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Abstract. Evolution equations, including both ordinary differential equations (ODEs)
and partial differential equations (PDEs), play a pivotal role in modeling dynamic sys-
tems. However, achieving accurate long-time integration for these equations remains
a significant challenge. While physics-informed neural networks (PINNs) provide a
mesh-free framework for solving PDEs, they often suffer from temporal error accu-
mulation, which limits their effectiveness in capturing long-time behaviors. To allevi-
ate this issue, we propose integral regularization PINNs (IR-PINNs), a novel approach
that enhances temporal accuracy by incorporating an integral-based residual term into
the loss function. This method divides the entire temporal interval into smaller subin-
tervals and enforces integral constraints either within each subinterval or across in-
tervals extending from the initial moment to the current one, thereby improving the
resolution and correlation of temporal dynamics. Furthermore, IR-PINNs leverage
adaptive sampling to dynamically refine the distribution of collocation points based
on the evolving solution, ensuring higher accuracy in regions with sharp gradients or
rapid variations. Numerical experiments on benchmark problems demonstrate that
IR-PINNs outperform original PINNs and other state-of-the-art methods in capturing
long-time behaviors, offering a robust and accurate solution for evolution equations.
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1 Introduction

Evolution equations are fundamental in modeling a wide range of physical, biologi-
cal, and engineering phenomena, spanning from fluid dynamics to material science [5].
Among these, evolution equations, characterized by their dependence on both tempo-
ral and spatial variables, play a crucial role in describing dynamic systems. However,
achieving accurate and efficient solutions to these equations remains a significant chal-
lenge, particularly for problems requiring long-time integration or involving complex
and high-dimensional domains.

In recent years, physics-informed neural networks (PINNs) [24] have emerged as
a promising alternative for solving evolution equations. By embedding the governing
equations into the loss function and leveraging the expressive power of neural networks,
PINNs can approximate solutions without relying on predefined grids or explicit dis-
cretization schemes. Despite their versatility, challenges remain in applying PINNs to
evolution equations [6,17,25,28,30]. One of the most pressing issues is the accumulation
of temporal errors during long-time integration, prompting significant efforts to address
this limitation. Several training strategies have been proposed to improve temporal accu-
racy, including sequential learning [20,31], causal training [14,22,27] and operator learn-
ing [18, 26, 29, 32]. Additionally, hybrid strategies have been developed to combine clas-
sical numerical methods with deep learning techniques. These approaches either adapt
neural networks to augment classical PDE solvers [2,8] or incorporate classical numerical
methods to enhance the performance of PINNs [4, 10, 13].

For evolution equations, the solution at any given time is inherently dependent on its
state at previous times, reflecting strong temporal correlation. However, original PINNs
treat temporal collocation points in isolation, failing to explicitly account for these cor-
relations. This limitation often leads to challenges in capturing long-time dynamics and
results in temporal error accumulation. Inspired by the integral form of evolution equa-
tions, we introduce a regularization term into the training process, proposing a novel
framework termed integral regularization PINNs (IR-PINNs). Our main contributions
can be summarized as:

• We propose integral regularization PINNs (IR-PINNs) for evolution equations by
dividing the entire temporal interval into smaller subintervals, reformulating the
evolution equation into an integral form, and incorporating an integral-based resid-
ual term into the loss function. This approach enhances temporal accuracy by en-
forcing constraints over specific temporal subintervals, thereby improving the res-
olution and correlation of temporal dynamics.

• We extend IR-PINNs with an adaptive sampling strategy, which dynamically re-
fines the distribution of spatial collocation points, ensuring higher accuracy in re-
gions with sharp gradients or rapid variations.

• We conduct numerical experiments on benchmark problems, including both linear
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and nonlinear evolution equations, to demonstrate the effectiveness of IR-PINNs in
capturing long-time behaviors and outperforming original PINNs and other state-
of-the-art methods.

This paper is structured as follows. In Section 2, we provide a brief overview of
PINNs, followed by a critical analysis of their limitations in solving evolution equations
through a simple case study. In Section 3, we introduce the proposed IR-PINNs frame-
work and further enhance it by incorporating an adaptive sampling strategy to improve
computational efficiency. In Section 4, we demonstrate comprehensive numerical exper-
iments with detailed discussions, highlighting the advantages of the proposed method.
Finally, Section 5 summarizes the paper and discusses potential future research direc-
tions.

2 Physics-informed neural networks

We begin with a brief overview of physics-informed neural networks (PINNs) [24]. On
an open domain Ω⊂Rd, consider a general time-dependent PDE

ut(t,x)+N [u](t,x)= f (t,x), t∈ [0,T], x∈Ω, (2.1)

subject to the initial and boundary conditions

u(0,x)= g(x), x∈Ω,
B[u](t,x)=b(t,x), t∈ [0,T], x∈∂Ω,

(2.2)

where N [·] is a linear or nonlinear differential operator, and B[·] is a boundary operator
corresponding to Dirichlet, Neumann, Robin or periodic boundary conditions.

Our goal is to seek a neural network uN(t,x;θ), where θ denotes trainable parameters,
to approximate the solution u(t,x) by minimizing the following composite loss function

L(θ)=Lr(θ)+λ1Lic(θ)+λ2Lbc(θ)

=∥r(t,x;θ)∥2
L2([0,T]×Ω)+λ1∥uN(0,x;θ)−g(x)∥2

L2(Ω)

+λ2∥B[uN ](t,x;θ)−b(t,x)∥2
L2([0,T]×∂Ω), (2.3)

where λ1 and λ2 are hyperparameters to balance the interplay between different loss
terms during the training process, ∥·∥L2 represents L2 norm and

r(t,x;θ)=(uN)t(t,x;θ)+N [uN ](t,x;θ)− f (t,x). (2.4)

In practice, we often choose three sets of uniformly distributed collocation points Sr =

{(t(i)r ,x(i)r )}Nr
i=1on [0,T]×Ω, Sic={x(i)ic }

Nic
i=1 on Ω and Sbc={(t(i)bc ,x(i)bc )}

Nbc
i=1 on [0,T]×∂Ω and

the loss function is discretized numerically as

L̂(θ)= L̂r(θ)+λ̂1L̂ic(θ)+λ̂2L̂bc(θ)

