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In this work, we develop a parallel minimum action method for small random perturba-
tions of Navier–Stokes equations to solve the optimization problem given by the large devi-
ation theory. The Freidlin–Wentzell action functional is discretized by hp finite elements in
time direction and spectral methods in physical space. A simple diagonal preconditioner is
constructed for the nonlinear conjugate gradient solver of the optimization problem. A
hybrid parallel strategy based on MPI and OpenMP is developed to improve numerical effi-
ciency. Both h- and p-convergence are obtained when the discretization error from physical
space can be neglected. We also present preliminary results for the transition in two-
dimensional Poiseuille flow from the base flow to a non-attenuated traveling wave.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Dynamical systems are often subject to random perturbations since noise is ubiquitous in nature. Even when these ran-
dom perturbations have a small amplitude, they can produce a profound effect on the long time dynamics by inducing rare
but important events. A large number of interesting phenomena in physics, chemistry and biology such as phase transitions,
biological switches and chemical reactions, etc., are examples of such noise-induced rare events [13].

When the random perturbations are small, the Freidlin–Wentzell theory of large deviations provides a rigorous mathe-
matical framework for us to understand how the transitions occur and how frequent they are. The transition pathways be-
tween metastable sets in a dynamical system often have a rather deterministic nature. As the noise amplitude decreases to
zero, the events for successful transitions between metastable sets have a sharply peaked probability around a certain deter-
ministic path that is least unlikely. Special features of such a path tell us crucial information about the mechanism of the
transition, which is closely related to the structure of the phase space. One class of examples that have been well studied
for a long time are the gradient systems, for which the vector field is the gradient of a potential function. In gradient systems,
the most probable transition path is the minimum energy path (MEP), which passes through the basin boundary between the
stable states at some saddle points with one dimensional unstable manifold [16,21]. For non-gradient systems we need to
consider the action functional instead of the energy, which is the central object to the Freidlin–Wentzell theory. The mini-
mizer of the action functional provides the most probable transition path; the minimum of the action functional provides an
estimate of the probability and the rate of occurrence of the transition. Thus an important practical task is to compute the
minimum and minimizer of the action functional. A large number of algorithms have been designed for gradient systems.
. All rights reserved.
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Some popular algorithms include the string method [3,5], nudged elastic band method [12], eigenvector- following-type
method (e.g.[1]) as well as the dimer method [11], which usually take advantage of the fact that in gradient systems the tran-
sition paths are always parallel to the drift term of the stochastic differential equation. For general (non-gradient) systems,
we need to minimize directly the Freidlin–Wentzell action functional and available algorithms include the minimum action
method (MAM) [4], the adaptive MAM [19], the geometric MAM [10] and a high-order MAM [23].

In this work, we focus on the minimum action method for small random perturbations of Navier–Stokes equations. In
particular, we are interested in whether the minimum action method can provide a new strategy to study the nonlinear
instability of parallel shear flows. Stability of parallel shear flows, including plane Poiseuille flow, plane Couette flow, pipe
flow, etc., is still a challenging dynamical problem, which people are not able to fully understand it through linear, (weakly)
nonlinear and non-modal stability theories. In particular, the mechanism of the transition from the laminar flow to turbu-
lence is still an open problem. Recently, people start to pay attention to study this problem by using an optimization strategy,
where nonlinearity is included into the defined objective function. For example, in [15], the most dangerous initial pertur-
bation leading to the turbulence state in plane Couette flow is examined by maximizing the time-averaged dissipation for a
certain energy level of the initial disturbance. We look at this problem from a probabilistic point of view. Thinking of the
Navier–Stokes equations perturbed by small noise, there exists a positive probability that a transition occurs from the lam-
inar state to another state (including a turbulence state). By the Freidlin–Wentzell theory, an optimal path (or minimal action
path) can be given by the minimizer of the Freidlin–Wentzell action functional, which describes the least unlikely route from
the laminar state to the new state. We are interested in the intermediate states along this path. Since the minimal action path
is closely related to the structure of the basin of attraction of the base flow [21,20,22], we expect to get useful information
about the nonlinear instability along the minimal action path. As the first step of such a strategy, we develop the algorithm of
the minimum action method for the stochastic Navier–Stokes equations.

This paper is organized as follows. We first describe the Freidlin–Wentzell theory for small random perturbations of
dynamical systems in Section 2. A general methodology for the minimum action method of stochastic partial differential
equations is given in 3. We develop the minimum action method for the stochastic Navier–Stokes equations in section 4.
We include some numerical results for two-dimensional Poiseuille flows in Section 5, followed by a summary section.

2. Theoretical background

Although we are interested in the random perturbations of Navier–Stokes equations in this work, which are stochastic
partial differential equations, we use stochastic differential equations to present the theoretical background of minimum ac-
tion method for simplicity and without loss of generality. Let the random process Xt ¼ XðtÞ : Rþ ! Rn defined by the follow-
ing stochastic ordinary differential equation (SODE):
dXt ¼ bðXtÞdt þ
ffiffiffi
e
p

dWt ; ð1Þ
where Wt is a standard Wiener process in Rn and e is a small positive parameter. Let /ðtÞ 2 Rn be an absolutely continuous
function defined on t 2 ½0; T�. The Freidlin–Wentzell theory [7] tells us that the probability of XðtÞ passing through the d-tube
about / on ½0; T� is
PrðqðX;/Þ < dÞ � exp �1
e

STð/Þ
� �

; ð2Þ
where qð/;uÞ ¼ supt2½0;T�j/ðtÞ �uðtÞj, and STð/Þ is the action functional of / on ½0; T�, defined as
STð/Þ ¼
1
2

Z T

0
Lð _/;/Þdt; ð3Þ
where Lð _/;/Þ ¼ j _/� bð/Þj2. In general, we have the following large deviation principle
lim
e!0

e log PrðX 2 AÞ ¼ �min
/2A

STð/Þ; ð4Þ
where A is a subset of the path space. Hence, in analogy with the Laplace’s method, the basic contribution to PrðX 2 AÞ is
given by the neighbourhood of the minimum of STð/Þ when e is small enough, in the sense that away from the minimizer
of the action functional STð/Þ the probability that the event A occurs through other possible choices will decay exponentially.
The minimizer /�, which satisfies STð/�Þ ¼min/2ASTð/Þ is also called the ‘‘minimal action path’’ (MAP).

Different definitions of the set A in Eq. (4) correspond to many important phenomena that occur in dynamical systems.
For example, if we are interested in the transition from one point a1 to the other point a2 in the phase space on the time
interval ½0; T� due to small random perturbations, A can be defined as
A ¼ /ðtÞ /ð0Þ ¼ a1; /ðTÞ ¼ a2jf g:
The MAP will be the most probable path for the transition from a1 to a2 where the probability of the system taking all the
other paths decays exponentially with respect to the noise amplitude e according to the large deviation principle. Note that
when a1 and a2 are attractors, it is more appropriate to define the set A as
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A ¼ /ðtÞ /ð�1Þ ¼ a1; /ð1Þ ¼ a2jf g:
We keep a finite time interval here mainly due to the numerical approximation discussed later. If a1 and a2 are two adjacent
stable states in gradient systems, the MAP will be consistent with the minimum energy path (MEP), which passes through
the basin boundary between a1 and a2 at a certain saddle point with one-dimensional unstable manifold. If there exists
dynamics between a1 and a2, the MAP will be the path given by the dynamics corresponding to a zero action functional,
which implies that the MAP is also helpful for us to study the structure of the phase space. For instance, if a1 and a2 are
two unstable fixed points and the MAP has a zero action functional, we can conclude that there exists a heteroclinic orbit
between a1 and a2.

Although the Freidlin–Wentzell theory shows that it is very important to find out the MAP when we consider small ran-
dom perturbations of dynamical systems, it is usually very difficult to obtain it analytically for a general dynamical system.
We need to consider numerical approximation in practice.

