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Approximating nonlinearities in stochastic partial
differential equations (SPDEs) via the Wick product
has often been used in quantum field theory and
stochastic analysis. The main benefit is simplification
of the equations but at the expense of introducing
modelling errors. In this paper, we study the
accuracy and computational efficiency of Wick-type
approximations to SPDEs and demonstrate that the
Wick propagator, i.e. the system of equations for
the coefficients of the polynomial chaos expansion of
the solution, has a sparse lower triangular structure
that is seemingly universal, i.e. independent of the
type of noise. We also introduce new higher-order
stochastic approximations via Wick–Malliavin series
expansions for Gaussian and uniformly distributed
noises, and demonstrate convergence as the number
of expansion terms increases. Our results are for
diffusion, Burgers and Navier–Stokes equations, but
the same approach can be readily adopted for other
nonlinear SPDEs and more general noises.

1. Introduction
The Wick product was originally introduced by Wick [1]
in quantum field theory to reduce a product of
creation and annihilation operators to sums of products
of pairs of these operators. A similar concept was
introduced in stochastic analysis by Hida & Ikeda [2] to

2013 The Author(s) Published by the Royal Society. All rights reserved.
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analyse Hilbert spaces with reproducing kernels arising from multiple Wiener integrals. Since
then, the Wick product has played an increasingly important role in many fundamental problems
involving stochastic partial differential equations (SPDEs) [3,4] and in the theory of stochastic
integration, as it can be considered as a generalization of the Skorokhod–Malliavin integral [5].
Replacement of product-type nonlinearities in SPDEs by Wick products can also be viewed as
a stochastic approximation technique formulated at the level of the equation, i.e. before any
discretization. For example, consider the stochastic Burgers equation ut + uux = uxx + Ẇ(t, x),
driven by Gaussian space–time white noise Ẇ(t, x). The Wick formulation of this problem is
ut + u � ux = uxx + Ẇ(t, x) [6], where � denotes the Wick product operator.1 Similarly, one can
define the Wick approximation of other nonlinear SPDEs, for example, the diffusion equation
with random inhomogeneous diffusivity recently studied by Wan et al. [8].

In this paper, we present theoretical and numerical results for a new type of approximation, i.e.
the Wick–Malliavin approximation. The key idea relies on expanding the nonlinearities appearing
in SPDEs in a Taylor-like series involving Wick products and Malliavin derivatives [9,10]. In
this generalized framework, Wick-type SPDEs can be regarded as a zero-order truncation of the
Wick–Malliavin series. Higher-order approximations can be constructed in a systematic way by
including terms involving Malliavin derivatives of higher order.

The Wick approximation to SPDEs has interesting properties. In particular, it represents an
unbiased perturbation of the SPDE, which leads to significant computational advantages for either
white or coloured noise. In fact, as we will see, the Wick propagator, i.e. the system of equations
for the deterministic coefficients of the polynomial chaos expansion of the solution, is quasi-linear
and sparse for Wick-type equations, including equations with polynomial Wick nonlinearities
[6,9], Wick-multiplicative Gaussian noise [4,8,11], as well as noises represented by nonlinear
transformations of Gaussian processes. By ‘quasi-linear’ here, we mean that only the equation for
the mean field is nonlinear, whereas the rest of the system is linear, forming a hierarchy that can be
readily solved. In particular, the propagators of the Wick approximation to the stochastic Burgers
or Navier–Stokes (NS) equations are lower triangular systems. By contrast, the propagators of the
standard stochastic Burgers or NS equations are infinite-dimensional systems of fully coupled
nonlinear PDEs.

On the other hand, the Wick approximation is a rather draconian stochastic truncation of the
nonlinearities appearing in SPDEs, and hence we need to address the question of accuracy, that is
how far the Wick stochastic solution deviates from the stochastic solution of the original SPDEs.
This issue has been answered only partially in the past, for example, by Wan et al. [8], where it
was shown numerically that for elliptic SPDEs, the variance of the Wick solution was close to
the stochastic solution for small perturbations but deviated greatly for large noise levels. Here,
we revisit this issue and also study higher-order Wick–Malliavin approximations to the stochastic
Burgers and NS equations. As we will see, the corresponding propagators are no longer lower
triangular as in the Wick setting. Specifically, the coupling strength between the chaos modes, i.e.
the number of terms above the principal diagonal of the propagator, is related to the truncation
order in the Wick–Malliavin series. A low-order truncation yields a quasi-lower triangular system
that can be efficiently solved by using operator-splitting techniques. A fundamental question
is whether the Wick–Malliavin approach is limited to Gaussian perturbations or if it can be
extended to other types of noises. It turns out that with the appropriate definition of Wick- and
Malliavin-type derivatives, both the theory, and the numerical methodology can be generalized
to non-Gaussian processes. In particular, we have studied Gaussian and uniformly distributed
perturbations of Burgers and NS equations, but the same approach can be readily extended to
other SPDEs with more general noises.

This paper is organized as follows. In §2, we introduce the Wick–Malliavin series expansion for
random fields, and discuss the coupling structure and the sparsity of the propagator associated
with quadratic nonlinearities. In §§3–5, we present the application of the Wick–Malliavin series to
the diffusion equation with inhomogeneous random diffusivity, the Burgers equations driven by

1A rigorous definition of the Wick product can be found in Janson [7, ch. 3].

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
ProcRSocA469:20130001

..................................................

random noise and the NS equations subject to random boundary and random initial conditions,
respectively. The accuracy and the computational efficiency of the Wick–Malliavin approximation
is discussed in §6. Finally, the main findings and their implications are summarized in §7. We
also include a brief appendix dealing with Wick–Malliavin rules for univariate Hermite and
Legendre polynomials.

