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BAYES

XIAOLIANG WAN AND SHUANGQING WEI

Abstract. In this work, we have proposed a generative model, called VAE-
KRnet, for density estimation or approximation, which combines the canonical
variational autoencoder (VAE) with our recently developed flow-based gener-
ative model, called KRnet. VAE is used as a dimension reduction technique to
capture the latent space, and KRnet is used to model the distribution of the
latent variable. Using a linear model between the data and the latent variable,
we show that VAE-KRnet can be more effective and robust than the canonical
VAE. VAE-KRnet can be used as a density model to approximate either data
distribution or an arbitrary probability density function (PDF) known up to a
constant. VAE-KRnet is flexible in terms of dimensionality. When the number
of dimensions is relatively small, KRnet can effectively approximate the distri-
bution in terms of the original random variable. For high-dimensional cases,
we may use VAE-KRnet to incorporate dimension reduction. One important
application of VAE-KRnet is the variational Bayes for the approximation of the
posterior distribution. The variational Bayes approaches are usually based on
the minimization of the Kullback-Leibler (KL) divergence between the model
and the posterior. For high-dimensional distributions, it is very challenging to
construct an accurate density model due to the curse of dimensionality, where
extra assumptions are often introduced for efficiency. For instance, the clas-
sical mean-field approach assumes mutual independence between dimensions,
which often yields an underestimated variance due to oversimplification. To
alleviate this issue, we include into the loss the maximization of the mutual
information between the latent random variable and the original random vari-
able, which helps keep more information from the region of low density such
that the estimation of variance is improved. Numerical experiments have been
presented to demonstrate the effectiveness of our model.

1. Introduction

The density estimation of high-dimensional data plays an important role in
unsupervised learning, which is challenging due to the curse of dimensionality
[27]. In the last decade, deep generative modeling has made a lot of progress
by incorporating with deep neural networks. Deep generative models are usually
with likelihood-based methods, such as the autoregressive models [14, 22, 23, 24],
variational autoencoders (VAE) [18, 21, 16], and flow-based generative models
[7, 25, 8, 19, 33, 3, 6, 9]. One flexible model that does not need the likelihood
is the generative adversarial network (GAN) [13, 1], which seeks a Nash equilib-
rium of a zero-sum game between the generator and the discriminator. Recently,
the coupling of different modeling strategies has also been explored. The flow-based
model was coupled with GAN in [15] to obtain a likelihood for GAN; The VAE,
flow-based model and GAN were coupled in [34] for more flexibility and efficiency.
The main goal of deep generative models is to generate new data that are consistent
with the underlying distribution of the available data. To achieve this, a specific
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density model is not a necessity, e.g., GAN manages to focus on the mapping from
a standard Gaussian to the desired data distribution without using the likelihood.
Other than GANs, deep generative models usually provide a density model, e.g., the
flow-based models actually define an invertible transport map between two random
variables which yields an explicit push-forward measure. A common characteris-
tic of deep generative models is that they employ neural networks to model the
mapping between high-dimensional inputs and outputs whenever needed. Such a
strategy is proved to be very effective for application problems although the models
are usually not easy to analyze due to the strong nonlinearity induced by neural
networks.

Classical density estimation techniques such as kernel density estimation and
mixture of Gaussians, suffer severely from the curse of dimensionality, meaning
that they are only effective for low-dimensional data. However, the approximation
of high-dimensional distributions is often expected to alleviate the computational
cost of sampling a complicated mathematical model. For example, a typical Uncer-
tainty Quantification (UQ) model is a partial differential equation (PDE) subject
to uncertainty. When studying rare events in such a system, we must have an
effective strategy to reduce the number of samples since each sample corresponds
to solving a PDE. One strategy is to use the reduced-order model to obtain the
samples of the desired rare events followed by a density estimation step. The es-
timated distribution can then be coupled with the importance sampling technique
for variance reduction [26, 12, 31]. Another important example is the variational
Bayes [2]. Sampling strategies such as Markov Chain Monte Carlo (MCMC) be-
come less effective as the number of dimensions increases. The variational Bayes
approach, which seeks the optimal approximation of the distribution in a family of
density models, may be more effective for high-dimensional problems than sampling
strategies.

The available deep generative models usually focus on capturing the main fea-
tures of the data instead of an accurate estimation of the density for that the
dimensionality of the target data is often extremely high, e.g., high-resolution im-
ages that have millions of pixels. We are more interested in whether the strategies
developed for deep generative models can be adapted as a density estimation tech-
nique with mathematical convergence. In [29], we coupled the real NVP [8] and the
Knothe-Rosenblatt (KR) rearrangement to generate an invertible transport map,
called KRnet, between the standard Gaussian and an arbitrary distribution. In nu-
merical experiments, KRnet has demonstrated a much better algebraic convergence
than the original real NVP with respect to the number of model parameters. The
drawback of constructing a transport map is that the dimensionality needs to be
kept unchanged, which limits KRnet to a relatively small number of dimensions.
In this work, we intend to couple KRnet and variational autoencoder (VAE) to
obtain a more general model called VAE-KRnet. The basic idea is to use KRnet
to model the prior distribution of the latent random variable identified by VAE
and generalize the underlying distribution of the encoder from Gaussian to an ar-
bitrary one. We show that VAE-KRnet is more flexible than the canonical VAE by
examining a linear model between the latent space and the data space. We then
apply VAE-KRnet to the variational Bayes to approximate the posterior distribu-
tion. By varying the number of dimensions of the late space from zero (KRnet) to
d (VAE-KRnet), a wide range of data dimensions can be covered especially when



VAE-KRNET AND ITS APPLICATIONS TO VARIATIONAL BAYES 3

the problem admits a significant dimension reduction. One common problem in
variational Bayes is the possible underestimation of variance because the minimiza-
tion of the Kullback-Leibler divergence is more in favor of the first-order moments
than the second-order moments, especially when the model capability is not strong
enough. To alleviate this issue, we take into account the mutual information when
searching the latent random variable. In the loss we balance the contribution of
two terms: the maximization of the mutual information between the latent ran-
dom variable and the original random variable, and the minimization of the KL
divergence between the density model and the original distribution. The relative
importance of these two terms will be adjusted by a weight parameter. By maxi-
mizing the mutual information we may keep more information from the region of
low density and improve the estimation of the variance.

Our paper is organized as follows. We first present a brief description of KRnet
in the next section. We discuss the coupling of VAE and KRnet in section 3,
and apply VAE-KRnet to variational Bayes in section 4. In section 5, we study
numerically the performance of VAE-KRnet, followed by a summary section.

2. KRnet - An invertible transport map

Let µY and µZ indicate the probability measures of random variables Y ,Z ∈ R
n

respectively. A transport map T : Z → Y is defined as T#µZ = µY , where T#µZ

is the push-forward of the law µZ of Z such that µY (B) = µZ(T
−1(B)) for every

Borel set B [10]. The Knothe-Rosenblatt (K-R) rearrangement says that T may
have a lower-triangular structure such that

z = T−1(y) = f(y) =








f1(y1)
f2(y1, y2)
...
fn(y1, y2, . . . , yn)







, (2.1)

which can be regarded as a limit of a sequence of optimal transport maps when
the quadratic cost degenerates [5]. Combining the triangular structure of the K-
R rearrangement and the technique real NVP [8], we have proposed an invertible

mapping z = f̂(y) = T̂−1(y) such that T̂#µZ can be used as a model for density
estimation when data are provided for Y and a prior distribution is prescribed

for Z [28, 29]. The invertible transport map f̂(·) is called KRnet. In reality,
we may consider a block-triangular version of the K-R rearrangement for more
flexibility. Consider a partition of y = (y1, . . . ,yK), where yi = (yi,1, . . . , yi,m),

where 1 ≤ K ≤ n and 1 ≤ m ≤ n, and
∑K

i=1 dim(yi) = n. The transport map f̂(y)
then takes the following form:

z = f̂(y) =








f̂1(y1)

f̂2(y1,y2)
...

f̂K(y1, . . . ,yK)







. (2.2)

Let µZ(dz) = pZ(z)dz, where pZ(z) is the probability density function (PDF).

