
Journal of Scientific Computing (2023) 97:68
https://doi.org/10.1007/s10915-023-02379-z

Adaptive Deep Density Approximation for Fractional
Fokker–Planck Equations

Li Zeng1,2 · Xiaoliang Wan3 · Tao Zhou1

Received: 11 November 2022 / Revised: 21 September 2023 / Accepted: 11 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this work, we propose adaptive deep learning approaches based on normalizing flows
for solving fractional Fokker–Planck equations (FPEs). The solution of a FPE is a proba-
bility density function (PDF). Traditional mesh-based methods are ineffective because of a
unbounded computation domain, a large number of dimensions and a nonlocal fractional
operator. To this end, we represent the solution with an explicit PDF model induced by a
flow-based deep generative model, which constructs a transport map from a simple distri-
bution to the target distribution. We consider two methods to approximate the fractional
Laplacian. One method is the Monte Carlo approximation. The other method is to construct
an auxiliary model with Gaussian radial basis functions (GRBFs) to approximate the solution
such that we may take advantage of the fact that the fractional Laplacian of a Gaussian is
known analytically. Based on these two different ways for the approximation of the frac-
tional Laplacian, we propose two models to approximate stationary FPEs and one model to
approximate time-dependent FPEs. To further improve the accuracy, we refine the training
set and the approximate solution alternately. A variety of numerical examples is presented to
demonstrate the effectiveness of our adaptive deep density approaches.

Keywords Fractional Fokker–Planck equation · Normalizing flow · Adaptive density
approximation · Monte Carlo sampling · Gaussian radial basis functions

Mathematics Subject Classification 65M75 · 65C30 · 68T07

B Li Zeng
zengli@lsec.cc.ac.cn

Xiaoliang Wan
xlwan@lsu.edu

Tao Zhou
tzhou@lsec.cc.ac.cn

1 LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS,
Chinese Academy of Sciences, Beijing, China

2 School of Mathematics and Statistics, Fuzhou University, Fuzhou, China

3 Department of Mathematics and Center for Computation and Technology, Louisiana State University,
Baton Rouge 70803, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02379-z&domain=pdf
http://orcid.org/0000-0002-1201-064X

 68 Page 2 of 31 Journal of Scientific Computing (2023) 97:68

1 Introduction

The fractional Fokker–Planck equations (FPEs) describe the time evolution of the probability
density function of particles driven by Lévy noise as well as Gaussian noise. Compared to
integer-order FPEs whose associated stochastic differential equations (SDEs) are only driven
by Gaussian noise, the fractional FPEs have a much wider range of applications in physics,
biology, and other fields [9, 10, 32] since more than one kind of noise is often needed to
simulate complex systems in practice. However, it is very challenging to approximate the
fractional FPEs due to the following four obstacles:

(i) The solution is a probability density function requiring vanishing boundary condition,
normality, and non-negativity.

(ii) The computational domain may be unbounded.
(iii) The fractional Laplacian operator is nonlocal.
(iv) The problem may have a large number of dimensions.

Traditional methods such as finite difference method, finite element method, spectral method
as well as path integral method [1, 6, 12, 40, 46] have been applied to approximate fractional
FPEs. Most of these methods are limited to problems of dimension one or two because the
mesh-baseddiscretization of high-dimensional problems induces unaffordable computational
cost. On the other hand, simulating the SDEs associated with the FPEs [44] needs a large
number of sample paths. Thus more efficient methods are still needed to approximate the
fractional FPEs.

Recently, deep learning techniques have shown strong vitality in solving PDEs, e.g. deep
Galerkinmethod [33], deep Ritzmethod [39] and physics-informed neural networks (PINNs)
[27]. These techniques have gained encouraging performance in many applications [2, 17,
18, 23, 26, 28, 41, 45, 48]. Meanwhile, many deep generative models such as generative
adversarial networks (GANs) [14], variational autoencoder (VAE) [21] and normalizing flow
(NF) [25, 29] have been successfully applied to learn forward and inverse SDEs [5, 22, 43,
49]. For instance, a physics-informed generative adversarial model was proposed in [42]
to tackle high-dimensional SDEs. In [16], a normalizing field flow was developed to build
surrogate models for uncertainty quantification problems. The key issue of these methods is
to convert the PDE problem into an optimization problem constrained to physical laws where
the loss function is discretized by random training points. The training points here refer to
space-time collocation points where the equations are enforced through optimization. The
choice of training points will significantly affect the final numerical accuracy especially for
unbounded problems. An adaptive sampling procedure was proposed in [11, 36] to solve
integer-order FPEs, where the training set is updated by the current approximate solution
which will be subsequently improved by the new training set. We will employ a similar
adaptive procedure to deal with fractional FPEs.

To alleviate the difficulties induced by the constraints of a probability density function
(PDF), we consider an explicit PDF model given by the normalizing flow. A normalizing
flow constructs an invertible mapping from a simple distribution to the target distribution and
results in an explicit PDF through the change of variable.We represent the solution of the FPE
via a normalizing flow. In particular, we employ KRnet [35], which has been successfully
applied to estimate high-dimensional density function and to approximate integer-order FPEs
[11, 36].

Since KRnet yields a PDF explicitly, the first difficulty is avoided naturally. What’s more,
as a generative model, KRnet can generate exact random samples efficiently, which resolves
the second obstacle because the commonly used uniform samples cannot be applied to an

123

Journal of Scientific Computing (2023) 97:68 Page 3 of 31 68

unbounded domain and are not effective for a large truncated domain. Using KRnet, we
may update the training points by new samples from the current KRnet which automatically
generates more samples in the region of high density. It is well known that automatic dif-
ferentiation brings great convenience to the approximation of PDEs. However, it only works
for the computation of integer-order derivatives. An effective method is needed to tackle the
fractional derivatives. Several approaches have been developed to discretize the fractional
derivatives when the PDE solution is modeled by neural networks. For example, a finite
difference method is applied in [24], and a direct Monte Carlo sampling approach was pro-
posed in [15]. In [3], Gaussian radial basis functions (GRBFs) were used to represent the
solution of fractional PDEs based on the fact that the fractional Laplacian of GRBFs can be
derived analytically. In this work, we will employ either the Monte Carlo sampling approach
or auxiliary GRBFs to address the fractional Laplacian operator in nonlocal FPEs.

Integrating the PDF model from KRnet, automatic differentiation for integer-order
derivatives and Monte Carlo sampling/GRBFs approach for fractional Laplacian, we have
developed two effective deep learning techniques to address the approximation of nonlocal
FPEs without requiring any labeled data. Following are the main features of our approaches:

• Our approaches are based on the explicit PDF model given by KRnet, which satisfies
naturally all the constraints of a PDF. They are different from work [47] which handles
the constraints via adding penalty terms to the loss function.

• Our approaches are extensions to the previous work [11, 36] where only FPEs with
integer-order derivatives are investigated. We have paid particular attention to how to
improve both the accuracy and efficiency when the fractional derivatives are involved.

• Being machine learning schemes, the proposed approaches are mesh-free and can be
easily applied to high dimensional problems.

The remainder of this paper is structured as follows. In Sect. 2, we present a brief descrip-
tion of the fractional FPEs. Section3 provides an adaptive density approximation scheme
for stationary fractional FPEs. In Sect. 4, we generalize the approach to deal with time-
dependent fractional FPEs. We demonstrate the effectiveness and efficiency of our adaptive
sampling approaches with several numerical experiments in Sect. 5 followed by some con-
cluding remarks in Sect. 6.

2 Problem Setup

The main aim of this work is to solve the fractional FPEs. We first give a brief introduction
to the fractional FPEs.

2.1 Fractional Fokker–Planck Equations

Consider the state variable X t modeled by the following stochastic differential equation

dX t = μ(X t , t) dt + σ (X t , t) dW t + dLα
t , (2.1)

where X t andμ(X t , t) are d-dimensional random vectors, σ (X t , t) is a d×M matrix,W t is
anM-dimensional standardWiener process and Lα

t is aα-stable Levymotionwithα ∈ (0, 2).
The probability density function (PDF) p(x, t) for X t satisfies the time-dependent FPE:

∂ p

∂t
= Lp − (−Δ)α/2 p, (2.2)

123

 68 Page 4 of 31 Journal of Scientific Computing (2023) 97:68

where

Lp = −∇ · (pμ) + 1

2
∇ · ∇ · (σσT p), (2.3)

is induced by the drift and the diffusion, and the following nonlocal Laplacian operator

(−Δ)α/2 p = Cd,α P.V.

