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•  By integrating the Knothe-Rosenblatt (KR) rearrangement into the structure of the flow-based generative model, the performance is
significantly improved.
•  The affine coupling layer of the real-valued non-volume preserving (real-NVP) model has been reformulated to increase the robustness.
•  New bijection layers, including a rotation layer and a component-wise nonlinear invertible layer, are introduced for further improvement.
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In  this  work,  we  develop  an  invertible  transport  map,  called  KRnet,  for  density  estimation  by
coupling the Knothe-Rosenblatt (KR) rearrangement and the flow-based generative model, which
generalizes  the  real-valued  non-volume  preserving  (real-NVP)  model  [Dinh,  et  al.,  arX-
iv:1605.08803v3]. The triangular structure of the KR rearrangement breaks the symmetry of the real
NVP in terms of the exchange of information between dimensions, which not only accelerates the
training process but also improves the accuracy significantly. We have also introduced several new
layers  into  the  generative  model  to  improve  both  robustness  and  effectiveness,  including  a
reformulated  affine  coupling  layer,  a  rotation  layer  and  a  component-wise  nonlinear  invertible
layer. The KRnet can be used for both density estimation and sample generation especially when
the dimensionality is relatively high. Numerical experiments have been presented to demonstrate
the performance of KRnet.
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Density estimation is a challenging problem for high-dimen-
sional  data  [1].  Some  techniques  or  models  have  recently  been
developed  in  the  framework  of  deep  learning  under  the  term
generative modeling.  Generative  models  are  usually  with  likeli-
hood-based  methods,  such  as  the  autoregressive  models  [2–5],
variational  autoencoders  (VAE)  [6],  and  flow-based  generative
models [7–9]. A particular case is the generative adversarial net-
works (GANs) [10], which requires finding a Nash equilibrium of
a game. All generative models rely on the ability of deep nets for
the nonlinear approximation of high-dimensional mapping.

We  pay  particular  attention  to  the  flow-based  generative
models for  the  following  several  reasons.  First,  it  can  be  re-

garded as construction of a transport map instead of a probabil-
istic model such as the autoregressive model. Second, it does not
enforce a dimension reduction step as what the VAE does. Third,
it provides an explicit likelihood in contrast to the GAN. Further-
more,  the  flow-based  generative  model  maintains  explicitly  the
invertibility  of  the transport  map,  which cannot  be achieved by
numerical  discretization  of  the  Monge-  A  mpére  flow  [11].  In  a
nutshell, the flow-based generative model is the only model that
defines a transport  map with explicit  invertibility.  The potential
of  flow-based  generative  modeling  is  twofold:  First,  it  works  for
both  density  generation  and  sample  generation  at  the  same
time. This property may bring efficiency to many problems. For
example, it  can be coupled with the importance sampling tech-
nique [12] or used to approximate the a posterior distribution in
Bayesian  statistics  as  an  alternative  of  Markov  Chain  Monte
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Carlo (MCMC) [13]. Second, it can be combined with other tech-
niques such as GAN or VAE to obtain a refined generative model
[14, 15].

Z = f (Y ) ∈Rn f (·)
Y , Z ∈Rn pY pZ

Y Z

The goal of flow-based generative modeling is to seek an in-
vertible  mapping  where  is  a  bijection,  and

 are two random variables. Let  and  be the probab-
ility density functions (PDFs) of  and , respectively. We have

pY (y) = pZ ( f (y))
∣∣det∇y f

∣∣ . (1)

f (·) f (·)
Z

f (·)

f (·)

To construct ,  the main difficulties are twofold: (1)  is
highly  nonlinear  since  the  prior  distribution  for  must  be
simple  enough,  and  (2)  the  mapping  is  a  bijection.  Flow-
based generative models deal  with these difficulties by stacking
together a sequence of simple bijections, each of which is a shal-
low  neural  network,  and  the  overall  mapping  is  a  deep  net.
Mathematically, the mapping  can be written in a composite
form:

z = f (y) = f[L] ◦ . . .◦ f[1](y), (2)

f[i ] i f[i ](·)

f[i ]

y = (y1, y2) y1 ∈Rm

y2 ∈Rn−m f[i ]

where  indicates a coupling layer at stage . The mapping 
is expected to be simple enough such that its inverse and Jacobi
matrix can be easily computed. One way to define  is given by
the real NVP [8]. Consider a partition  with  and