3. A general methodology of MAM for SPDE

Several minimum action methods have been proposed for non-gradient dynamical systems, see [4,19,10,23]. The method
proposed in this work is an extension of the minimum action method proposed in [23]. Consider the random perturbations of
the following general partial differential equation on a physical domain D � Rd; d ¼ 1;2;3:
@uðx; tÞ
@t

¼ Guðx; tÞ þ
ffiffiffi
e
p

_Wðx; tÞ; ð5Þ
where x 2 D;G indicates a differentiation operator in physical space, and _Wðx; tÞ is space–time white noise. The action func-
tional on the time interval ½0; T� for the SPDE (5) is defined as [6]
STðuÞ ¼
1
2

Z T

0

Z
D
ð@tu� Guðx; tÞÞ2dxdt ¼ 1

2
h@tu� Gu; @tu� Guix;t; ð6Þ
where hf ; gix;t is the inner product of f and g with respect to both x and t. We are interested in the minimizer u�ðxÞ of STðuÞ:
STðu�Þ ¼min
u2A

STðuÞ; ð7Þ
where A is a set of paths in the phase space subject to the constraints
uðx;0Þ ¼ u0ðxÞ; uðx; TÞ ¼ uTðxÞ: ð8Þ
We first look at the Euler–Lagrange equation of the optimization problem (7). Define the linear perturbation operator Ĝ as
Gðuþ duÞ ¼ Guþ Ĝduþ Oðd2uÞ; ð9Þ
where du is a perturbation function. Consider the functional derivative of ST , which satisfies
dSTðuÞ ¼
dSTðuÞ

du
; du

� �
x;t
¼ lim

�!0

STðuþ �duÞ � STðuÞ
�

: ð10Þ
It is easy to obtain that
dSTðuÞ ¼ STðuþ duÞ � STðuÞ ¼
dST

du
; du

� �
x;t
¼ h@tu� Gu; @tdu� Ĝduix;t; ð11Þ
where all high-order terms with respect to du are neglected. Thus the functional derivative of STðuÞ takes the form
dST

du
¼ ð@t � ĜÞ�ð@t � GÞu; ð12Þ
where ð@t � ĜÞ� is the adjoint operator of @t � Ĝ. In other words, the Euler–Lagrange equation of STðuÞ is
ð@t � ĜÞ�ð@t � GÞu ¼ 0; x 2 D; t 2 ½0; T�
uðx;0Þ ¼ u0ðxÞ; x 2 D

uðx; TÞ ¼ uTðxÞ; x 2 D

Boundary Conditions x 2 @D

8>>><>>>: ð13Þ
Since G is a nonlinear operator, the Euler–Lagrange equation (13) is also nonlinear. Furthermore, if G has a differentiation
order of k in physical space, ð@t � ĜÞ�ð@t � ĜÞ will be a 2kth order operator in x and a second-order operator in t, correspond-
ing to a (d + 1)-dimensional nonlinear boundary value problem. For a general methodology, we consider the numerical
approximation of the optimization problem (7) instead of discretizing equation (13) directly.

Let fhiðxÞgNx
i¼1 and fwiðtÞg

Nt
i¼1 span the approximation spaces for physical space and time, respectively. Then uðx; tÞ has the

following approximation
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uðx; tÞ � uhðx; tÞ ¼
XNx

i¼1

XNt

j¼1

ui;jhiðxÞwjðtÞ: ð14Þ
The optimization problem (7) has the following discrete version
STðu�hÞ ¼ min
ui;j 2 R

i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Nt

STðuhÞ; ð15Þ
subject to a proper discretization of the constraints at t ¼ 0; T and on @D. It is well known that the key part of almost all effi-
cient optimization algorithms is the computation of the gradient. We now derive a general formula for the gradient @ST=@ui;j.
In the approximation space, the perturbation function can be expressed as
duhðx; tÞ ¼
XNx

i¼1

XNt

j¼1

dui;jhiðxÞwjðtÞ: ð16Þ
Noticing that
dSTðuhÞ ¼
dSTðuhÞ

du
; duh

� �
¼
XNx

i¼1

XNt

j¼1

dSTðuhÞ
du

;hiðxÞwjðtÞ
� �

x;t
dui;j; ð17Þ
and combining Eqs. (11) and (17), we obtain the gradient of ST
@ST

@ui;j
¼ dSTðuhÞ

du
;hiðxÞwjðtÞ

� �
x;t
¼ ð@t � GÞuh; ð@t � ĜÞhiðxÞwjðtÞ
D E

x;t
: ð18Þ
Here we assume that the basis functions hiðxÞ and wjðtÞ have the regularity required by the operators G and Ĝ. Once the gra-
dient of the action functional is obtained, we can choose an appropriate optimization solver to minimize the action func-
tional STðuhÞ. In this work, we consider the nonlinear conjugate gradient method.

Remark 1. u0ðxÞ and uTðxÞ are often chosen as steady states given by
GuðxÞ ¼ 0; ð19Þ
while the MAP is a solution of the Euler–Lagrange equation (13). Since the spatial differentiation order of ð@t � ĜÞ�ð@t � GÞ is
twice as large as that of G, the basis functions for the approximation of ð@t � ĜÞ�ð@t � GÞ demands more regularity than those
for G, which implies that the basis functions for the approximation of uðxÞ in Eq. (19) may be not appropriate for the MAP if
the action functional is discretized without any modification. For example, assume G is of second order. If we employ the
finite element method to solve Eq. (19), basis functions hiðxÞ 2 H1ðDÞ can be used. However, the Euler–Lagrange equation
(13) require basis functions hiðxÞ 2 H2ðDÞ within the continuous Galerkin framework. Since we are interested in the channel
flow in this work, which has a simple geometry and can be discretized efficiently by the spectral method, such an issue is
avoided naturally.
3.1. Numerical efficiency of MAM

Considering that parallel computing is the most straightforward way to enhance the numerical efficiency, especially for
large scale simulations, we here present a general discussion about the parallelization of the minimum action method. More
details can be found in [24].

First of all, we observe that STðuÞ is a nonlinear functional of u and G is, in general, a nonlinear operator in physical space,
which implies that it can be difficult to consider parallelization, e.g., domain decomposition, in space, especially when spec-
tral methods are employed for the physical discretization. Thus, we do not consider the parallelization of operator G.

To make the parallelization in the time direction more efficient, we choose fwiðtÞg
Nt
i¼1 as the hp finite element basis [14],

which consists of piecewise polynomials. We define the standard basis functions on the reference element ½�1;1� as:
ŵkðsÞ ¼

1�s
2 k ¼ 0;

1�s
2

1þs
2 P1;1

k�1ðsÞ; 0 < k < p;
1þs

2 k ¼ p;

8><>: ð20Þ
where P1;1
k ðsÞ denote orthogonal Jacobi polynomials of degree k with respect to the weight function ð1� sÞð1þ sÞ. It is seen

that ŵ0ðsÞ and ŵpðsÞ are consistent with linear finite element basis, and ŵkðsÞ, 0 < k < p, are introduced for high-order

approximation. Note that ŵkð�1Þ ¼ 0 for 0 < k < p. We call ŵ0ðsÞ and ŵpðsÞ boundary modes, and ŵkðsÞ;0 < i < p, interior
modes. For a partition t0 ¼ 0 < t1 < t2 < � � � < tNe ¼ T of the interval ½0; T�, where Ne is the number of elements, the local basis
functions wiðtÞ in each element ½tm; tmþ1� will be obtained through an affine mapping as wiðtÞ ¼ wiðm;kÞðtÞ ¼ ŵkðsmðtÞÞ, where
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we treat the global index i as a function of m ¼ 1; . . . ;Ne and k ¼ 0; . . . ; p, and t ¼ s�1
m ðsÞ ¼

tmþ1�tm
2 sþ tmþ1þtm

2 when t 2 ½tm; tmþ1�.
Based on such a choice of the finite element basis, i.e., wiðm;kÞðtÞ ¼ 0 on element boundaries for 0 < k < p, only the coefficients
of wiðm;0Þ or wiðm;pÞ need to be exchanged between two adjacent CPU processors when we distribute the time elements to dif-
ferent processors. Also a good scalability can be achieved even if different polynomial orders are employed in each element.
However, since we only parallelize one direction, i.e., the time direction, we have a limit for the number of processors, which
is equal to the number of time elements. Thus, extra parallelization in each time element is desired for more numerical effi-
ciency, because the number of degrees of freedom from the physical discretization can be large.