∫
Rd

p(x) − p(y)

|x − y|d+α
2

d y, (2.4)

is induced by the Levy motion, where | · |2 indicates the �2 norm of a vector and P.V. denotes
the principle value of the integral and Cd,α is a constant given by

Cd,α = 2α−1αΓ (α+d
2)

πd/2Γ (1 − α/2)
, (2.5)

with Γ (·) being the gamma function.
In general, Eq. (2.2) is defined on Rd with the following boundary condition

p(x) → 0 as |x|2 → ∞. (2.6)

Furthermore, the solution as a probability density function should be conservative and non-
negative, i.e.,

∫
Rd

p(x, t)dx ≡ 1, and p(x, t) ≥ 0. (2.7)

In this work, we first address the numerical approximation of Eq. (2.2) when ∂t p = 0, i.e.,

(L − (−Δ)α/2)p = 0, (2.8)

and then consider the time-dependent FPE, i.e., ∂t p �= 0.

3 Stationary Fractional FPE

3.1 A Bird’s-Eye View of Proposed Approaches

As mentioned in the introduction, we resort to deep generative modeling to construct an
explicit PDF model on R

d to remove all the constraints of a PDF, which also alleviates the
curse of dimensionality. Depending on how to approximate the fractional Laplacian operator,
we will develop two approaches to solve the fractional FPE (see Table 1). In MCNF, we
approximate the fractional Laplacian by the Monte Carlo method. While in GRBNF, we
introduce an auxiliary model to represent the approximate solution with Gaussian radial
basis functions such that we may take advantage of the fact that the fractional Laplacian of
a Gaussian is known explicitly. As for the time-dependent fractional FPEs, temporal KRnet
is considered as in [11], see Sect. 4 for the definition of MCTNF.

3.1.1 MCNF

Assume that the unknown PDF p(x) is modeled byKRnet as pKRnet,θ which will be specified
in Sect. 3.2. We adopt the idea of physics-informed neural network to handle Eq. (2.8), where
the overall residuals of Eq. (2.8) at some prescribed collocation points within the computation

123

Journal of Scientific Computing (2023) 97:68 Page 5 of 31 68

Table 1 GRBF and MC indicate how to deal with the fractional Laplacian operator. NF indicates how to
obtain a solution model

Notations Methods

GRBFNF Gaussian radial basis function (GRBF) + Normalizing flow (NF)

MCNF Monte Carlo (MC) sampling + Normalizing flow (NF)

MCTNF Monte Carlo (MC) sampling + Temporal normalizing flow (TNF)

domain will be minimized. For the given training data S = {xi }NS
i=1, we define the following

loss function,

L(pKRnet,θ):= 1

NS

NS∑
i=1

|Rθ (x
i)|2, (3.1)

where Rθ (x) is the residual

Rθ (x):=(L − (−Δ)α/2)pKRnet,θ (x). (3.2)

The optimal parameters θ∗ is given by the following optimization problem

θ∗ = argmin
θ

L(pKRnet,θ). (3.3)

The stochastic approximation proposed in [15] is used to compute the fractional Laplacian
of pKRnet,θ , which will be specified in Sect. 3.3. Another key component of our approach is
the adaptive improvement of pKRnet,θ (see Sect. 3.5), wherein the training set S is updated
with samples from the current optimal model pKRnet,θ∗ that will be subsequently improved
by the new training set. When the convergence is reached, we expect that the samples in S
will be distributed in terms of the exact solution p(x).

3.1.2 GRBFNF

We rewrite Eq. (2.8) as

{LpKRnet,θ (x) = (−Δ)α/2 pGRBF,θ̃
(x),

pKRnet,θ (x) = pGRBF,θ̃
(x),

(3.4)

where pKRnet,θ (x) is the same as the model used for MCNF and pGRBF,θ̃
(x) is an auxiliary

model for p(x) (see Sect. 3.4). In other words,

p(x) ≈ pKRnetθ (x), p(x) ≈ pGRBF,θ̃
(x).

For a set S = {xi }NS
i=1 of collocations points within the computation domain, we consider the

following optimization problem:

(θ∗, θ̃∗
) = argmin

θ,θ̃

L̃(pKRnet,θ , pGRBF,θ̃
), (3.5)

123

 68 Page 6 of 31 Journal of Scientific Computing (2023) 97:68

where the tuple (θ∗, θ̃∗
) is the minimizer of the loss function defined as

L̃(pKRnet,θ , pGRBF,θ̃
) = 1

NS

NS∑
i=1

(
LpKRnet,θ (x

i) − (−Δ)α/2 pGRBF,θ̃
(xi)

)2

+ βm

NS

NS∑
i=1

(
pKRnet,θ (x

i) − pGRBF,θ̃
(xi)

)2
,

(3.6)

with 0 < βm < ∞ being a penalty parameter. The main difference of GRBFNF fromMCNF
is the introduction of the auxiliary model pGRBF,θ̃

(x), which will be mainly used to sim-
plify the computation of the fractional Laplacian. More specifically, pGRBF,θ̃

(x) is a linear
combination of the Gaussian radial basis functions with centers x̃i ∈ Scenter, which corre-
sponds to a neural network with one hidden layer. The fractional Laplacian of pGRBF,θ̃

(x)

can be computed efficiently because the fractional Laplacian of a standard Gaussian is known
analytically.

3.2 The Density Model pKRnet,�

The constraints specified in Eqs. (2.6) and (2.7) on p(x) bring essential difficulties to mesh-
based numerical schemes for the approximation of the fractional FPEs. To this end, we
employ KRnet, a certain type of normalizing flow, to build an effective approximator for FPE
[11, 36].

A normalizing flow seeks an invertible mapping that corresponds to a transport map
between a specified distribution and an arbitrary one. Let Z ∈ R

d be a simple reference
random variable with a known PDF pZ, e.g., Gaussian. Let f : x → z be an invertible
mapping defined by a normalizing flow. Then the PDF of X = f −1(Z) is given by the
change of variables, i.e.,

pX (x) = pZ(f (x))

∣∣∣∣ det∇x f (x)

∣∣∣∣, (3.7)

where ∇x f (x) is the Jacobian matrix. Given observations of X, the unknown invertible
mapping can be learned through the maximum likelihood estimation.

To construct a complex bijection f , a general idea is to stack a sequence of simple
bijections, each of which is a shallow neural network, in other words, the overall mapping is
a deep neural network. Namely, the mapping f (·) can be written in a composite form:

z = f (x) = f[L] ◦ f[L−1] ◦ · · · ◦ f[1](x). (3.8)

Its inverse and Jacobian determinants are given as

x = f −1(z) = f −1
[1] ◦ · · · ◦ f −1

[L−1] ◦ f −1
[L] (z), (3.9)

| det∇x f (·)| =
L∏

i=1

| det∇x[i−1] f[i](·)|, (3.10)

where x[i−1] indicates the immediate variables with x[0] = x, x[L] = z. Many variants of
f have been proposed to enhance the expressive power and alleviate the computational cost
of Jacobian determinants at the same time [7, 8, 20]. Among them, a successful example is
KRnet [8]. We here employ a simplified KRnet, which includes affine coupling layers with
an invertible block-triangle structure and actnorm layers.

123

Journal of Scientific Computing (2023) 97:68 Page 7 of 31 68

3.2.1 Actnorm Layer: Scale and Bias Layer

We adopt the Actnorm layer LActn,[i] with data-dependent initialization proposed by Kingma
and Dhariwal [20]:

y[i] = ai � x[i] + bi , (3.11)

where ai and bi are trainable parameters. When data are available, the parameters bi and ai
can be initialized by the statistical mean and standard deviation from the data respectively.
Otherwise, we may simply initialize bi and ai as bi = 0 and ai = 1d , where 1d denotes a
d-dimensional vector whose components are all 1. After initialization, the scale and bias are
treated as regular trainable parameters that are independent of the data. The inverse can be
easily obtained via

x[i] = (y[i] − bi)/ai , (3.12)

where the division here is applied to each corresponding component.