The KRnet f̂(·) induces the following density model

pY (y) = pZ(f̂(y))
∣
∣
∣det∇y f̂(y)

∣
∣
∣ , (2.3)
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which can be easily sampled as Y = f̂−1(Z), thanks to the invertibility of f̂(·).

2.1. An overview of the layers in KRnet. The mathematical form of KRnet
is an invertible composite mapping

z = f(y) = f[m] ◦ f[m−1] ◦ . . . ◦ f[i] ◦ . . . f[2] ◦ f[1](y), (2.4)

or

y = f−1(z) = f−1
[1] ◦ f−1

[2] ◦ . . . ◦ f−1
[i] ◦ . . . f−1

[m−1] ◦ f
−1
[m](z), (2.5)

where f[i](·) is a bijection that is often referred to as a layer. Simply speaking,
KRnet modifies the data distribution of Y step by step through a large number of
intermediate simple bijections to make it eventually consistent with a prescribed
distribution of Z. We let y[0] = y indicate the initial state and y[i] = f[i]◦. . .◦f[1](y)
an intermediate state. The main feature of KRnet is that the overall structure of
the invertible mapping is lower (or upper) triangular. For the mapping from Y

to Z, each dimension of Y will be deactivated at a certain stage and remain fixed
until all dimensions become inactive. On the other hand, the inverse mapping from
Z to Y will activate the dimensions gradually. We now briefly introduce the layers
used in KRnet, where each layer is a relatively simple bijection. More details about
KRnet can be found in [29, 30].

Squeezing layer deactivates a certain number of components using a mask

q = (1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

n−k

),

which means that the components q ⊙ y[i] will keep being updated and the rest

components (1 − q) ⊙ y[i] will remain fixed from then on. Here ⊙ indicates the
Hadamard product or component-wise product. So we deactivate the last n − k
components whenever needed.

Rotation layer provides a simple and trainable strategy to determine the dimen-
sions that will be deactivated first. The rotation layer defines a rotation of the
coordinate system through an orthonormal matrix for the current active dimen-
sions:

ŷ[i] = Ŵy[i] =

[
W 0
0 I

]

y[i] =

[
L 0
0 I

] [
U 0
0 I

]

y[i],

where W ∈ R
k×k with k being the number of 1’s in q, and I ∈ R

(n−k)×(n−k) is
an identity matrix, and W = LU is the LU decomposition of W. The entries of
L and U will be treated as trainable parameters except for the diagonal entries
of L which are equal to 1. Intuitively we expect the rotation may put the most
important dimensions at the beginning, which need further modifications. One
implementation issue is that we usually optimize the trainable entries of L and U
directly for simplicity without enforcing the orthonormality of W, which works well
in practice.

Scale and bias layer provides a simplification of batch normalization which is
defined as [17, 19]

ŷ[i] = a⊙ y[i] + b, (2.6)

where a and b are trainable, and initialized by the mean and standard deviation of
data. After the initialization, a and b will be treated as regular trainable parameters
that are independent of the data. The scale and bias layer helps to improve the
conditioning of deep net.
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Affine coupling layer is the most important layer for evolving the data. Consider
a partition y[i] = (yT

[i],1,y
T
[i],2)

T with y[i],1 ∈ R
m and y[i],2 ∈ R

n−m. The affine

coupling layer is defined as [29, 8]

z1 = y[i],1, (2.7)

z2 = y[i],2 ⊙ (1 + α tanh(s(y[i],1)) + eβ ⊙ tanh(t(y[i],1)), (2.8)

where s, t ∈ R
n−m stand for scaling and translation functions depending only on

y[i],1, 0 < α < 1 is a hyperparameter and β ∈ R
n is trainable. We modified the

original affine coupling layer in real NVP [8] to improve the conditioning. Note that
y[i],2 is updated linearly while the mappings s(y[i],1) and t(y[i],1) can be arbitrarily

complicated, which are modeled as a neural network (NN),

(s, t) = NN(y[i],1). (2.9)

Then the Jacobi matrix is lower-triangular, and an inverse can be easily computed.
The two parts of y[i] will be updated alternately by a sequence of affine coupling
layers, e.g., at the next affine coupling layer, the first part will be modified while
the second part remains fixed.

Nonlinear invertible layer defines a component-wise one-dimensional nonlinear
mapping to map R to itself. We decompose R = (−∞,−a) ∪ [−a, a] ∪ (a,∞)
for 0 < a < ∞. The intervals (−∞,−a) ∪ (a,∞) and [−a, a] will be mapped to
themselves. For (−∞,−a) ∪ (a,∞), a linear mapping is used, and for [−a, a], a
piecewise quadratic mapping is defined. More specifically, we define

z = F̂ (y) =







β(y − a) + a, y ∈ (−∞,−a)
φ−1 ◦ F ◦ φ(y), y ∈ [−a, a]
β(y + a)− a, y ∈ (a,∞),

where φ : [−a, a] → [0, 1] is an affine mapping, β > 0 is a scaling factor, and

F (x) =

∫ x

0

p(x)dx, ∀x ∈ [0, 1], (2.10)

where p(x) can be regarded a PDF and F (x) a cumulative distribution function. In
particular, p(x) will be defined as a piecewise linear function on a mesh of [0, 1] such
that F (x) is a quadratic function whose inverse can be computed explicitly. Non-
linear invertible layer provides a component-wise change of variable for a standard
Gaussian prior distribution.

2.2. Main structure of KRnet. We are now ready to present the main structure
of KRnet, which is illustrated in Figure 1. KRnet is mainly defined by two loops:
outer loop f outer

[k] (·) and inner loop f inner
[k,i] (·) for a fixed k, where the outer loop

has K − 1 stages, corresponding to the K − 1 mappings fi in equation (2.2) with
i = 2, . . . ,K, and the inner loop has L stages, indicating the length of a chain of
general coupling layers, see figure 1.

• Outer loop. Let f outer
[k] indicate one iteration of the outer loop. We have

z = f(y) = LN ◦ f outer
[K−1] ◦ . . . ◦ f

outer
[1] (y). (2.11)

Let y[k] = f outer
[k] (y[k−1]) with y[0] = y, and i = 1, . . . ,K − 1. Each y[k] =

(y[k],1, . . . ,y[k],K) has the same partition. The ith partition will remain un-
changed after stageK−i+1. For example, y[k],K will be updated only when
k = 1 and and y[k],K−1 will be fixed when k > 2. This way, the number of
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y

LR: Rotation layer

Scale and bias layer

Affine coupling layer

LS : Squeezing layer

LN : Nonlinear layer
for all dimensions

z

f inner
[k,i]

L

K − 1

Figure 1. The flow chart of KRnet.

effective dimensions decreases as k increases. Once the outer loop is com-
pleted, the only active dimensions in y[K−1] = (y[K−1],1, . . . ,y[K−1],K) will
be y[K−1],1. We then apply the nonlinear invertible layer to all dimensions
before the final output.

• Inner loop. The inner loop mainly consists of a sequence of general coupling
layers f inner

[k,i] , which includes one scale and bias layer and one affine coupling

layer. We have

f outer
[k] = LS ◦ f inner

[k,L] ◦ . . . ◦ f
inner
[k,1] ◦ LR, (2.12)

where LR is a rotation layer, and LS is a squeezing layer.

The main effectiveness of KRnet comes from the depth determined by both K and
L. The rotation layers and the nonlinear invertible layers may be switched off
initially to reduce the model complexity. Once the KRnet is trained, these layers
can be switched on for further refinement.

3. Coupling VAE and KRnet

Due to the invertibility, KRnet maps a variable to another variable of the same
dimension. To enhance its capability to deal with high-dimensional data, we will
integrate it into the framework of variational autoencoder (VAE), which provides a
dimension reduction technique for density estimation. We employ VAE to identify
the latent space and KRnet to generalize the modeling for the prior distribution
and the encoder.

3.1. Variational autoencoder (VAE). We briefly recall the variational autoen-
coder [18]. Assume that there exists a latent random variable X ∈ R

d with d ≪ n
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with a marginal distribution pX,θ(x), where θ includes the model parameters. The
joint distribution pX,Y ,θ of X and Y is then described by the conditional distri-
bution pY |X,θ(y|x), i.e., pX,Y ,θ = pY |X,θpX,θ.

