= O

4. 37E 02 (0.00
1.14E-02 (1.94

7.14E-04 (2.00
1.78E-04 (2.00

1.35E 00 (0.00)
3.51E-01 (1.94)
8.74E-02 (2.01)
2.17E-02 (2.01)
5.42E-03 (2.00)

2.43E 00 (0.00)
7.41E-01 (1.71)
2.58E-01 (1.52)
7.10E-02 (1.86)
2.05E-02 (1.79)

1.13E 00 (0.00)
2.77E-01 (2.02)
6.70E-02 (2.05)
1.63E-02 (2.04)
4.02E-03 (2.02)

7.05E 00 (0.00)
1.73E 00 (2.03)
4.19E-01 (2.04)
1.02E-01 (2.03)
2.53E-02 (2.02)

w N = O

3. 36E 02
4.23E-03
5.36E-04

6.03E-01
6.44E-02
7.54E-03

0.00
3.23

1.16E 00 (0.00)
1.74E-01 (2.75)
2.07E-02 (3.07)

3.84E-01 (0.00)
3.76E-02 (3.35)
4.48E-03 (3.07)

2.14E 00 (0.00
2.22E-01 (3.27

(
(
(
(
(
=2
(0.00)
(1.94)
2.85E-03 (2.00)
(2.00)
(2.00)
=3
(
(
(
(

0.00 (0.00)
2.99 (3.27)
2.98 2.19E-02 (3.35)
2.99 2.37E-03 (3.21)

= =
PRy

)
)
3.09)
6.73E-05 9.24E-04 (3.03)

2.66E-03 (2.96) 5.53E-04 (3.02)
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