3.2.2 Affine Coupling Layer

Let x[i] = (x[i],1, x[i],2) be a partition with x[i],1 ∈ R
m and x[i],2 ∈ R

d−m . An affine
coupling layer LAff,[i](·) is defined as

x[i],1 = x[i−1],1,
x[i],2 = x[i−1],2 � (

1d−m + β tanh(si (x[i−1],1))
) + eζ i � tanh(qi (x[i−1],1)),

(3.13)

where |β| < 1 is a user-specified parameter (a commonly used choice is β = 0.6), si , qi :
R
m → R

d−m are scaling and translation depending only on x[i−1],1, and ζ i ∈ R
d−m is a

trainable variable. Notice that the inverse can be easily computed via:

x[i−1],1 = x[i],1,

x[i−1],2 = (x[i],2 − eζ i � tanh(qi (x[i],1))) � (
1d−m + β tanh(si (x[i],1))

)−1
.
(3.14)

The Jacobian of Eq. (3.13) can be easily computed due to the lower triangular form of
Jacob matrix. Furthermore, we can model si , qi via a neural network

(si , qi) = NN[i](x[i−1],1). (3.15)

Note that LAff,[i](·) only changes x[i−1],2, implying that in the next affine coupling layer we
should exchange the positions of x[i],1 and x[i],2 to ensure that each component of x[i] will
be updated.

Based on the actnorm layer and affine coupling layer, our simplified KRnet can be repre-
sented by

z = fKRnet(x) = f[L] ◦ f[L−1] ◦ · · · ◦ f[1](x), (3.16)

f[i] = LAff,[i] ◦ LActn,[i], i = 1, . . . , L, (3.17)

where LAff,[i] is an affine coupling layer defined by (3.13) and LActn,[i] is an Actnorm layer
defined by (3.11).

123

 68 Page 8 of 31 Journal of Scientific Computing (2023) 97:68

3.3 Stochastic Approximation of the Fractional Operator

To compute the fractional Laplacian of the pKRnet,θ (x)with α ∈ (0, 2), we apply the stochas-
tic approximation method proposed in [15].

Lemma 1 [15] Given a function u, its fractional Laplacian can be decomposed into terms
over a neighborhood Br0(x) = { y | | y − x|2 ≤ r0} around x and its complement as

(−Δ)α/2u(x) = Cd,α

(∫
y∈Br0 (x)

u(x) − u(y)

|x − y|d+α
2

d y +
∫
y/∈Br0 (x)

u(x) − u(y)

|x − y|d+α
2

d y
)

,

(3.18)

which, if exists, takes the form

(−Δ)α/2 u(x) = Cd,α

∣∣Sd−1
∣∣ r2−α

0

2 (2 − α)
Eξ∼U(Sd−1),r1∼fI(r)[

2u(x) − u(x − r1ξ) − u(x + r1ξ)

r21

]

+ Cd,α

∣∣Sd−1
∣∣ r−α

0

2α
Eη∼U(Sd−1),r2∼fO(r)

[
2u(x) − u(x − r2η) − u(x + r2η)

]
,

(3.19)

where ξ and η are uniformly distributed on the the (d − 1)-dimensional unit sphere Sd−1,
|Sd−1| denotes the surface area of Sd−1,

fI(r) = 2 − α

r2−α
0

r1−α · 1r∈[0,r0], fO(r) = αrα
0 r

−1−α1r∈[r0,∞),

1Ω is a characteristic function and r1 and r2 can be sampled as

r1/r0 ∼ Beta(2 − α, 1), r0/r2 ∼ Beta(α, 1). (3.20)

Notice that the first expectation in Eq. (3.19) may suffer from the round-off error and give
rise to numerical instability for an extremely small r . Therefore, the following approximation
is considered in practice

Eξ ,r1

[
2u(x) − u(x − r1ξ) − u(x + r1ξ)

r21

]

≈ Eξ ,r1

[
2u(x) − u(x − rεξ) − u(x + rεξ)

r2ε

]
, (3.21)

where ξ ∼ U(Sd−1), r1 ∼ fI(r) and rε = max{ε, r1}, ε > 0 is a small positive number.
By combining the stochastic approximation for the fractional Laplacian operator and the

physics-informed neural network (3.1), along with automatic differentiation for the integer-
order derivative, we obtain the final approximation L̂(pKRnet,θ ; rε, r0) for L(pKRnet,θ) as

123

Journal of Scientific Computing (2023) 97:68 Page 9 of 31 68

follows

L̂(pKRnet,θ ; rε, r0)

= 1

NS

NS∑
i=1

∣∣∣∣−∇ · (μpKRnet,θ)(x
i) + 1

2
∇ · ∇ · (σσT pKRnet,θ)(x

i)

− Cd,α

∣∣Sd−1
∣∣ r2−α

0

2 (2 − α)
Eξ∼U(Sd−1),r1∼fI(r)

[
2pKRnet,θ (xi) − pKRnet,θ (xi − rεξ) − pKRnet,θ (xi + rεξ)

r2ε

]

− Cd,α

∣∣Sd−1
∣∣ r−α

0

2α
Eη∼U(Sd−1),r2∼fO(r)

[
2pKRnet,θ (x

i) − pKRnet,θ (x
i − r2η) − pKRnet,θ (x

i + r2η)
]∣∣∣2 .

(3.22)

3.4 The Auxiliary Density Model pGRBF,�̃

The definition of the auxiliary density model pGRBF,θ̃
is based on the following lemma [3]:

Lemma 2 Let u be a Gaussian function of the form u(x) = exp(−σ−2|x− x0|22) for x, x0 ∈
R
d . Then the fractional Laplacian of u is analytically given as

(−Δ)
α
2 u(x) = cα,d |σ |−α

1F1

(
d + α

2
; d
2

;−σ−2|x − x0|22
)

for x ∈ R
d , α ≥ 0,

(3.23)

where 1F1 denotes the confluent hypergeometric function, and

cα,d = 2αΓ
(d+α

2

)
Γ

(d
2

) .

For a set Scenter = {x̃i }Mi=1, we let

pGRBF,θ̃
(x) =

M∑
i=1

wiN (x̃i , σ 2
i I)(x), (3.24)

where 0 ≤ ωi ≤ 1 such that
∑M

i=1 ωi = 1, σi is the bandwidth at x̃i , and N denotes the
Normal distribution,

N (x̃i , σ 2
i I)(x) = (2π)−d/2σ−d

i exp

(
−|x − x̃i |22

2σ 2
i

)
. (3.25)

Here both ωi and σi can be trainable parameters, which are included in θ̃ . Using Lemma 2,
we obtain that

123

 68 Page 10 of 31 Journal of Scientific Computing (2023) 97:68

(−Δ)α/2 pGRBF,θ̃
(x) =

M∑
i=1

wi (−Δ)α/2N (x̃i , σ 2
i I)(x)

= cα,dπ
−d/22− d+α

2

M∑
i=1

wi |σi |−(d+α)
1F1

(
d + α

2
; d
2

;−|x − x̃i |22
2σi 2

)
.

(3.26)

Consequently, the loss function (3.6) can be rewritten by

L̃(pKRnet,θ , pGRBF,θ̃
)

= 1

N

N∑
i=1

(
LpKRnet,θ (x

i) − cα,dπ
− d

2 2− d+α
2

M∑
j=1

w j |σ j |−(d+α)
1F1

(
d + α

2
; d
2

;−|xi − x̃ j |22
2σ j

2

))2

+ βm

N

N∑
i=1

(
pKRnet,θ (x

i) −
M∑
j=1

w jN (x̃ j , σ
2
j I)(x

i)
)2

,

(3.27)

where the integer-order derivatives in the operator L can be conducted via automatic differ-
entiation.

It is seen that the factional Laplacian of pGRBF,θ̃
is determined by the confluent hyperge-

ometric function 1F1(·). If we allow σi to be a trainable parameter, we need the derivative of
1F1 which is

d

dx
1F1

(
d + α

2
; d
2
; x

)
= d + α

d
1F1

(
d + α

2
+ 1; d

2
+ 1; x

)
. (3.28)

In general, it is computationally expensive to evaluate the confluent hypergeometric func-
tion. Fortunately, only the one-dimensional hypergeometric function is needed. We then
use piecewise Chebyshev polynomials to approximate the one-dimensional confluent hyper-
geometric function up to a desired accuracy, which can be done once and for all at the
preprocessing stage.