We observe that the most time-consuming part in the optimization algorithm is the computation of the gradient. Further-
more, each component of the gradient @ST=@ui;j can be regarded as a functional of the basis function hiðxÞwjðtÞ according to
Eq. (18), where the computation of these functionals are independent of each other once we obtain @tu� Gu. In other words,
the computation of the gradient rSTðuÞ can be further parallelized providing that @tu� Gu is available.

To this end, we identify two favourable structures of the MAM for parallel computing. The first one is the parallelization of
time elements, where the information of the boundary modes needs to be shared. The second one is the parallelization of the
computation of the gradient within each time element, where the information about @tu� Gu needs to be shared. Such a
two-level parallelism actually agrees very well with the typical computer architecture for high performance computing
(HPC), e.g., a multi-core symmetric multiprocessing cluster. Modern HPC systems usually consist of computation nodes
which have multi-core processors, where the processor cores on the same computation node can share the memory and
work independently.

Summarizing the above discussions, we present our hybrid MPI/OpenMP strategy: (1) We distribute the time elements
uniformly to a certain number of computation nodes, which can be done by MPI. Here we assume that the same polynomial
order is used for all time elements. (2) For a certain computation node, we distribute the components of gradient rSTðuÞ
uniformly to all processor cores after @tu� Gu is obtained, which can be done by OpenMP. In a nutshell, we use MPI across
computation nodes and OpenMPI within computation nodes, corresponding to the natural two-level parallelism of our min-
imum action method. Numerical experiments for the performance of such a hybrid parallel strategy are reported in [24]. We
also note that such a hybrid strategy can also be achieved by coupling MPI and GPU for more numerical efficiency.

4. Minimum action method for stochastic Navier–Stokes equations

We consider the two-dimensional incompressible Navier–Stokes (N–S) equations perturbed by small divergence-free
space–time white noise:
@u
@t þ ðu � rÞu ¼ �rpþ 1

Re Duþ
ffiffiffi
e
p _Wðx; tÞ;

r � u ¼ 0;

(
ð21Þ
where u ¼ ðu;vÞ 2 R2; Re ¼ Uh
m is the Reynolds number, U is the velocity at y ¼ 0, and m is the dynamic viscosity. We define

the physical domain D :¼ ½0;2p� 	 ½�h; h�, where h is a positive real number.
For convenience, we decompose the velocity and pressure field into two parts:
utot ¼ ub þ u; ptot ¼ pb þ p;
where ub and pb corresponds to the base flows, and from now on u and p indicate the deviation from the base flows. For the
plane Poiseuille flow,
ub ¼ ð1� ðy=hÞ2;0Þ; pb ¼ �
2
Re

x
h2 : ð22Þ
For the plane Couette flow,
ub ¼ ðy=h;0Þ; pb ¼ 0: ð23Þ
The original stochastic N–S equations can be rewritten as
@u
@t þ ðutot � rÞutot ¼ �rpþ 1

Re Duþ
ffiffiffi
e
p _W ;

r � u ¼ 0

(
ð24Þ
with boundary conditions
ujx¼0 ¼ ujx¼2p;

pjx¼0 ¼ pjx¼2p;

ujy¼�h ¼ 0:

8><>: ð25Þ
The action functional for the stochastic N–S Eqs. (24) can be rewritten as
STðu;pÞ ¼
1
2

Z T

0

@u
@t
þ ðutot � rÞutot þrp� 1

Re
Du

���� ����2

2
dt; ð26Þ
where k � k indicates the L2 norm in physical space. We then consider the optimization problem
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STðu�;p�Þ ¼ min
ðu;pÞ2A

STðu; pÞ; ð27Þ
subject to the divergence free condition r � u ¼ 0 and the constraints given by the boundary conditions (25), where A is a
certain set of paths in the configuration space of N–S equations.

4.1. Choice of the action functional

The main difference of the MAM for N–S equations from our general methodology discussed in Section 3 is that the N–S
equations are subject to a divergence-free constraint. Let P denote the Helmholtz projection operator onto the divergence-
free space. Given any u 2 L2ðD;R2Þ, there exists a unique q 2 H1ðDÞ with

R
D qdx ¼ 0 such that Pu ¼ uþrq satisfying
0 ¼ ðPu;r/Þ ¼ ðuþrq;r/Þ; 8/ 2 H1ðDÞ; ð28Þ
where Pu � n ¼ 0 on @D. The Helmholtz decomposition (28) is then associated with an elliptic problem
Dq ¼ �r � u; ð29Þ
subject to the boundary condition @q
@n ¼ 0. If we take the Helmholtz projection of the momentum equation, theoretical study

[18] shows that the action functional can be written as
STðuÞ ¼
1
2

Z T

0

@u
@t
þP ðutot � rÞutot �

1
Re

Du
� ����� ����2

2
dt; ð30Þ
where the pressure term disappears and the constraint of incompressibility is taken care of by the Helmholtz projection. If
we minimize the action functional in the form (30), it is obvious that in each iteration step of an optimization algorithm, at
least two Helmholtz projections are needed to obtain Pu and Pððutot � rÞutotÞ, which can be done by solving the associated
elliptic problems (29). We also note that the projection might introduce extra errors due to inappropriate boundary condi-
tions for the corresponding elliptic equations. In this work, we consider the action functional of the primitive variables, i.e.,
Eq. (26). Note that when the divergence-free condition r � u ¼ 0 is satisfied, we have
STðu;pÞ ¼
1
2

Z T

0

@u
@t
þPQ ðuÞ

���� ����2

2
þ ðI �PÞQ ðuÞ þ rpk k2

2dt;
where Q ðuÞ ¼ ðutot � rÞutot � 1
Re Du and I is the identity operator. When the action functional STðu; pÞ reaches its (local) min-

imum, we should obtain that
ðI �PÞQ ðuÞ þ rpk k2 ¼ 0; ð31Þ
due to the uniqueness of the Helmholtz decomposition. In other words, we let the optimization algorithm deal with the
Helmholtz projection of Q ðuÞ.

4.2. Definition of the approximation space

In the time direction, we consider a (nonuniform) partition T h:
t0 ¼ 0 < t1 < t2 < � � � < tNeþ1 ¼ T:
We employ hp finite element basis functions defined by Eq. (20) in time direction, i.e.
wiðtÞ ¼ wiðm;kÞðtÞ ¼ ŵkðsmðtÞÞ; ð32Þ
where the global index i ¼ 1; . . . ;Nt is a function of m ¼ 1; . . . ;Ne and k ¼ 0; . . . ; p, and t ¼ s�1
m ðsÞ ¼

tmþ1�tm
2 sþ tmþ1þtm

2 for
t 2 ½tm; tmþ1�.