=∥r(t,x;θ)∥2
Sr
+λ̂1∥uN(0,x;θ)−g(x)∥2

Sic
+λ̂2∥B[uN ](t,x;θ)−b(t,x)∥2

Sbc
, (2.5)
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where

∥r(t,x;θ)∥2
Sr
=

1
Nr

Nr

∑
i=1

∣∣∣(uN)t(t
(i)
r ,x(i)r ;θ)+N [uN ](t

(i)
r ,x(i)r ;θ)− f (t(i)r ,x(i)r )

∣∣∣2 ,

∥uN(0,x;θ)−g(x)∥2
Sic
=

1
Nic

Nic

∑
i=1

∣∣∣uN(0,x(i)ic ;θ)−g(x(i)ic )
∣∣∣2 ,

∥B[uN ](t,x;θ)−b(t,x)∥2
Sbc

=
1

Nbc

Nbc

∑
i=1

∣∣∣B[uN ](t
(i)
bc ,x(i)bc ;θ)−b(t(i)bc ,x(i)bc )

∣∣∣2 ,

(2.6)

and λ̂1 =
λ1
T , λ̂2 =

λ2|∂Ω|
|Ω| such that L̂(θ) is a Monte Carlo approximation of L(θ) up to a

constant scaling factor T|Ω|.
To provide intuition for the key ideas behind our method, we first analyze a simple

case by considering the following ordinary differential equation (ODE):

u′(t)=λu(t), t∈ [0,T],
u(0)=u0,

(2.7)

where the exact solution is u(t)=u0eλt. Conventional PINNs are known to struggle with
large values of λT since the ODE system will become stiff. Here we set λ = 1, T = 5
and u0 =1. In the framework of PINNs, we represent the latent variable u(t) by a fully-
connected neural network uN(t;θ) with Tanh activation function, 3 hidden layers, and 64
neurons per hidden layer, and exactly impose the initial condition by

ũN(t;θ)= tuN(t;θ)+u0. (2.8)

Then the discretized loss function simplifies to

L̂(θ)= L̂r(θ)=∥r(t;θ)∥2
Sr
=

1
Nr

Nr

∑
i=1

∣∣∣ũ′
N(t

(i)
r ;θ)−λũN(t

(i)
r ;θ)

∣∣∣2 , (2.9)

where Sr={t(i)r }Nr
i=1 are uniform mesh points on [0,T] and Nr=40. The Adam algorithm is

used to optimize the loss function with an initial learning rate 10−3, which decays every
1,000 epochs at a rate of 0.9. The maximum number of training epochs is 80,000.

As shown in Fig. 1, although the residuals on the training set are sufficiently small,
conventional PINNs fail to capture the exponential growth of the solution. This suggests
that the model tends to overfit when the temporal collocation points are insufficiently
dense.

To investigate the failure mode of PINNs in this scenario, we analyze the role of the
automatic differentiation technique. While automatic differentiation can accurately com-
pute the derivative at individual temporal collocation points, it does not account for the
information in the small neighborhood around each collocation point. This may lead to
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Figure 1: Simple ODE: Left: Residual curve. Right: Reference solution versus numerical solution given by
PINNs. Relative L2 error: 7.2033×10−1.

relatively large residuals in regions outside the training points. From the residual curve,
it is evident that when t<0.5, the overall residual is large. Given the propagation prop-
erty of the evolution equation, PINNs cannot converge to the correct solution, even if
the residual later becomes small. This analysis suggests that when solving long-time in-
tegration problems, it is crucial to consider the correlations between collocation points
to reduce the residuals across the entire temporal interval, a principle that traditional
numerical schemes often emphasize. In the next section, we propose a simple and effec-
tive strategy based on integral form of the evolution equation to strengthen the temporal
correlation and mitigate the overfitting problem.

3 Methodology

3.1 Integral regularization PINNs (IR-PINNs)

We propose a novel method for solving evolution equations, termed integral regulariza-
tion PINNs (IR-PINNs), which enhances the standard loss function with a regularization
term designed to inherently capture temporal correlation in the solution.

More precisely, we consider the integral form of the general time-dependent PDE (2.1)
over a temporal interval [a,b] (a<b):

u(b,x)−u(a,x)+
∫ b

a
N [u](t,x)dt=

∫ b

a
f (t,x)dt, ∀a,b∈ [0,T], x∈Ω. (3.1)

Then we can define an integral-based residual function corresponding to the above equa-
tion (3.1) as follows:

rint(a,b,x)=
u(b,x)−u(a,x)+

∫ b
a (N [u](t,x)− f (t,x))dt
b−a

. (3.2)
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Given a numerical quadrature scheme defined by a set of nodes Q = {si}M
i=1 and their

associated weights {wi}M
i=1, the integral term can be approximated as follows

IQ[N [u](t,x)− f (t,x)]=
M

∑
i=1

wi (N [u](si,x)− f (si,x)). (3.3)

The most straightforward approach involves imposing an integral-based residual con-
straint over the entire temporal interval. However, when the temporal interval is long or
the solution exhibits complex behaviors, a single integral-based residual constraint may
lead to insufficient accuracy of numerical integration and a relatively weak impact of the
regularization term during the training process. This observation leads to our first reg-
ularization strategy, which divides the entire temporal interval [0,T] into several subin-
tervals, denoted by 0= t0 < t1 < t2 < ···< tN =T, and applies independent integral-based
residual constraints to each subinterval:

(IR-PINNs1) L(R1)
int (θ)=

1
N

N−1

∑
k=0

∥rint(tk,tk+1,x;θ)∥2
L2(Ω).

Building upon this foundation, we further develop the second regularization term to
incorporate temporal causality:

(IR-PINNs2) L(R2)
int (θ)=

1
N

N−1

∑
k=0

∥rint(t0,tk+1,x;θ)∥2
L2(Ω).

This formulation features accumulative integral-based residual constraints propagating
from the initial moment, thereby implicitly emphasizing the importance of earlier tem-
poral subintervals in the regularization scheme.