2. Wick–Malliavin series expansion
It has been recently shown by Mikulevicius & Rozovskii [9] that a random polynomial
nonlinearity, such as the nonlinear advection term in the NS equations, can be expanded in a
Taylor-like series involving Wick products [7] and Malliavin derivatives [10]. Specifically, given two
square-integrable random fields u and v, it has been shown that

uv =
∞∑

p=0

Dpu � Dpv

p!
, (2.1)

where � denotes the Wick product and Dp is the Malliavin derivative of order p. The series (2.1)
converges with probability one for sufficiently smooth random fields. It can also be used as a
starting point for constructing approximations of finite stochastic order. For example, the nonlinear
advection term in the NS equations can be approximated as

(u · ∇)u �
Q∑

p=0

(Dpu � ∇)Dpu
p!

, (2.2)

where Q denotes the highest stochastic order in the Wick–Malliavin expansion. In particular, the
zero-order approximation (u · ∇)u � (u � ∇)u is known as the Wick approximation. Similarly, the
first-order (or level-one) Wick–Malliavin approximation is (u · ∇)u � (u � ∇)u + (Du � ∇)Du.

(a) Wiener–Hermite representations
Let us consider a square-integrable scalar random field u depending on M (finite or infinite)
independent identically distributed (i.i.d.) Gaussian random variables (ξ1, . . . , ξM). Denote by J
the set multi-indices k = (k1, . . . , kM) such that ki ∈ N ∪ {0} and

|k| =
M∑

j=1

kj <∞. (2.3)

By the Cameron & Martin [12] theorem (see also [13]), u admits the following L2-convergent
expansion

u =
∑
k∈J

ûkhk, where hk(ξ1, . . . , ξM) def=
M∏

j=1

hkj (ξj) (2.4)

are multivariate monic Hermite polynomials of Gaussian random variables (hkj (ξj) are univariate
monic Hermite polynomials of order kj). The quantities ûk are deterministic fields (chaos modes).
The Wick product between two elements hk and hi can be defined as (see [7,14])

hk � hi
def= hk+i. (2.5)

The Malliavin derivative D of hk can be defined as

Dhk
def=

M∑
j=1

kjhk−qj
, (2.6)

where qj is a multi-index such that only the jth component is equal to one, whereas all the others
are zero. The definition we give here is for monic Hermite polynomials of Gaussian random
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variables (see [11]). Mikulevicius & Rozovskii [9] and Nualart [10] give a much more general
definition for orthogonal polynomial functionals of generalized processes, such as cylindrical
Brownian motion. In the latter case, the Malliavin derivative involves a representation of the
random space in terms of a complete orthonormal basis. The pth order derivative, Dphi, can
be computed by induction from (2.6). An important result, recently proved by Mikulevicius &
Rozovskii [9], is the following.

Proposition 2.1. Let hi and hj be elements of the Cameron–Martin basis. Then, with probability one,

hihj =
∞∑

p=0

Dphi � Dphj

p!
. (2.7)

By linearity, the statement of the proposition allows us to conclude that if u and v are two
square-integrable scalar random fields with Wiener chaos expansions converging sufficiently fast,
then equation (2.1) holds true.

The normalized projection of the Qth-order truncation of (2.7) on the basis {hk} gives us the
very important quantity

Z(Q)
ijk

def=
Q∑

p=0

1
p!

〈(Dphi � Dphj)hk〉
〈h2

k〉 , (2.8)

where 〈·〉 denotes the statistical expectation operator. As we will see shortly, the Wiener chaos
projection of the Wick–Malliavin approximation to SPDEs with quadratic nonlinearities—such as
the NS equations—yields a propagator whose coupling structure is completely defined by (2.8).
Specifically, for each fixed value of the multi-index k, the matrix

C(Q)
kj

def=
∑
i∈J

I(Z(Q)
ijk ), where I(x) =

{
1, x 
= 0,

0, x = 0,
(2.9)

gives us the coupling structure of the chaos modes in the kth equation of the propagator,
which ultimately affects the computational cost, efficiency and accuracy of the Wick–Malliavin
approximation.

The structure of the coupling matrices (2.9) is shown in figure 1. Note that the Wick
approximation (Q = 0) is always lower triangular and very sparse for M> 2 (see also table 1). On
the other hand, the full Wiener chaos system is dense.

(b) Non-Gaussian noise
By using the linearization theory of orthogonal polynomials [15] and the completeness result
proved by Ernst et al. [13], one can generalize (2.4)–(2.8) to the non-Gaussian case. In principle, this
allows us to define Wick- and Wick–Malliavin-type approximations to nonlinear SPDEs driven by
non-Gaussian noise (see §5). In particular, in the appendix, we provide a possible generalization of
(2.4)–(2.7) to univariate Legendre polynomials of uniform random variables. The corresponding
analytical form of (2.8) is summarized in table 2.

In the following, we present the application of the Wick–Malliavin approximation technique
to several fundamental SPDEs of mathematical physics. In particular, we consider stochastic
diffusion, Burgers and NS equations.

3. Diffusion equation
Let us consider the following boundary-value problem:

− ∇ · (a(x;ω)∇u(x;ω)) = f (x), x ∈ D,

and u(x;ω) = 0, x ∈ ∂D,

}
(3.1)

http://rspa.royalsocietypublishing.org/


5

rspa.royalsocietypublishing.org
ProcRSocA469:20130001

..................................................

 on August 20, 2013rspa.royalsocietypublishing.orgDownloaded from 
M
 =

 3
M

 =
 1

Q = 0 Q = 1 Q = 2 Q = 8

165 × 165 165 × 165 165 × 165 165 × 165

9 × 9 9 × 9 9 × 9 9 × 9

M
 =

 2

45 × 45 45 × 45 45 × 45 45 × 45

Figure 1. Wick–Malliavin coupling matrices (2.9) for SPDEs with quadratic nonlinearities and Gaussian random inputs. Shown
are results for Wiener chaos of order P = 8, different numbers of random variablesM and different Wick–Malliavin orders Q. It
is seen that theWick approximation (Q= 0) is always lower triangular and sparse forM> 2. On the other hand, the fullWiener
chaos system (Q= P = 8) is dense. (Online version in colour.)

Table 1. Sparsity (relative number of zeroes) of the Wick–Malliavin coupling matrices shown in figure 1.