Due to the simple geometry of the physical domain, we employ the spectral method in physical space. For x direction,
Fourier expansion is employed for both u and p because of the periodic boundary conditions. We order the cosine and sine
functions as
f0ðxÞ ¼ 1; f nðxÞ ¼
cos nþ1

2 x
� 	

; if modðn;2Þ ¼ 1;
sin n

2 x
� 	

; if modðn;2Þ ¼ 0:

(

To deal with the constraint ujy¼�h ¼ 0, we choose the basis functions for the y direction as
hmðyÞ ¼
Pmðy=hÞ � Pmþ2ðy=hÞ; for u;
Pmðy=hÞ; for p;



ð33Þ
where PmðyÞ is the Legendre polynomial of order m. It is easy to see that hmð�hÞ ¼ 0, which implies that no-slip boundary
conditions for u in y direction are automatically satisfied.
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Then the 2D basis functions for the physical space can be defined as
hiðm;nÞðxÞ ¼ hm;nðx; yÞ ¼ hmðyÞfnðxÞ; m; n ¼ 0;1;2; . . . ; ð34Þ
and u and p can be approximated as
u � uh ¼
X
a2J

XNt

i¼1

ua;ihaðx; yÞwiðtÞ; ð35Þ

p � ph ¼
X

a2J ;jaj>0

XNt

i¼1

pa;ihaðx; yÞwiðtÞ; ð36Þ
where Nt 2 N;J ¼ fa ¼ ða1;a2Þja1 6 Nx;a2 6 Ny;Nx;Ny 2 N0g is a set of two-dimensional indices, and the condition
jaj ¼ a1 þ a2 > 0 for p is due to the constraint

R
D pdx ¼ 0 and the orthogonality of Legendre polynomials and Fourier modes.

4.3. Divergence-free constraint

Due to the particular choice of the approximation space for velocity, the no-slip boundary conditions at y ¼ �h are auto-
matically satisfied, i.e., uhjy¼�h ¼ 0. However, uh may not be divergence free. Then a projection of uh onto the divergence-free
space is expected, which can be given by the Helmholtz decomposition Puh ¼ uh þrq. However, Puh will introduce a non-
zero slip velocity at the boundary y ¼ �h, since the Helmholtz decomposition only requires Puh � n ¼ 0 instead of Puh ¼ 0 at
y ¼ �h. Thus if we project Puh onto the approximation space fhm;nðx; yÞg for velocity, the projection will not be divergence
free any more due to the slip velocity Puh � ex – 0 at y ¼ �h. So we have to consider how the divergence-free constraint af-
fect the velocity in the approximation space.

Let ui
h ¼ ðui

h;v i
hÞ indicate the coefficients of wiðtÞ, i.e.
uh ¼
XNt

i¼1

ui
hðx; yÞwiðtÞ; vh ¼

XNt

i¼1

v i
hðx; yÞwiðtÞ: ð37Þ
For any time t, the divergence-free condition is satisfied
r � uh ¼
XNt

i¼1

ðr � ui
hÞwiðtÞ ¼ 0;
which implies that
r � ui
h ¼ 0; i ¼ 1; . . . ;Nt: ð38Þ
Consider the expansions of ui
h and v i

h

ui
hðx; yÞ ¼ ui

0ðyÞ þ
XNx=2

n¼1

ui;c
n ðyÞ cosðnxÞ þ

XNx=2

n¼1

ui;s
n ðyÞ sinðnxÞ;

v i
hðx; yÞ ¼ v i

0ðyÞ þ
XNx=2

n¼1

v i;c
n ðyÞ cosðnxÞ þ

XNx=2

n¼1

v i;s
n ðyÞ sinðnxÞ;
where Nx is assumed to be an even integer. Eq. (38) implies that
ðv i
0Þ
0 þ
XNx=2

n¼1

ððv i;c
n Þ
0 þ nui;s

n Þ cosðnxÞ þ
XNx=2

n¼1

ððv i;s
n Þ
0 � nui;c

n Þ sinðnxÞ ¼ 0; ð39Þ
which results in
ðv i
0Þ
0ðyÞ ¼ 0;

ðv i;c
n Þ
0ðyÞ þ nui;s

n ðyÞ ¼ 0;
ðv i;s

n Þ
0ðyÞ � nui;c

n ðyÞ ¼ 0:

8><>: ð40Þ
Since there does not exist a constant mode in the approximation space for velocity, we have v i
0ðyÞ ¼ 0. v i;c

n and v i;s
n can be

expressed as
v i;c
n ðyÞ ¼

Z y

�h

�nui;s
n ðsÞds; v i;s

n ðyÞ ¼
Z y

�h

nui;c
n ðsÞds: ð41Þ
It is obvious that v i;c
n ð�hÞ ¼ v i;s

n ð�hÞ ¼ 0. Let
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ui;c
n ðyÞ ¼

XNy�1

k¼0

ui;c
n;khkðyÞ; ui;s

n ðyÞ ¼
XNy�1

k¼0

ui;s
n;khkðyÞ;
where hkðyÞ ¼ Pkðy=hÞ � Pkþ2ðy=hÞ. Note here that the highest basis mode for ui;c
n ðyÞ and ui;s

n ðyÞ is hNy�1ðyÞ because v i;c
n ðyÞ and

v i;s
n ðyÞ are expressed as integrals of ui;s

n ðyÞ and ui;c
n ðyÞ, respectively. Using the orthogonality of Legendre polynomials, we have
v i;c
n ðhÞ ¼

Z h

�h

�nui;s
n ðsÞds ¼ �2nhui;s

n;0;

v i;s
n ðhÞ ¼

Z h

�h

nui;c
n ðsÞds ¼ 2nhui;c

n;0;
which implies that ui;c
n;0 ¼ ui;s

n;0 ¼ 0; n ¼ 1; . . . ;Nx=2.
To this end, we obtain the restriction of the divergence-free condition on the degree of freedom in velocity: for

i ¼ 1;2; . . . ;Nt ,


 v i
0ðyÞ ¼ 0.


 ui;c
n;0 ¼ ui;s

n;0 ¼ 0; n ¼ 1; . . . ;Nx=2.

 The highest basis mode for ui;c

n ðyÞ and ui;s
n ðyÞ is hNy�1ðyÞ in contrast to hNy ðyÞ for v i;c

n ðyÞ and v i;s
n ðyÞ.

Then the expansion coefficients of v i
hðyÞ can be obtained directly from the expansion coefficients of ui

hðyÞ through equation
(41) such that the divergence-free condition is satisfied exactly.

To this end, all constraints, including the divergence-free constraint and boundary conditions for the velocity, are auto-
matically satisfied by choosing a particular from of the basis functions and explicitly expressing the divergence-free condi-
tion through the coefficients of velocity. In other words, the optimization problem (27) becomes an unconstrained one.

Remark 2. Due to the explicit application of the continuity equation, we require that the number of cosine modes in the
approximation space is the same as the number of sine modes. Such a requirement is not necessary, in general, for Fourier
spectral methods to approximate a PDE solution, where there usually exists one extra cosine mode in the approximation
space.
4.4. Gradient of STðuh; phÞ

We first present a general discussion without taking into account the divergence-free constraint. We define the linear
operator L and nonlinear operator N
Lðuh;phÞ ¼ �rph þ
1
Re

Duh; Nðuh;vhÞ ¼ ðuh � rÞvh; ð42Þ
whose perturbation operators are
L̂ðduh; dphÞ ¼ �rdph þ
1
Re

Dduh; ð43Þ

N̂ ðduh; dvhÞ ¼ ðduh � rÞvh þ ðuh � rÞdvh: ð44Þ
Let
Gðuh;phÞ ¼ Lðuh;phÞ � N ðutot;h;utot;hÞ ð45Þ
Ĝðdu; dphÞ ¼ L̂ðduh; dphÞ � N̂ ðdutot;h; dutot;hÞ; ð46Þ
where dutot;h ¼ duh although utot;h – uh. We then have the action functional
STðuh;phÞ ¼
1
2
h@tuh � Gðuh;phÞ; @tuh � Gðuh;phÞix;t ð47Þ
and its perturbation
dSTðuh;phÞ ¼ h@tuh � Gðuh;phÞ; @tduh � Ĝðduh; dphÞix;t: ð48Þ
The gradient rSTðuh; phÞ then takes the form (see Eq. (18))
@ST
@ua;i

