

Letter

Deep density estimation via invertible block-triangular mapping
Keju Tangb, Xiaoliang Wana,*, Qifeng Liaob

a Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge 70803
b School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

H I G H L I G H T S

• By integrating the Knothe-Rosenblatt (KR) rearrangement into the structure of the flow-based generative model, the performance is
significantly improved.
• The affine coupling layer of the real-valued non-volume preserving (real-NVP) model has been reformulated to increase the robustness.
• New bijection layers, including a rotation layer and a component-wise nonlinear invertible layer, are introduced for further improvement.

A R T I C L E I N F O A B S T R A C T

Article history:
Received 8 January 2020
Accepted 4 March 2020

Keywords:
Deep learning
Density estimation
Optimal transport
Uncertainty quantification

In this work, we develop an invertible transport map, called KRnet, for density estimation by
coupling the Knothe-Rosenblatt (KR) rearrangement and the flow-based generative model, which
generalizes the real-valued non-volume preserving (real-NVP) model [Dinh, et al., arX-
iv:1605.08803v3]. The triangular structure of the KR rearrangement breaks the symmetry of the real
NVP in terms of the exchange of information between dimensions, which not only accelerates the
training process but also improves the accuracy significantly. We have also introduced several new
layers into the generative model to improve both robustness and effectiveness, including a
reformulated affine coupling layer, a rotation layer and a component-wise nonlinear invertible
layer. The KRnet can be used for both density estimation and sample generation especially when
the dimensionality is relatively high. Numerical experiments have been presented to demonstrate
the performance of KRnet.

©2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Density estimation is a challenging problem for high-dimen-
sional data [1]. Some techniques or models have recently been
developed in the framework of deep learning under the term
generative modeling. Generative models are usually with likeli-
hood-based methods, such as the autoregressive models [2–5],
variational autoencoders (VAE) [6], and flow-based generative
models [7–9]. A particular case is the generative adversarial net-
works (GANs) [10], which requires finding a Nash equilibrium of
a game. All generative models rely on the ability of deep nets for
the nonlinear approximation of high-dimensional mapping.

We pay particular attention to the flow-based generative
models for the following several reasons. First, it can be re-

garded as construction of a transport map instead of a probabil-
istic model such as the autoregressive model. Second, it does not
enforce a dimension reduction step as what the VAE does. Third,
it provides an explicit likelihood in contrast to the GAN. Further-
more, the flow-based generative model maintains explicitly the
invertibility of the transport map, which cannot be achieved by
numerical discretization of the Monge- A mpére flow [11]. In a
nutshell, the flow-based generative model is the only model that
defines a transport map with explicit invertibility. The potential
of flow-based generative modeling is twofold: First, it works for
both density generation and sample generation at the same
time. This property may bring efficiency to many problems. For
example, it can be coupled with the importance sampling tech-
nique [12] or used to approximate the a posterior distribution in
Bayesian statistics as an alternative of Markov Chain Monte

* Corresponding author.
E-mail address: xlwan@lsu.edu (X.L. Wan).

Theoretical & Applied Mechanics Letters 10 (2020) 000-5

Contents lists available at ScienceDirect

Theoretical & Applied Mechanics Letters

journal homepage: www.elsevier.com/locate/taml

http://dx.doi.org/10.1016/j.taml.2020.01.023
2095-0349/© 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xlwan@lsu.edu
http://dx.doi.org/10.1016/j.taml.2020.01.023
http://www.elsevier.com/locate/taml
http://www.elsevier.com/locate/taml
http://dx.doi.org/10.1016/j.taml.2020.01.023
http://creativecommons.org/licenses/by-nc-nd/4.0/

Carlo (MCMC) [13]. Second, it can be combined with other tech-
niques such as GAN or VAE to obtain a refined generative model
[14, 15].