M

1 (%) 2 (%) 3 (%) 4 (%)

Q 0 44.4 75.6 88.9 94.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 34.6 60.2 75.4 84.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 25.9 45.4 59.2 69.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0 11.9 21.6 30.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where a(x;ω) is a lognormal homogeneous random field, and the forcing term f is assumed to
be deterministic for the sake of simplicity. By using formula (2.1), we expand the direct product
between the random fields a(x;ω) and ∇u(x;ω) as

a∇u �
Q∑

p=0

Dpa � ∇Dpu
p!

, (3.2)

http://rspa.royalsocietypublishing.org/


6

rspa.royalsocietypublishing.org
ProcRSocA469:20130001

..................................................

 on August 20, 2013rspa.royalsocietypublishing.orgDownloaded from 
Table 2. Coefficients arising from the Galerkin projection of the Qth-order Wick–Malliavin approximation to quadratic
nonlinearities represented in termsof differentbasis functions. In all cases,Q= 0 (Wick approximation) yields a lower triangular
propagator. This table is for univariate polynomials of one random variable.

basis functions Wick–Malliavin coefficients Z (Q)mnl

Monic Hermite (hk)
min{n,m,Q}∑

p=0

n!m!
p!(n − p)!(m − p)!

δ(n+m−2p)l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

normalized Hermite (Hk)
min{n,m,Q}∑

p=0

√
n!m!(n + m − 2p)!
(n − p)!(m − p)!p!

δ(n+m−2p)l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Legendre (Lk)
min{n,m,Q}∑

p=0

B(n+m)p
αpαm−pαn−p

αn+m−p
δ(m+n−2p)l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rescaled Legendre (lk)
min{n,m,Q}∑

p=0

B(n+m)p
αpαm−pαn−pαm+m−2p

αmαnαn+m−p
δ(m+n−2p)l

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bip
def= i + 1/2 − 2p

i + 1/2 − p
αk

def= [1/2]k
k!

[a]p
def=

p−1∏
m=0

(a + m) [a]0
def= 1

where we have truncated the infinite series to the order Q. A substitution of equation (3.2) into
equations (3.1) yields the following Qth-order Wick–Malliavin approximation:

− ∇ ·
⎡
⎣ Q∑

p=0

Dpa � ∇Dpu
p!

⎤
⎦ = f . (3.3)

In particular, the zero-order truncation (Q = 0) of equation (3.3) gives us the Wick approximation

− ∇ · (a � ∇u) = f . (3.4)

This model has been studied in the past, for example, by Wan et al. [8], Theting [16] and Lototsky
et al. [17]. The main motivation was that the Wick product is consistent with the Skorokhod
stochastic integral, and it is expected that the solution can be smoothed to some extent by the
convolution in the probability space.

(a) Wick–Malliavin propagator
We consider the following form of the diffusion coefficient:

a(x;ω) = eG(x;ω)−σ 2/2, where G(x;ω) def= σ

∞∑
i=1

√
λiφi(x)ξi(ω) (3.5)

is a random field expanded in a Karhunen–Loève series, and {ξi} is a set of i.i.d. normal random
variables.2 The Wiener chaos expansion of (3.5) can be easily obtained as

a(x;ω) =
∑
k∈J

σ |k|Φ(x)k

k!
hk, (3.6)

2The diffusion coefficient (3.5) coincides with the Wick exponential e�G(x;ω).

http://rspa.royalsocietypublishing.org/
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where |k| is defined in (2.3) and Φ(x) def= (
√
λ1φ1(x), . . .). We also consider the Wiener chaos

expansion of the solution to equation (3.3),

u(x;ω) =
∑
k∈J

ûk(x)hk. (3.7)

A substitution of (3.6) and (3.7) into (3.3) and subsequent Galerkin projection on the basis {hk}k∈J
yields the Qth-order Wick–Malliavin propagator

− ∇ ·
⎛
⎝∑

i∈J

σ |i|Φ(x)i

i!

∑
j∈J

Z(Q)
ijk ∇uj

⎞
⎠ = δ0kf , (3.8)

where Z(Q)
ijk is defined in (2.8). For Q = 0 (Wick approximation), the propagator (3.8) becomes lower

triangular (figure 1). This means that we can effectively solve each equation of the propagator
by using forward substitution. The accuracy of the Wick approximation to stochastic elliptic
problems with lognormal coefficients was first studied by Wan et al. [8], where a second-order
convergence rate with respect to the noise amplitude σ in (3.5) was established. In this paper,
this result is further generalized to Wick–Malliavin approximations. In particular, in §6, we show
numerically that each Malliavin derivative added in the propagator improves the convergence
order with respect to the noise amplitude σ by an order of two. Specifically, we have convergence
order 2 for Q = 0 (Wick approximation), 4 for Q = 1 (level-one Wick–Malliavin approximation)
and 6 for Q = 2 (level-two Wick–Malliavin approximation). Remarkably, the same result holds for
the randomly forced Burgers equation and, most likely, for more general SPDEs with quadratic
nonlinearities. The improvement in the convergence rate comes, however, at the expense of a
weak coupling between the equations of the propagator, which is no longer lower triangular as
in the Wick setting.

4. Burgers equation
Let us consider the following initial/boundary-value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 + σ

M∑
l=1

ξl(ω)ψl(x, t), x ∈ [0, 2π ],

u(x, t0;ω) = u0(x),

periodic boundary conditions,

(4.1)

where ξk(ω) are i.i.d. normal random variables, u0(x) = 1 + sin(2x),ψk(x, t) = cos(2kx) cos(2kπ t)/M,
ν = 1

2 and σ ≥ 0 modulate the amplitude of the forcing term. We expand the nonlinear advection
term u∂u/∂x in a truncated Wick–Malliavin series in the form (2.2). This yields the following
Qth-order Wick–Malliavin approximation:

∂u
∂t

+
Q∑

p=0

1
p!
Dpu � Dp

(
∂u
∂x

)
= ν

∂2u
∂x2 + σ

M∑
l=1

ξl(ω)ψl(x, t). (4.2)

The case Q = 0 corresponds to the Wick approximation and has been theoretically studied by
Kaligotla & Lototsky [6], see also Grothaus et al. [3] and Holden et al. [4].