� �
1
¼ dSTðuh;phÞjduh¼exhaðx;yÞwiðtÞ;dph¼0;

@ST
@ua;i

� �
2
¼ dSTðuh;phÞjduh¼eyhaðx;yÞwiðtÞ;dph¼0;

@ST
@pa;i
¼ dSTðuh;phÞjduh¼0;dph¼haðx;yÞwiðtÞ;

8>>>><>>>>: ð49Þ
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where ex ¼ ð1;0Þ and ey ¼ ð0;1Þ.
According to the discussions in Section 4.3, the vertical velocity v i

hðx; yÞ can be regarded as a function of the horizontal
velocity ui

hðx; yÞ when the divergence-free constraint is applied. Thus we only need to look at the expansion coefficients
of ui

hðx; yÞ:
ui
h ¼ ui

0ðyÞ þ
XNx=2

n¼1

ui;c
n ðyÞ cosðnxÞ þ

XNx=2

n¼1

ui;s
n ðyÞ sinðnxÞ ¼

XNy

k¼0

ui
0;khkðyÞ þ

XNx=2

n¼1

XNy�1

k¼1

ui;c
n;khkðyÞ cosðnxÞ þ

XNx=2

n¼1

XNy�1

k¼1

ui;s
n;khkðyÞ sinðnxÞ:
Since ui
0ðyÞ is not affected by the divergence-free constraint, we have
@ST

@ui
0;k

¼ dSTðuh; phÞjduh¼exhkðyÞwiðtÞ;dph¼0: ð50Þ
We now look at @ST=@ui;c
n;k. Let duhðx; yÞ ¼ dui;c

n;khkðyÞ cosðnxÞ. According to Eq. (41), we must have
dvhðx; yÞ ¼ dui;c
n;k

Z y

�h

nhkðsÞds sinðnxÞ
� �

ð51Þ
correspondingly, which also contributes to @ST=@ui;c
n;k. Thus
@ST

@ui;c
n;k

¼ dSTðuh; phÞjduh¼ðhkðyÞ cosðnxÞwiðtÞ;n
R y

�h
hkðsÞds sinðnxÞwiðtÞÞ;dph¼0

: ð52Þ
Similarly, we have
@ST

@ui;s
n;k

¼ dSTðuh; phÞjduh¼ðhkðyÞ sinðnxÞwiðtÞ;�n
R y

�h
hkðsÞds cosðnxÞwiðtÞÞ;dph¼0

: ð53Þ
Remark 3. To compute the gradient component exactly, we need 2ðNx þ 1Þ quadrature points in x direction and 2Ny þ 4
Gauss–Lobatto quadrature points in y direction. Otherwise, we will have aliasing errors. The effect of the aliasing errors will
be studied numerically. To reduce the computation cost, we would initially employ Nx þ 1 quadrature points in x direction
and Ny þ 3 points in y direction. If necessary, we can increase the number of quadrature points.
4.5. Optimization solver

Once the gradient of the action functional is computed, we use the nonlinear conjugate gradient (CG) method to solve the
optimization problem to get the MAP ðu�h; p�hÞ. Let U 2 RNx;t be a global vector whose components are unknown coefficients of
uh and ph, where Nx;t indicates the total number of degrees of freedom. The nonlinear CG method can be summarized as
Ukþ1 ¼ Uk þ akdk;

dkþ1 ¼ �gkþ1 þ bHZ
k dk; d0 ¼ �g0;



ð54Þ
where the subscript k indicates the iteration step, the positive step size ak is obtained by a line search algorithm,
gk ¼ rSTðUkÞ, and bHZ

k is the CG update parameter. We define bHZ
k ¼maxfbk;gkg as in [9]
bk ¼ yk � dk
jykj

2

dT

k yk

 !T

gkþ1

dT

k yk

; gk ¼
�1

jdkjminf0:01; jgkjg
ð55Þ
with yk ¼ gkþ1 � gk.
To accelerate the convergence of CG iteration, an efficient preconditioner is desired, which is usually problem dependent

for a nonlinear objective function. In [22,23], we used the inverse of the linear part of the Euler–Lagrange equation as a pre-
conditioner for the nonlinear CG solver, which was demonstrated to be efficient for the Kuramoto–Sivashinsky equation.
Such a strategy can also be applied to the N–S equations. However, due to the complexity of Euler–Lagrange equation given
by the action functional of the N–S equations, we do not consider such a strategy in this work and leave it to future study.
Instead, we only consider to use a diagonal preconditioner. We thus need to consider the second-order variation d2STðuh; phÞ
of the action functional. Let
~Nðd~uh; d~vh; duh; dvhÞ ¼ ðduh � rÞd~vh þ ðd~uh � rÞdvh ð56Þ
be the linear perturbation of the operator N̂ ðduh; dvhÞ. The second-order variation of STðuh; phÞ is
d2STðuh; phÞ ¼ h@tduh � Ĝðduh; dphÞ; @tduh � Ĝðduh; dphÞix;t þ h@tuh � Gðuh;phÞ; ~Nðduh; duh; duh; duhÞix;t ; ð57Þ
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i.e.,
STðuh þ duh;ph þ dphÞ � STðuh;phÞ þ dSTðuh; phÞ þ
1
2

d2STðuh; phÞ: ð58Þ
Compare Eq. (58) with the Taylor expansion of the discrete form
STðUþ dUÞ � STðUÞ þ rSTðUÞdUþ 1
2

dUT D2STðUÞdU; ð59Þ
we obtain the diagonal entries of D2STðUÞ using a similar procedure for the gradient STðUÞ. We then define the preconditioner
as the following diagonal matrix P
Pi;i ¼ h@tduh � Ĝðduh; dphÞ; @tduh � Ĝðduh; dphÞix;t ; i ¼ 1; . . . ;Nx;t; ð60Þ
where duh and dph are chosen as discussed in the previous section. Note that the preconditioner P is a function of uh and ph.
Due to the well-posedness of the problem given by the linear operator ð@t � ĜÞ�ð@t � ĜÞ; Pi;i is positive for any given uh and ph

with enough regularity.
We now present a preconditioned nonlinear CG method. Consider a new variable U ¼ SÛ, where S is an invertible matrix

chosen to speed up the convergence. Writing the nonlinear CG method with respect to Û and converting it back to U, we
obtain the preconditioned nonlinear CG method:
Ukþ1 ¼ Uk þ akdk;

dkþ1 ¼ �Pgkþ1 þ �bHZ
k dk; d0 ¼ �Pg0;



ð61Þ
where P ¼ SST. The parameter �bHZ
k is the same as bHZ

k except that gk and dk are replaced by STgk and S�1dk, respectively. How-

ever, we do not need to know S explicitly by observing that STgk

� 	T
STgk

� 	
¼ gT

k SSTgk ¼ gT
k Pgk and S�1dk

� �T

STyk

� 	
¼

dT

k S�TSTyk ¼ dT

k yk. Thus we only need to know the matrix P. Note here that for the diagonal preconditioner, we do not intro-

duce any significant extra computational cost, since the term @tduh � Ĝðduh; dphÞ required by the computation of Pi;i has been
already obtained in the computation of the gradient.

4.6. Time mesh adjustment

One difficulty of approximating the MAP is that the dynamics can significantly affect the quality of temporal discretiza-
tion. Since we are looking for a curve in the phase space, we can also describe it by the arc length, i.e., the temporal discret-
ization corresponds to an arc length discretization of the MAP. Specifically, the time element ½ti; tiþ1� corresponds to the arc

length element ½
R ti

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h@tuh; @tuhix

p
dt;
R tiþ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h@tuh; @tuhix

p
dt�. However, due to the nonlinear relation between time and arc

length, a uniform discretization with respect to time may correspond to a highly nonuniform discretization with respect
to arc length. For example, the time element ½ti; tiþ1� has an element size tiþ1 � ti while the corresponding arc length element

has an element size
R tiþ1

ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h@tuh; @tuhix

p
dt, which is determined by @tuh. In the transition region close to fixed points, the

dynamics will become much slower, i.e., @tuh is close to zero, the arc length elements become very small and do not contrib-
ute to the approximation of the MAP. To improve the accuracy, we employ the moving mesh technique proposed in [19].