The target is to approximate the posterior distribution pX|Y (i),θ(x|y
(i)) which

will be modeled by a family of parameterized PDFs qX|Y (i),φ(x|y
(i)). Here we add

a superscript ∗(i) to emphasize that the random variable Y (i) corresponds to one
sample in the training set. The optimal parameters θ and φ are determined by
minimizing the KL divergence

DKL(qX|Y (i),φ‖pX|Y (i),θ)

=DKL(qX|Y (i),φ‖pX,θ)−

∫

qX|Y (i),φ log pY (i)|X,θdx+ log pY (i) ≥ 0. (3.1)

The minimization of DKL(qX|Y (i),φ‖pX|Y (i),θ) is equivalent to the maximization of
the variational lower bound of log pY (i) , which is defined as

Lθ,φ(y
(i)) = −DKL(qX|Y (i),φ‖pX,θ) +

∫

qX|Y (i),φ log pY (i)|X,θdx. (3.2)

If there are N samples in the training set, the variational lower bound of the log-
likelihood log pY is

Lθ,φ(y) =
N∑

i=1

Lθ,φ(y
(i)), (3.3)

where y includes all the data {y(i)}Ni=1 in the training set.
To apply VAE we need to specify three PDF models respectively for pY (i)|X,θ,

qX|Y (i),φ and pX,θ(x). In the canonical VAE, the following models are used:

pY (i)|X,θ = N (µde,θ(x), diag(σ
⊙2
de,θ(x))), (3.4)

qX|Y (i),φ = N (µen,φ(y
(i)), diag(σ⊙2

en,φ(y
(i)))), (3.5)

pX,θ = N (0, I), (3.6)

where ∗⊙2 means that the square operation is component-wise. From the viewpoint
of dimension reduction, it is often a good choice to assume that pY (i)|X,θ is Gauss-
ian with independent components. The posterior distribution pX|Y (i),θ is in general
intractable, and an approximation model qX|Y (i),φ is needed, which is also chosen as

a multivariate Gaussian with independent components. Then (µen,φ(y),σen,φ(y))
serves as the encoder and (µde,θ(x),σde,θ(x)) serves as the decoder. The prior dis-
tribution pX,θ is simply assumed to be a standard Gaussian N (0, I). Furthermore,
both encoder and decoder are modeled by neural networks.

3.2. VAE for a linear model. VAE has three components: the prior, the encoder
and the decoder, each of which is either a simple Gaussian or a diagonal Gaussian.
Let us first examine the relation of these three components in terms of a linear
model for dimension reduction

Y = AX + ξ, (3.7)

where ξ ∈ R
n, ξ ∼ N (0, σ2I), A ∈ R

n×d, and ξ is independent of X . We regard
X as a latent random variable with d ≪ n. The joint distribution of X and Y is

pX,Y = pX · N (Ax, σ2I) (3.8)
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After the decoder pY |X = N (Ax, σ2I) is specified, we look at the relation between
pX and qY |X :

Lemma 3.1. Let pX = N (0,ΣX) in model (3.7) with ΣX being positive definite.
From the modeling point of view, the encoder qX|Y = N (µen(y),σ

⊙2
en (y)) of the

canonical VAE is able to exactly recover the true posterior distribution pX|Y .

Proof. The prior is chosen as pZ = N (0, I) in VAE, implying that we may consider
a transformed model

Y = A(BUZ) + ξ,

where X = BUZ with B,U ∈ R
d×d and U being a unitary matrix. The reason

that we include the unitary matrix U will be clear later. It is easy to see that the
variable Z|y is Gaussian subject to a covariance matrix

ΣZ|y = (I+ σ−2UTBTATABU)−1. (3.9)

If the encoder of VAE is able to exactly recover ΣZ|y, we need the existence of a
linear mapping BU such that ΣZ|y is diagonal. Note that

Cov(X) = ΣX = BUCov(Z)UTBT = BBT,

which means that we can let B = Σ
1/2
X . According to the spectral theorem of sym-

metric matrices, we know there exists a unitary matrix U such that UTBTATABU
is diagonal. This concludes the lemma. � �

Remark 3.2. For the linear model (3.7) with a Gaussian prior, the canonical VAE
is able to model the posterior, where the encoder needs to take care of three map-
pings: (1) the mapping B, and (2) the rotation U, and (3) the matrix operations in
equation (3.9). The mapping B transfers a general Gaussian to a standard one, and
the rotation U makes the covariance matrix of Z|y diagonal. Under the assumption
that the diagonal decoder provides a reasonable model for dimension reduction, we
know from this case study that the encoder needs to balance the following two issues:

(1) Map the prior distribution pX to a standard Gaussian N (0, I);
(2) Map the posterior distribution pX|Y to a diagonal Gaussian.

So the effectiveness of the canonical VAE depends on how well these two issues can
coexist, which is obviously problem dependent.

3.3. Generalize the prior. Assume that X ∼ pG = N (0, I) following the canoni-
cal VAE. We introduce another random variable Z satisfying X = fpr,β(Z), where
fpr,β(·) is a nonlinear bijection with β being the model parameter, e.g., KRnet. We
have pZ,β(z) = pG(fpr,β(z))|∇zfpr,β(z)|. We now compare the two cases, where
the latent spaces are defined by X and Z respectively. We also assume that qX|Y ,φ

and qZ|Y ,φ are defined by the same model, i.e., Gaussian, and so are pY |X,θ and
pY |Z,θ. In other words, only the model for the prior is changed.

Lemma 3.3. If fpr,β(·) induces a density model that is able to approximate any

d-dimensional PDF arbitrarily well, then there exists a parameter β = β̃ such that
VAE can reach a larger variational lower bound in terms of the random variable Z

rather than X.

Proof. Noting that

lim
N→∞

1

N
LX
φ,θ(y) = lim

N→∞

N∑

i=1

1

N
LX
φ,θ(y

(i)) = EpY
LX
φ,θ(Y ), (3.10)
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where the superscript X indicates that the latent space is defined by X ∼ N (0, I)
and

EpY

[
LX
φ,θ(Y )

]
= −DKL(qX|Y ,φpY ‖pX,θpY ) + EpY qX|Y ,φ

[
log pY |X,θ

]
. (3.11)

For simplicity, we consider EpY

[

LX
φ∗,θ∗(Y )

]

instead of the average of LX
φ,θ(y

(i)),

where

(φ∗, θ∗) = argmax
φ,θ

EpY

[
LX
φ,θ(Y )

]
. (3.12)

By definition, we have

EpY

[
LX
φ∗,θ∗(Y )

]
− EpY

[
LZ
φ∗,θ∗,β(Y )

]

= DKL(qZ|Y ,φ∗pY ‖pZ,βpY )−DKL(qX|Y ,φ∗pY ‖pGpY ),

since only the prior depends on β and the encoders and decoders are the same for
both X and Z. We have

DKL(qZ|Y ,φ∗pY ‖pZ,βpY )−DKL(qX|Y ,φ∗pY ‖pGpY )

=−

∫

qZ|Y ,φ∗pY log pZ,βdzdy +

∫

qX|Y ,φ∗pY log pGdxdy

=−

∫

qZ,φ∗ log pZ,βdz +

∫

qX,φ∗ log pGdx

=DKL(qZ,φ∗‖pZ,β)−DKL(qX,φ∗‖pG),

where qZ,φ∗ and qX,φ∗ refer to the same marginal distribution because by as-
sumption the joint distributions qZ|Y ,φ∗pY and qX|Y ,φ∗pY are the same. So if

qX,φ∗ 6= pG, there always exists β̃ such that

DKL(qZ,φ∗‖pZ,β̃) < DKL(qX,φ∗‖pG)

since by assumption the density model induced by X = fpr,β(Z) can approximate
the PDF qZ,φ∗ arbitrarily well. We then have

EpY

[

LZ

φ∗,θ∗,β̃
(Y )

]

> EpY

[
LX
φ∗,θ∗(Y )

]
,

implying that Z provides a better latent space than X. � �

3.4. Generalize the encoder. We now look at the encoder qX|Y . Note

pY pX|Y = pX,Y = pXpY |X , (3.13)

where pX,Y is the joint distribution. In this equation, three PDFs, i.e., pY |X ,
pX|Y and pX , will be modeled or approximated by Gaussians in the canonical
VAE as shown in equations (3.4)-(3.6). Although it is straightforward to assume
that pY |X is a diagonal Gaussian from the viewpoint of model reduction, modeling
pX|Y as a diagonal Gaussian is mainly for tractability. Let us consider the following
optimization problem