3.5 An Adaptive Strategy for the Training Process

3.5.1 Where DoWe Need Adaptivity

We pay particular attention to two components of the algorithm that are closely related to
adaptivity: one is the training set S and the other one is the auxiliary model pGRBF,θ̃

. In
MCNF, we only consider adaptivity for the training set S while in GRBFNF we address the
adaptivity for both S and the model pGRBF,θ̃

.
If the modeling capability of pKRnet,θ is sufficient, the training set S determines the

accuracy of pKRnet,θ∗ because it defines the loss function for both MCNF and GRBFNF. For
example, the loss function (3.1) can be regarded as

L(pKRnet,θ):= 1

NS

NS∑
i=1

|Rθ (x
i)|2 ≈

∫
Rd

R2
θ (x)ρ(x)dx, (3.29)

123

Journal of Scientific Computing (2023) 97:68 Page 11 of 31 68

where xi are samples from a PDF ρ(x) with ρ(x) > 0 for any x ∈ R
d . We regard the

loss function (3.1) of MCNF as a Monte Carlo approximation of the expectation Eρ[Rθ]
with respect to an underlying PDF ρ(x), in other words, the loss in the continuous form
corresponds to a weighted L2 norm of Rθ (x)with the weight function ρ(x). The importance
of ρ(x) is twofold: First, calculating the loss function (3.29) presents a significant challenge
due to its integration over an infinite region. It is obvious that ρ(x) cannot be uniform on
R
d . One commonly used strategy in practice is to employ uniform samples on a truncated

computation domain. Second, for a fixed sample size, the Monte Carlo approximation of
Eρ[Rθ] has a smaller error when Rθ has a smaller variance in terms of ρ(x).

An evident option for ρ(x) is the solution p(x). This choice is driven by the intuition
that the residual in the region of higher probability holds greater significance compared
to those with lower probability density. In application problems, the solution p(x) is often
smooth but localized. The simplest way to incorporate the properties of p(x) into the training
process is to use more samples in the region of high density and fewer samples in the region
of low density. Using the nonuniform samples that are consistent with p(x) has a similar
effect to the strategy that associates each uniform sample with a weight. Apparently, for a
better approximation the weight for the sample from the region of high density should be
larger. We also note that the nonuniform samples help smooth the profile of the residual Rθ ,
which reduces the variance of Rθ , implying that the Monte Carlo approximation of Eρ[Rθ]
is improved through variance reduction. A better approximation of Eρ[Rθ] will eventually
reduce the statistical or estimator error of the approximate solution pKRnet,θ∗ [37]. Since
p(x) is unknown, we may sample its approximation pKRnet,θ∗ to form a new training set S.
This suggests an adaptive solver for pKRnet,θ , where we update S and pKRnet,θ∗ alternately.
Depending on the assumption on p(x), more sophisticated adaptive sampling strategies may
be needed. For example, if p(x) is discontinuous, sampling p(x) may not be sufficient since
it does not take into account the discontinuity. We leave this for future study.

The auxiliary model pGRBF,θ̃
as an alternative representation of pKRnet,θ can be regarded

as a kernel density estimator (KDE) since pKRnet,θ is a PDF. Given a set of samples {xi }, a
general adaptive multivariate KDE takes the form [38],

p̂(x) = 1

N

N∑
i=1

KH i (x − xi), (3.30)

where H i is the bandwidth matrix and KH i = |H i |−1K (H−1
i x) rescales a kernel function

K (x). Due to Lemma 2, we choose K (x) as a standard multivariate Gaussian and H i = hi I
with hi being the bandwidth shared by all dimensions. The main difference between pGRBF,θ̃
and a kernel density estimator is that the points in Scenter may not be samples from the
probability density function to be approximated. This is why pGRBF,θ̃

in Eq. (3.24) has

variable coefficients wi while the KDE in Eq. (3.30) has a constant coefficient 1
N . Since

pGRBF,θ̃
∗ ≈ pKRnet,θ∗ , we expect that Scenter has a data distribution that is consistent with

pKRnet,θ∗ .When pKRnet,θ∗ is updated adaptively, the set Scenter should be updated accordingly
for a more effective representation of pGRBF,θ̃

∗ . As N → ∞, the KDE is simply the Monte
Carlo simulation. However, for a GRBF approximation with a relatively small number of
basis functions, varyingwi rather than the constant 1

N yields better performance. Once a new
Scenter is specified, a straightforward idea to update the parameters of GRBFs is to project
pKRnet,θ∗ onto the new space spanned by the Gaussian radial basis functions with updated
centers.

123

 68 Page 12 of 31 Journal of Scientific Computing (2023) 97:68

3.5.2 Adaptivity of MCNF

We propose the following adaptive sampling strategy to update the training set S. The initial
collocation points in S are drawn from a uniform distribution in an area determined by our
prior knowledge of p(x). Then we solve the optimization problem (3.24) via the Adam
optimizer to obtain the optimal θ∗, which corresponds to an NF mapping fθ∗,0 and a PDF
pKRnet,θ∗,0(x). We subsequently update S using samples from pKRnet,θ∗,0(x). To be precise,

we sample the latentGaussian randomvariable Z, and use the samples of X = (
fθ∗,0

)−1
(Z) to

form the new training set S1.With S1,we start a new round of training to update pKRnet,θ∗,0(x).
We repeat this procedure until the maximum iteration number is reached. This strategy can
be concluded as follows.

1. Generate an initial training set with samples uniformly distributed in Ω0 ⊂ R
d :

S0 = {xi,0}NS
i=1 ⊂ Ω0, xi,0 ∼ Uniform Ω0.

2. Train the KRnet by minimizing the loss function (3.22) with training data S0 and hyper-
parameters rε and r0 to obtain θ∗,0.

θ∗,0 = argmin
θ

L̂(pKRnet,θ ; rε, r0).

3. Generate samples from pKRnet,θ∗,0(·) to get a new training set S1 = {xi,1}NS
i=1, and set

S0 = S1. Notice that xi,1 can be obtained by transforming the prior Gaussian samples
via the inverse temporal normalizing flow,

zi,1 ∼ N (0, I), xi,1 = (
fθ∗,0

)−1
(zi,1).

4. Repeat steps 2-3 for Nadaptive times to get a convergent approximation.

The algorithm for MCNF is presented in Algorithm 1 and the corresponding flow chart is
depicted in Fig. 1. Mini batches are used to accelerate the training process. Since the initial
training points are uniformly distributed, we only expect that pKRnet,θ∗,0(x) could capture
the main behavior of the exact solution p(x), which implies that a relatively small number
of epochs is enough. As the convergence is being established by the adaptive procedure,
we expect that pKRnet,θ∗,i (x) could capture more details of p(x) as the iteration number i
increases, which implies that the number of epochs may increase accordingly. We introduce
a hyper-parameter γ in Algorithm 1 to represent the growth rate of epoch number for each
adaptivity iteration.

3.5.3 Adaptivity of GRBFNF

Compared to MCNF, we need to address the adaptivity for both S and the auxiliary model
pGRBF,θ̃

. The training set S follows the same adaptive procedure as in MCNF. We here focus
on the adaptivity for the auxiliarymodel. Depending on the prior knowledge, the initial center
set Scenter will be formed by uniform samples in a certain area. After pKRnet,θ∗,0 is obtained,
Scenter will be updated by samples from pKRnet,θ∗,0 . To continue the training process with the
updated S and Scenter, we need to reinitialize the weights {wi } and the bandwidths {σi } for
the GRBFs of the auxiliary model, which will be done by solving a least-square problem.
Reinitialization of the GRBFs.Once pKRnet,θ∗,k is obtained for the k-th adaptivity iteration,
we sample it to update the training set from Sk to Sk+1 and GBRF centers from Scenter,k to

123

Journal of Scientific Computing (2023) 97:68 Page 13 of 31 68

Algorithm 1MCNF
Input: maximum epoch number Ne , maximum iteration number Nadaptive, fractional order α, hyper-

parameter rε , r0, γ , initial training data S = {xi }NS
i=1, tolerance ε1, ε2;

Lold = 0;
for k = 0, · · · , Nadaptive do

for j = 1, · · · , Ne do
Divide S into m batch {Sib}mib=1 randomly;
for ib = 1, · · · ,m do

Compute the loss function (3.22) L̂ib(pKRnet,θ ; rε , r0) for mini-batch data Sib and order α;
Update θ by using the Adam optimizer;

Lnew = 1
m

∑m
ib=1 L̂

ib(pKRnet,θ ; rε , r0);
if Lnew < ε1 or |Lold − Lnew | < ε2 then

Break;
else

Lold = Lnew ;
Ne = γ ∗ Ne;
Sample from pKRnet,θ (·) and update training set S;

Output: The predicted solution pKRnet,θ (x).