Let s 2 ½0;1� indicate a scaled arc length such that the total length of the MAP is equal to 1. We need to find a mapping
from a temporal discretization to a (nearly) uniform discretization with respect to s. A variational approach was used in [19],
which minimizes the following functional
EðsÞ ¼
Z T

0
w�1ðtÞ ds

dt

� �2

dt; ð62Þ
where wðtÞ is a monitor function chosen as
wðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ch@tuh; @tuhix

q
ð63Þ
with C being a positive constant. Note when C goes to infinity, wðtÞ � k@tuhk2. The Euler–Lagrange equation of the functional
(62) is
d
dt w�1ðtÞ ds

dt

� 	
¼ 0; t 2 ð0; TÞ;

sð0Þ ¼ 0; sðTÞ ¼ 1:

(
ð64Þ
For mesh adjustment, we first map the current time mesh to a discretization of ½0;1� with respect to s by solving equation
(64). A quadratic finite element approximation is employed. Specifically, we separate the boundary modes from the interior
second-order modes. It is easy to see that the Schur complement for the boundary modes is a tridiagonal matrix which can
be inversed with a linear cost. Second, we map a uniform discretization of ½0;1�with respect to s to a discretization of ½0; T� by
computing t�1ðsÞ. This will be our new time mesh. Third, we project the current path ðuh; phÞ onto the new time mesh. The
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projection will be implemented element-wisely, which corresponds to inverse the mass matrix in each element and can also
be done with a linear cost. More details about the mesh adjustment for MAM can be found in [23,24].

Algorithm 1. Parallel MAM for Navier–Stokes equations

Decompose the time partition T h uniformly with respect to available computation nodes. Each computation node is

associated with one MPI process, and deals with a sub-partition T i
h; i ¼ 0; . . . ;Nnode � 1.

Project the initial path ðu; pÞ onto sub-partitions T i
h of ½0; T� and define Ui

0 which is a vector containing all unknown

coefficients related to T i
h.

Start the iteration of preconditioned nonlinear CG solver (61)
Ui
mþ1 ¼ Ui

m þ amdi
m; i ¼ 0; . . . ;Nnode � 1;
where the gradient of the action functional will be computed in parallel on each computation node by OpenMP.
Check the mesh quality very m iteration steps.

 Compute the arc length for each element according to the monitor function wðtÞ defined in Eq. (63).


 Compute ri
s for each sub-partition T i

h, which is the ratio between the largest arc length and the smallest one. If
maxi¼0;...;Nnode�1ri

s is larger than a prescribed threshold, solve Eq. (64) to obtain a new time mesh.


 Project the current path onto the new time mesh and update Ui
m, where the projection is implemented in parallel only

by MPI.
Stop the CG iteration when error tolerance or the maximum iteration number is achieved.
5. Numerical results

We study plane Poiseuille flow in the two-dimensional domain D :¼ ½0; L� 	 ½�1;1�. Let a ¼ 2p=L. It is known that no fi-
nite- amplitude neutral (non-attenuated traveling wave) solutions exist below Reynolds number Re � 2900; for
Re J 2900, neutral finite-amplitude solutions exist for a finite brand of wave numbers (centred about a ’ 1:25 of width
Da � 0:5 for subcritical Re); For Re < 5772, at any given a there are either zero or two finite-amplitude equilibria. If there
are two, the lower-branch solution is unstable to two-dimensional perturbations, while the upper-branch solution is stable
to all-dimensional perturbations with x-period 2p=a [17]. In this section, we study the transition from the stable laminar
flow to the finite-amplitude equilibrium.

5.1. Algorithm verification

To verify the algorithm, we first apply the minimum action method to two states along a certain evolution trajectory.
Since there exist dynamics between these two states, the minimum action functional should be equal to zero and the cor-
responding MAP should recover the chosen trajectory.

We use a spectral method to solve the two-dimensional N–S equations with Fourier expansion in x direction and Legen-
dre expansion in y direction. The temporal discretization is based on a second-order stiffly-stable scheme [14] and the veloc-
ity and pressure are updated in each time step by the influence-matrix method [2]. More details about the spectral solver is
given in the appendix.

Consider initial perturbation given by the following stream function [8]
wðx; yÞ ¼ ka
cosh ay
cosh a

� cos ay
cos a

� �
cos hx; ð65Þ
where a is a constant determined by the boundary conditions such that
sinh a
cosh a

þ sin a
cos a

¼ 0;
and the constant ka controls the degree of perturbations. We choose L ¼ 5:0 and Re ¼ 4000. We use 10 Fourier modes for x
direction and 32 Legendre modes for y direction. For this case, a stable upper-branch solution will be obtained, which is a
non-attenuated traveling wave. We then pick two states, ðûhðsÞ; p̂hðsÞÞ and ðûhðsþ TÞ; p̂hðsþ TÞÞ, of this traveling wave as
the ends of the MAP, and apply the minimum action method to the following optimization problem
STðu�h; p�hÞ ¼ min
ðuh ;phÞ2A

STðuh;phÞ; ð66Þ
where
A ¼ ðuhðtÞ; phðtÞÞ
ðuhð0Þ; phð0ÞÞ ¼ ðûhðsÞ; p̂hðsÞÞ;
ðuhðTÞ; phðTÞÞ ¼ ðûhðsþ TÞ; p̂hðsþ TÞÞ


 �
; ð67Þ
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Fig. 1. Snapshots of the trajectory at time t ¼ 5. Left: Horizontal velocity; Right: Pressure.
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and s is large enough such that the non-attenuated traveling wave has been well developed. We are supposed to obtain a
minimizer
Fig. 2.
time in
½0; T ¼
u�hðtÞ ¼ ûhðsþ tÞ; p�hðtÞ ¼ p̂hðsþ tÞ; t 2 ½0; T�;
such that STðu�h; p�hÞ ¼ 0. In Fig. 1 we plot the snapshots of horizontal velocity and pressure at t ¼ 5.
Here we need to clarify one numerical issue. When solving the deterministic N–S equations numerically, the velocity field

is usually obtained through the momentum equations instead of the continuity equation. For example, in the influence-
matrix method, we first compute the vertical velocity and the pressure. Then we use the momentum equation rather than
the continuity equation to update the horizontal velocity. Otherwise, the numerical scheme will become unstable. Hence, the
obtained velocity field is not completely divergence free since the continuity equation is not explicitly satisfied while in the
minimum action method the divergence-free constraint is exactly satisfied. Thus, the MAP ðu�h; p�hÞ will not be completely
consistent with the trajectory. Then we have
STðu�h;p�hÞ ¼ �̂ðNtÞ þ �ðNx;NyÞ > 0;
where �ðNx;NyÞmeasures the aforementioned inconsistency between the MAP ðu�; p�Þ and the trajectory ðûhðsþ tÞ; p̂hðsþ tÞÞ
from the divergence-free condition, and �̂ðNtÞ measures the approximation error from the temporal discretization of the
MAP. Then �̂! 0 as Nt !1 for some fixed Nx and Ny, and �ðNx;NyÞ ! 0 as Nx;Ny !1.

Assume that �ðNx;NyÞ is small enough such that �̂ðNtÞ is dominant. Then it is reasonable to study the convergence with
respect to the temporal discretization. If we employ linear finite elements in time direction, �̂ðNtÞ should go to zero with the
convergence rate OðN�2

e Þ, where Ne is the number of time elements. Note that such a convergence rate, in general, cannot be
obtained without the time mesh adjustment. However, since the trajectory is given by a traveling wave with a certain speed,
Convergence of the minimum action method. Left: h-convergence of the MAP. Linear finite elements are used for the temporal discretization on the
terval ½0; T ¼ 10�. The reference line is a straight line with slope �2. Right: p-convergence of the MAP. One time element is used on the time interval
25�.