(µ∗,Σ∗) = min
(µ,Σ)

DKL[pX|Y ‖N (µ,Σ)], (3.14)

which yields the optimal Gaussian that approximates pX|Y . More specifically, we
have

µ∗ =

∫

pX|Y xdx = EpX|Y
[X]. (3.15)
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ELBO

Prior: pX,β

Decoder: pY |X,θ

Encoder: qX|Y,φ

ξ1 = fpr(x)

y = µde(x) + σde(x)⊙ ξ2

x = µen(y) + σen(y)⊙ z,

ξ3 = fen(z)

Figure 2. Generalized variational autoencoder, where two flow-
based generative models fpr(·) and fen(·) are integrated.

and

Σ∗ =

∫

pX|Y (x− µ)(x− µ)Tdx = EpX|Y

[
(x− µ)(x− µ)T

]
. (3.16)

Equation (3.16) shows that to approximate pX|Y with a Gaussian, the encoder
(3.5) with a diagonal covariance matrix is in general not enough.

A straightforward way to generalize the encoder of the canonical VAE is to
consider a full covariance matrix, i.e., N (µen,φ(y),Σen,φ(y)). We here propose a
simpler strategy. We let

fen,α

(
X|y − µen,φ(y)

σen,φ(y)

)

∼ N (0, I), (3.17)

where fen,α is a KRnet. In other words, we can write

X|y = µen,φ(y) + σen,φ(y)⊙ f−1
en,α(ξ), (3.18)

where ξ ∼ N (0, I). If we let fen,α(·) be an identity mapping, the original encoder
(3.5) is recovered. Let us look at the linear model (3.7) again. If the prior pX =
N (µpr,Σpr) is an arbitrary Gaussian, it can be obtained that the covariance matrix
for X|y is

Σ = (Σ−1
pr + σ−2ATA)−1.

Let µen,φ(y) = EpX|Y
[X], σen,φ(y) = 1 and f−1

en,α(ξ) = Σ1/2ξ. The encoder (3.18)

is able to recover pX|Y exactly for the linear model (3.7) with any Gaussian priors,
where the prior can be modeled directly by fpr,β(·) and the correlation of X|y can
be taken care of by f−1

en,α(·), in contrast to the canonical VAE, where the diagonal

Gaussian encoder needs to achieve what both fpr,β(·) and f−1
en,α(·) do. In this sense,

the model becomes more flexible since both fpr,β(·) and f−1
en,α(·) can help to maintain

the diagonal form of the encoder.

3.5. VAE-KRnet. To this end, we have a simple strategy to couple VAE and KR-
net. Within the framework of VAE, we keep the original decoderN (µde,θ(x), diag(σ

⊙2
de,θ(x))),

but generalize the original prior pG and the encoder N (µen,φ(y), diag(σ
⊙2
en,φ(y)))

by incorporating two KRnets fpr,β(·) and fen,α(·), respectively, as demonstrated in
figure 2.
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We now define the variational lower bound of VAE-KRnet using the following
PDFs:

pX,β = pG(fpr,β(x))|∇xfpr,β(x)|, (3.19)

qX|Y ,φ,α = pG

(

fen,α

(
x− µen,φ(y)

σen,φ(y)

))

|∇xfen,α(x)|, (3.20)

pY |X,θ = N (µde,θ(x), diag(σ
⊙2
de,θ(x))). (3.21)

The variational lower bound can be easily approximated by the Monte Carlo method.
In particular, the so-called reparameterization trick [7] can be employed. Using
equation (3.18), the samples for the PDF qX|Y ,φ,α(x|y

(i)) can be represented as

x(i,j) = µen,φ(y
(i)) + σen,φ(y

(i))⊙ z(j), j = 1, . . . , J, (3.22)

where z(j) = f−1
en,α(ξ

(j)) and ξ ∼ N (0, I). The variational lower bound (3.2) will be
approximated as

LX
θ,φ,β,α(y

(i)) ≈
1

J

J∑

j=1

log
pY (i)|X,θ(y

(i)|x(i,j))pX,β(x
(i,j))

qX|Y (i),φ,α(x
(i,j)|y(i))

. (3.23)

For simplicity, we can just let J = 1 by noting that

EpY

[
LX

]
= EpY qX|Y

[

log
pY |X(y|x)pX

qX|Y

]

≈
1

N

N∑

i=1

LX
θ,φ,β,α(y

(i),x(i)) =
1

N
LX
θ,φ,β,α(y), (3.24)

where (y(i),x(i)) corresponds to one sample from the joint PDF pY qX|Y .

Remark 3.4. It is seen that VAE-KRnet naturally integrates KRnet into the frame-
work of VAE. Compared to other flow-based models, KRnet has its advantages. We
here mainly comment on the invertibility of the transport map. Most flow-based gen-
erative models, which are able to provide an explicit likelihood, can be regarded as
a transport map which requires either discrete or continuous invertibility. Discrete
invertibility includes NICE [7], real NVP [8], planar flow [25], inverse autoregres-
sive flow [21], Sylvester flow [3], KRnet [29], etc. Continuous invertibility mainly
refers to neural ODE [6] and its variants subject to either augmentation [9] or reg-
ularization [32, 11]. The continuous invertibility can only be achieved in terms of
the original ODE instead of the discretized ODE, which implies that the gradient
of the loss may not be accurately computed through the adjoint method. Discrete
invertibility such as the planar flow and the Sylvester flow depends on the inverse
of an activation function, e.g., tanh. The mapping from a finite interval to an
infinite interval may have an issue on the robustness. To enhance VAE with flow-
based generative models, we expect that the invertibility of the flow-based generative
models can be easily maintained such that the overall model is relatively robust.
The inverse autoregressive model and the real NVP, which is a generalization of
NICE, can achieve discrete invertibility easily and exactly. However, the inverse
autoregressive flow is more like a probabilistic model instead of a dynamical one,
where the model structure is determined by the decomposition of the PDF in terms
of conditional distributions. The real NVP defines a transport map, but its draw-
back is the information exchange among dimensions becomes less effective as the
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depth increases. By integrating the triangular structure of the Knothe-Rosenblatt re-
arrangement, KRnet, as a generalization of the real NVP, alleviates this issue such
that the model capability has been significantly improved while the exact invertibility
is kept.

4. Density approximation

VAE-KRnet provides a family of probability density models that may be used
for density estimation or approximation when data are available or the PDF is
known up to a constant. If dimension reduction is not considered, we use KRnet
instead of VAE-KRnet. The configuration of KRnet is a trade-off between the
number K of outer-loop iterations and the number L of inner-loop iterations. For
a large n, we need to reduce at least one of the two numbers K and L for KRnet
such that the model is affordable. Another way to deal with high dimensionality
is to consider VAE-KRnet, where a low-dimensional latent space is sought. Since
in reality problem solutions often admits a low-dimensional approximation, VAE-
KRnet provides a mechanism to adapt the properties of the problem into density
estimation. For simplicity, we use the subscript ∗θ to indicate a PDF model with
a general model parameter θ in this section.

4.1. Metrics for seeking the latent random variable. The canonical VAE
seeks the latent random variable based on available data by minimizing the KL
divergence between qX|Y and pX|Y for any y (see equation (3.1)). Another way to
achieve this is as follows:

Lemma 4.1. Maximizing EpY

[
LX

]
in VAE is equivalent to minimizing the fol-

lowing K-L divergence:
DKL(qX|Y pY ‖pY |XpX), (4.1)

which yields qX|Y pY = pY |XpX when the minimum is reached.

Proof. Equation (4.1) can be rewritten as:

DKL(qX|Y pY ‖pY |XpX)

=

∫

qX|Y pY log
qX|Y pY

pY |XpX
dxdy

=

∫

qX|Y pY

(

log
qX|Y pY

pXpY
+ log

pY
pY |X

)

dxdy

=− EpY

[
LX

]
+

∫

qX|Y pY log pY dxdy

=− EpY

[
LX

]
− h(Y ) ≥ 0.