(a) Wick–Malliavin propagator
We represent the solution to equation (4.2) (for arbitrary Q) in a Wiener–Hermite series as

u(x, t;ω) =
∑
k∈J

ûk(x, t)hk(ξ1, . . . , ξM), (4.3)

http://rspa.royalsocietypublishing.org/
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where hk are multivariate Hermite polynomials and k is a multi-index in a suitable index set J .
A substitution of equation (4.3) into equation (4.2) and subsequent Galerkin projection onto the
space spanned by hk yields the Qth-order Wick–Malliavin propagator

∂ûk

∂t
+

∑
i,j∈J

ûi
∂ûj

∂x
Z(Q)

ijk = ν
∂2ûk

∂x2 + σ

M∑
l=1

〈ξlhk〉ψl(x, t), (4.4)

where the coefficients Z(Q)
ijk are defined in equation (2.8) (see also figure 1). If we set Q = 0 in

equations (4.4) and (2.8), and rearrange the double summation, we obtain the Wick propagator

∂ûk

∂t
+

∑
0≤i≤k

ûi
∂ûk−i

∂x
= ν

∂2ûk

∂x2 + σ

M∑
l=1

〈ξlhk〉ψl(x, t). (4.5)

This is a lower triangular system that can be readily solved in a sequence by forward substitution;
moreover, only the first equation of the system, i.e. the one for k = 0 is nonlinear, whereas all the
others are linear.

(b) Stochastic perturbation method
There exists an interesting connection between the Wick approximation and the classical first-
order perturbation method in terms of σ . In order to exploit such a connection, let us assume
that the solution to (4.1) is analytic in the parameter σ . This allows us to write the power series
expansion as

u(x, t;ω) = U0(x, t) +
∞∑

j=1

σ jUj(x, t;ω), (4.6)

where Uj(x, t;ω), j = 1, 2, . . ., are zero-mean random fields. If we substitute this representation into
equations (4.1), equate the terms having the same power of σ and truncate the series expansion
(4.6) to first-order in σ , then we obtain the linear approximation

∂U0

∂t
+ U0

∂U0

∂x
= ν

∂2U0

∂x2

and
∂U1

∂t
+ U0

∂U1

∂x
+ U1

∂U0

∂x
= ν

∂2U1

∂x2 +
M∑

l=1

ξl(ω)ψl(x, t).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.7)

Note that the amplitude of the perturbation σ no longer appears in the above system, which
means that we can solve it once, obtain the modes U0 and U1, and then construct a solution in
the form (4.6) for the desired value of σ (provided σ is reasonably small). Next, we represent the
random field U1(x, t;ω) in a (zero-mean) truncated Wiener–Hermite series as

U1(x, t;ω) =
∑

k∈J \{0}
Ûk(x, t)hk. (4.8)

A substitution of equation (4.8) into the system (4.7) and subsequent Galerkin projection onto the
space spanned by {hk}k∈J \{0} yields

∂U0

∂t
+ U0

∂U0

∂x
= ν

∂2U0

∂x2

and
∂Ûk

∂t
+ U0

∂Ûk

∂x
+ Ûk

∂U0

∂x
= ν

∂2Ûk

∂x2 +
M∑

l=1

〈ξlhk〉ψl(x, t).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.9)

It is interesting to compare the Wick propagator (4.5) with the system of equations (4.9). The
first equation in both systems is the same and it is the only nonlinear equation of the whole set.
The structure of the equations for |k| = 1 is similar apart from a constant factor (σ ) that can be
rescaled. The remaining part of the system is apparently different. This suggests that for small
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σ the error between the Wick–Burgers and the full Burgers equation should scale as σ 2 because
this is the first equation that differs in the systems (4.5) and (4.9). This prediction is confirmed
by numerical results in §6. Higher-order perturbation expansions in the form (4.6) can also be
considered, leading to systems with lower triangular structure. From a computational viewpoint,
however, it is not convenient to go beyond first order because the random fields {U1, U2, . . .}
appearing in (4.6) have to be represented in a Wiener chaos expansion. This means, in particular,
that a second-order perturbation expansion doubles the number of unknown chaos modes with
respect to a first-order expansion. On the other hand, the level-one Wick–Malliavin approximation
keeps the number of unknowns constant, but it introduces a weak coupling between the equations
of the propagator, which is no longer lower triangular as in the Wick setting.

5. Navier–Stokes equations
Let us consider the incompressible NS equations

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u and ∇ · u = 0, (5.1)

subject to a random initial condition or random boundary conditions [18,19]. The nonlinear
advection term in (5.1) can be represented via the Wick–Malliavin expansion. To this end, we
simply substitute the series (2.2) into equations (5.1), to obtain the following Wick–Malliavin–
Navier–Stokes (WMNS) equations:

∂u
∂t

+
Q∑

p=0

(Dpu � ∇)Dpu
p!

= −∇p + 1
Re

∇2u and ∇ · u = 0. (5.2)

In particular, the zero-order approximation, i.e. the Wick approximation, is obtained by setting Q =
0 in equations (5.2). This yields the Wick–Navier–Stokes (WNS) equations

∂u
∂t

+ (u � ∇)u = −∇p + 1
Re

∇2u and ∇ · u = 0. (5.3)

The theoretical properties of equations (5.3) have been recently studied by Mikulevicius
& Rozovskii [9]. Let us briefly review some of the main results. First of all, the WNS
equations are an unbiased perturbation of the deterministic NS equations. In other words, the
mean of the solution to equations (5.3) is a solution to the deterministic equations (5.1)
with averaged initial and boundary conditions. Another property is that the solution to
equations (5.3) exists and is unique but not necessarily square integrable.3 As a consequence,
the variance of the solution diverges to infinity as time increases. To overcome this problem,
Mikulevicius & Rozovskii [9] proposed renormalization that uses scaling based on Kondratiev’s
spaces and Catalan numbers. The reason for the latter is that Catalan numbers arise in
the asymptotics of convolutions, and the nonlinear term in equation (5.6) is a convolution.
As we will see in the numerical results of §6c, the a priori rescaling of the WNS solution
based on Catalan numbers yields results that are surprisingly very close to the optimal
(in the second-order moment sense) rescaling computed on the basis of the solution to the
full NS equations.