. A simple bijection  is defined as

z1 = y1, (3)

z2 = y2 ⊙exp(log s(y1))+ t (y1), (4)

s t
y1 ⊙

s(y1) = 1
y2

s(y1) t (y1)

where  and  stand for  scaling and translation depending only
on ,  and  indicates  the  Hadamard  product  or  component-
wise product. When , the algorithm becomes non-linear
independent  component  estimation  (NICE)  [7].  Note  that  is
updated  linearly  while  the  mappings  and  can  be
arbitrarily complicated, which are modeled as a neural network
(NN),

(log s, t ) =NN(y1). (5)

The simple bijection given by Eqs. (3) and (4) is also referred
to as an affine coupling layer [8]. The Jacobian matrix induced by
one affine coupling layer is lower triangular:

∇y z =
[

I 0

∇y1
z2 diag(s(y1))

]
, (6)

whose determinant can be easily computed as

log |det∇y z | =
n−m∑
i=1

log |si (y1)|. (7)

y
Since an affine coupling layer only modifies a portion of the

components  of  to  some  extent,  a  number  of  affine  coupling
layers need to be stacked together to form an evolution such that
the desired distribution can be reached.

T : Z → Y
T#µZ =µY T#µZ

µZ Z µY (B) =µZ (T −1(B))

B T = f −1 f (·)

In the optimal transport theory, a mapping  is called
a transport map such that , where  is the push-for-
ward  of  the  law  of  such  that  for  every
Borel set  [16]. It is seen that , where  is the invertible
mapping  for  the  flow-based  generative  model.  In  general,  we

Yi = T (Z1, . . . , Zn) Zi = f (Y1, . . . ,Yn)
Y Z

T

have  or , i.e., each component of
 or  depends on all components of the other random variable.

The  Knothe-Rosenblatt  rearrangement  says  that  the  transport
map  may have a lower-triangular structure such that

z = T −1(y) = f (y) =


f1(y1)

f2(y1, y2)
...
fn(y1, y2, . . . , yn)

 . (8)

It is shown in Ref. [17] that such a mapping can be regarded
as  a  limit  of  a  sequence  of  optimal  transport  maps  when  the
quadratic  cost  degenerates.  More  specifically,  the  Rosenblatt
transformation is defined as

z1 = P (Y1 ≤ y1) = F1(y1),
z2 = P (Y2 ≤ y2|Y1 = y1) = F2(y2|y1),

...
zn = P (Yn ≤ yn |Yn−1 = yn−1, . . . ,Y1 = y1)
= Fn(yn |yn−1, . . . , y1),

where

P (Zi ≤ zi ; i = 1, . . . ,n)

=
∫

{Z |Zi ≤zi }

dyn
Fn(yn |yn−1, . . . , y1) . . .dy1

F1(y1)

=
∫

{Z |Zi ≤zi }

dzn . . .dz1 =
n∏

i=1

zi ,

Zi

[0,1]

Z [0,1]n

Y

which  implies  that  are  uniformly  and  independently
distributed on . Thus the Rosenblatt transformation provides
a lower-triangular mapping to map , which is uniform on 
and has i.i.d. components, to an arbitrary random variable .

y = (y1, . . . , yK )
yi = (yi ,1, . . . , yi ,m) 1 ≤ K ≤ n 1 ≤ m ≤ n∑K

i=1 dim(yi) = n

Motivated by the Knothe-Rosenblatt rearrangement, we pro-
pose a block-triangular invertible mapping as a generalization of
real  NVP.  Consider  a  partition  of ,  where

 with  and ,  and
. We define an invertible bijection, called KRnet,

z = f (y) =


f̂1(y1)

f̂2(y1, y2)
...