Given numerical quadrature points Q(k)
r ={t(k,i)

r }M
i=1 for each subinterval [tk,tk+1], the

total numerical quadrature points set is Q=∪N−1
k=0 Q(k)

r and the new residual loss function
can be written as

Lcouple(θ)=Lr(θ)+αLint(θ), (3.4)

where Lr(θ) is modified to

Lr(θ)=
1

NM

N−1

∑
k=0

M

∑
i=1

∥r(t(k,i)
r ,x;θ)∥2

L2(Ω), (3.5)

Lint(θ) stands for L(R1)
int (θ) or L(R2)

int (θ) and α is a hyperparameter to balance the two resid-
ual loss terms.

In practice, we generate uniformly distributed points {x(j)
r }Nx

j=1 in spatial direction and

obtain two sets of collocation points Sr =∪N−1
k=0 ∪M

i=1 S(k,i)
r =∪N−1

k=0 ∪M
i=1{(t

(k,i)
r ,x(j)

r )}Nx
j=1 and

Sint=∪N−1
k=0 S(k)

int =∪N−1
k=0 {x(j)

r }Nx
j=1, the discretized residual loss function is

L̂couple(θ)= L̂r(θ)+ α̂L̂int(θ), (3.6)
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where

L̂r(θ)=
1

NM

N−1

∑
k=0

M

∑
i=1

∥r(t(k,i)
r ,x;θ)∥2

S(k,i)
r

, (3.7)

L̂(R1)
int (θ)=

1
N

N−1

∑
k=0

∥rint(tk,tk+1,x;θ)∥2
S(k)

int
, L̂(R2)

int (θ)=
1
N

N−1

∑
k=0

∥rint(t0,tk+1,x;θ)∥2
S(k)

int
. (3.8)

More precisely,

∥r(t(k,i)
r ,x;θ)∥2

S(k,i)
r

=
1

Nx

Nx

∑
j=1

∣∣∣(uN)t(t
(k,i)
r ,x(j)

r ;θ)+N [uN ](t
(k,i)
r ,x(j)

r ;θ)− f (t(k,i)
r ,x(j)

r )
∣∣∣2 , (3.9)

for all 0≤ k≤N−1, 1≤ i≤M,

∥rint(tm,tn,x;θ)∥2
S(k)

int

=
1

Nx

Nx

∑
j=1

∣∣∣∣∣∣
uN(tn,x(j)

r ;θ)−uN(tm,x(j)
r ;θ)+∑n−1

k=m I
Q(k)

r
[N [uN ](t,x

(j)
r ;θ)− f (t,x(j)

r )]

tn−tm

∣∣∣∣∣∣
2

, (3.10)

for all 0≤m<n≤N and uN(t0,x;θ) can be calculated by the initial condition. Here α̂=α

such that L̂couple(θ) is a Monte Carlo approximation of Lcouple(θ) up to a constant scal-
ing factor |Ω|. Finally we obtain an estimator θ⋆ by solving the following optimization
problem

θ⋆=argmin
θ

L̂(θ)=argmin
θ

(
L̂couple(θ)+λ̂1L̂ic(θ)+λ̂2L̂bc(θ)

)
. (3.11)

We now proceed to implement IR-PINNs to solve the simple ODE problem described in
the preceding section. The network architecture, number of collocation points, training
parameters, maximum number of iterations, and optimizer remain unchanged. The prin-
ciple enhancement involves the incorporation of an integral-based regularization term
into the loss function. Here we set α=1 and employ the trapezoidal rule to approximate
the integral in the regularization term.

The results of IR-PINNs1 and IR-PINNs2 are summarized in Fig. 2 and Fig. 3, re-
spectively. One can see that the predicted solutions achieve an excellent agreement with
the reference solution, yielding a reduction in relative L2 error of two orders of magni-
tude compared to PINNs. This improvement can be primarily attributed to the incor-
poration of the regularization term, which inherits the benefits of traditional methods
by strengthening the correlations among collocation points, effectively reducing residu-
als, particularly in the earlier time periods. This ensures proper temporal propagation of
the governing equation’s information during the training process. It is noteworthy that,
due to the exponential growth nature of the solution, the residual range of the numerical
solution gradually increases over time, which is entirely expected.
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Figure 2: Simple ODE: Left: Residual curve. Right: Reference solution versus numerical solution given by
IR-PINNs1. Relative L2 error: 1.3156×10−3.
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Figure 3: Simple ODE: Left: Residual curve. Right: Reference solution versus numerical solution given by
IR-PINNs2. Relative L2 error: 4.9012×10−3.

The choice of number of subintervals N: The selection of N significantly influences
both the numerical precision and the efficacy of the regularization process. With a fixed
number of quadrature points for each subinterval, a larger N is essential for accurate
numerical integration, particularly when the temporal interval is long or the solution
exhibits complex behaviors. Additionally, N determines the number of integral-based
residual constraints, and increasing it appropriately enhances the impact of regulariza-
tion term on the training process, thereby improving the ability of model to capture tem-
poral correlation.

The choice of hyperparameter α: The hyperparameter α determines the balance be-
tween the two residual loss terms Lr(θ) and Lint(θ) and plays a critical role in the training
process of the neural network. If α is too small, the method degenerates to the original
PINNs, where the regularization term has almost no effect on the training process. On
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the other hand, if α is too large, the regularization term dominates the training process.
However, due to limitations in integral accuracy and optimization difficulty, this can lead
to unstable training and hinder the achievement of desired accuracy. Therefore, selecting
an appropriate α is crucial. Here we propose a simple strategy for selecting α. From the
mean value theorem, there exists some ξ∈ [a,b] such that

rint(a,b,x)=
u(b,x)−u(a,x)+

∫ b
a (N [u](t,x)− f (t,x))dt
b−a

=

∫ b
a (ut(t,x)+N [u](t,x)− f (t,x))dt

b−a
=ut(ξ,x)+N [u](ξ,x)− f (ξ,x)
= r(ξ,x). (3.12)

This implies that the two residuals r and rint are of similar order of magnitude, suggesting
α = 1 as a natural choice. Certainly, a more effective approach would be to adaptively
adjust the weight α, as discussed in [28, 30]. However, this is not the primary focus of
the current work. Therefore, for all numerical experiments conducted in this study, we
consistently set α=1 as a fixed value.