So minimizing DKL(qX|Y pY ‖pY |XpX) is the same as maximizing EpY

[
LX

]
, since

the differential entropy h(Y ) is not related to the models. � �

When we only have the samples of pY , it is convenient to maximize the varia-
tional lower bound EpY

[
LX

]
. We also note that the relation qX|Y pY = pY |XpX

can be obtained by minimizing

DKL(pY |XpX‖qX|Y pY ), (4.2)

where we switch the two distributions in equation (4.1). Due to the asymmetry of
the K-L divergence, equations (4.1) and (4.2) are different from the computation
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point of view although they yield the same minimum and minimizer. Equation
(4.2) is useful when pY is known up to a constant and data are not available. For
this case the K-L divergence (4.2) may be approximated by the samples generated
in terms of pX and pY |X .

4.2. When data are available. For this case, we maximize the variational lower
bound using the data of Y . After obtaining the trained PDFs pX,θ and pY |X,θ,
we can approximate the marginal PDF of Y :

pY ,θ(y) = EpX,θ
[pY |X,θ] ≈

1

N

N∑

i=1

pY |X,θ(y|x
(i)), (4.3)

where the samples x(i) = f−1
pr,β(ξ

(i)) with ξ ∼ N (0, I). A more efficient way to

compute pY ,θ(y) is

pY ,θ(y) = EqX|Y ,θ

[
pY |X,θpX,θ

qX|Y ,θ

]

≈
1

N

N∑

i=1

pY |X,θ(y|x
(i))pX,θ(x

(i))

qX|Y ,θ(x(i)|y)
(4.4)

which uses the posterior to implement importance sampling. If the posterior is
well approximated, the variance should be small such that less samples are needed
compared to equation (4.3).

4.3. When PDF is available. For many cases, we need to sample or approximate
an arbitrary PDF known up to a constant, e.g., the posterior in Bayesian inference.
As an alternative of sampling methods such as MCMC, variational Bayes meth-
ods seek the best approximation of the posterior within a given family of density
models. One classical variational Bayes approach is the mean-field approximation,
where mutual independence is assumed for a partition of the latent random variable.
In this work, we use VAE-KRnet as the variational distribution. We pay particular
attention to one common problem of variational Bayes methods, which is the un-
derestimation of variance. To alleviate this issue, we introduce the maximization
of mutual information when seeking the latent random variable of VAE.

4.3.1. KRnet. Let pY = C−1p̂Y be a PDF, where C is an unknown normalization
constant, i.e.,

∫
p̂Y dy = C. Let qY ,θ be a PDF model given by KRnet. To train the

KRnet, we consider the KL divergence between qY ,θ and pY , where the unknown
constant C will shown up as a shift that does not affect the minimization, i.e.,

DKL(qY ,θ‖pY ) =

∫

qY ,θ log
qY ,θ

p̂Y
dy + logC = Dpdf

θ (p̂Y ) + logC. (4.5)

Minimizing DKL(qY ,θ‖pY ) is equivalent to minimizing Dpdf
θ . In general, Dpdf

θ needs
to be approximated by sampling, which is trivial thanks to the generative modeling.
Noting that KRnet corresponds to an invertible mapping Z = f(Y ) such that
Z ∼ N (0, I), we can easily apply the reparameterization trick, i.e.,

Dpdf
θ (p̂Y ) =

∫

qZ log
qY ,θ(f

−1(z))

p̂Y (f−1(z))
dz ≈

1

N

N∑

i=1

log
qY ,θ(f

−1(z(i)))

p̂Y (f−1(z(i)))
. (4.6)

So the training set is simply a set {z(i)}Ni=1 of samples from N (0, I).
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4.3.2. VAE-KRnet. If dimension reduction is considered, the latent random vari-
able X is taken into account such that the PDF model is given by VAE-KRnet. For
this case, let us specify pY and pX|Y and use qY |X to indicate the approximation
of pY |X . We then minimize the following objective function

−DKL(qY |X,θpX,θ‖pX,θpY ) + λDKL(qY |X,θpX,θ‖pX|Y ,θpY ), (4.7)

where the first term corresponds to the mutual information between X and Y , and
λ is the Lagrange multiplier of the constraint DKL(qY |X,θpX,θ‖pX|Y ,θpY ) = 0.
The second term here acts as a regularization term with λ > 0. Minimizing the
given objective function will maximize the mutual information between X and
Y subject to the constraint that DKL(qY |X,θpX,θ‖pX|Y ,θpY ) is small as much as
possible. Removing the normalization constant in pY as in the previous section,
we define

Epdf
θ (p̂Y )

=

∫

qY |X,θpX,θ

[

log

(
qY |X,θpX,θ

p̂Y

)λ−1

+ log pX,θ − log pλX|Y ,θ

]

dxdy, (4.8)

where λ > 1. When we decrease λ from ∞, the term log
(

qY |X,θpX,θ

p̂Y

)λ−1

= 0

at λ = 1. Then p̂Y disappears from the loss function and the problem becomes
ill-posed, meaning that the minimum will be −∞. When λ < 1, the regularization
term is even weaker, and the problem will be still ill-posed. Similar to equation

(4.6), we can approximate Epdf
θ (p̂Y ) using the reparameterization trick.

When λ goes to infinity, minimizing the objective equation (4.7) is equivalent to
minimize directly the KL divergence DKL(qY |X,θpX,θ‖pX|Y ,θpY ). It is seen pY =
EpX,θ

[qY |X,θ] as long as DKL(qY |X,θpX,θ‖pX|Y ,θpY ) = 0. The main drawback
is that this strategy may underestimate the variance although it may predict the
mean very well. This is a common problem for variational Bayes especially when the
density model is not sufficiently accurate. We include a mutual information term in
equation (4.7) to alleviate this issue. Since the joint PDF of Y andX will be defined
as qY |X,θpX,θ for sample generation, we adjust the two models qY |X,θ and pX,θ

to minimize the uncertainty of Y after X is obtained, i.e., maximizing the mutual
information between Y and X using the joint PDF induced by qY |X,θpX,θ. This
is possible because KRnet provides a large family of prior distributions. Numerical
experiments show that maximizing the mutual information between X and Y is
able to improve the estimation of the variance for properly chosen λ, which implies
that more information from the region of low density can be kept by increasing the
weight of the mutual information term. In general, we obtain the best prediction
of the mean at λ = ∞, and the best prediction of the variance at a finite λ. This
will be demonstrated later by numerical experiments.

5. Numerical experiments

In this section, we examine VAE-KRnet by some numerical experiments. All
algorithms are implemented by Tensorflow 2 and the optimization solver is chosen
as ADAM with a learning rate 1e-3 [20]. All neural networks used in equation (2.9),
encoder and decoder have fully connected hidden layers. For simplicity, the neural
networks for both encoder and decoder have the same configuration. The neural
networks for fpr(·) and fen(·) differs only with respect to the depth or the number
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of the general coupling layers f inner
k,i . In KRnet, the dimension will be reduced one

by one if a specification is not given explicitly. No nonlinear invertible layers and
rotation layers will be used. We specify some parameters: D: the number of hidden
layers for both encoder and decoder, ND: the number of neurons for each hidden
layer in the encoder and decoder, Lpr: the number of general coupling layers in fpr(·)
(see figure 1), Len: the number of general coupling layers in fen(·), and NL: the
number of neurons for the neural network in equation (2.9). The training set has
105 samples. Four minibatches are used for the estimation of data distribution, and
the whole training set is used for the estimation of the posterior. The validation
set has 2e5 samples whenever needed. The validation set is large such that the
integration errors for the computation of statistics can be ignored compared to the
errors of the model.