Z = f (Y) ∈Rn f (·)
Y , Z ∈Rn pY pZ

Y Z

The goal of flow-based generative modeling is to seek an in-
vertible mapping where is a bijection, and

 are two random variables. Let and be the probab-
ility density functions (PDFs) of and , respectively. We have

pY (y) = pZ (f (y))
∣∣det∇y f

∣∣ . (1)

f (·) f (·)
Z

f (·)

f (·)

To construct , the main difficulties are twofold: (1) is
highly nonlinear since the prior distribution for must be
simple enough, and (2) the mapping is a bijection. Flow-
based generative models deal with these difficulties by stacking
together a sequence of simple bijections, each of which is a shal-
low neural network, and the overall mapping is a deep net.
Mathematically, the mapping can be written in a composite
form:

z = f (y) = f[L] ◦ . . .◦ f[1](y), (2)

f[i] i f[i](·)

f[i]

y = (y1, y2) y1 ∈Rm

y2 ∈Rn−m f[i]

where indicates a coupling layer at stage . The mapping
is expected to be simple enough such that its inverse and Jacobi
matrix can be easily computed. One way to define is given by
the real NVP [8]. Consider a partition with and

. A simple bijection is defined as

z1 = y1, (3)

z2 = y2 ⊙exp(log s(y1))+ t (y1), (4)

s t
y1 ⊙

s(y1) = 1
y2

s(y1) t (y1)

where and stand for scaling and translation depending only
on , and indicates the Hadamard product or component-
wise product. When , the algorithm becomes non-linear
independent component estimation (NICE) [7]. Note that is
updated linearly while the mappings and can be
arbitrarily complicated, which are modeled as a neural network
(NN),

(log s, t) =NN(y1). (5)

The simple bijection given by Eqs. (3) and (4) is also referred
to as an affine coupling layer [8]. The Jacobian matrix induced by
one affine coupling layer is lower triangular:

∇y z =
[

I 0

∇y1
z2 diag(s(y1))

]
, (6)

whose determinant can be easily computed as

log |det∇y z | =
n−m∑
i=1

log |si (y1)|. (7)

y
Since an affine coupling layer only modifies a portion of the

components of to some extent, a number of affine coupling
layers need to be stacked together to form an evolution such that
the desired distribution can be reached.

T : Z → Y
T#µZ =µY T#µZ

µZ Z µY (B) =µZ (T −1(B))

B T = f −1 f (·)

In the optimal transport theory, a mapping is called
a transport map such that , where is the push-for-
ward of the law of such that for every
Borel set [16]. It is seen that , where is the invertible
mapping for the flow-based generative model. In general, we

Yi = T (Z1, . . . , Zn) Zi = f (Y1, . . . ,Yn)
Y Z

T

have or , i.e., each component of
 or depends on all components of the other random variable.

The Knothe-Rosenblatt rearrangement says that the transport
map may have a lower-triangular structure such that

z = T −1(y) = f (y) =

f1(y1)

f2(y1, y2)
...
fn(y1, y2, . . . , yn)

 . (8)

It is shown in Ref. [17] that such a mapping can be regarded
as a limit of a sequence of optimal transport maps when the
quadratic cost degenerates. More specifically, the Rosenblatt
transformation is defined as

z1 = P (Y1 ≤ y1) = F1(y1),
z2 = P (Y2 ≤ y2|Y1 = y1) = F2(y2|y1),

...
zn = P (Yn ≤ yn |Yn−1 = yn−1, . . . ,Y1 = y1)
= Fn(yn |yn−1, . . . , y1),

where

P (Zi ≤ zi ; i = 1, . . . ,n)

=
∫

{Z |Zi ≤zi }

dyn
Fn(yn |yn−1, . . . , y1) . . .dy1

F1(y1)

=
∫

{Z |Zi ≤zi }

dzn . . .dz1 =
n∏

i=1

zi ,

Zi

[0,1]