f̂K (y1, . . . , yK )

 , (9)

K −1
K f̂i

L

whose  structure  is  consistent  with  the  Knothe-Rosenblatt
rearrangement.  The  flow  chart  of  KRnet  is  illustrated  in Fig.  1.
Before  a  detailed  explanation  of  each  layer,  we  fist  look  at  the
main  structure  of  KRnet,  which  mainly  consists  of  two  loops:
outer loop and inner loop, where the outer loop has  stages,
corresponding  to  the  mappings  in  Eq. (9),  and  the  inner
loop  has  stages,  corresponding  to  the  number  of  affine
coupling layers.

f outer
[i ]● Outer  loop.  Let  indicate  one  iteration  of  the  outer

loop. We have

z = f (y) = LN ◦ f outer
[K−1] ◦ . . .◦ f outer

[1] (y), (10)

y (k) = f outer
[k] (y (k−1)) y (0) = y k = 1, . . . ,K −1

LN

where  with , ,  indicates
each  iteration  of  the  outer  loop,  and  is  a  component-wise
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y (k) = (y (k)
1 , . . . , y (k)

K )
y (k)

i

K − i +1
y (k)

K

k = 1 y (k)
K−1 k > 2

k
K

m
n m = 1

nonlinear  invertible  layer.  Each  has  the  same
partition. The ith partition  will remain unchanged after stage

,  in  other  words,  we  always  freeze  the  last  partition  of
active  dimensions  whenever  needed.  For  example,  will  be
updated only when  and  will  be fixed when .  This
way,  the  number  of  effective  dimensions  decreases  as 
increases. It should be noted that the number  of partitions is a
hyperparameter  that  can  be  tuned.  Intuitively,  may  be  small
when  is  not  large.  When ,  we deactivate  the dimensions
one by one.

f inner
[k,i ] f outer

[k]

● Inner loop. The inner loop mainly consists of a sequence of
general  coupling layers ,  based on which  can be writ-
ten as:

f outer
[k] = LS ◦ f inner

[k,L] ◦ . . .◦ f inner
[k,1] ◦LR , (11)

LR LS

f inner
[k,i ]

where  is  a  rotation  layer  and  is  a  squeezing  layer.  The
general  coupling  layer  includes  a  scale  and  bias  layer,
which plays a similar role to batch normalization.

f inner
[k,i ]

l
k

l r < 1 f inner
[1,i ]

M Mr k−1 f inner
[k,i ]

For  all  general  coupling  layers ,  we  usually  let  neural
network  Eq. (5) have  two  fully  connected  hidden  layers  of  the
same number of neurons, say . Since the number of effective di-
mensions decreases as  increases in the outer  loop,  we expect
that  decreases accordingly. We define a ratio .  If  has

 hidden neurons in total, the number becomes  for .
We now explain each layer in Fig. 1:

Squeezing  layer. In  the squeezing layer,  we simply  deactiv-
ate some dimensions using a mask

q = (1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
n−k

),

k q ⊙ y
n −k

which means that only the first  components, i.e., , will be
active  after  the  squeezing  layer  while  the  other 
components will remain unchanged.

Rotation layer. We define an orthogonal matrix

Ŵ =
[

W 0

0 I

]
,

W ∈Rk×k k q
I ∈R(n−k)×(n−k) Ŵ ŷ = Ŵ y

ŷ y Ŵ

where  with  being  the  number  of  1's  in ,  and
 is  an  identity  matrix.  Using ,  we  obtain 

subject  to  a  rotation  of  the  coordinate  system.  The  Jacobian
matrix between  and  is  whose determinant is needed. For
the sake of computation, we consider in reality:

Ŵ =
[

L 0

0 I

][
U 0

0 I

]
, (12)

W = LU W
L

U

where  is the LU decomposition of . More specifically,
 is a lower-triangular matrix, whose entries on the diagonal line

are 1, and  is a upper-triangular matrix. Then we have

detŴ = detL detU = detU =
n∏

i=1

ui i .