(a) Wick–Malliavin propagator
Let us expand the velocity and pressure fields in a finite-dimensional Wiener–Hermite series,

u =
∑
k∈J

ûkhk and p =
∑
k∈J

p̂khk. (5.4)

3This happens also for the Wick–Burgers equation we discussed in §4. However, any finite truncation of the Wiener chaos
expansion yields a system with finite energy.
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A substitution of equations (5.4) into equations (5.2) and subsequent Galerkin projection onto the
space spanned by {hk}k∈J yields the Wick–Malliavin propagator

∂ûk

∂t
+

∑
i,j∈J

Z(Q)
ijk (ûj · ∇)ûj = −∇p̂k + 1

Re
∇2ûk, (5.5)

where the coefficients Z(Q)
ijk are defined in equation (2.8) (see also table 2). Setting Q = 0 in

equation (5.5) yields the following Wick propagator:

∂ûk

∂t
+

∑
0≤j≤k

(ûj · ∇)ûk−j = −∇p̂k + 1
Re

∇2ûk. (5.6)

This system is lower triangular, very sparse for multiple random variables, and it involves only one
nonlinear equation, i.e. the one for k = 0; the rest of the system is linear. This attractive feature,
which can yield significant computational advantages, immediately leads us to the question of
accuracy of Wick-type or Wick–Malliavin-type NS equations, relative to the full NS equations.
This question is addressed in detail in §6.

It is interesting to note that the propagator of the WNS equations (5.3) has the same structure
as the system for the coefficients of formal power series solutions to the NS equations (5.1) in
the form

u =
∑
k∈J

ûkξk and p =
∑
k∈J

p̂kξk, (5.7)

where ξ = (ξ1, . . . , ξM). In fact, if we substitute equations (5.7) into equations (5.1) and collect the
terms having the same powers of ξ , we obtain exactly the system (5.6). The main technical reason
for this is that the basis functions hk and ξk appearing in equations (5.4) and (5.7) have exactly
the same type of product structure relative to the Wick and the dot product, respectively. Indeed,
by definition, we have hk � hj = hk+j and ξkξ j = ξk+j. However, power series usually have a finite
radius of convergence, which could even be zero [20,21], and therefore when the amplitude of the
chaos modes ûk exceeds a certain threshold, the series (5.7) may diverge.4

(b) Uniformly distributed random perturbations
So far, we have been dealing with SPDEs subject to Gaussian perturbations. As we have already
mentioned, similar results could also be obtained for other random perturbations, for example,
uniformly distributed ones. For example, let us consider the NS equations (5.1) subject to a
random initial condition u(x, t0; η), where η is a uniformly distributed random variable in [−1, 1].
In this setting, the solution can be expanded in a series similar to (5.4), where monic Hermite
polynomials are replaced by rescaled Legendre polynomials lk(η) (see equation (A 8) in the appendix).
The definition of the Wick product and the stochastic derivative can be extended to lk. This yields
the following analogue of formula (2.2):

(u · ∇)u �
Q∑

p=0

(Dpu �p ∇)Dpu
p!

, (5.8)

where �p are weighted Wick-type products defined in (A 15), whereas D are Malliavin-type
derivatives. Thus, the Legendre version of equations (5.2) can be written as

∂u
∂t

+
Q∑

p=0

(Dpu �p Dp∇u)
p!

= −∇p + 1
Re

∇2u and ∇ · u = 0, (5.9)

4Note that the equivalence between power series solutions and Wick propagators can be formally extended to even more
general sets of basis functions {gk}k∈J in (5.7), such that gk(ξ )gk(ξ ) = gk+j(ξ ).
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and, apparently, it has a more complicated structure than the corresponding version for
Gaussian perturbations. Nevertheless, for Q = 0, equations (5.9) and (5.2) are identical, and they
share the same lower triangular propagator (5.6), which is therefore independent of the type
of perturbation.

6. Numerical results
In this section, we provide numerical evidence for the theory developed above for the stochastic
diffusion, Burgers and NS equations. Before doing so, however, let us briefly comment on the
computational cost associated with the Wick–Malliavin approximation. This obviously depends
on the specific problem under consideration, but there are some general facts that hold true in
different situations. First of all, the Wick–Malliavin approximation relies on polynomial chaos
representations. Hence, the limitations of polynomial chaos, for example, with respect to high
dimensions [22–24] or discontinuities [25] are inherited in the Wick–Malliavin approach as well. In
particular, the dimensionality of the Wick–Malliavin propagator, i.e. the total number of equations
for the chaos modes, is related to the number of random input variables M and the Wiener chaos
order P by the well-known formula

K + 1 = (M + P)!
M!P!

. (6.1)

This means that we have an exponential growth of equations with both M and P. Second, the
computational complexity of the Wick–Malliavin approximation is related to the coupling structure
of the propagator. For SPDEs with quadratic nonlinearities, this is defined by the matrices (2.9)
(see also figure 1 and table 1). In particular, the structure of the Wick propagator (Q = 0) is always
lower triangular and very sparse, even for a small number of random input variables. This means
that even though for a fixed Wiener chaos order, the number of equations in the propagator
grows exponentially with the number of random input variables, each equation can be solved
independently in sequence defined by a forward substitution algorithm. Thus, the computational
cost to solve Wick-type equations is comparable with the cost of solving one equation of the
propagator as many times as the total number of equations. For instance, if we consider M = 10
random input variables and Wiener chaos order P = 8, then we have (K + 1) = 43 758 equations.
In this case, the cost of solving the Wick propagator is comparable with the cost of sampling
one equation of the propagator (which is linear) 43 758 times. Note that if we use the classical
probabilistic collocation method to solve the full nonlinear SPDE with the same resolution, then
we would need to sample it at 910 quadrature points. When the first-order Malliavin derivative
is included in the stochastic approximation, the corresponding Wick–Malliavin propagator is no
longer lower triangular as in the Wick setting, and we have a weak coupling between all the
chaos modes. In these cases, one can consider an operator-splitting method in time, where the
coupled part of the system, represented by the entries above the diagonal in the matrices of
figure 1 (case Q = 1), is treated explicitly by using the chaos modes at the previous time step.
This introduces a splitting error that is however dominated by the error owing to the Wick–
Malliavin truncation. Similar types of operator splitting can be considered also for higher-order
Wick–Malliavin approximations.