Z [0,1]n

Y

which implies that are uniformly and independently
distributed on . Thus the Rosenblatt transformation provides
a lower-triangular mapping to map , which is uniform on
and has i.i.d. components, to an arbitrary random variable .

y = (y1, . . . , yK)
yi = (yi ,1, . . . , yi ,m) 1 ≤ K ≤ n 1 ≤ m ≤ n∑K

i=1 dim(yi) = n

Motivated by the Knothe-Rosenblatt rearrangement, we pro-
pose a block-triangular invertible mapping as a generalization of
real NVP. Consider a partition of , where

 with and , and
. We define an invertible bijection, called KRnet,

z = f (y) =

f̂1(y1)

f̂2(y1, y2)
...

f̂K (y1, . . . , yK)

 , (9)

K −1
K f̂i

L

whose structure is consistent with the Knothe-Rosenblatt
rearrangement. The flow chart of KRnet is illustrated in Fig. 1.
Before a detailed explanation of each layer, we fist look at the
main structure of KRnet, which mainly consists of two loops:
outer loop and inner loop, where the outer loop has stages,
corresponding to the mappings in Eq. (9), and the inner
loop has stages, corresponding to the number of affine
coupling layers.

f outer
[i]● Outer loop. Let indicate one iteration of the outer

loop. We have

z = f (y) = LN ◦ f outer
[K−1] ◦ . . .◦ f outer

[1] (y), (10)

y (k) = f outer
[k] (y (k−1)) y (0) = y k = 1, . . . ,K −1

LN

where with , , indicates
each iteration of the outer loop, and is a component-wise

K.J. Tang et al. / Theoretical & Applied Mechanics Letters 10 (2020) 000-5 1

y (k) = (y (k)
1 , . . . , y (k)

K)
y (k)

i

K − i +1
y (k)

K

k = 1 y (k)
K−1 k > 2

k
K

m
n m = 1

nonlinear invertible layer. Each has the same
partition. The ith partition will remain unchanged after stage

, in other words, we always freeze the last partition of
active dimensions whenever needed. For example, will be
updated only when and will be fixed when . This
way, the number of effective dimensions decreases as
increases. It should be noted that the number of partitions is a
hyperparameter that can be tuned. Intuitively, may be small
when is not large. When , we deactivate the dimensions
one by one.

f inner
[k,i] f outer

[k]

● Inner loop. The inner loop mainly consists of a sequence of
general coupling layers , based on which can be writ-
ten as:

f outer
[k] = LS ◦ f inner

[k,L] ◦ . . .◦ f inner
[k,1] ◦LR , (11)

LR LS

f inner
[k,i]

where is a rotation layer and is a squeezing layer. The
general coupling layer includes a scale and bias layer,
which plays a similar role to batch normalization.

f inner
[k,i]

l
k

l r < 1 f inner
[1,i]

M Mr k−1 f inner
[k,i]

For all general coupling layers , we usually let neural
network Eq. (5) have two fully connected hidden layers of the
same number of neurons, say . Since the number of effective di-
mensions decreases as increases in the outer loop, we expect
that decreases accordingly. We define a ratio . If has

 hidden neurons in total, the number becomes for .
We now explain each layer in Fig. 1:

Squeezing layer. In the squeezing layer, we simply deactiv-
ate some dimensions using a mask

q = (1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
n−k

),

k q ⊙ y
n −k

which means that only the first components, i.e., , will be
active after the squeezing layer while the other
components will remain unchanged.

Rotation layer. We define an orthogonal matrix

Ŵ =
[

W 0

0 I

]
,

W ∈Rk×k k q
I ∈R(n−k)×(n−k) Ŵ ŷ = Ŵ y

ŷ y Ŵ

where with being the number of 1's in , and
 is an identity matrix. Using , we obtain

subject to a rotation of the coordinate system. The Jacobian
matrix between and is whose determinant is needed. For
the sake of computation, we consider in reality:

Ŵ =
[

L 0

0 I

][
U 0

0 I

]
, (12)

W = LU W
L

U

where is the LU decomposition of . More specifically,
 is a lower-triangular matrix, whose entries on the diagonal line

are 1, and is a upper-triangular matrix. Then we have

detŴ = detL detU = detU =
n∏

i=1

ui i .