5.1. The linear model. We first consider the linear model (3.7), where we assume
that the column vectors of A are sampled from N (0, I) subject to ℓ2 normalization.
When σ is small, the distribution of Y is mainly a d-dimensional distribution of
X ∈ R

d, which is embedded in a n-dimensional space. For computation, Y ∈ R
10,

and σ = 0.1.
For a prescribed prior pX , we generate the samples of Y from the linear model

(3.7) to form a training set. We will measure the performance of the model using
the following quantity (see equation (3.1))

δθ,φ,β,α = EpY

[
DKL(qX|Y ,φ,α‖pX|Y ,θ,β)

]
= −EpY

[
LX
θ,φ,β,α(Y )

]
− h(Y ), (5.1)

where h(Y ) is the differential entropy of pY . Assuming that pX,β and pY |X,θ cover
the true prior pX,true and the true likelihood pY |X,true, δθ,φ,β,α = 0 if qX|Y ,φ,α is
able to recover pX|Y ,θ,β induced by pX,β and pY |X,θ. Based on the definition of
the linear model, we have

h(Y ) = −EpY
[log pY ] = −EpY

[
logEpX

[pY |X ]
]
,

which can be computed at the pre-processing stage. EpY

[

LX
θ,φ,β,α(Y )

]

will be

approximated as

EpY

[
LX
θ,φ,β,α(Y )

]
≈

1

N

N∑

i=1

LX
θ,φ,β,α(y

(i)),

where {y(i)}Ni=1 is a validation set which is independent of the training set.

5.1.1. A Gaussian prior. Let X ∈ R
2,

pX(x) = N (0,ΣX), pY |X(y|x) = N (Ax, σ2I).

We have

pY = N (0, σ2I+AΣXAT),

which yields that

h(Y ) = 5(1 + log(2π)) +
1

2
log

∣
∣σ2I+AΣXAT

∣
∣ .

Let ΣX = I. We sample the two column vectors of A from N (0, I) then normalize
them. We know from section 3.2 that the posterior can be recovered by the canonical
VAE subject to a rotation of X. We let D = 2 and ND = 32. We add one scaling
and bias layer after each hidden layer, see section 2.1, to improve the efficiency.
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Figure 3. The convergence behavior of VAE for the linear model
with a Gaussian prior.

The convergence behavior is shown in figure 3, where a fast decay to zero has been
observed, indicating that the model has been exactly recovered.

5.1.2. A 2d Gaussian prior with a hole. We now look at a 2d non-Gaussian prior.
We assume that X ∼ N (0, I). To introduce correlation between X1 and X2, we
consider the data satisfying

B =
{
x|‖Rα,θx‖2 ≥ C

}
,

where 0 < C < ∞, and R is a matrix defined as

Rα,θ =

[
α 0
0 1

] [
cos θ − sin θ
sin θ cos θ

]

,

corresponding to a rotation and a stretch. Simply speaking, the distribution is
given by 2d standard Gaussian subject to an elliptic hole. We let α = 3.0 and
θ = π/4. To this end, we have prescribed

pX(x) =
IB(x)pX1(x1)pX2(x2)

∫

R2 IB(x)pX1 (x1)pX2(x2)dx1dx2
, pY |X(y|x) = N (Ax, σ2I),

where pXi
= N (0, 1) and IB(x) is an indicator function.

We first show the effect of the generalized prior and posterior. We consider three
models: canonical VAE, VAE-KRnet I, and VAE-KRnet II, where VAE-Krnet I has
a generalized prior and VAE-KRnet II has both generalized prior and posterior.
For the sake of comparison we consider simple configurations. We let D = 1,
Lpr = Len = 2, ND = 32, and NL = 24, whenever the corresponding components
are needed in the model. The convergence behavior of these three models has been
shown in figure 4. It is seen that both the generalized prior and posterior are able to
improve the performance of the canonical VAE. It appears that fpr(·) can improve
the performance more effectively than fen(·).

We now compare the simulated distributions of Y given by canonical VAE and
VAE-KRnet II, where we let D = 2, Lpr = 8, Len = 2, ND = 32 and NL = 24. The
results have been shown in figure 5. It is seen that canonical VAE is effective to
capture the main structure of the distribution while VAE-KRnet is able to capture
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Figure 4. The convergence behavior of VAE and VAE-KRnet for
the linear model with a non-Gaussian prior. VAE-KRnet I has a
generalized prior, and VAE-KRnet II has both generalized prior
and posterior.

Figure 5. The distribution of (Y6, Y9). Left: training set; Middle:
samples generated by the canonical VAE; Right: samples generated
by VAE-KRnet.

more details than canonical VAE. In figure 6, we compare the given prior and
the learned prior by VAE-KRnet. It is seen that the learned prior shares some
similarities with the given prior. Note that any invertible mapping of X provides
a latent variable. Therefore we do not expect the learned prior is the same as the
prescribed one.

5.1.3. A 3d Gaussian prior with holes. We now consider a case that X ∈ R
3. For

x = [x1, x2, x3]
T, we let xi = [xi, xi+1]

T, i = 1, 2, which includes two adjacent
components of x. We sample from X ∼ N (0, I) and keep the data

B =
{
xi|‖R

α,θixi‖2 ≥ C
}
, i = 1, 2.

In other words, for any two adjacent dimensions we generate an elliptic hole. We
let α = 3, θ1 = π/4 and θ2 = 3π/4 (see the top two plots in figure 9). We first check
the performance of canonical VAE and VAE-KRnet with respect to D, the depth of
the neural networks for the encoder and decoder. We let Lpr = 8, Len = 2, NL = 24
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Figure 6. Left: the given prior distribution; Right: the learned
prior distribution by VAE-KRnet.
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Figure 7. The convergence behavior of VAE and VAE-KRnet in
terms of D.

and ND = 32. The convergence behavior has been plotted in figure 7. First of all,
VAE-KRnet has a better performance. For a fixed D, VAE-KRnet reaches a smaller
loss than VAE. Second, VAE-KRnet is more robust than VAE. When D = 8, VAE
has been stuck in a local minimizer until epoch ≈1750 before it goes to a better
local minimizer. The introduction of generalized prior and posterior makes it much
easier to escape the basin of attraction of such a local minimizer. It is seen that
VAE-KRnet with D = 8 is able to achieve the same loss as other configurations
when the epoch is about 500 although the degree of fluctuation is bigger due to the
increased model complexity. In figure 8, we compare the distributions simulated
by VAE and VAE-KRnet. It is seen that much more details can be captured by
VAE-KRnet than VAE. In figure 9, we plotted the prior distributions given by VAE-
KRnet, where the only difference in configuration is that Lpr = 8, 10. It is seen that
the learned prior distributions are quite different although the two configurations
of VAE-KRnet are similar and yield almost the same approximation of the data
distribution.
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Figure 8. The samples of (Y6, Y8) given by VAE and VAE-KRnet
with D = 2. (a): training set; (b): canonical VAE; (c): VAE-
KRnet with Lpr = 8; (d): VAE-KRnet with Lpr = 10.

5.2. A linear Bayesian inverse problem. We consider the following linear model
for the inverse problem:

Ŷ = KY + ξ, (5.2)

where K ∈ R
k×n, and ξ ∼ N (0, σ2I). In particular, we assume that K is ill-

conditioned in the sense that its singular values decays fast. Assume a Gaussian
prior N (µpr,Σpr) is used. The posterior is

ppost(y) ∝ p̂post(y) = exp

(

−
|ŷ −Ky|2

2σ2

)

exp

(

−
1

2
|y − µpr|

2
Σ

−1
pr

)

, (5.3)

what p̂post(y) is the unnormalized posterior such that ppost(y)
∫
p̂post(y)dy = p̂post(y),

and |y|2
Σ

−1
pr

= yTΣ−1
pr y defines a weighted ℓ2 norm induced by the precision ma-

trix. We want to find a low-dimension latent random variable X ∈ R
d for Y such

that
∫
pX,Y dx ≈ ppost(y), where pX,Y is the joint PDF of X and Y , and will be

provided by VAE-KRnet.
We define problem (5.2) using an integral equation

g(x) =

∫

R

K(x, y)f(y)dy, (5.4)

where K(x, y) is the kernel of a compact operator that is of trace class, positive
and self-adjoint. Let (λi, ei(x)) indicate the eigen-pairs of K(x, y). Assume that

f(y) ≈
M∑

i=1

fiei(y). (5.5)
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Figure 9. The prescribed and learned prior distributions. For
each row, the left plot gives the distribution of (X1, X2), and the
right plot corresponds to (X2, X3). From top to bottom, the first
row corresponds to the prescribed prior distribution, and the sec-
ond and third rows correspond to the learned prior distributions
given by VAE-KRnet with the same configuration except that
Lpr = 8, 10 respectively.