(a) Diffusion equation
Let us consider the diffusion problem (3.1) in a one-dimensional spatial domain [0, 1] and set
f = 1. The random process G(x;ω) defining the random diffusivity (3.5) through its eigenvalues
and eigenfunctions (λk,φk(x)) is assumed to be exponentially correlated, i.e.

〈G(x1;ω)G(x2;ω)〉 = σ 2 e−|x1−x2|/�c . (6.2)

This allows us to analytically determine the Karhunen–Loève series of G(x;ω) (see [26]). In
particular, by setting �c = 5 in (6.2), we have that the first three eigenfunctions include 98.4% of
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Figure 2. Comparison between the standard deviation of the solution to the full diffusion problem (3.1) and the corresponding
Wick–Malliavin approximation (3.3). The random diffusivity is space-dependent and defined in terms of M= 3 random
variables. TheWiener chaos order is set to P = 8.We plot two different cases: (a) Q= 1,σ = 0.4; (b) Q= 2,σ = 0.68. In (c),
we show the relative error between the solution to theWick–Malliavin approximation of orderQ and the full diffusion equation.
For smallσ , we observe a fourth-order convergence rate for Q= 1 and a sixth-order convergence rate for Q= 2.

the total energy of the process. In the following, we consider such a case, i.e. a random diffusivity
defined in terms of M = 3 random variables. We also set the Wiener chaos expansion order to
P = 8. With these parameters, the propagator (3.8) has 165 equations and its coupling structure is
shown in the last row of figure 1 for different Wick–Malliavin orders Q.

In figure 2, we compare the standard deviation of the solution with the full diffusion
problem (3.1) with the corresponding standard deviation obtained from the Wick–Malliavin
approximation (3.3). We find a very good agreement, even at very low orders of Q. Next, we study
the convergence of the Wick–Malliavin approximation with respect to the noise amplitude σ . This
is done in figure 2c, where we plot the relative difference in the L2 norm between the solution to
the Wick–Malliavin approximation of order Q (3.3) and the full diffusion equation (3.1). Note
that we obtain a fourth-order convergence rate for Q = 1 and a sixth-order convergence rate for
Q = 2. This extends the results of Wan et al. [8] who demonstrated that the Wick approximation
(3.4), i.e. the Wick–Malliavin approximation of order Q = 0, has a second-order converge rate.
The improvement in the convergence rate for Q = 1 and Q = 2 comes at the expense of a weak
coupling between the equations of the propagator, which is no longer lower triangular as in the
Wick setting.

(b) Burgers equation
We first construct a benchmark stochastic solution to (4.1) by using a high-order multi-element
probabilistic collocation method (ME-PCM) [27]. The ME-PCM benchmark solution allows us to
study the accuracy of the Wick–Malliavin approximation (4.2) on a reliable basis, as a function of
the noise amplitude σ . This is done in figure 3 for M = 1 (one random variable) and different σ . In
particular, we compare the errors in the L2 norm between the standard deviation fields obtained
from the linear perturbation method (equations (4.7)), the Wick–Malliavin approximation
(equation (4.2)) and the corresponding ME-PCM benchmark solution. We note that the error
decreases monotonically with the order Q of the Wick–Malliavin approximation. In addition,
the first-order perturbation method provides results that are nearly superimposed on the Wick
approximation (Q = 0). We remark that the computational cost of the Wick approximation and
the linear perturbation method is comparable because both systems can be solved by forward
substitution and they have exactly the same number of chaos modes. The convergence rate with
respect to the noise amplitude σ is studied in figure 3c, where we plot the relative difference in
the L2 norm between the solution to the Wick–Malliavin approximation of order Q and the full
Burgers equation. Remarkably, we obtain a second-order convergence rate for Q = 0, a fourth-
order convergence rate for Q = 1 and a sixth-order convergence rate for Q = 2, in complete
analogy with the results of the diffusion problem. In figure 4, we consider a higher-dimensional
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Figure 3. Burgers equationwith additive random forcing (equations (4.1)) definedbyM= 1 randomvariable. Time-dependent
errors in the L2 spatial norm between the standard deviation fields obtained from the linear perturbationmethod (dashed line),
the Wick–Malliavin approximation at different orders Q (solid lines) and the ME-PCM benchmark solution for σ = 2 (a) and
σ = 5 (b). In (c), we study the converge rate versusσ of Wick–Malliavin approximations of different orders. (Online version in
colour.)
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Figure 4. Burgers equation with additive random forcing defined by M= 4 random variables and σ = 10: (a) standard
deviationof thebenchmark stochastic solution and (b) convergence ofWick–Malliavin approximation. (Online version in colour.)

forcing term defined in terms of M = 4 random variables and show convergence of the Wick–
Malliavin approximation. We remark that for Wiener chaos order P = 8 and M = 4, the propagator
(4.4) has 495 equations. We also note that the Wick approximation in this case is very sparse.
In fact, the relative number of zero entries in the coupling matrix (2.9) is about 95% (table 1).
Nevertheless, we see that, in this case, the Wick approximation can reproduce the standard
deviation field within a relative error of about 10−3.

(c) Navier–Stokes equations
Next, we present fluid mechanics applications for two different prototype flow problems, i.e. two-
dimensional incompressible flow past a circular cylinder at Reynolds number Re = 100 subject
to random inflow boundary condition with Gaussian distribution and a double shear layer
at Reynolds number Re = 5000 subject to a uniformly distributed perturbation in the vertical
component of the initial velocity field. The computational domains and the boundary conditions
of these prototype problems are sketched in figure 5.