Ŵ Ŵ =V T

V

L U

One simple choice to initialize is , where the
column vectors of are the eigenvectors of the covariance mat-
rix of the input vector. The eigenvectors are ordered such that
the associated eigenvalues decrease since the dimensions to be
deactivated are at the end. The entries in and are trainable.

α∥Ŵ TŴ − I∥2
F ∥ ·∥F

α> 0

L U

The orthogonality condition may be imposed through a penalty
term , where indicates the Frobenius norm
and is a penalty parameter. However, numerical experi-
ments show that a direct training of and without the ortho-
gonality condition enforced also works well.

Scale and bias layer. By definition, the KRnet is deep. It is
well known that batch normalization can improve the propaga-
tion of training signal in a deep net [18]. A simplification of the
batch normalization algorithm is

ŷ = a ⊙ y +b, (13)

a b a b

a b

where and are trainable [9]. The parameters and will be
initialized by the mean and standard deviation associated with
the initial data. After the initialization, and will be treated as
regular trainable parameters that are independent of the data.

Reformulated affine coupling layer. We redefine the affine
coupling layer of the real NVP as follows:

z1 = y1, (14)

z2 = y2 ⊙ [1+α tanh(s(y1))+eβ⊙ tanh(t (y1)], (15)

α ∈ (0,1) β ∈Rn

α ∈ (0,1)
|det∇y z | ∈ (0,+∞)

where and . First of all, the reformulated affine
coupling layer adapts the trick of ResNet, where we separate out
the identity mapping. Second, we introduce the constant

 to improve the conditioning. It is seen from Eq. (7) that
 for the original real NVP while

LS:Squeezing layer

LN:Nonlinear invertible layer

for dimensions to be deactivated

K−1

L

Affine coupling layer

Scale and bias layer

LN
:Nonlinear invertible layer

for the rest dimensions

LR:Rotation layer

y

z

 innerf [k;i]

Fig. 1. The flow chart of KRnet

2 K.J. Tang et al. / Theoretical & Applied Mechanics Letters 10 (2020) 000-5

(1−α)n−m ≤ |det∇y z | ≤ (1+α)n−m

α= 1
|det∇y z | ∈ (0,2)

α= 0

eβ t (y1) eβ

y1

α= 0.6

 in our formulation. Our scaling
can alleviate the illnesses when the scaling in the original real
NVP occasionally become too large or too small. When ,

. This case is actually similar to real NVP in the
sense that the scaling can be arbitrarily small, and for well-
scaled data by the scaling and bias layer, we do not expect a large
scaling will be needed. When , the formulation is the same
as NICE, where no scaling is included. Third, we also make the
shift bounded by letting it pass a hyperbolic tangent function.
The reason for such a modification is similar to that for the
scaling. The main difference here is the introduction of the
trainable factor . Compared to , depends on the dataset
instead of the value of , which helps to reduce the number of
outliers for sample generation. Numerical experience show that
our formulation in general works better than both real NVP and
NICE. We usually let .

y = F (x)
x ∈ [0,1] y ∈ [0,1] F (x)

[0,1]

Nonlinear invertible layer. It is seen that the affine coupling
layer is linear with respect to the variable to be updated. We in-
troduce component-wise nonlinear invertible mapping to allevi-
ate this limitation. We consider an invertible mapping
with and , where can be regarded as the cu-
mulative distribution function of a random variable defined on

. Then we have

F (x) =
∫ x

0

p(x)dx, (16)

p(x)
0 = x0 < x1 < . . . < xm+1 = 1 [0,1]

p(x) F (x)

p(x) ≡ cnst F (x)