Fig. 1 Flow chart of MCNF

Scenter,k+1. The new auxiliary model is defined as

p
GRBF,θ̃

k+1(x) =
M∑
i=1

wi N (x̃k+1
i , σ 2

i Id)(x), x̃k+1
i ∈ Scenter,k+1. (3.31)

and initialized as

{wnew,i , σnew,i }Mi=1 = argmin
wi ,σi

Loss

= argmin
wi ,σi

1

NSk+1

NSk+1∑
j=1

(p
GRBF,θ̃

k+1(x j) − pKRnet,θ∗,k (x j))2,

(3.32)

where the Adam optimizer is used to solve the above optimization problem. After initializa-
tion, both the weights {wi } and the bandwidths {σi } are trainable.

This strategy can be concluded as follows.

123

 68 Page 14 of 31 Journal of Scientific Computing (2023) 97:68

1. Generate initial training sets S and Scenter with samples uniformly distributed in a certain
physical domain:

S0 = {xi,0}NS
i=1 ⊂ Ω0, xi,0 ∼ Uniform Ω0,

Scenter,0 = {x̃0i }Mi=1 ⊂ Ω0, x̃0i ∼ Uniform Ω0.

2. Train the KRnet by minimizing the loss function (3.27) with training data S0 to obtain

θ∗,0 and θ̃
∗,0

, i.e.,

{θ∗,0, θ̃
∗,0} = argmin

θ,θ̃

L̃(pKRnet,θ , pGRBF,θ̃
).

3. Generate samples with pKRnet,θ∗,0 to get a new training set S1 = {xi,1}Nr
i=1, and a new

center set Scenter,1 = {x̃1i }. Notice that xi,1 and x̃1j can be obtained by transforming the
prior Gaussian samples via the inverse normalizing flow.

zi,1 ∼ N (0, I), xi,1 = (
fθ∗,0

)−1
(zi,1),

z̃1j ∼ N (0, I), x̃1j = (
fθ∗,0

)−1
(z̃1j).

4. Project pKRnet,θ∗,0 onto the new GRBF space by solving the problem (3.32). Set S0 =
S1, Scenter,0 = Scenter,1.

5. Repeat steps 2-4 for Nadaptive times to get a convergent approximation.

The algorithm for GRBFNF is summarized in Algorithm 2, and a flow chart is given in Fig. 2.

Algorithm 2 GRBFNF
Input:maximum epoch number Ne , maximum iteration number Nadaptive, fractional order α, hyper param-

eter γ , initial training data S = {xi }Ni=1, center set Scenter = {x̃i }Mi=1, tolerance ε1, ε2;
Lold = 0;
for k = 0, · · · , Nadaptive do

for j = 1, · · · , Ne do
Divide S into m batch {Sib}mib=1 randomly;
for ib = 1, · · · ,m do

Compute the loss function (3.27) L̃ib(pKRnet,θ , pGRBF,θ̃
) for mini-batch data Sib and fractional

order α;
Update θ , θ̃ using the Adam optimizer;

Lnew = 1
m

∑m
ib=1 L̃

ib(pKRnet,θ , pGRBF,θ̃
);

if Lnew < ε1 or |Lold − Lnew | < ε2 then
Break;

else
Lold = Lnew ;

Ne = γ ∗ Ne;
Sample from pKRnet,θ (·) and update the training set S, Scenter;
Update pGRBF,θ̃

by solving the optimization problem (3.32).

Output: The predicted solution pKRnet,θ (x).

4 Time-Dependent Fractional FPEs

The procedure is overall similar to the stationary case if we can address the time-dependent
problems on a space-time domain. Considering that the update of GRBF centers cannot

123

Journal of Scientific Computing (2023) 97:68 Page 15 of 31 68

Fig. 2 Flow chart of GRBFNF

be straightforwardly generalized to the space-time domain, we only generalize MCNF for
time-dependent FPEs in this work.

Given training sets St = {(xi , t i)}Nt
i=1 and Sic = {(xiic, p0(xiic))}Nic

i=1 with (x, t) ∈ R
d ×

[0, T], we define the following loss function

LT (pKRnet,θ (x, t)):= 1

Nt

Nt∑
i=1

∣∣Rθ (x
i , t i)

∣∣2 + βD

Nic

Nic∑
i=1

∣∣pKRnet,θ (xiic, 0) − p0(xiic)
∣∣2, (4.1)

where p0(·) is an initial distribution, βD is a weight parameter to balance the governing
equation loss and the initial condition loss, and the residual Rθ (x, t) is defined as

Rθ (x, t):=(∂t − L + (−Δ)α/2)pKRnet,θ (x, t). (4.2)

The optimal parameter θ∗ can be obtained via solving the following optimization problem:

θ∗ = argmin
θ

LT (pKRnet,θ). (4.3)

Note that pKRnet,θ (x, t) depends on both x and t , meaning that the corresponding KRnet is
a time-independent normalizing flow.

4.1 Time-Dependent Density Model

The time-dependent PDF pKRnet,θ (x, t) can be regarded as a conditional PDF pKRnet,θ (x|t),
which can be achieved by making the affine coupling layer time dependent. Let x[i] =
(x[i],1, x[i],2) be a partition with x[i],1 ∈ R

m and x[i],2 ∈ R
d−m . We define a time-dependent

coupling layer TAff,[i](·, t) as follows:
x[i],1 = x[i−1],1,
x[i],2 = x[i−1],2 � (

1d−m + β tanh(si,t (x[i−1],1, t))
) + eζ i � tanh(qi,t (x[i−1],1, t)),

(4.4)

where the only difference from the affine coupling layer defined in Sect. 3.2.2 is that si,t and
qi,t include t as their inputs such that

(si,t , qi,t) = NN[i],t (x[i−1],1, t). (4.5)

123

 68 Page 16 of 31 Journal of Scientific Computing (2023) 97:68

Based on the Actnorm layer and time-dependent affine coupling layer, our simplified
time-dependent KRnet can be represented by

z = fKRnet,θ (x, t) = f[L] ◦ f[L−1] ◦ · · · ◦ f[1](x, t), (4.6)

f[i] = TAff,[i] ◦ LActn,[i], i = 1, . . . , L, (4.7)

where TAff,[i] is a time-dependent affine coupling layer defined by Eq. (4.4) and LActn,[i] is
an Actnorm layer defined by Eq. (3.11). For any t , we obtain an explicit condition PDF from
Eq. (4.6):

pKRnet,θ (x, t) = pKRnet,θ (x|t) = pZ(fKRnet,θ (x, t))
∣∣∇x fKRnet,θ (x, t)

∣∣ . (4.8)

Also note that for any t , (−Δ)α/2 pKRnet,θ (x, t) canbe approximatedusing the sameprocedure
given in Sect. 3.3.

One commonly used strategy to enhance the effectiveness and robustness of the algorithm
is to integrate some physical constraints explicitly into the algorithm [4, 30, 31, 34]. We
here propose a simple modification for the affine coupling layer such that pKRnet,θ (x, t) may
satisfy the initial condition exactly without introducing a penalty term in the loss function.

Modified affine coupling layer. To include the initial condition, we consider a modified
affine coupling layer TAff′,[i](·, t) as follows
x[i],1 = x[i−1],1,
x[i],2 = x[i−1],2 � (

1d−m + β tanh(t si,t (x[i−1],1, t))
) + eζ i � tanh(t qi,t (x[i−1],1, t)).

where si,t , qi,t are modeled by neural network (4.5) and the only modification is the scaling
of si,t and qi,t with time t . Therefore TAff′,[i] is an identity when t = 0. Replacing f[i] with
TAff′,[i] in Eqs. (4.6) and (4.8) we obtain the following expression for t = 0,

z = fKRnet,θ (x, 0) = x or pKRnet,θ (x, 0) = pZ(x). (4.9)

If we choose the prior pZ(z) the same as the initial distribution p0(z), the initial condition
is satisfied exactly.

4.2 Adaptive Procedure of MCTNF

We initialize St,0 = {(xi,0, t i,0)} using uniform samples from a space-time domain Ω0 ×
[0, T], where Ω0 is a finite volume, and specify Sic,0 = {(xi,0ic , p0(x

i,0
ic))}. Then we solve

the optimization problem (4.3) to obtain the optimal θ∗,0. After that we update the training
sets St,0 and Sic,0 using samples from pKRnet,θ∗,0(x, t). To be precise, we sample temporal

points {t i,1} from a uniform distribution on (0, T]. For each t i,1, we sample a latent normal
random variable Z to obtain a sample xi,1 of X = f −1

KRnet,θ∗,0(Z, t i,1). We then form St,1 =
{(xi,1, t i,1)}. Sic,1 = {xi,1ic } can be obtained via the same procedure by letting t = 0, i.e.

xi,1ic = f −1
KRnet,θ∗,0(z

i , 0). We then continue the training process with St,1 and Sic,1. The
procedure is repeated after the second training is done. Such a strategy can be concluded as
follows.