We consider the equation

g(xj) ≈
M∑

i=1

fiλiei(xj), j = 1, . . . , Nx, (5.6)

where xi are collocation points. This yields a linear system

g = EΛf , (5.7)

where eij = ei(xj), gj = g(xj), i = 1, . . . ,M , j = 1, . . . , Nx. We then let K = EΛ
in equation (5.2) and ŷ = g is the data. We need to infer the coefficients fi in
equation (5.5).

For simplicity and without loss of generality, we here consider an artificial case,
where we let ei(x) = 1√

π
cos(ix) with x ∈ [0, 2π], and λi = i−γ with γ > 0. The
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collocation points are sampled from a uniform distribution on [0, 2π]. This way, the
column vectors of E are nearly mutually orthogonal due to the properties of cos(ix).
The condition number of KTK depends on the value of γ, where the eigenvalue
λ2
i decays faster for a larger γ. We define a vector y0 with y0,i = i−2.0 sin(i),

i = 1, . . . , n, and generate the data ŷ = Ky0 + σξ0, where ξ0 is a sample from
N (0, I). We then consider a Bayesian inverse problem (5.2) using ŷ as the given
data. The true posterior is

ppost(y) = N (σ−2(Σ−1
pr + σ−2KTK)−1KTŷ, (Σ−1

pr + σ−2KTK)−1). (5.8)

Since we often choose Σpr as a diagonal matrix, the covariance matrix of ppost(y) is
nearly diagonal by the definition of K = EΛ, which implies that the components
of Y are nearly independent. To consider dimension reduction, correlation should
be introduced. We define a matrix bij = e−|i−j|/α with α > 0 and i, j = 1, . . . , n,
and redefine K = EBΛ. The parameter α acts as a correlation length. Note that
the column vectors of EB are not nearly mutually orthogonal any more. Letting
y = 0, the normalization constant for p̂post can be computed as

C =
p̂post(0)

ppost(0)
=

√

(2π)n|Σpost|

exp

(

1
2σ2 |ŷ|2 +

1
2 |µpr|

2
Σ

−1
pr

− 1
2 |µpost|

2
Σ

−1
post

) , (5.9)

where µpost and Σpost are the mean and covariance matrix of the posterior (5.8).
We consider several PDF models for the approximation of the posterior. 1)

The mean-field variational family, where all random variables are assumed to be
mutually independent. For our problem, each dimension will be assumed to be
Gaussian; 2) KRnet; and 3) VAE-KRnet. The mean-field variational family is
widely used in practice due to its simplicity and efficiency. We do not include VAE
here since VAE-KRnet is more robust than VAE. For the mean-field model, we
simply use the ADAM method for optimization without taking advantage of the
mutual independence like the CAVI algorithm [2]. A direct generalization of the
mean-field variational model is the mixture of Gaussians, which is not included here.
Instead, we consider VAE-KRnet as a generalization of the mixture of Gaussians,
since the latent variables for VAE-KRnet is much more general than the latent
variable of the Gaussian mixture model.

Another issue is the computation of statistics. The statistics will be computed
using the model that yields the minimum loss with respect to the validation set.
Actually, for our experiments the training set is large enough, meaning that we
do not observe that the error will increase in terms of the validation set after the
optimization iteration has stabilized.

We let σ = 0.05 and N (µpr,Σpr) = N (0,Λpr), where Λpr is a diagonal matrix

with λpr,i = i−2.5, i = 1, . . . , n. For matrixB, we let bij = e−|i−j|/3.0, i, j = 1, . . . , n.
Note that from equation (4.6) we have

Dpdf
θ (p̂Y ) ≥ − logC.

The lower bound can be computed by equation (5.9). We will consider two cases
when n = 10, 50. For KRnet, we let L = 6, K = 5, NL = 24 for both n = 10 and
n = 50. The dimensions will be deactivated by two if n = 10 and by ten if n = 50.
In other words, the model complexity of KRnet is the same for n = 10, 50. For
VAE-KRnet, we let Lpr = 6, Len = 2, NL = 24, ND = 32 for all cases. In fpr(·)
and fen(·), the dimensions will be deactivated by two. Let r(x;Y ) =

∑n
i=1 Yiei(x).
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After we approximate the posterior of Y , we compute the E[r](x) and Var(r)(x)
and compare them to the exact values.

We first consider a 10-dimensional case, where we have − logC = 107.94 from
equation (5.9). In figure 10 we plotted the evolution behavior of the ADAMmethod,
where the global behavior is given on the left with respect to the loss, and the
stabilized behavior is given on the right with respect to the relative error of the
loss:

|Dpdf
θ (p̂Y ) + logC|

| logC|
.

Interestingly, all VAE-KRnet models decay much faster than the mean-field vari-
ational model although they are much more complicated. Due to the correlation
introduced by B, the mean-field variational model becomes stabilized at a larger
relative error than other PDF models, where KRnet performs the best and VAE-
KRnet yields a smaller loss for a larger λ. After the iteration number reaches 3e5,
we compute the minimum loss within every 1000 iteration with respect to the vali-
dation set, and the results are given in the right plot of figure 10. It is seem that the
minimum loss is quite steady although a lot of fluctuations exist in the optimization
iteration.

In figure 11, we plotted the predicted mean and variance. It is seen that the
mean is well predicted by all models while the prediction of the variance varies
significantly. KRnet yields the best approximation. The mean-field variational
model barely captures any characteristics of the variance. VAE-KRnet with λ = 2
yields a better estimation of the variance than λ = ∞. In figure 12 we plotted the
effect of the dimension of the latent variable on the left and the effect of the value
of λ on the right. It is seen that the prediction has been improved by increasing d,
which is expected. To show the effect of λ, we compute the errors as follows. Let

r̂(x; Ŷ ) be an approximation of r(x;Y ). We check the following errors:

‖E[r̂]− E[r]‖L2

‖E[r](x)‖L2

,
‖Var1/2(r̂)−Var1/2(r)‖L2

‖E[r](x)‖L2

,

for the mean and the standard variation respectively, where the ‖·‖L2 is with respect
to the spacial variable x. We are interested in a range of λ, in which the mutual
information term in equation (4.7) helps improve the prediction of the standard
deviation. As discussed in section 4.3.2, when λ ≤ 1 the optimization problem
(4.7) becomes ill-posed. For the problem studied, a smaller error of the standard
deviation is observed when we increase λ to about 2. As λ continues to increase,
the error of the standard deviation has an overall trend to decrease until λ is about
3, after which we expect that the effect of the mutual information term will become
more and more weaker and the error of the standard deviation will increase and
approach the error given by λ = ∞, i.e., the blue horizontal line. It is seen that
VAE-KRnet with λ = ∞ yields a much smaller error for the mean (the red line)
than for the standard deviation (the blue line). Within quite a wide range of λ,
VAE-KRnet with a finite λ yields a much more accurate estimation of the variance
than VAE-KRnet with λ = ∞. However, VAE-KRnet with a finite λ yields a worse
estimation of the mean than VAE-KRnet with λ = ∞.

We subsequently look at the case that n = 50, where we change α in bij =

e−|i−j|/α from 3 to 10. So more correlations can be introduced such that a relatively
small number of latent random variables is needed. For this case, − logC = 632.11.
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Figure 10. The evolution behavior of the ADAM method for dif-
ferent PDF models. n = 10. Left: iterations up to 3e5; Right:
iterations from 3e5 to 5e5. Each node corresponds to the mini-
mum loss in every 1000 iterations.
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Figure 11. The statistics given by different PDF models. n = 10.
d = 4 for VAE-KRnet. Left: Mean; Right: Variance.
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Figure 12. VAE-KRnet for different d and λ. Left: varying d
with λ = ∞. Right: varying λ with d = 4.
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Figure 13. The stabilized iterations of the ADAM method for
different PDF models. n = 50. d = 8 for VAE-KRnet. Iterations
from 3e5 to 5e5. Each node corresponds to the minimum loss in
every 1000 iterations.
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Figure 14. Errors of different models on the validation set. The
errors are scaled by ‖E[r]‖L2. n = 50. d = 8. Left: mean; Right:
variance.