Y Z (−∞,∞)
(−∞,∞) (0,1) F (x)

F −1(x) (0,1) (−∞,∞)
tensorflow.math.sigmoid(x)
x ⪆ 17.0 x float32

(−∞,∞) = (−∞,−a)∪ [−a, a]∪ (a,∞) a > 0 [−a, a]
y = F ((x +a)/(2a))

2ay −a [0,1]
[−a, a] (−∞,−a) (a,∞)

y = x
a

R R [−a, a]
(−∞, a)∪ (a,∞)

where is a probability density function. Let
 be a partition of , on which we

define as a piecewise linear polynomial. Then will be a
quadratic function, whose roots can be explicitly computed.
When , is an identity mapping. The support of
each dimension of and is . Although a logistic
mapping can be used to map to , after which
can be implemented, the singularity will make the model not
robust when is used to map back to . For
example, the sigmoid function
will be always equal to 1.0 when if is of type .
Our strategy is simple, we decompose

 with . On , we
implement followed by an affine mapping

. In other words, we maps the domain to , and then
map the range back to . On and , we just let

. Since the scaled data will be roughly centered at the
origin, we only need to choose a sufficiently large to cover the
data instead of the whole real axis. In summary, we consider a
mapping from to , where the mapping is nonlinear on
and an identity mapping on .

Y ∈Rn Yi ∼ Logistic(0, s)
y[i :(i+k)] = [yi , . . . , yi+k]T

We subsequently present some numerical experiments. For
clarity we will turn off the rotation layers and the nonlinear in-
vertible layers to focus on the effect of the triangular structure of
KRnet, which provides the main improvement of performance.
Let have i.i.d. components, where . Let

. We consider the data that satisfy the fol-
lowing criterion:

|Rα,Θi y[i :i+1]|2 ≥C , i = 1, . . . ,n −1,

where

Rα,Θi =
[

α 0

0 1

][
cosΘi −sinΘi

sinΘi cosΘi

]
,

Yi

Θi =π/4 i 3π/4 α= 3 s = 2 C = 7.6

which is a product of a scaling matrix and a rotation matrix.
Simply speaking, we generate an elliptic hole in the data for any
two adjacent dimensions such that become correlated. Let

, if is even; , otherwise. Let , and .
For the training process we minimize the cross entropy

between the model distribution and the data distribution

H(µdata,µmodel) =−
N∑

i=1

log(pY (y (i);Θ)), (17)

µmodel(dy) = pY (y)dy N
Θ

where , is the size of training dataset and
 are the parameters to be trained. This is equivalent to

minimize the Kullback-Leibler (KL) divergence or to maximize
the likelihood. To evaluate the model, we compute the KL
divergence

DKL(µtrue∥µmodel) = H(µtrue,µmodel)−H(µtrue), (18)

µtrue

µtrue

µmodel

EY [DKL(µtrue∥µmodel(Y))] Y Y
N

DKL(µtrue∥µmodel)

EY [DKL(µtrue∥µmodel(Y))]

where is known. First, we generate a validation dataset from
 which is large enough such that the integration error in

terms of is negligible. Second, we compute an
approximation of in terms of , where
indicates the random variables that correspond to samples in
the training dataset. We take 10 independent training datasets.
For each dataset, we train the model for a relatively large
number of epochs using the ADAM method [19]. For each
epoch, we compute using the validation dataset.
We pick the minimum KL divergence and compute its average
for the 10 runs as an approximation of .
We choose 10 runs simply based on the problem complexity and
our available computational resources.