1. Generate initial training sets using uniform samples on Ω0 × (0, T] where Ω0 ∈ R
d and

|Ω0| < ∞:

St,0 = {(xi,0, t i,0)}Nt
i=1, t i,0 ∼ Uniform(0, T], xi,0 ∼ Uniform Ω0,

Sic,0 = {(xi,0ic , p0(x
i,0
ic))}, xi,0ic ∼ Uniform Ω0.

123

Journal of Scientific Computing (2023) 97:68 Page 17 of 31 68

2. Train the temporal KRnet by solving the optimization problem (4.3) with training data
St,0, Sic,0 to obtain the optimal parameters θ∗,0:

θ∗,0 = argmin
θ

LT (pKRnet,θ (x, t)).

3. Generate temporal samples from a uniform distribution on (0, T] and spatial samples by
conditioning on t using the distribution pKRnet,θ∗,0(x|t) to obtain St,1, Sic,1.

St,1 = {(xi,1, t i,1)}Nt
i=1, t i,1 ∼ Uniform(0, T], xi,1 ∼ pKRnet,θ∗,0(x|t = t i,1),

Sic,1 = {(xi,1ic , p0(x
i,1
ic))}, xi,1ic ∼ pKRnet,θ∗,0(x|t = 0).

Set St,0 = St,1, Sic,0 = Sic,1.
4. Repeat steps 2-3 for Nadaptive times to get a convergent approximation.

Our algorithm for solving time-dependent fractional FPEs is given in Algorithm 3.

Algorithm 3MCTNF
Input: maximum epoch number Ne , maximum iteration number Nadaptive, fractional order α, hyper-

parameter rε , r0, βD , initial training data St = {(xi , t i)}Nt
i=1, Sic = {(xiic, p0(xiic))}

Nic
i=1, CT = {t ir }Nri=1 ∪

{0}Nic
i=1, tolerance ε1, ε2;

Lold = 0;
for k = 0, · · · , Nadaptive do

for j = 1, · · · , Ne do
Divide St , Sic into m batches {Sibt }mib=1, {Sibic }mib=1 randomly;
for ib = 1, · · · ,m do

Compute the loss function LT (pKRnet,θ) for mini-batch data Sibt , Sicic and fractional order α;
Update θ using the Adam optimizer;

Lnew = 1
m

m∑
ib=1

LT (pKRnet,θ);

if Lnew < ε1 or |Lold − Lnew | < ε2 then
Break;

else
Lold = Lnew ;

Ne = γ ∗ Ne;
Sample from t ∼ Uniform([0, T]) and pKRnet,θ (x|t) to update the training sets St , Sic;

Output: The predicted solution pKRnet,θ (x, t).

5 Numerical Experiments

In this section, we present a series of comprehensive numerical tests to demonstrate the effec-
tiveness of the proposed algorithms. To quantitatively evaluate the accuracy of the numerical
solution pKRnet,θ , we shall consider both the relative L2 error ‖p∗ − pKRnet,θ‖2/‖p∗‖2 and
the relative Kullback–Leibler (KL) divergence given by

DKL(p∗||pKRnet,θ)
H(p∗)

= Ep∗ [log(p∗/pKRnet,θ)]
−Ep∗ [log p∗] ,

123

 68 Page 18 of 31 Journal of Scientific Computing (2023) 97:68

where E denotes the expectation and p∗ the ground truth. We approximate the above relative
L2 error as follows,∥∥p∗ − pKRnet,θ

∥∥
2∥∥p∗∥∥

2

≈
(∫

Ω̃
(p∗(x) − pKRnet,θ (x))2dx

)1/2
(∫

Ω̃
(p∗(x))2dx

)1/2

≈
(∑N

i=1(p
∗(xi) − pKRnet,θ (xi))2

)1/2
(∑N

i=1 p
∗(xi)2

)1/2 .

Note that the computational domain is unbounded. To numerically compute the above error,
we truncate the unbounded domain to Ω̃ such that

∫
Ω̃

p∗(x)dx ≥ 0.9. And {xi }Ni=1 are
obtained from a uniform grid of nodes when the dimension, d , is equal to 2. In this case,
we set N to a value such that the mesh size along each spatial dimension is 0.04. For higher
dimensions, d > 2, {xi }Ni=1 are chosen from a uniform distribution and N is set to 106.
Similarly, we also approximate the above relative KL divergence byMonte Carlo integration,
i.e.,

DKL(p∗||pKRnet,θ)
H(p∗)

≈
∑Nv

i=1

(
log p∗(xi) − log pKRnet,θ (xi)

)
−∑Nv

i=1 log p∗(xi)
.

Here xi is drawn from the ground truth p∗(x), and the amount of validation data is set to
Nv = 106. For time-dependent problems, we obtain the relative L2 error and the relative KL
divergence according to the aforementioned formulas for each given t .

We shall employ hyperbolic tangent function (tanh) as the activation function. For each i ,
NN[i] (see 3.15) is a feed forward neural network with two hidden layers. We use a half-half
partition x[i] = (x[i],1, x[i],2), where x[i],1 ∈ R

�d/2� and x[i],2 ∈ R
d−�d/2� unless specified.

We initialize all trainable parameters using Glorot initialization [13]. For the training proce-
dure, we use the Adam optimizer [19]. All numerical tests are implemented with Pytorch.

5.1 FPE with Only Fractional Laplacian

We start with a toy example with only the fractional Laplacian term. Consider the following
2D equation

⎧⎨
⎩

(−Δ)α/2 p(x) = f (x), x ∈ R
2,∫

R2
p(x)dx = 1, p(x) ≥ 0,

(5.1)

where f (x) = − 1
2π B(2, α)2− α

2 σ−(2+α)
1F1(

2+α
2 ; 1;−‖x−μ‖22

2σ 2), B(d, α) = 2αΓ ((α+d)/2)
Γ (d/2) .

The true solution is p(x) = 1
2πσ 2 exp(−‖x−μ‖22

2σ 2). We take α = 1,μ = (1, 1), σ = 2.
For the NF, we take 8 affine coupling layers each with 32 hidden neurons. The initial

training set is generated via the uniformly distributed points in the range [0, 6]2. Note that
Ep[1[0,6]2] ≈ 0.5, meaning that we have only used about 50% information about the effective
domain of the target distribution, whereEp indicates the expectation with respect to p(x) and
1Ω is an indicator function for Ω ⊂ R

2. The sample size is 5000, and the batch size is 1024.
Both MCNF and GRBFNF methods are applied. For MCNF, the number of Monte Carlo
samples used to approximate the fractional Laplacian is 100, with r0 = 4 and rε = 0.01. The
initial learning rate is 0.001 with halving decay every 100 steps. For GRBFNF, the number of

123

Journal of Scientific Computing (2023) 97:68 Page 19 of 31 68

Fig. 3 FPE with only fractional Laplacian. Left: training loss. Middle: the relative L2 error. Right: the relative
KL divergence

Fig. 4 Different adaptive frequencies for MCNF. The initial learning rate is 0.0001 with halving decay after
1500 epochs. Left: training loss. Middle: the relative L2 error. Right: the relative KL divergence

basis functions is 100 and the initial center points of the basis functions are generated from a
uniform distribution on [0, 6]2. The learning rate is 0.01 with halving decay every 300 steps.

We first discuss the training strategy of MCNF and GRBFNF by adjusting the adaptive
frequency of training. We present the training loss, relative L2 error and relative KL diver-
gence for different adaptive frequencies in Fig. 3. For MCNF method, following the current
learning rate decay strategy, increasing the adaptive frequency leads to improved outcomes.
However, for GRBFNF method, the adaptivity should not be activated until the current mod-
els is well trained, otherwise, the loss may be stuck in the transition period induced by the
re-initialization of current models. On the other hand, in the case of MCNF, if we reduce the
decay rate of the learning rate and set the initial learning rate to 0.0001 with halving decay
after 1500 steps, our observation from Fig. 4 reveals that increasing the adaptive frequency
appropriately can lead to expedited convergence. Moreover, it is noteworthy that there is
minimal discernible difference in final accuracy across different adaptive frequencies.