Ŵ Ŵ =V T

V

L U

One  simple  choice  to  initialize  is ,  where  the
column vectors of  are the eigenvectors of the covariance mat-
rix  of  the  input  vector.  The  eigenvectors  are  ordered  such  that
the associated eigenvalues decrease since the dimensions to be
deactivated are at the end. The entries in  and  are trainable.

α∥Ŵ TŴ − I∥2
F ∥ ·∥F

α> 0

L U

The orthogonality condition may be imposed through a penalty
term ,  where  indicates  the  Frobenius  norm
and  is a  penalty  parameter.  However,  numerical  experi-
ments show that a direct training of  and  without the ortho-
gonality condition enforced also works well.

Scale  and  bias  layer.  By  definition,  the  KRnet  is  deep.  It  is
well known that batch normalization can improve the propaga-
tion of  training signal  in  a  deep net  [18].  A simplification of  the
batch normalization algorithm is

ŷ = a ⊙ y +b, (13)

a b a b

a b

where  and  are trainable [9]. The parameters  and  will be
initialized  by  the  mean  and  standard  deviation  associated  with
the initial data. After the initialization,  and  will be treated as
regular trainable parameters that are independent of the data.

Reformulated affine coupling layer.  We redefine the affine
coupling layer of the real NVP as follows:

z1 = y1, (14)

z2 = y2 ⊙ [1+α tanh(s(y1))+eβ⊙ tanh(t (y1)], (15)

α ∈ (0,1) β ∈Rn

α ∈ (0,1)
|det∇y z | ∈ (0,+∞)

where  and .  First  of  all,  the  reformulated  affine
coupling layer adapts the trick of ResNet, where we separate out
the  identity  mapping.  Second,  we  introduce  the  constant

 to improve the conditioning. It is seen from Eq. (7) that
 for  the  original  real  NVP  while

 

LS:Squeezing layer

LN:Nonlinear invertible layer

for dimensions to be deactivated

K−1

L

Affine coupling layer

Scale and bias layer

LN
:Nonlinear invertible layer

for the rest dimensions

LR:Rotation layer

y

z

 innerf [k;i]

 

Fig. 1.   The flow chart of KRnet
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(1−α)n−m ≤ |det∇y z | ≤ (1+α)n−m

α= 1
|det∇y z | ∈ (0,2)

α= 0

eβ t (y1) eβ

y1

α= 0.6

 in our formulation.  Our scaling
can  alleviate  the  illnesses  when  the  scaling  in  the  original  real
NVP  occasionally  become  too  large  or  too  small.  When ,

.  This  case  is  actually  similar  to  real  NVP  in  the
sense  that  the  scaling  can  be  arbitrarily  small,  and  for  well-
scaled data by the scaling and bias layer, we do not expect a large
scaling will be needed. When , the formulation is the same
as NICE,  where no scaling is  included.  Third,  we also make the
shift  bounded  by  letting  it  pass  a  hyperbolic  tangent  function.
The  reason  for  such  a  modification  is  similar  to  that  for  the
scaling.  The  main  difference  here  is  the  introduction  of  the
trainable factor . Compared to ,  depends on the dataset
instead of  the value of ,  which helps  to  reduce the number of
outliers for sample generation. Numerical experience show that
our formulation in general works better than both real NVP and
NICE. We usually let .

y = F (x)
x ∈ [0,1] y ∈ [0,1] F (x)

[0,1]

Nonlinear invertible layer. It is seen that the affine coupling
layer is linear with respect to the variable to be updated. We in-
troduce component-wise nonlinear invertible mapping to allevi-
ate  this  limitation.  We  consider  an  invertible  mapping 
with  and , where  can be regarded as the cu-
mulative  distribution  function  of  a  random  variable  defined  on

. Then we have

F (x) =
∫ x

0

p(x)dx, (16)

p(x)
0 = x0 < x1 < . . . < xm+1 = 1 [0,1]

p(x) F (x)

p(x) ≡ cnst F (x)