N
L = 12 K = 3

f inner
[k,i] k = 1,2,3

mr k−1 m = 24
r = 0.88

DKL(µtrue∥µmodel)
Θ0

µmodel(Θ0) µtrue

|Θ̂N −Θ0| ∼ N−1/2 Θ̂N

µtrue µmodel(Θ̂N)
O(N−1/2)

We first consider four-dimensional data and show the capab-
ility of the model by investigating the relation between , i.e.,
sample size, and the KL divergence. We let , and , in
other words, one dimension will be deactivated every 12 general
coupling layers. In , , the neural network Eq. (5) has
two hidden layers each of which has neurons with
and . The ADAM method with 4 mini-batches is used for
all the training processes. 8000 epochs are considered for each
run and a validation dataset with 1.6e5 samples is used to com-
pute . The results are plotted in Fig. 2, where the
size of training dataset is up to 8e4. Assume that there exist a
such that is very close to . We expect to observe the
convergence behavior of maximum likelihood estimator, i.e.,

, where the maximum likelihood estimator. It
is seen that the KL divergence between and is in-
deed dominated by an error of . This implies that the
model is good enough to capture the data distribution for all the
sample sizes considered.

L
6.4×105 3.2×105

We subsequently investigate the relation between the KL di-
vergence and the complexity of the model. The results are sum-
marized in Fig. 3, where the degrees of freedom (DOFs) indicate
the number of unknown parameters in the model. For comparis-
on, we also include the results given by the real NVP. The config-
uration of the KRnet is the same as before except that we con-
sider = 2, 4, 6, 8, 10, and 12. The size of the training dataset is

 and the size of the validation dataset is . We use

K.J. Tang et al. / Theoretical & Applied Mechanics Letters 10 (2020) 000-5 3

L

O(N−1.56
dof) O(N−0.73

dof)

a large same size for training dataset such that the error is dom-
inated by the capability of the model. For each run, 8000 epochs
are considered except for the two cases indicated by filled
squares where 12000 epochs are used because is large. It is
seen both the KRnet and the real NVP demonstrate an algebraic
convergence. By curving fitting, we obtain that the KL diver-
gence decays of for the KRnet and of for the
real NVP, implying the KRnet is much more effective than the
real NVP.

K = 7
f inner

[k,i] k = 1, . . . ,7
mr k−1

m = 32 r = 0.9

O(N−1.63
dof)

L

We finally test the dependence of the convergence behavior
of the KRnet on the dimensionality by considering an eight-di-
mensional problem. We let , i.e., the random dimensions
are deactivated one by one. In , , the neural net-
work Eq. (5) has two hidden layers each of which has
neurons with and . For each run, 12000 epochs are
considered. All other configurations are the same as the four-di-
mensional case. The results are plotted in Fig. 4, where we ob-
tain an overall algebraic convergence of in terms of DOF
for = 2, 4, 6, 8, and 10. It appears that the rate is not sensitive to
the number of dimensions.

In this work, we have developed a generalization of the real

NVP as a technique for density estimation of high-dimensional
data. The results are very promising and many questions remain
open. For example, the algebraic convergence with respect to
the DOFs is only observed numerically. The dependence of ac-
curacy on the sample size is not clear although the convergence
rate seems not sensitive to the dimensionality. These questions
are being investigated and the results will be reported elsewhere.

Acknowledgement

X. Wan's work was supported by the National Natural Sci-
ence Foundation of Unite States (DMS-1620026 and DMS-
1913163). Q. Liao is supported by the National Natural Science
Foundation of China (11601329).

References

D. Scott, Multivariate Density Estimation: Theory, Practice, and
Visualization, 2nd Edition, John Wiley & Sons, Inc., 2015.

[1]

A. Graves, Generating sequences with recurrent neural net-
works, (2013), arXiv: 1308.0850.

[2]

A. van den Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel recur-
rent neural networks, (2016), arXiv: 1601.06759.

[3]

A. van den Oord, N. Kalchbrenner, O. Vinyals, et al., Condition-
al image generation with PixelCNN decoders, (2016), arXiv:
1606.05328.

[4]

G. Papamakarios, T. Pavlakou, I. Murray, Masked autoregress-
ive flow for density estimation, (2018), arXiv: 1705.07057v4.