Computational cost of regularization term: While introducing a new regularization
term, it is essential to consider its computational cost, particularly in the context of nu-
merical quadrature. From Eqs. (3.9) and (3.10), we observe that the set of residual collo-
cation points Sr is used for discretizing the two residual loss terms. Before each update
of the loss function, we can compute and store the following values:

N [uN ](t
(i)
r ,x(j)

r ;θ)− f (t(i)r ,x(j)
r ), ∀i=1,··· ,Nt, j=1,··· ,Nx. (3.13)

These precomputed values can then be reused to evaluate the two residual loss terms,
minimizing redundant computations. As a result, the additional computational cost is
negligible and remains within acceptable limits.

The schematic diagram of the proposed approach is shown in Fig. 4, and the corre-
sponding algorithm is summarized in Algorithm 1.

3.2 Adaptive sampling strategy for IR-PINNs

In this section, we present an extension of the integral regularization PINNs (IR-PINNs)
by incorporating the adaptive sampling strategy proposed in [10]. This extension further
enhances the performance of IR-PINNs when addressing more complex and challenging
scenarios, such as low-regularity problems or unbounded domain problems.

The basic idea is to construct a continuous joint probability density model p(t,x;θ f )

to approximate the distribution induced by the residual r2(t,x;θ) in (2.4) as

p(t,x;θ f )= ppoly(t;θ f ,1)pB−KRnet(x|t;θ f ,2), (3.14)
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Figure 4: Schematic diagram of integral regularization PINNs.

Algorithm 1 Solving evolution equations via integral regularization PINNs

Input: Terminal time T, number of subintervals N, numerical quadrature points set Q,
number of training epochs Ne, initial learning rate l(0)r , decay rate η, step size ns.
Generate the training datasets Sr, Sint, Sic and Sbc.
Set lr to l(0)r .
for e=1,··· ,Ne do

if e%ns ==0 then
lr =η∗lr.

end if
Compute the shared values in (3.13) using the datasets Sr and Sint.
Compute the residual loss function L̂r,new(θ) using the datasets Sr, Sint and shared

values.
Compute the initial and boundary loss functions L̂ic(θ) and L̂bc(θ) using the dataset

Sic and Sbc.
Compute the total loss function L̂(θ) in Eq. (3.11).
Update θ by stochastic gradient descent method.

end for
Output: The predicted solutions uN(t,x;θ∗).

where ppoly(t;θ f ,1) is parameterized by the polynomial spline layer [21], pB−KRnet(x|t;θ f ,2)
is parameterized by the bounded KRnet [33] and θ f = {θ f ,1,θ f ,2}. We give a brief intro-
duction for the polynomial spline layer and the bounded KRnet in Appendix A.
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To seek the optimal parameter θ f , we can minimize the following objective

DKL(r̂(t,x;θ)||p(t,x;θ f ))

=DKL
(
r̂(t,x;θ)||ppoly(t;θ f ,1)pB−KRnet(x|t;θ f ,2)

)
=
∫∫

r̂(t,x;θ)log(r̂(t,x;θ))dxdt−
∫∫

r̂(t,x;θ)log
(

ppoly(t;θ f ,1)pB−KRnet(x|t;θ f ,2)
)

dxdt,

(3.15)
where DKL indicates the Kullback-Leibler (KL) divergence and r̂(t,x;θ) is the distribution
induced by r2(t,x;θ) and the well-trained parameters θ∗f = {θ∗f ,1,θ∗f ,2} is obtained. The
first term on the right-hand side in (3.15) represents the negative differential entropy of
r̂(t,x;θ), which does not affect the optimization process with respect to θ f . So minimizing
the KL divergence is equivalent to minimizing the cross entropy between r̂(t,x;θ) and
p(t,x;θ f )

H(r̂(t,x;θ),p(t,x;θ f ))=−
∫∫

r̂(t,x;θ)log
(

ppoly(t;θ f ,1)pB−KRnet(x|t;θ f ,2)
)

dxdt. (3.16)

Since the samples from r̂(t,x;θ) are not available, we approximate the cross entropy up
to a constant scaling factor T|Ω| using the importance sampling technique:

H(r̂(t,x;θ),p(t,x;θ f ))

≈− 1
Nr

Nr

∑
i=1

r̂(ti,xi;θ)
ppoly(ti;θ f ,1)pB−KRnet(xi|ti;θ f ,2)

(
logppoly(ti;θ f ,1)+logpB−KRnet(xi|ti;θ f ,2)

)
,

(3.17)
where

ti ∼ ppoly(t;θ f ,1), xi ∼ pB−KRnet(x|ti;θ f ,2). (3.18)

More details about the adaptive sampling approach can be found in [10].
Considering that the residuals r2(t,x;θ) are computed only at the discrete temporal

points set Q=∪N−1
k=0 Q(k)

r , we will employ a discrete distribution pdis(t;θ f ,1) based on the
continuous distribution ppoly(t;θ f ,1):

pdis(t;θ f ,1)=



∫ (s0+s1)/2
0 ppoly(s;θ f ,1)ds, t= s0,∫ (si+si+1)/2
(si−1+si)/2 ppoly(s;θ f ,1)ds, t= si, 0< i<N,∫ 1
(sN−1+sN)/2 ppoly(s;θ f ,1)ds, t= sN ,

0, otherwise,

(3.19)

where s0,s1,··· ,sN are the ordered arrangement of all points in the set Q. Then Nnew sam-
ples {t(j)}Nnew

j=1 are generated from the discrete distribution pdis(t;θ f ,1), along with their

corresponding spatial points x(j) ∼ pB−KRnet(x|t(j);θ f ,2) for each t(j). Finally, we reorder
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Figure 5: Schematic diagram of adaptive sampling.

the newly generated data into the original spatial domain

x(j)∈S(k,i)
r,new, if t(j)= t(k,i)

r , ∀j=1,··· ,Nnew, k=0,··· ,N−1, i=1,··· ,M, (3.20)

x(j)∈S(k)
int,new, if t(j)∈T(k), ∀j=1,··· ,Nnew, k=0,··· ,N−1, (3.21)

where T(k)=Q(k)
r for IR-PINNs1 and T(k)=∪k

p=0Q(p)
r for IR-PINNs2. Now we refine the

training set for the residual loss function L̂r,new(θ) as follows:

Sr =∪N−1
k=0 ∪M

i=1(S
(k,i)
r ∪S(k,i)

r,new), (3.22)

Sint=∪N−1
k=0 S(k)

int,new. (3.23)

Then we continue training with the updated training datasets Sr and Sint until the train-
ing is terminated and the final solution is obtained. A schematic diagram representing
adaptive sampling is shown in Fig. 5. The detailed algorithm is summarized in Algo-
rithm 2.