Y Z (−∞,∞)
(−∞,∞) (0,1) F (x)

F −1(x) (0,1) (−∞,∞)
tensorflow.math.sigmoid(x)
x ⪆ 17.0 x float32

(−∞,∞) = (−∞,−a)∪ [−a, a]∪ (a,∞) a > 0 [−a, a]
y = F ((x +a)/(2a))

2ay −a [0,1]
[−a, a] (−∞,−a) (a,∞)

y = x
a

R R [−a, a]
(−∞, a)∪ (a,∞)

where  is  a  probability  density  function.  Let
 be  a  partition  of ,  on  which  we

define  as a piecewise linear polynomial. Then  will be a
quadratic  function,  whose  roots  can  be  explicitly  computed.
When ,  is  an  identity  mapping.  The  support  of
each  dimension  of  and  is .  Although  a  logistic
mapping  can  be  used  to  map  to ,  after  which 
can  be  implemented,  the  singularity  will  make  the  model  not
robust  when  is  used  to  map  back  to .  For
example,  the  sigmoid  function 
will be always equal to 1.0 when  if  is of type .
Our  strategy  is  simple,  we  decompose

 with .  On ,  we
implement  followed  by  an  affine  mapping

.  In  other  words,  we maps the domain to ,  and then
map the range back to . On  and , we just let

.  Since  the  scaled  data  will  be  roughly  centered  at  the
origin, we only need to choose a sufficiently large  to cover the
data  instead  of  the  whole  real  axis.  In  summary,  we  consider  a
mapping from  to , where the mapping is nonlinear on 
and an identity mapping on .

Y ∈Rn Yi ∼ Logistic(0, s)
y[i :(i+k)] = [yi , . . . , yi+k ]T

We  subsequently  present  some  numerical  experiments.  For
clarity we  will  turn  off  the  rotation  layers  and  the  nonlinear  in-
vertible layers to focus on the effect of the triangular structure of
KRnet,  which  provides  the  main  improvement  of  performance.
Let  have  i.i.d.  components,  where .  Let

. We  consider  the  data  that  satisfy  the  fol-
lowing criterion:

|Rα,Θi y[i :i+1]|2 ≥C , i = 1, . . . ,n −1,

where

Rα,Θi =
[

α 0

0 1

][
cosΘi −sinΘi

sinΘi cosΘi

]
,

Yi

Θi =π/4 i 3π/4 α= 3 s = 2 C = 7.6

which  is  a  product  of  a  scaling  matrix  and  a  rotation  matrix.
Simply speaking, we generate an elliptic hole in the data for any
two  adjacent  dimensions  such  that  become  correlated.  Let

, if  is even; , otherwise. Let ,  and .
For  the  training  process  we  minimize  the  cross  entropy

between the model distribution and the data distribution

H(µdata,µmodel) =−
N∑

i=1

log(pY (y (i );Θ)), (17)

µmodel(dy) = pY (y)dy N
Θ

where ,  is  the size of  training dataset and
 are  the  parameters  to  be  trained.  This  is  equivalent  to

minimize  the  Kullback-Leibler  (KL)  divergence  or  to  maximize
the  likelihood.  To  evaluate  the  model,  we  compute  the  KL
divergence

DKL(µtrue∥µmodel) = H(µtrue,µmodel)−H(µtrue), (18)

µtrue

µtrue

µmodel

EY [DKL(µtrue∥µmodel(Y ))] Y Y
N

DKL(µtrue∥µmodel)

EY [DKL(µtrue∥µmodel(Y ))]

where  is known. First, we generate a validation dataset from
 which  is  large  enough  such  that  the  integration  error  in

terms  of  is  negligible.  Second,  we  compute  an
approximation  of  in  terms  of ,  where 
indicates the random variables that correspond to  samples in
the  training  dataset.  We  take  10  independent  training  datasets.
For  each  dataset,  we  train  the  model  for  a  relatively  large
number  of  epochs  using  the  ADAM  method  [19].  For  each
epoch, we compute  using the validation dataset.
We  pick  the  minimum  KL  divergence  and  compute  its  average
for  the  10  runs  as  an  approximation  of .
We choose 10 runs simply based on the problem complexity and
our available computational resources.