Next, we focus on two experiments to investigate how adaptivity works. Specifically, for
MCNF, we consider 599 adaptivity iterations, with 5 epochs per iteration. And for GRBFNF,
we choose 2 adaptivity iterations with increasing epochs, 500 epochs in the first iteration,
1000 epochs in the first adaptivity iteration and 2000 epochs in the second adaptivity iteration.
The time costs of MCNF and GRBFNF are 64min, and 46min respectively. The training
points as well as the center points of the basis functions for different adaptivity iteration

123

 68 Page 20 of 31 Journal of Scientific Computing (2023) 97:68

Fig. 5 Distribution of training samples at different adaptivity iteration numbers in MCNF. From left to right
and from top to bottom, k = 0, 1, 2, 4, 29, 249

Fig. 6 Adaptivity of GRBFNF for the training set and the centers of GRBF basis functions

numbers are presented in Figs. 5 and 6. One can clearly observe that the training points and
center points of the basis functions become increasingly closer to the ground truth as the
iteration number increases, showing the effectiveness of the adaptive sampling scheme.

What’s more, we compare our adaptive methods with non-adaptive methods in Fig. 7. It
can be seen that the accuracy of adaptive algorithm is higher than that of the non-adaptive
algorithm, especially for GRBFNF. The computational area of the non-adaptive method is
always [0, 6]2, which certainly affects the performance outside this area. That is to say, the
numerical solution can approximate the ground truth well inside a predetermined area while
failing to capture the information outside this area especially when the prior knowledge is
not enough to design a suitable computational area. We drawn the ground truth in Fig. 8.
The comparison between the predicted solution and the exact solution is presented in Fig. 9,
from which we can clearly observe that the non-adaptive methods show larger errors outside
the computational area [0, 6]2. On the other hand, our methods update the training points
adaptively, which can effectively alleviate the limitation of a fixed computational area. Both

123

Journal of Scientific Computing (2023) 97:68 Page 21 of 31 68

Fig. 7 Comparison between adaptive and non-adaptive methods. Top row: MCNF. Bottom row: GRBFNF.
Left: training loss. Middle: relative L2 error. Right: relative KL divergence

Fig. 8 The reference solution of
FFP with only the fractional
Laplacian term

the solutions of MCNF and GRBFNF yield excellent agreement with the exact solution. The
relative L2 error and the relative KL divergence with different adaptivity iteration numbers
are also provided in Fig. 10. The relative L2 error of GRBFNF is smaller than that of MCNF
while the relative KL divergence of GRBFNF is larger than that of MCNF.

Finally, we take [−3, 3]2 to replace the above initial sampling area [0, 6]2 and repeat the
experiments to test the performance ofMCNFandGRBFNF for fractional FPEswith different
fractional orders α. A total of 199 adaptivity iterations are carried out, with each iteration con-
sisting of 5 epochs. The results are presented in Fig. 11, where we also display the accuracy of
theMonteCarlo samplingmethod to compute the associated fractional Laplacian. The numer-

ical error of approximating the fractional Laplacian is defined by
∑

i |(−Δ)
α
2 [p](xi)−M[p](xi)|2∑

i |(−Δ)
α
2 [p](xi)|2

whereM[p] denotes the numerical approximation. BothMCNF and GRBFNF achieve good
agreement with the ground truth for α = 0.5, 1, 1.5, 1.8.

123

 68 Page 22 of 31 Journal of Scientific Computing (2023) 97:68

Fig. 9 Comparison between the predicted solutions and the reference solutions. Top row: numerical solution.
Bottom row: Absolute error between the numerical solution and the exact solution

Fig. 10 Convergence behavior of MCNF and GRBFNF. Left: training loss. Middle: relative L2 error. Right:
relative KL divergence

5.2 Bimodal Distribution

To test the performance of MCNF and GRBFNF in handling a bimodal distribution, we
consider ⎧⎨

⎩
∇ · (g(x)p(x)) + 0.05Δp(x) − (−Δ)α/2 p(x) = f (x), x ∈ R

2,∫
R2

p(x)dx = 1, p(x) ≥ 0,
(5.2)

where g(x) = 0.2x,

f (x) = 1

5π
∇ · (

exp(−2‖x − 12‖22)
)

− 1

π
B(2, α)2

α
2

(
1F1

(
2 + α

2
; 1;−2‖x‖22

)
+ 1F1

(
2 + α

2
; 1;−2‖x − 12‖22

))
.

The true solution is

p(x) = 1

π

(
exp

(− 2‖x‖22
) + exp

(− 2‖x − 12‖22
))

.

For the NF, we take L = 8 affine coupling layers each with 32 hidden neurons. The initial
training set is generated via uniformly distributed points in [−3, 3]2. The sample size is 5000

123

Journal of Scientific Computing (2023) 97:68 Page 23 of 31 68

Fig. 11 Error decay of MCNF and GRBFNF for different α in terms of the number of MC samples and GRBF
basis functions

and the batch size is set to 1024. Both MCNF and GRBFNF are applied. For MCNF, the
number of the samples used to approximate fractional Laplacian is 100, r0 = 0.3, rε =
0.0001. 799 adaptivity iterations with 5 epochs for each adaptivity iteration are conducted.
The initial learning rate is 0.001with 80% decay every 3000 steps. For GRBFNF, the number
of the basis functions is 100 and the initial center points of the basis functions are generated
from a uniform distribution in the area [−3, 3]2. 2 adaptivity iterationswith increasing epochs
are conducted for this problem, i.e. 500 epochs for the initial iteration, 1000 epochs for the
first adaptivity iteration, and 2500 epochs for the second iteration. The learning rate is 0.01
with halving decay every 300 steps, and it is reset to 0.005 after each adaptivity step.

We also applyMCNF and GRBFNF without adaptivity to solve this problem. The relative
L2 error and the relative KL divergence are provided in Fig. 12, which once again verifies
the strength of the adaptive methods. Although in this example, the unknown PDF is mainly
concentrated in the initial sampling area which is different from the previous example, uni-
form samples used by non-adaptive methods fail to yield an accurate approximation, and the
adaptive sampling may improve the results by at least one order of magnitude. The exact
solution is presented in Fig. 13. The comparison between the predicted solution and the exact
solution is presented in Fig. 14. Both MCNF and GRBFNF can approximate the exact solu-
tion well. The training loss, the relative L2 error, and the relative KL divergence are presented
in Fig. 15. GRBFNF shows better performance than MCNF in this example.

123

 68 Page 24 of 31 Journal of Scientific Computing (2023) 97:68

Fig. 12 Convergence behavior of MCNF and GRBFNF with and without adaptive sampling. Left: training
loss. Middle: relative L2 error. Right: relative KL divergence

Fig. 13 The ground truth of
bimodal distribution

5.3 High Dimensional Fractional Fokker–Planck Equations

In this part, we consider a high-dimensional FPE.

⎧⎨
⎩

∇ · (g(x)p(x)) + Δp(x) − (−Δ)α/2 p(x) = f (x), x ∈ R
d ,∫

R2
p(x)dx = 1, p(x) ≥ 0.

(5.3)

where g(x) = x−μ

σ 2 , the corresponding analytic solution is

p(x) = N (μ,Σ) = 1

(2π)d/2σ d
exp

(
−1

2
(x − μ)TΣ−1(x − μ)

)
. (5.4)

123

Journal of Scientific Computing (2023) 97:68 Page 25 of 31 68

Fig. 14 Comparison between the predicted solutions and the reference solutions. Top row: numerical solution.
Bottom row: Absolute error between the numerical solution and the exact solution

Fig. 15 Convergence behavior of MCNF and GRBFNF for the bimodal distribution case. Left: training loss.
Middle: relative L2 error. Right: relative KL divergence. The unit of time is second

We take d = 4, 6, 8, μ = 1d and Σ = σ 2 Id , where Id is a d-dimensional identity matrix
and σ = 2.