Fig. 3. Compare the MAP and the trajectory at t ¼ 5 and x ¼ 1:2. Left: Horizontal velocity; Right: Pressure.
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the time mesh adjustment is not necessary here. In Fig. 2, we plot STðu�h; p�hÞ versus the number Ne of time elements on the
left as the indication of h-convergence, and STðu�h; p�hÞ versus the polynomial order on the right as the indication of
p-convergence. Due to the fast convergence we need to consider a larger time interval ½0; T ¼ 25� to demonstrate the
p-convergence in contrast to the time interval ½0; T ¼ 10� used for the h-convergence. Furthermore, when we increase the
number of quadrature points from Nx þ 1 to 2ðNx þ 1Þ in x direction and from Ny þ 3 to 2Ny þ 4 in y direction to remove
the aliasing errors, the MAP stays almost the same, which implies that the numerical solution is not sensitive to the aliasing
errors for the cases studied. We subsequently compare the MAP and the trajectory at t ¼ 5 and x ¼ 1:2 in Fig. 3. The trajec-
tory is computed by the aforementioned spectral solver, which has a second-order accuracy in time and the time step is
chosen as 0.001. It is seen that the MAP does recover the trajectory, as expected, for both the velocity and the pressure.
Finally we demonstrate the effectiveness of the diagonal preconditioner, in Fig. 4, by plotting the convergence behavior of
the nonlinear CG solver with and without a preconditioner. It is seen that the diagonal preconditioner gives a speed-up of
Oð10Þ for this problem.

5.2. Transition from the base flow to a traveling wave

We now present some preliminary results for the transition from the base flow to the non-attenuated traveling wave, i.e.,
we consider the following optimization problem
Fig. 4.
solver w
STðuh;0!TW;ph;0!TWÞ ¼ min
ðuh ;phÞ2A

STðuh;phÞ; ð68Þ
where
A ¼ ðuhðx; tÞ; phðx; tÞÞ
ðuhðx; 0Þ; phðx;0ÞÞ ¼ ð0;0Þ;
ðuhðx; TÞ; phðx; TÞÞ ¼ ðuTWðxÞ; pTWðxÞÞ


 �
; ð69Þ
Effectiveness of the diagonal preconditioner. The solid line is given by nonlinear CG without preconditioner, and the dash line is given by the same
ith the diagonal preconditioner.
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Fig. 5. Energy evolution of deterministic N–S equations starting from a certain moment of MAPs. Left: MAP uh;0!TWðtÞ; Right: MAP uh;0!SðtÞ.
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and ðuTWðxÞ; pTWðxÞÞ is an arbitrary state chosen from the fully developed non-attenuated traveling wave for L ¼ 5 and
Re ¼ 4000, and the arrow in the subscript indicates the direction of transition.

We tested two cases for problem (68) using T ¼ 3000; 6000, respectively, where T is of OðReÞ. The two cases gave consis-
tent numerical results. We then focus on the results on the time interval ½0;6000�, where 3072 finite elements are used to
discretize the MAP with fourth-order polynomials in each element.

The strategy to obtain a good approximation of the MAP is as follows. We first solve numerically problem (68) to obtain a
MAP uh;0!TWðtÞ; t 2 ½0;6000�, from the trivial solution to the traveling wave. We then apply a dynamic solver of N–S equations
using uh;0!TWðtÞ as the initial conditions to identify the transition time bT when the dynamic solver starts to converge to the
traveling wave instead of the trivial solution. In other words, at time bT the MAP exits the basin of attraction of the trivial
solution. Using a bisection procedure we obtain bT 2 ðTl ¼ 5535:5455055; Tr ¼ 5535:5455056Þ, which means that the dynam-
ical solver will converge to the trivial solution if the initial data is given by uh;0!TWðtÞ; t 2 ½0; Tl�, and to the traveling wave if
the initial data is given by uh;0!TWðtÞ; t 2 ½Tl;6000�. We observe that the dynamic solver of N–S equations starting from either
uh;0!TWðTlÞ or uh;0!TWðTrÞ will first approach a state of constant energy before it diverges to the trivial solution or the trav-
eling wave, see the left plot in Fig. 5. Furthermore, such a divergence will occur later when both Tl and Tr are more accurate.
Since there exist only two stable solutions, these phenomena imply that there exist an unstable solution of N–S equations,
whose unstable manifolds are connected with both the trivial solution and the traveling wave. We call this unstable saddle-
like solution uSðx; tÞ the transition state, which should belong to the unstable lower-branch solutions.

Then the MAP uh;0!TWðtÞ from the trivial solution to the traveling wave can be decomposed into two parts: uh;0!SðtÞ and
uh;S!TWðtÞ, where the former part indicates a transition from the trivial solution to the saddle-like solution uSðx; tÞ and the
latter part indicates a transition from uSðx; tÞ to the traveling wave. Since the unstable manifold of uSðx; tÞ is connected with
the traveling wave, the MAP uh;S!TWðtÞ can be given by a dynamic solver of N–S equations staring from uSðx; tÞ, which has a
zero action. Instead of approximating the MAP uh;0!TWðtÞ directly, we can focus on uh;0!SðtÞ for a better approximation. In
other words, we consider the following optimization problem
STðuh;0!S;ph;0!SÞ ¼ min
ðuh ;phÞ2A

STðuh;phÞ; ð70Þ
where
A ¼ ðuhðx; tÞ; phðx; tÞÞ
ðuhðx;0Þ; phðx;0ÞÞ ¼ ð0;0Þ;
ðuhðx; TÞ; phðx; TÞÞ ¼ ðuSðxÞ;pSðxÞÞ


 �
; ð71Þ
and the state ðuSðxÞ; pSðxÞÞ are approximated by the state of the lowest energy on the trajectory given by the dynamic solver
starting from uh;0!TWðTrÞ. Using the same parameters, we compute uh;0!SðtÞ on time interval ½0;6000�. A similar decomposi-
tion can be implemented to obtain the transition time bT 2 ðTl ¼ 5961:0743403; Tr ¼ 5961:0743404Þ on the MAP uh;0!SðtÞ
since the approximated state uSðxÞ is out of the basin of attraction of the trivial solution. Energy evolution of the dynamic
solver starting from a certain moment of the MAP uh;0!SðtÞ is given in the right plot of Fig. 5, where we see that the saddle-
like solution uSðx; tÞ has an energy about 0:0143. Snapshots of the approximated state uSðxÞ are give in Fig. 6. We note that
the saddle-like solution uSðx; tÞ has a similar profile with the traveling wave solution, see Figs. 1 and 6, while the traveling
wave solution is stable with a much larger energy 0:347.

To this end, we see that the saddle-like solution uSðx; tÞ should be located on the separatrix of the trivial solution and the
traveling wave solution, and plays a critical role for the transition. When the transition occurs, the MAP goes through the
basin of attraction of the trivial solution through uSðx; tÞ.
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Fig. 6. Snapshots of the transition state on the MAP. Left: Horizontal velocity with streamlines; Right: Vertical velocity.
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We now examine the evolution of uh;0!SðtÞ on the time interval ½0; Tr ¼ 5961:0743404�. In Fig. 7 we plot snapshots of hor-
izontal and vertical velocities on the MAP uh;0!SðtÞ at time t ¼ 5000;5400;5800, where the range of the contours are from the
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minimum to the maximum of the corresponding velocity component. It is observed that up to time t ¼ 5000, the disturbance
is almost a parallel shear flow since the vertical velocity is much smaller than the horizontal velocity. The effect of the dis-
turbance with negative horizontal velocity is mainly to slow down the base flow. As the amplitude of the vertical velocity
increases, the oscillation becomes stronger until boundary layer instability occurs and two vortices emerge from boundaries
(one from the top boundary and the other one from the bottom boundary). As the amplitude of the oscillation keeps increas-
ing, the two vortices are also strengthened. Eventually the saddle-like solution uSðx; tÞ is reached when the transition occurs.
Since the MAP uh;0!SðtÞ is the least unlikely path for the transition from the trivial solution to uSðx; tÞ, the above observations
provide the most probable scenario that the disturbance develops from zero to a critical state for instability to occur.