4 Numerical experiments

In this section, we conduct some numerical experiments to demonstrate the effective-
ness of the proposed method. Specifically, we will approximate the Lorenz system, the
Kuramoto-Sivashinsky equation, the Boussinesq-Burgers equations, and the nonlinear
time-dependent Fokker-Planck equation. Throughout all benchmarks, we will employ
the fully-connected neural network equipped with hyperbolic tangent activation func-
tions (Tanh) and initialized using the Glorot normal scheme [12]. All neural networks
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Algorithm 2 Adaptive sampling strategy for IR-PINNs

Input: Number of adaptive iteration Nadaptive, number of adaptive training epochs Na,

number of newly added points Nnew, initial training datasets S(0)
r , S(0)

int , Sic and Sbc,
initial probability density model p(t,x;θ∗,(0)

f ).

Solve evolution equation via Algorithm 1 to obtain u(t,x;θ∗,(0)).
for k=0,··· ,Nadaptive−1 do

// Train probability density model.
for j=1,··· ,Na do

Generate samples from p(t,x;θ∗,(k)
f ).

Update p(t,x;θ∗,(k+1)
f ) by descending the stochastic gradient of (3.17).

end for
// Refine training datasets.
Generate new training samples Sr,new through p(t,x;θ∗,(k+1)

f ).

Update training datasets S(k+1)
r and S(k+1)

int based on (3.22) and (3.23).
Solve evolution equation via Algorithm 1 to obtain u(t,x;θ∗,(k+1)).

end for
Output: The predicted solution uN(t,x;θ∗).

are trained via full-batch gradient descent using the Adam optimizer with default set-
tings [15]. For the approximation of the integral in the regularization term, we employ
Gaussian quadrature formula. Considering the highly chaotic behavior of the solutions
in the first two examples, we utilize 64-bit double-precision floating-point numbers in
our numerical simulations. All experiments are implemented by JAX [1].

In order to test the validity of the method, we use the following relative L2 error:

errL2 =

√
∑Ntest

i=1 |uN(ti,xi;θ)−u(ti,xi)|2√
∑Ntest

i=1 |u(ti,xi)|2
, (4.1)

where Ntest represents the total number of test points chosen randomly in the domain,
and uN(ti,xi;θ) and u(ti,xi) represent the numerical and the reference solution values,
respectively.

4.1 Lorenz system

We start with the chaotic Lorenz system, an ODE system. It is well known that this system
exhibits strong sensitivity to its initial conditions, which can trigger divergent trajectories
in finite time if the numerical predictions sought are not sufficiently accurate. The system
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is described by the following ordinary differential equations

dx
dt

=σ(y−x),

dy
dt

= x(ρ−z)−y,

dz
dt

= xy−βz.

(4.2)

Here, we consider a classical setting with σ=3, ρ=28 and β=8/3. The temporal domain
is [0,20] and initial conditions are [x(0),y(0),z(0)]= [1,1,1].

In this example, we employ the time-marching strategy and partition the temporal
domain [0,20] into 40 subdomains. The details of the time-marching strategy can be
found in Appendix B. For each subdomain, we construct a 5-layer fully-connected neu-
ral network with 512 neurons per hidden layer. The initial learning rate is 10−3, with an
exponential decay rate of 0.9 applied every 2,000 training epochs. The maximum num-
ber of training epochs is 150,000. We divide the subdomain into N=64 subintervals and
in each subinterval, the number of Gaussian quadrature points is M = 4. Since Lorenz
system is highly sensitive to the initial condition, we exactly impose the initial condition
by

x̃N(t;θ)= txN(t;θ)+x(0), (4.3)
ỹN(t;θ)= tyN(t;θ)+y(0), (4.4)
z̃N(t;θ)= tzN(t;θ)+z(0). (4.5)

For a fair comparison of our method with PINNs, we employ the same hyperparame-
ter settings. Fig. 6 and Fig. 7 present the predicted trajectories in comparison with the
reference trajectories, which are obtained using scipy.integrate.odeint with default
settings. In Table 1, we provide the relative L2 errors and running time, demonstrat-
ing that IR-PINNs1 and IR-PINNs2 achieve superior accuracy at an acceptable computa-
tional cost.

We also compare the performance and computational cost of the proposed method
with causal PINNs. In [27], causal PINNs employ the same hyperparameter settings,
time-marching strategy, and embedding of initial conditions. The only difference is
that causal PINNs generate the same number of equidistant points instead of Gaussian
quadrature points in the temporal direction. We can see that the proposed method shows
better performance compared to causal PINNs in Table 2. Additionally, casual PINNs re-
quire a total of more than 6,000,000 training epochs, indicating that the running time is
at least greater than that of PINNs, and similar to or even more than that of the proposed
method.
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Figure 6: Lorenz system: Comparison between the reference and numerical solutions.
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Figure 7: Lorenz system: Absolute errors of x(t), y(t), and z(t).

4.2 Kuramoto-Sivashinsky equation

The next example aims to demonstrate the effectiveness of the proposed method in tack-
ling spatial-temporal chaotic systems. Consider one-dimensional Kuramoto-Sivashinsky
equation, which has been independently derived in the context of reaction-diffusion sys-
tems and flame front propagation. The Kuramoto-Sivashinsky equation is a classic model
describing spatial-temporal chaotic dynamical behavior. The equation is expressed as fol-
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Table 1: Lorenz system: Relative L2 errors and running time of different methods.

Relative L2 error PINNs IR-PINNs1 IR-PINNs2
x 5.5445×10−1 3.8330×10−2 3.5086×10−3

y 6.0381×10−1 5.5684×10−2 5.1053×10−3

z 9.1354×10−2 2.3450×10−2 2.1651×10−3

Running time (hours) 1.557 1.961 1.931

Table 2: Lorenz system: Relative L2 errors between the proposed method and causal PINNs.