(i) Flow past cylinder

Let us first consider open flow past a circular cylinder with the dimensionless inflow boundary
condition assumed to be random and depending only on one normal random variable ξ (ω), i.e. we
set u = 1 + σξ , v= 0 where the parameter σ ≥ 0 controls the amplitude of the inflow perturbation.
The initial flow condition is assumed to be deterministic and coincident with a snapshot of the
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Figure 5. Sketches of the computational domains for (a) theflowpast the cylinder and (b) the double shear layer. In the cylinder
case, the boundary conditions are as follows.Γ1 (inflow): Dirichlet condition for the velocity in the form u= 1 + σξ , v= 0;
Γ2,Γ3: periodic conditions.Γ4 (outflow): zero normal derivative for the velocity field.Γ5 (cylinder surface): no-slip condition
(u= 0, v= 0). In the double shear layer case, periodic boundary conditions are imposed on the four sides of the box. We also
sketch the initial velocity components (v is random).
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Figure 6. (a) L2 errors in the mean streamwise velocity component of the solution to the WNS equations relative to the full NS
equations. Shown are results corresponding to different perturbation amplitudesσ . (b) We also compare two snapshots of the
mean flow at t = 6 forσ = 0.1. (Online version in colour.)

deterministic time-periodic wake at Reynolds number Re = 100. The numerical discretization of
the NS and the WMNS equations is performed by using the high-order spectral element method
described by Karniadakis & Sherwin [28].

Our first finding is that the mean flow is not significantly affected by the truncation of the
Wick–Malliavin expansion, as revealed by comparing the velocity fields obtained by the full NS
equations (5.1) and the WNS equations (5.3). This is shown in figure 6, where we plot the L2
errors of the mean streamwise velocity component of the WNS equations relative to the full NS
equations. This suggests that the deterministic NS equations can provide a good approximation
of the mean flow in the short-term dynamics we are considering here.5

On the other hand, the standard deviation is significantly different if computed from the NS
or the WNS equations. This is demonstrated in figure 7, where we show one time snapshot of
the standard deviation of the streamwise velocity component. We see that the standard deviation
of the WNS solution grows much faster than the one of the full NS solution. In particular, there

5In fact, we recall that the first equation in the WNS propagator (5.6), coincides with the deterministic NS equations.
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numbers. Results are for Gaussian inflow perturbations of amplitudeσ = 0.1. (Online version in colour.)
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Figure 8. Flow past cylinder: (a) time-dependent errors in the L2 spatial norm of the streamwise velocity standard deviation
as predicted by the Wick–Malliavin approximation at different orders Q. Errors are with respect to the standard deviation of
the solution to the full NS equations. (b) Time-dependent errors associated with the Wick approximation: shown are results for
Gaussian inflow perturbations of different amplitudeσ .

are several localized spatial regions downstream where such growth is more pronounced. This
phenomenon is significantly mitigated when the first few Malliavin derivatives are included
within the propagator. This can be seen in the error plots of figure 8a, where it is shown that
Wick–Malliavin approximations of increasing order converge monotonically to the reference
NS solution.

We also investigate the effect of renormalization of the WNS solution with the Catalan numbers
(see §5). This is done in figures 7 and 9a, where we compare the error after renormalization
based on an optimal (in the second-order moment sense) rescaling as well as on the Catalan
numbers. The optimal rescaling is constructed by minimizing the L2 error between the variance
of the solution to the full NS and the WNS equations. The effects of the renormalization are
also shown in figure 9b, where we compare the standard deviation of the streamwise velocity
component along the crossline x = 2 (two diameters behind the cylinder) at time t = 4.5. It is
seen that the rescaling of the Wick solution by the Catalan numbers, in this case, is nearly
optimal. Note that such rescaling is given a priori, i.e. it has not been tuned to fit the NS solution.
In addition, the fact that the renormalization of the WNS solution by the Catalan numbers
yields a better approximation of the NS solution is a numerical result, which we are currently
investigating theoretically.

(ii) Double shear layer

We now consider an initial-value problem involving two fluid layers flowing in opposite
directions within a periodic two-dimensional box of length two. Different from the flow past
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Figure 9. Flow past cylinder: (a) renormalization errors of the WNS equations versus time by using L2 optimization
(WNS-O) and Catalan numbers (WNS-C). (b) Streamwise velocity standard deviation along crossline x = 2 (two diameters
behind the cylinder) at time t = 4.5 as predicted by the full NS equations, theWick approximation (WNS) and the renormalized
Wick approximations based on L2 optimization (WNS-O) or Catalan numbers (WNS-C). Shown are results for Gaussian inflow
perturbations of amplitudeσ = 0.1. (Online version in colour.)
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Figure 10. Double shear layer: (a) mean and (b) standard deviation of the vorticity field at t = 1. (c) Convergence of theWick–
Malliavin approximation in representing the vorticity field. Shown are time-dependent errors in the L2 spatial norm of the
standard deviation at different Wick–Malliavin orders Q, with respect to the solution of the full NS equations. (Online version in
colour.)

a cylinder, in this example, we set Re = 5000 and we consider a random initial flow velocity
u = tanh(ε(0.5 − |y|)), v= ση cos(πx), ε = 40, where η is a uniform random variable with a range
in [−1, 1] (figure 5). The perturbation in the vertical velocity component triggers the shear-
layer instability, and consequently the two fluid layers roll up into two vortexes with trailing
arms. The Wick–Malliavin approximation to the stochastic NS equations, in this case, is given by
equations (5.9). In figure 10, we show the mean and the standard deviation of the vorticity field

Ω = ∂v

∂x
− ∂u
∂y

(6.3)

at time t = 1 for σ = 0.2. The large value of the standard deviation suggests that the small
perturbations in the initial conditions have a large influence on the flow. The accuracy of the
Wick–Malliavin series in representing this type of flow is studied in figure 10c, where we show
convergence to the benchmark stochastic vorticity as we increase the order Q.