6. Summary

In this work, we developed a parallel minimum action method for small random perturbations of Navier–Stokes equa-
tions. The optimization problem given by the Freidlin–Wentzell least action principle is transformed to an unconstrained
one by taking care of the boundary conditions and the incompressibility condition explicitly, which is then solved by a pre-
conditioned nonlinear conjugate gradient solver. The algorithm is verified by examining a non-attenuated traveling wave in
the two- dimensional Poiseuille flow, where both h- and p-convergence are obtained and it is also observed that the MAP can
recover the trajectory of both velocity and pressure if there exists dynamics between the two given states. We also presented
some preliminary results for the nonlinear instability of the two-dimensional Poiseuille flow.

There are many open problems and possibilities generated by this work from both numerical and application point of
view. (1) In this work we used spectral discretization in physical space, which implicitly deals with the different regularity
requirements given by the original PDE and the Euler–Lagrange equation of the Freidlin–Wentzell action functional. For a
general finite element discretization in physical space, such an issue will be taken care of by either a different construction
of the finite element basis or a modification of the discretization of the Freidlin–Wentzell action functional; (2) One impor-
tant numerical issue is the improvement of the diagonal preconditioner; (3) As for the application to nonlinear instability, a
much more interesting and important problem is to apply the developed algorithm to look for the characteristic features of
the transition of parallel shear flows in both two- and three-dimensional long channels.
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Appendix A. A spectral solver for the Navier–Stokes equations

Since the channel flow has a simple geometry, we consider the spectral method to solve the N–S equations with Fourier
expansion in x direction and Legendre expansion in y direction. The problem is defined as:
@u
@t þ ðutot � rÞutot ¼ �rpþ 1

Re Du;
r � u ¼ 0

(
ðA:1Þ
with boundary conditions
ujx¼0 ¼ ujx¼L;

pjx¼0 ¼ pjx¼L;

ujy¼�h ¼ 0:

8><>: ðA:2Þ
For the temporal discretization we use the stiffly-stable scheme [14]:
c0unþ1 �
PJi�1

q¼0aqun�q

Dt
¼ �rpnþ1 �

XJe�1

q¼0

bqNðuÞ
n�q þ mLðunþ1Þ; ðA:3Þ
with
NðuÞ ¼ ðutot � rÞutot; LðuÞ ¼ Du;
where Ji and Je are integration orders for the diffusion term and the advection term, respectively, and the coefficients c0, aq

and bq are determined by the accuracy order of the numerical scheme [14]. For the spatial discretization, we use Fourier
expansion in the x direction and Legendre expansion in the y direction. For x direction, the Fourier expansion is employed
for both u and p because of the periodic boundary conditions. Considering the constraint ujy¼�h ¼ 0, we choose the basis
functions for the y direction as Pmðy=hÞ � Pmþ2ðy=hÞ for the velocity u, and Pmðy=hÞ for the pressure p, where PmðyÞ is the
Legendre polynomial of order m. Then we have the following approximation
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u � uh ¼
XNy

i¼0

uiðx; tÞðPmðy=hÞ � Pmþ2ðy=hÞÞ; ðA:4Þ

p � ph ¼
XNyþ1

i¼0

piðx; tÞPmðy=hÞ; ðA:5Þ
where the highest polynomial order for velocity is Ny þ 2 while the highest polynomial order for pressure is Ny þ 1. This is
due to the fact that PNyþ2ðy=hÞ is a spurious mode for the pressure. Also note that the mean of the pressure should be equal to
zero, i.e.

R
D pdx ¼ 0.

We re-organize the Eq. (A.1) as
mDunþ1 � kunþ1 �rpnþ1 ¼ �Rn; ðA:6Þ
where
k ¼ c0=Dt;

Rn ¼ 1
Dt

XJi�1

q¼0

aqun�q �
XJe�1

q¼0

bqNðuÞ
n�q
:

Then for each Fourier mode eik2p
L x, we have the following equations in the Fourier space
mû00 � ðmh2
k þ kÞû� r̂p̂ ¼ �R̂; ðA:7Þ

r̂ � û ¼ 0; ðA:8Þ
ûð�hÞ ¼ 0; ðA:9Þ
where we drop subscript k and time level nþ 1 for all Fourier coefficients, the prime indicates the derivative with respect to
y, and
hk ¼ k
2p
L

ðA:10Þ

r̂p̂nþ1 ¼ ihkp̂nþ1; @p̂nþ1=@y
� 	

; ðA:11Þ
r̂ � ûnþ1 ¼ ihkûnþ1 þ @v̂nþ1=@y: ðA:12Þ
Taking the divergence of (A.7) and applying the divergence-free constraint, we have the equation for the pressure
p̂00 � h2
k p̂ ¼ r̂ � R̂; ðA:13Þ
subject to the boundary conditions
r̂ � ûð�hÞ ¼ 0; i:e:;v̂ 0ð�hÞ ¼ 0: ðA:14Þ
The momentum equation for v̂ and û are
mv̂ 00 � ðmh2
k þ kÞv̂ � p̂0 ¼ �bRy; v̂ð�hÞ ¼ 0;ðA:15Þ

mû00 � ðmh2
k þ kÞû� ihkp̂ ¼ �bRx; ûð�hÞ ¼ 0:ðA:16Þ
To solve Eqs. (A.13)–(A.16), we employ the influence-matrix method [2]. Eqs. (A.13)-(A.15) are called ‘‘A-Problem’’ and the
following equations ‘‘B-Problem’’:
p̂00 � h2
k p̂ ¼ r̂ � R̂; p̂ð�hÞ ¼ p̂�;ðA:17Þ

mv̂ 00 � ðmh2
k þ kÞv̂ � p̂0 ¼ �bRy; v̂ð�hÞ ¼ 0:ðA:18Þ
The pressure p̂� at the walls are unknown a priori, but it is required to be consistent with the conditions v̂ 0ð�hÞ ¼ 0. Let
ðp̂p; v̂pÞ be the solution of Eqs. (A.17) and (A.18) but with homogeneous Dirichlet boundary conditions on p̂. Let ðp̂þ; v̂þÞ
and ðp̂�; v̂�Þ be the solutions of the homogeneous B-Problems with zero on the right-hand sides of differential equations,
with boundary conditions p̂þð�hÞ ¼ 0; p̂þðhÞ ¼ 1, and p̂�ð�hÞ ¼ 1, p̂�ðhÞ ¼ 0, respectively. Write the solution of the
A-Problem as
p̂

v̂

� �
¼

p̂p

v̂p

� �
þ dþ

p̂þ
v̂þ

� �
þ d�

p̂�
v̂�

� �
: ðA:19Þ
The boundary conditions of the A-Problem require
v̂ 0þðþhÞ v̂ 0�ðþhÞ
v̂ 0þð�hÞ v̂ 0�ð�hÞ

 !
dþ
d�

� �
¼ �

v̂ 0pðþhÞ
v̂ 0pð�hÞ

 !
: ðA:20Þ
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This determines dþ and d�, and hence the correct pressure boundary condition is
p̂ð�hÞ ¼ d�:
For each time step, the B-Problem is first solved with homogeneous pressure boundary conditions, and then solved again
using the correct pressure boundary conditions. Having p̂ and v̂ , then û will be obtained from the momentum equation in-
stead of the continuity equation for the reason of numerical stability.
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