Relative L2 error IR-PINNs2 Causal PINNs
x 3.5086×10−3 1.139×10−2

y 5.1053×10−3 1.656×10−2

z 2.1651×10−3 7.038×10−3

lows:
ut+αuux+βuxx+γuxxxx =0, (4.6)

subject to periodic boundary conditions and an initial condition

u(0,x)=u0(x). (4.7)

Here we set α = 100/16, β = 100/162,γ = 100/164, for a fixed spatial domain in [0,2π].
For validation, we use the Chebfun package [9] with a spectral Fourier discretization
with 512 modes and a fourth-order stiff time-stepping scheme (ETDRK4) with time-step
size 10−5. Starting from the initial condition u0(x) = cos(x)(1+sin(x)), we select the
numerical solution at t = 0.4 as our initial condition in the chaotic regime. Our goal is
to learn the associated solution from initial time t0 = 0.4 to terminal time T = 0.9. The
reference solution is shown in Fig. 8.

In this example, we employ the time-marching strategy and partition the temporal
domain [0,0.5] into 5 subdomains. For each subdomain, we construct a 5-layer fully-
connected neural network with 512 neurons per hidden layer. The initial learning rate is
10−3, with an exponential decay rate of 0.9 applied every 5,000 training epochs. The max-
imum number of training epochs is 600,000. We divide the subdomain into N=8 subin-
tervals and in each subinterval, the number of Gaussian quadrature points is M=4. Spa-
tially we choose 256 equidistant points for enforcing the PDE residual and 512 equidistant
initial points. To further simplify the training objective, we also strictly impose the pe-
riodic boundary conditions by embedding the input coordinates into Fourier expansion
(see Appendix C). The initial loss weight coefficient is set to λ2=10,000.

The numerical results are summarized in Fig. 9, from which one can see that the nu-
merical solutions of IR-PINNs1 and IR-PINNs2 exhibit good agreements with the refer-
ence solution. In Fig. 10, we can clearly observe that for PINNs, the relative L2 error
experiences a sudden and significant increase within the temporal subdomain [0.1,0.2],
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Figure 9: Kuramoto-Sivashinsky equation: Numerical solutions and absolute errors.
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Figure 10: Kuramoto-Sivashinsky equation: Relative L2 errors over time.
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Table 3: Kuramoto-Sivashinsky equation: Relative L2 errors and running time of different methods.

Relative L2 error PINNs IR-PINNs1 IR-PINNs2
u 1.1278×10−1 6.9356×10−3 3.9945×10−3

Running time (hours) 46.91 49.36 48.23

Table 4: Kuramoto-Sivashinsky equation: Relative L2 errors between the proposed method and causal PINNs.

Relative L2 error IR-PINNs2 Causal PINNs
u 3.9945×10−3 2.2600×10−2

resulting in a substantial deviation between the initial values and the true values in sub-
sequent temporal subdomains, ultimately leading to the failure of the simulation. In
contrast, both IR-PINNs1 and IR-PINNs2 effectively control the rise of the error. Table
3 provides the relative L2 errors and running time, demonstrating that our proposed
method is equally effective in describing the PDEs of complex chaotic systems.

We also compare the performance and computational cost of the proposed method
with causal PINNs. Similar to the previous example, under the premise of employing
the same hyperparameter settings, time-marching strategy, and embedding of periodic
boundary conditions, the proposed method demonstrates a more significant improve-
ment in accuracy compared to causal PINNs in Table 4. Additionally, casual PINNs re-
quire a total of more than 3,000,000 training epochs, indicating that the running time is
at least greater than that of PINNs, and similar to or even more than that of the proposed
method.

4.3 Boussinesq-Burgers equations

In order to demonstrate the effectiveness of the adaptive sampling strategy, we con-
sider the Boussinesq-Burgers equations, a coupled system of nonlinear partial differen-
tial equations that model the interaction of nonlinearity and dispersion in shallow water
wave dynamics, with Dirichlet boundary conditions,

ut+2uux−
1
2

vx =0,

vt+2(uv)x−
1
2

uxxx =0, t∈ [t0,t1], x∈ [x0,x1].
(4.8)

The one-soliton solution of the Boussinesq-Burgers equations is as follows

u(t,x)=−
exp(−x+ 7

2 t−7)
2(1+exp(−x+ 7

2 t−7))
+2,

v(t,x)=−
exp(−x+ 7

2 t−7)
2(1+exp(−x+ 7

2 t−7))2
,

(4.9)
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Figure 11: Boussinesq-Burgers equations: Reference solutions of u(t,x) and v(t,x).

where the spatial-temporal domain is [t0,t1]×[x0,x1]=[0,4]×[−20,20], as shown in Fig. 11.
Initial and boundary conditions are obtained from the exact solution.

For the training process, we construct two 4-layer fully-connected neural networks
with 64 neurons per hidden layer. The initial learning rate is 10−3, with an exponential
decay rate of 0.9 applied every 500 training epochs. The maximum number of training
epochs is 20,000. We divide the subdomain into N=8 subintervals and in each subinter-
val, the number of Gaussian quadrature points is M=4. Before the first training, we select
8×4×16 collocation points for enforcing the PDE residual, 256 equidistant initial points
and 256 equidistant boundary points. The boundary and initial loss weight coefficients
are both set to λ2=λ3=10.

The number of adaptive iterations is 2. For each adaptive iteration, we take 20 bins for
polynomial spline layer and 8 CDF coupling layers for bounded KRnet, with each layer
parameterized by a 2-layer fully-connected neural network with 64 neurons. We ran-
domly generate 8×4×100 samples for evaluating PDE residual as our initial training set
and the maximum number of adaptive training epochs for training p(t,x;θ f ) is 3,000. To
refine the training set, we generate 8×4×8 new samples from the density model p(t,x;θ f ).