[5]

D. P. Kingma, T. Salimans, R. Jozefowicz, et al., Improving vari-
ational inference with inverse autoregressive flow, Advances in
Neural Information Processing Systems (2016) 4743–4751.

[6]

L. Dinh, D. Krueger, S. Bengio, Nice: non-linear independent
components estimation, (2014), arXiv: 1410.8516.

[7]

L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using
real NVP, (2017), arXiv: 1605.08803v3.

[8]

D. P. Kingma, P. Dhariwal, Glow: Generative flow with invert-
ible 1x1 convolutions, (2018), arXiv: 1807.03039v2.

[9]

I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative ad-
versarial nets, Advances in Neural Information Processing Sys-
tems (2014) 2672–2680.

[10]

L. Zhang, W. E, L. Wang, Monge-Ampére flow for generative[11]

12 34 56 78 ×104

Sample size

K
L

 d
iv

er
g
en

ce

Approximation
0.30

0.25

0.20

0.15

0.10

0.05

N−1/2

Fig. 2. The KL divergence in terms of sample size for the four-di-
mensional case

DOFs

KR net

rNVP

N−1.56

dof

N−0.73

dof

0.5 1.51.0 2.0 2.5 ×104

K
L

 d
iv

er
g
en

ce

10−1

100

Fig. 3. The KL divergence in terms of degrees of freedom (DOFs) of
the model for the four-dimensional case

DOFs

2 43 5 6 ×104

K
L

 d
iv

er
g
en

ce

100 N−1.63

dof

KR net

Fig. 4. The KL divergence in terms of degrees of freedom (DOFs) of
the model for the eight-dimensional case

4 K.J. Tang et al. / Theoretical & Applied Mechanics Letters 10 (2020) 000-5

modeling, (2018), arXiv: 1809.10188v1.
X. Wan, S. Wei, Coupling the reduced-order model and the gen-
erative model for an importance sampling estimator, J. Compt.
Phys 408 (2020) 109281.

[12]

A. Spatini, D. Bigoni, Y. Marzouk, Inference via low-dimension-
al couplings, (2017), arXiv: 1703.06131v4.

[13]

A. Grover, M. Dhar, S. Ermon, Flow-GAN: Combining maxim-
um likelihood and adversarial learning in generative models,
(2018), arXiv: 1705.08868v2.

[14]

J. Zhu, D. Zhao, B. Zhang, LIA: Latently invertible autoencoder
with adversarial learning, (2019), arXiv: 1906.08090v1.

[15]

F. Santambrogio, Optimal Transport for Applied Mathem-

aticians, Birkhäuser, 2010.
[16]

G. Carlier, A. Galichon, F. Santambrogio, From Knothes trans-

port to Breniers map and a continuation method for optimal

transport, SIAM J. Math. Anal 41 (2010) 2554–2576.

[17]

S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep

network training by reducing internal covariance shift, (2015),

arXiv: 1502.03167v3.

[18]

D. P. Kingma, J. L. Ba, ADAM: A method for stochastic optimiz-

ation, (2017), arXiv: 1412.6980v9.

[19]

K.J. Tang et al. / Theoretical & Applied Mechanics Letters 10 (2020) 000-5 5

http://dx.doi.org/10.1016/j.jcp.2020.109281
http://dx.doi.org/10.1016/j.jcp.2020.109281
http://dx.doi.org/10.1137/080740647
http://dx.doi.org/10.1137/080740647
http://dx.doi.org/10.1016/j.jcp.2020.109281
http://dx.doi.org/10.1016/j.jcp.2020.109281
http://dx.doi.org/10.1016/j.jcp.2020.109281
http://dx.doi.org/10.1016/j.jcp.2020.109281
http://dx.doi.org/10.1137/080740647
http://dx.doi.org/10.1137/080740647
http://dx.doi.org/10.1137/080740647
http://dx.doi.org/10.1137/080740647