N
L = 12 K = 3

f inner
[k,i ] k = 1,2,3

mr k−1 m = 24
r = 0.88

DKL(µtrue∥µmodel)
Θ0

µmodel(Θ0) µtrue

|Θ̂N −Θ0| ∼ N−1/2 Θ̂N

µtrue µmodel(Θ̂N )
O(N−1/2)

We first consider four-dimensional data and show the capab-
ility  of  the  model  by  investigating  the  relation  between ,  i.e.,
sample size,  and the KL divergence.  We let ,  and ,  in
other words, one dimension will be deactivated every 12 general
coupling layers. In , , the neural network Eq. (5) has
two hidden layers each of which has  neurons with 
and . The ADAM method with 4 mini-batches is used for
all  the  training  processes.  8000  epochs  are  considered  for  each
run and a validation dataset with 1.6e5 samples is used to com-
pute .  The results are plotted in Fig. 2,  where the
size of training dataset is up to 8e4. Assume that there exist a 
such that  is very close to . We expect to observe the
convergence  behavior  of  maximum  likelihood  estimator,  i.e.,

, where  the maximum likelihood estimator. It
is seen that the KL divergence between  and  is in-
deed  dominated  by  an  error  of .  This  implies  that  the
model is good enough to capture the data distribution for all the
sample sizes considered.

L
6.4×105 3.2×105

We subsequently investigate the relation between the KL di-
vergence and the complexity of the model. The results are sum-
marized in Fig. 3, where the degrees of freedom (DOFs) indicate
the number of unknown parameters in the model. For comparis-
on, we also include the results given by the real NVP. The config-
uration of  the  KRnet  is  the  same  as  before  except  that  we  con-
sider  = 2, 4, 6, 8, 10, and 12. The size of the training dataset is

 and the size of the validation dataset is . We use
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L

O(N−1.56
dof ) O(N−0.73

dof )

a large same size for training dataset such that the error is dom-
inated by the capability of the model. For each run, 8000 epochs
are  considered  except  for  the  two  cases  indicated  by  filled
squares  where  12000  epochs  are  used  because  is  large.  It  is
seen both the KRnet and the real NVP demonstrate an algebraic
convergence. By  curving  fitting,  we  obtain  that  the  KL  diver-
gence  decays  of  for  the  KRnet  and  of  for  the
real  NVP,  implying  the  KRnet  is  much  more  effective  than  the
real NVP.

K = 7
f inner

[k,i ] k = 1, . . . ,7
mr k−1

m = 32 r = 0.9

O(N−1.63
dof )

L

We finally  test  the dependence of  the convergence behavior
of  the  KRnet  on  the  dimensionality  by  considering  an  eight-di-
mensional  problem.  We  let ,  i.e.,  the  random  dimensions
are  deactivated  one  by  one.  In , , the  neural  net-
work  Eq. (5) has  two  hidden  layers  each  of  which  has 
neurons with  and . For each run, 12000 epochs are
considered. All other configurations are the same as the four-di-
mensional  case.  The  results  are  plotted  in Fig.  4, where  we  ob-
tain an overall algebraic convergence of  in terms of DOF
for  = 2, 4, 6, 8, and 10. It appears that the rate is not sensitive to
the number of dimensions.

In this  work,  we have developed a  generalization of  the real

NVP  as  a  technique  for  density  estimation  of  high-dimensional
data. The results are very promising and many questions remain
open.  For  example,  the  algebraic  convergence  with  respect  to
the DOFs  is  only  observed  numerically.  The  dependence  of  ac-
curacy on the sample size is not clear although the convergence
rate  seems not  sensitive  to  the dimensionality.  These questions
are being investigated and the results will be reported elsewhere.
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