In Fig. 12 and Fig. 13, the numerical solutions and absolute errors of different methods
are presented. We observe that IR-PINNs1 and IR-PINNs2 are still capable of enhancing
the accuracy of the solutions when all methods employ the adaptive sampling strategy,
as evidenced by Fig. 14 and Table 5. However, it should be noted that if the evolution
pattern of the solution in the temporal direction is relatively simple, the dominant source
of error may stem from spatial discretization, such that the introduction of an integral-
based regularization term results in modest improvement in accuracy. Additionally, the
adaptive algorithm generates different spatial points at different times. Consequently,
it is not feasible to discretize both residual terms simultaneously using the same set of
points during the computation, which leads to an increase in the overall computation
time.

In Fig. 15 and Fig. 16, we present the relative L2 errors and newly generated points
at different adaptive iterations. We can observe that the new training points are pri-
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Figure 12: Boussinesq-Burgers equations: Numerical solutions and absolute errors of u(t,x).
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Figure 13: Boussinesq-Burgers equations: Numerical solutions and absolute errors of v(t,x).

Table 5: Boussinesq-Burgers equations: Relative L2 errors and running time of different methods.

Relative L2 error PINNs IR-PINNs1 IR-PINNs2
u 8.1022×10−4 5.9748×10−4 5.3934×10−4

v 5.0101×10−2 3.0561×10−2 3.2439×10−2

Running time (hours) 0.3288 0.3693 0.4173
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Figure 14: Boussinesq-Burgers equations: Relative L2 errors over time.
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Figure 15: Boussinesq-Burgers equations: Relative L2 errors at different adaptive iterations.
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Figure 16: Boussinesq-Burgers equations: New samples generated by probability density model p(t,x;θ f ) of
two adaptive iterations.
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marily concentrated in the middle region where the gradient is larger. As the training
progresses, the residuals become more evenly distributed, resulting in a more uniform
spatial distribution of the points.

4.4 Time-dependent Fokker-Planck equation

In this example, we consider an unbounded domain problem, time-dependent Fokker-
Planck equation, which is a fundamental model in statistical physics and describes the
evolution of the probability density function of a stochastic process. We start from the
following stochastic differential equation

dXt =−µ(t,Xt)dt+σ(t,Xt)dWt, (4.10)

where Xt and µ(t,Xt) are d-dimensional random vectors, σ(t,Xt) is a d×M matrix and Wt
is a M-dimensional standard Wiener process. The corresponding Fokker-Planck equation
is given by

∂p(t,x)
∂t

=−∇·(µ(t,x)p(t,x))+
1
2
∇·

(
∇·

(
σ(t,x)σ(t,x)T p(t,x)

))
, (4.11)

where p(t,x) is the probability density function of Xt, µ is the drift term and σ is the
diffusion term. Generally, the solution of the time-dependent Fokker-Planck equation is
defined over an unbounded domain with the following boundary condition:

p(t,x)→0, as ∥x∥→∞. (4.12)

Moreover, since the solution is a probability density function, it must satisfy the non-
negativity and normalization constraints:

p(t,x)≥0,
∫

Rd
p(t,x)dx≡1. (4.13)

We consider a two-dimensional nonlinear Fokker-Planck equation with the following
drift and diffusion terms

µ=(x2,x1−0.4x2−0.1x3
1), σ=diag(0,

√
0.8) (4.14)

with the initial condition

p(0,x)=
1

2π|Σ0|1/2 exp
(
−1

2
(x−µ0)

TΣ−1
0 (x−µ0)

)
, (4.15)

where µ0 =(0,5) and Σ0 = I2. The temporal domain is [0,10] and we obtain the reference
solution by the ADI scheme [23] in a truncated domain [−10,10]×[−10,10], with mesh
size δt=0.005 and δh=0.01.
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Figure 17: Time-dependent Fokker-Planck equation: Reference solutions at t=2,6,10.

Here we directly approximate the solution of time-dependent Fokker-Planck equa-
tion by temporal normalizing flow [11], a probability density model, which satisfies the
properties in (4.12) and (4.13) automatically. Since it is a long-time simulation, we em-
ploy the time-marching strategy and partition the temporal domain [0,10] into 10 sub-
domains. For each subdomain, we use the actnorm layer and 8 affine coupling layers
with each layer parameterized by a 2-layer fully-connected neural network with 64 neu-
rons. The initial learning rate is 10−3, with an exponential decay rate of 0.9 applied every
500 training epochs. The maximum number of training epochs is 20,000. We divide the
subdomain into N = 10 subintervals and in each subinterval, the number of Gaussian
quadrature points is M=4. The initial loss weight coefficient is set to λ2=100.

To further improve the accuracy of the solution, we first generate 1,000 sample paths
by the Euler-Maruyama method [16] with δt = 0.01 and pre-train the neural network
model for 2,000 epochs with the data to obtain a good initialization. The details of the
pre-training approach are provided in the Appendix D. Subsequently, we generate 100
spatial points for each temporal collocation point by the pre-trained model and 1,000
initial points from the initial condition. Then we proceed with adaptive training. The
number of adaptive iterations is 2 for each subdomain and for each adaptive iteration, we
newly generate 10×4×100 adaptive sample points. Note that temporal normalizing flow
is inherently a probability density model, so we can directly perform adaptive sampling
using this model.

We present the reference solutions, numerical solutions and absolute errors of differ-
ent methods at t = 2,6,10 in Figs. 17-20. The results demonstrate that our method can
be directly combined with an adaptive sampling strategy for solving time-dependent
Fokker-Planck equation using temporal normalized flows. Similar to the previous exam-
ple, due to the difficulties caused by the evolving physical localization, the improvements
from temporal discretization are limited, as shown in Fig. 21 and Table 6 in terms of the
relative L2 error and relative KL divergence. In Fig. 22, we present the adaptively gener-
ated samples of the last adaptive iteration at t=2,6,10.



X. Feng et al. / Commun. Comput. Phys., 39 (2026), pp. 356-386 379

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Numerical p(2, x1, x2)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Numerical p(6, x1, x2)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Numerical p(10, x1, x2)

0.00

0.02

0.04

0.06

0.08

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Absolute error at t = 2

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
x 2

Absolute error at t = 6

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Absolute error at t = 10

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Figure 18: Time-dependent Fokker-Planck equation: Numerical solutions and absolute errors of PINNs at t=
2,6,10.
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Figure 19: Time-dependent Fokker-Planck equation: Numerical solutions and absolute errors of IR-PINNs1 at
t=2,6,10.
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Figure 20: Time-dependent Fokker-Planck equation: Numerical solutions and absolute errors of IR-PINNs2 at
t=2,6,10.
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Figure 21: Time-dependent Fokker-Planck equation: Relative L2 errors and relative KL divergences over time.