7. Summary and discussion
We presented new results regarding the accuracy and the computational efficiency of the Wick–
Malliavin approximation to nonlinear SPDEs. Specifically, we studied several fundamental
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equations of mathematical physics, i.e. the diffusion equation with inhomogeneous random
diffusivity, the stochastic Burgers driven by random noise and the NS equations subject to random
boundary and random initial conditions.

We have shown that the computational complexity of the Wick–Malliavin approximation
is related to the dimensionality and the coupling structure of the related propagator, i.e. the
system of equations for the polynomial chaos modes of the solution. In particular, the propagator
associated with the Wick approximation has a very sparse lower triangular structure that is
seemingly universal, i.e. independent of the type of noise. This has significant computational
advantages because each equation of the Wick propagator can then be solved independently in a
sequence by a forward substitution algorithm.

On the other hand, the Wick approximation is a rather draconian stochastic truncation of
nonlinearities appearing in an SPDE, and hence we addressed the question of accuracy, that is
how far the Wick solution deviates from the solution to the full problem. Our numerical results
for diffusion, Burgers and NS equations suggest that the Wick approximation provides a model
that is relatively accurate for reasonably small noise levels. To improve the accuracy, we also
introduced new higher-order stochastic approximations via Wick–Malliavin series expansions.
In this generalized framework, Wick-type SPDEs can be regarded as a zero-order truncation
of the Wick–Malliavin series. Higher-order approximations can be constructed in a systematic
way by including Malliavin derivatives of different orders. We demonstrated through numerical
simulations that the Wick–Malliavin approximation converges rapidly to the solution to the
full problem as we increase the number of expansion terms. Specifically, we obtained second-,
fourth- and sixth-order convergence rates in the noise amplitude as we increase the Malliavin
derivative order from 0 (Wick approximation) to 2 (level-two Wick–Malliavin approximation).
The improvement in accuracy and convergence rate, however, comes at the expense of a weak
coupling between the equations of the propagator, which is no longer lower triangular as in the
Wick setting. Both the theory and the algorithms we presented here can be readily extended to
other nonlinear SPDEs and more general noises.

Funding statement. This work was supported by OSD-MURI grant no. FA9550-09-1-0613.

Appendix A. Wick–Malliavin rules for univariate polynomials
Here, we briefly review the Wick–Malliavin rules for univariate Hermite polynomials and also
present generalizations to other families of orthogonal polynomials, in particular, Legendre
polynomials.

(a) Monic Hermite polynomials
Let us consider the set of monic Hermite polynomials defined by the Rodrigues formula

hn(ξ ) = (−1)n eξ
2 dn

dξn e−ξ 2
. (A 1)

By using results of linearization theory [15], we express the direct product of hi and hj as

hihj =
min{i,j}∑

n=0

i!j!
n!(i − n)!(j − n)!

hi+j−2n. (A 2)

The Wick product between two monic Hermite polynomials is defined as [7,14]

hi � hj
def= hi+j, (A 3)
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and, as easily seen, it represents the zero-order expansion term in (A 2). The Malliavin derivatives
of univariate monic Hermite polynomials can be defined as [11]

Dhi
def= ihi−1, . . . , Dphi = i!

(i − p)!
hi−p. (A 4)

The Wick product of two Malliavin derivatives of the same order is

Dphi � Dphj = i!j!
(i − p)!(j − p)!

hi+j−2p. (A 5)

A comparison between (A 5) and (A 2) gives us the following product expansion formula in terms
of Wick–Malliavin operators:

hihj =
min{i,j}∑

n=0

Dnhi � Dnhj

n!
. (A 6)

By using this expression, it is straightforward to show that if X and Y are two regular functions of
a Gaussian variable, then we have

XY =
∞∑

p=0

DpX � DpY
p!

. (A 7)

(b) Rescaled Legendre polynomials
Let us define the rescaled Legendre polynomials

ln(η) def= Ln(η)
αn

where Ln(η) def= (−1)n

2nn!
dn

dηn [(1 − η2)n], αn
def= [1/2]n

n!
(A 8)

and [·]n is the Pochhammer symbol

[a]n
def=

n−1∏
m=0

(a + m), n = 1, 2, 3, . . . , [a]0 = 1. (A 9)

By using the results of Park & Kim [29], we obtain the direct product formula

lmln =
min{n,m}∑

p=0

(
2m + 2n + 1 − 4p
2m + 2n + 1 − 2p

)
αpαn−pαm−pαn+m−2p

αnαmαn+m−p
lm+n−2p. (A 10)

The zero-order (with respect to p) approximation of the product lmln is the polynomial lm+n, which
can be considered as the definition of a Wick product for rescaled Legendre polynomials (A 8), i.e.

lm � ln
def= lm+n. (A 11)

Based on this definition, we can construct the Wick calculus for rescaled Legendre polynomials.
By following the same steps as in the case of monic Hermite polynomials, we arrive at

lmln =
min{n,m}∑

p=0

K(m+n)p
[1/2]n−p[1/2]m−p

[1/2]n[1/2]m

Dplm � Dpln
p!

, (A 12)

where Dln
def= nln−1, and we have set

Kip
def=

(
i + 1/2 − 2p
i + 1/2 − p

)[
1
2

]
p

αi−2p

αi−p
. (A 13)

If X(η) and Y(η) are two functions of a uniform random variable η, then it follows from (A 12) that

XY =
∞∑

p=0

DpX �p DpY
p!

, (A 14)
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where the weighted Wick products �p are defined as

lm �p ln
def= K(m+n+2p)p

[1/2]n[1/2]m

[1/2]n+p[1/2]m+p
lm � ln. (A 15)

This definition gives us an interpretation of weighted Wick products �p for rescaled Legendre
polynomials in terms of the Wick product � arising from the zero-order expansion (A 11). In
particular, for p = 0, we easily obtain that �0 = �. Note also that for p> 0, �p is not associative.
If we apply this generalized framework to the case of Hermite polynomials of Gaussian random
variables, then we obtain �p = �, for all p.
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