We let d = 8. The global evolution behavior of the ADAM method is similar to
the case that n = 10, see figure 13. Note that although the number of dimensions
is relatively large, the KRnet accurately captured the correlations using a model
that has the same complexity (in terms of K, L and NL) as the model for the
case n = 10. We plot pointwise errors in terms of x in figure 14 for the mean
on the left and for the standard deviation on the right. Both errors are scaled by
the L2 norm of the exact mean, i.e., ‖E[r]‖L2 . For this case, the mean-field model
yields the best estimation for the mean but no useful estimation for the standard
deviation. KRnet yields accurate predictions for both the mean and the standard
deviation. VAE-KRnet with λ = ∞ yields a better estimation for the mean and
a worse estimation for the variance than VAE-KRnet with λ = 2.5. The rank for
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Figure 15. Standard deviation given by VAE-KRnet with vary-
ing d. n = 50.

predicting the mean is: mean-field model, KRnet, VAE-KRnet with λ = ∞, VAE-
KRnet with λ = 2.5. The rank for predicting the variance is: KRnet, VAE-KRnet
with λ = 2.5, VAE-KRnet with λ = ∞ and mean-field model.

We finally compare the predictions given by VAE-KRnet in terms of the dimen-
sion of the latent variables. The results are plotted in figure 15. For a certain d,
we choose K = d/4 for KRnet, i.e., the dimensions will be deactivated by d/4.
This way, the overall number of model parameters of VAE-KRnet remains almost
the same for a varying d. It is seen that as d increases the improvement on the
prediction will cease at a certain d. The reason is twofold: first, VAE does not con-
verge to the full model when d increases to n because of the model error; second,
we constrained the model complexity with a roughly constant number of model
parameters.

5.3. One-dimensional elliptic problem. We now consider a one-dimensional
elliptic problem

−
d

dx

(

ea(x;ω) du

dx

)

= 1, x ∈ [0, 1], (5.10)

with homogeneous boundary conditions, where a(x;ω) is a Gaussian field. We asso-
ciate a(x;ω) with a Gaussian measure µ = N (0, C) with zero mean and covariance
operator C in L2([0, 1]). The covariance operator C is chosen as

C = α−1(I −∆)−s = α−1A−s, (5.11)

where α > 0 is a constant, s > 1
2 , and the domain of A is

DA = {a(x) ∈ H2([0, 1]) : ∂xa = 0 at x = 0, 1}. (5.12)

We infer the coefficient a(x) using pointwise observations of u(x):

ûi = u(xi) + ηi, i = 1, . . . , J, (5.13)

where J is the total number of observation locations xi and ηi ∼ N (0, σ2) are i.i.d.
Gaussian random variables with zero mean and variance σ2. In the framework
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of Bayesian inverse problem, the posterior measure ν can be represented with the
Radon-Nikodym derivative

dν

dµ
(a(x)|û) ∝ exp(−Φ(a, û)), (5.14)

where

Φ(a, û) =
1

2σ2

K∑

i=1

(ûi − u(xi))
2 (5.15)

is the potential defined by the distribution of the observational noise ηi.
We will approximate the posterior distribution using VAE-KRnet. We discretize

the problem using linear finite elements given by span{θi(x)}Mi=1. Let A be the
representation of A in the finite element space, i.e.,

A = M−1K+ I, (5.16)

where M is the mass matrix and K is the stiffness matrix. Let (σi,vi) be the
eigenpairs of A, i.e.,

Avi = σivi, AV = VΣ, vT
i Mvj = δij , (5.17)

where Σ is a diagonal matrix with nonzero entries σi and Λ include all eigenvectors
vi. Using the matrix transfer technique, we may define the discrete representation
of A−s as

A−s = VΣ−sV−1, (5.18)

where
A−svi = σ−s

i vi = λivi. (5.19)

We then have the finite element representation of a(x) = aTΘ(x) using the following
Karhunen-Loeve expansion

a = a0 +VΛ1/2γ, (5.20)

where γ ∈ N (0, I), a ∈ R
M includes the coefficients of the finite element approxi-

mation, Θ(x) ∈ R
M includes all finite element basis functions and a0 is the mean.

With respect to a, we have the discretized posterior distribution

π(a|û) ∝ exp (−Φ(a, û))N (a0,VΛVT), (5.21)

where Φ(a, û) is the discretized potential induced by a. Note that the dimension
of a is the number of finite element basis functions.

For this case explicit forms are not available for the posterior measure ν or
its discrete version π(a|û). We here use the function-space hybrid Monte Carlo
(HMC) to generate some reference solutions [4]. We use M = 128 equidistant
linear finite elements to discretize [0, 1]. The observations are generated with a(x) =
exp(0.1 cos(2πx)) on locations xi =

i
64 , i = 1, . . . , 63, where the noise amplitude σ

is 5% of the maximum of u(x). We let λ = 2.8 in equation (4.7) according to the
right plot of figure 12. The dimension of the latent space is set to be d = 16 in
contrast to the dimension n = M + 1 = 129 of a.

We use the same configuration as the case in the previous section for the defi-
nition of VAE-KRnet. The only difference is that in KRnet the number of active
dimensions will be deactivated by 16/4 = 4. In each optimization step, we need
to compute ∇aπ, where one forward problem and one adjoint problem are solved,
and other gradients can be done by the automatic differentiation in Tensorflow.
Due to the cost of solving two elliptic problems in each iteration, we consider a
relatively small training set of size 1024 with a batch size 128. In contrast to the
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Figure 16. Statistics of a given by VAE-KRnet and HMC for the
elliptic problem. n = 129. d = 16. Left: mean; Right: standard
deviation.

hybrid Monte Carlo, the computation of the forward and adjoint problems can be
parallelized when training VAE-KRnet. We train the model for 600 epochs and
use the models given by the last 60 epochs for a time average when computing
predictions. For the hybrid Monte Carlo, we generated 105 samples. For this case,
the time consumption for VAE-KRnet is about one fourth of that for HMC.

In figure 16 we plotted some statistics of a in terms of the posterior distribution.
It is seen that VAE-KRnet provides consistent results with HMC for both the mean
and the standard deviation although the size of the training set is relatively small.
We here simply use the one-dimensional elliptic problem to verify the effectiveness
of VAE-KRnet. Many computational issues remain to improve the efficiency of
VAE-KRnet, which are beyond the scope of this paper.

6. Summary

In this paper, we have developed a family of probability density models by cou-
pling VAE and KRnet. KRnet is an effective invertible transport map, and VAE is
an effective technique for dimension reduction. VAE-KRnet inherits the advantages
of both VAE and KRnet. For a linear system, the encoder of the canonical VAE
mainly does the following things (see Remark 3.2): 1) A mapping from a standard
Gaussian to an arbitrary distribution in the latent space; 2) A rotation to make the
encoder diagonal; and 3) computation of the covariance matrix; In the canonical
VAE, all these tasks are achieved by the encoder. In VAE-KRnet, the first task
is achieved by a KRnet for an arbitrary prior, and the second task is achieved by
another KRnet for the correlation between dimensions. Compared to the canoni-
cal VAE, each component of VAE-KRnet has a more specific task, which improves
both the performance and the robustness. We applied VAE-KRnet to variational
Bayes to approximate the posterior. VAE-KRnet has demonstrated some promis-
ing potentials: 1) It covers a wide range of data dimensions by varying the number
of dimensions of the latent space from zero (KRnet) to d (VAE-KRnet). 2) By
taking into account the mutual information, a possibility is provided to improve
the underestimation of the variance by varying the parameter λ, which yields a
statistics-oriented way for model selection. 3) Increasing the dimensionality d will
improve the approximation. Of course, d would be limited by the model capability
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of both VAE and KRnet as shown in figure 15. However, varying d does not need
to introduce a significant change of the model complexity. 4) For linear Bayesian
inverse problems, the KRnet performs very well for high-dimensional cases. It is
seen that KRnet yields the best prediction for the last example with n = 50. On one
hand, this is because the posterior is Gaussian, which is relatively simple; on the
other hand, it demonstrates the modeling capability of KRnet. 5) The numerical
experiments on the elliptic problem demonstrate that VAE-KRnet is able to pro-
duce consistent results with HMC using a relatively small training set. The current
results are very encouraging for us to apply VAE-KRnet to model the posterior of
nonlinear Bayesian inverse problems.
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