Table 6: Time-dependent Fokker-Planck equation: Relative L2 errors and running time of different methods.

PINNs IR-PINNs1 IR-PINNs2
Relative L2 error 6.3784×10−2 5.3724×10−2 5.6185×10−2

Relative KL divergence 2.0582×10−3 2.0117×10−3 1.8202×10−3

Running time (hours) 9.612 21.06 24.47
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Figure 22: Time-dependent Fokker-Planck equation: New samples generated by probability density model
p(t,x;θ f ) of the last adaptive iteration at t=2,6,10.

5 Conclusion

In this paper, we have proposed integral regularization physics-informed neural net-
works (IR-PINNs) to address the challenges of solving evolution equations, particularly
in capturing long-time dynamics and reducing temporal error accumulation. By refor-
mulating the equations into an integral form and incorporating an integral-based resid-
ual term, IR-PINNs enhance temporal accuracy and improve the resolution of temporal
correlations. The addition of an adaptive sampling strategy further ensures higher ac-
curacy in regions with sharp gradients or rapid variations. Numerical experiments on
benchmark problems have demonstrated the effectiveness of IR-PINNs. Future research
directions include investigating the underlying mechanisms of how the integral-based
regularization term improves accuracy and determining its applicability to a broader
range of equations. Additionally, exploring more effective adaptive sampling strategies
could further enhance computational efficiency and solution precision. In summary, IR-
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PINNs offer a robust and accurate framework for solving evolution equations, advancing
the field of physics-informed machine learning and its applications to dynamic systems.
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A Normalizing flow

For the polynomial spline layer, without loss of generality, we assume that t∈ [0,1]. We
aim to find an invertible transformation z= fpoly(t) such that

ppoly(t)= pZ( fpoly(t))|det∇t fpoly(t)|, Z∼U [0,1], (A.1)

where U denotes the uniform distribution. To parameterize fpoly, we let 0= l0< l1< ···<
lm−1 < lm = 1 be a given partition of the unit interval and {k j}m

j=0 be the corresponding
weights satisfying ∑j k j =1. A piecewise linear polynomial can be defined as follows:

ppoly(t)=
k j+1−k j

lj+1−lj
(t−lj)+k j, ∀t∈ [lj,lj+1], (A.2)

and the corresponding cumulative probability function fpoly is

fpoly(t)=
k j+1−k j

2(lj+1−lj)
(t−lj)

2+k j(t−lj)+
j−1

∑
i=0

ki+ki+1

2
(li+1−li), ∀t∈ [lj,lj+1]. (A.3)

To satisfy
∫ 1

0 p(t)dt=1, we can model {k j}m
j=0 as

k j =
exp(k̃ j)

C
, ∀j=0,··· ,m, (A.4)

where θ f ,1 = {k̃ j}m
j=0 are trainable parameters of fpoly(t;θ f ,1) and C is a normalization

constant:

C=
m−1

∑
i=0

(exp(k̃i)+exp(k̃i+1))(li+1−li)
2

. (A.5)

For the bounded KRnet, given x ∈ Rd, we seek an invertible transformation y =
fB−KRnet(t,x)∈Rd for any given t such that

pB−KRnet(x|t)= pY(y)|det∇x fB−KRnet(t,x)|, Y ∼U [−1,1]d, ∀s. (A.6)
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Here we employ a conditional bounded KR-net to parameterize fB−KRnet(t,x). The basic
idea is to define the structure of fB−KRnet(t,x) in terms of the Knothe-Rosenblatt rear-
rangement [3], which has a block low-triangular structure

y= fB−KRnet(t,x;θ f ,2)=


f1(t,x1;θ f1,2)
f2(t,x1,x2;θ f2,2)
...
fm(t,x1,··· ,xm;θ fm,2)

, (A.7)

where θ f ,2={θ f1,2,θ f2,2,··· ,θ fm,2} includes all the model parameters and [x1,x2,··· ,xm] cor-
responds to a partition of x. The sub-transformations f1,··· , fm consist of affine linear
layers, squeezing layers and CDF coupling layers and more details can be found in [33].

B Time-marching strategy

Following the methodology proposed in [31], we implement a time-marching strategy to
enhance the convergence of IR-PINNs when applied to long-time integration problems.
Specifically, we partition the temporal domain [0,T] into subdomains

[0,∆t],[∆t,2∆t],··· ,[(N−1)∆t,N∆t], ∆t=T/N. (B.1)

We build a single neural network for each subdomain, training consecutively by using
the final prediction of the current subdomain as the initial condition for the next, until
the entire temporal domain is fully trained.

C Exact periodic boundary conditions

Following the work from [7, 27], we can enforce exact C∞ periodic boundary conditions
by constructing a Fourier feature embedding of the form

v(x)={1,cos(ωx),sin(ωx),··· ,cos(Mωx),sin(Mωx)} (C.1)

as the spatial input to the neural network, where ω= 2π
L ,L= xmax−xmin, and M is a non-

negative integer representing the frequency of the input. In this work, we take M=5.

D Pre-training approach for the time-dependent Fokker-Planck
equation

Assuming we can obtain some sample paths directly from the SDE (4.10) using Euler-
Maruyama method [16], the accuracy of the numerical solution will be further improved.
Specifically, for a given set of Nt temporal points {tj}Nt

j=1, we generate Np paths {X(i)
t }Np

i=1:

X(i)
t =

(
(t1,x(i)1 ),(t2,x(i)2 ),··· ,(tNt ,x

(i)
Nt
)
)

, i=1,2,··· ,Np. (D.1)
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Subsequently, the neural network can be pre-trained by minimizing the negative log-
likelihood loss [19], formulated as:

Ldata=− 1
NpNt

Np

∑
i=1

Nt

∑
j=1

logp(tj,x
(i)
j ). (D.2)
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