For high-dimensional problems, the PDF and the associated loss function may be too
small, which results in numerical underflow issues. For the sake of numerical stability, we
magnify the solution by multiplying a large enough constant C . Thus Cp satisfies

∂(Cp)

∂t
= L(Cp) − (−Δ)α/2(Cp). (5.5)

Actually, the values of C used here are 1 for d = 4, 10 for d = 6 and 200 for d = 8.
For the NF, we take L = 8 affine coupling layers with 64 hidden neurons. The initial

training set is generated via uniformly distributed points in [−3, 5]d . The sample size is
50000. The batch size is set to 4096. We employ MCNF for solving this problem. GRBFNF
is harder to train in high-dimensional cases since its structure ismore complex. The number of
samples used to approximate the fractional Laplacian is 200, with r0 = 0.3 and ε = 0.0001.
We take a half-half partition here. For d = 4, 6, 99 adaptivity iterations with 20 epochs for
each adaptivity iteration are conducted. The learning rate is 0.001 with halving decay every
300 steps. For d = 8, 19 adaptivity iterations with 200 epochs for each adaptivity iteration are
conducted. The learning rate is 0.001 with halving decay every 1000 steps. The comparisons
between the MCNF solutions and the true solutions are presented in Figs. 16, 17, 18, all of

123

 68 Page 26 of 31 Journal of Scientific Computing (2023) 97:68

Fig. 16 MCNF for a 4-dimensional problem, where the first two dimensions are plotted with x3 = x4 = 1.
Predicted solution versus the reference solution. Left: exact solution. Middle: prediction. Right: absolute error

Fig. 17 MCNF for a 6-dimensional problem, where the first two dimensions are plotted with x3 = x4 =
x5 = x6 = 1. Predicted solution versus the reference solution. Left: exact solution. Middle: prediction. Right:
absolute error

Fig. 18 MCNF for the 8-dimensional problem, where the first two dimensions are plotted at x3 = x4 =
· · · = x8 = 1. Predicted solution versus the reference solution. Left: exact solution. Middle: prediction. Right:
absolute error

which show great performance of our approach. We also present the relative L2 error and the
relative KL divergence in Fig. 19.

5.4 Time-Dependent Fractional FPE: Cauchy Distribution

We consider the following stochastic process,

dXt = dLα
t , α = 1. (5.6)

For d = 2, the corresponding fractional Fokker–Planck equation is⎧⎨
⎩

∂ p

∂t
= −(−Δ)α/2 p, α = 1,

p(x, 0) = p0(x).

(5.7)

123

Journal of Scientific Computing (2023) 97:68 Page 27 of 31 68

Fig. 19 Convergence behavior of MCNF for high-dimensional FPEs. Left: d = 4. Middle: d = 6. Right:
d = 8

Fig. 20 The predicted solutions versus the reference solutions for MCTNF at t = 0, 0.5, 1

For the initial condition p0(x) = 1
2π(1+‖x‖22)3/2

, the solution of Eq. (5.7) is p(x, t) =
t+1

2π
(
(t+1)2+‖x‖22

)3/2 , where x ∈ R
2 and t ∈ [0, 1].

For the NF, we take L = 8 affine coupling layers with 32 hidden neurons. The initial
spatial samples are drawn from a uniform distribution in [−3, 3]2, and temporal samples are
generated from a uniform distribution in [0, 1]. The sample size is 100000, and the batch

123

 68 Page 28 of 31 Journal of Scientific Computing (2023) 97:68

Fig. 21 The relative L2 errors of
MCTNF

Fig. 22 Comparison between the original MCTNF and the modified MCTNF. Left: training loss. Middle:
realtive L2 error. Right panel: relative KL divergence

size is set to be 4096. For MCNF, the number of samples used to approximate the fractional
Laplacian is 100 with r0 = 1 and rε = 0.01. 99 adaptivity iterations with 5 epochs for each
adaptivity iteration are conducted. The initial learning rate is 0.001 with halving decay every
100 steps. One can observe a good agreement between the predicted solutions and the ground
truth from the Fig. 20. The relative L2 error and the relative KL divergence against time t for
different adaptive iterations are also provided in Fig. 21, which indicates the effectiveness of
adaptivity. We present the comparison of the relative error between the original MCTNF and
modified MCTNF in Fig. 22. The modified MCTNF indeed improves the approximation. It
is worth mentioning that the numerical error seems to increase as time progresses. We will
investigate this issue in the subsequent work.

6 Conclusions

We have proposed flow-based adaptive algorithms for solving fractional FPEs. The core idea
is to model the unknown PDF by a normalizing flow which yields an explicit PDF model
as well as the corresponding exact random samples. For stationary FPEs, we proposed two
methods: MCNF and GRBFNF. It is usually hard to choose a suitable computational area
for unbounded problems. Our methods alleviate this difficulty by adaptively updating the
training points. We train the MCNF model or GRBFNF model with current training points,
and generate new training points using the current approximate solution. Then the training
sets and the solution approximation are updated alternately. For time-dependent FPEs, we
proposedMCTNF, where wemodified the affine coupling layer to satisfy the initial condition
exactly to improve the accuracy. Our approaches are validated by numerical experiments for

123

Journal of Scientific Computing (2023) 97:68 Page 29 of 31 68

both stationary and time-dependent FPEs. Compared to non-adaptive methods, both MCNF
and GRBFNF may improve the accuracy by at least one order of magnitude. From the
numerical results, GRBFNF appeals to bemore suitable for low-dimensional problems, while
MCNF demonstrates greater flexibility for high-dimensional problems. The main difference
between MCNF and GRBFNF is how the fractional Laplacian is approximated. MCNF uses
the Monte Carlo approximation, whereas GRBFNF relies on the GRBF approximation of
the solution. GRBFNF is more effective for low-dimensional problems since the GRBF
approximation is a linear model. MCNF performs better for high-dimensional problems
because of the weak dependence of the Monte Carlo method on dimensionality. However, to
further reduce the statistical error of the MC approximation of the fractional Laplacian, we
may consider variance reduction techniques, which will be left for future study.

Acknowledgements This work is supported by the NSF of China (No. 12288201), the Strategic Priority
Research Program of Chinese Academy of Sciences (Grant No. XDA25010404), the National Key R&D Pro-
gram of China (2020YFA0712000), the youth innovation promotion association (CAS), and Henan Academy
of Sciences. The second author is supported by NSF Grant DMS-1913163.

Data Availibility The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Ayi, N., Herda, M., Hivert, H., Tristani, I.: On a structure-preserving numerical method for fractional
Fokker–Planck equations. arXiv preprint arXiv:2107.13416 (2021)

2. Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid
Mech. 52, 477–508 (2020)

3. Burkardt, J., Wu, Y., Zhang, Y.: A unified meshfree pseudospectral method for solving both classical and
fractional PDEs. SIAM J. Sci. Comput. 43(2), A1389–A1411 (2021)

4. Chen, J., Du, R., Wu, K.: A Comparison Study of Deep Galerkin Method and Deep Ritz Method for
Elliptic Problems with Different Boundary Conditions. Commun. Math. Res. 36, 354–376 (2020)

5. Chen, X., Yang, L., Duan, J., Karniadakis, G.E.: Solving inverse stochastic problems from discrete particle
observations using the Fokker-Planck equation and physics-informed neural networks. SIAM J. Sci.
Comput. 43(3), B811–B830 (2021)

6. Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J.
Numer. Anal. 47(1), 204–226 (2009)

7. Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components estimation. arXiv preprint
arXiv:1410.8516 (2014)

8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv preprint
arXiv:1605.08803 (2016)

9. Ditlevsen, P.D.: Observation ofα-stable noise inducedmillennial climate changes from an ice-core record.
Geophys. Res. Lett. 26(10), 1441–1444 (1999)

10. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science
297(5584), 1183–1186 (2002)

11. Feng, X., Zeng, L., Zhou, T.: Solving time dependent Fokker–Planck equations via temporal normalizing
flow. Commun. Comput. Phys. 32, 401–423 (2022)

12. Gao, T., Duan, J., Li, X.: Fokker–Planck equations for stochastic dynamical systems with symmetric lévy
motions. Appl. Math. Comput. 278, 1–20 (2016)

13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In:
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256.
JMLR Workshop and Conference Proceedings (2010)

123

http://arxiv.org/abs/2107.13416
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1605.08803

 68 Page 30 of 31 Journal of Scientific Computing (2023) 97:68

14. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio,
Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

15. Guo, L., Wu, H., Yu, X., Zhou, T.: Monte Carlo fPINNs: Deep learning method for forward and inverse
problems involving high dimensional fractional partial differential equations. Comput. Methods Appl.
Mech. Eng. (2022)

16. Guo, L., Wu, H., Zhou, T.: Normalizing field flows: solving forward and inverse stochastic differential
equations using physics-informed flow models. J. Comput. Phys. 461, 111202 (2022)

17. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep
learning. Proc. Nat. Acad. Sci. 115(34), 8505–8510 (2018)

18. Iten, R., Metger, T., Wilming, H., Del Rio, L., Renner, R.: Discovering physical concepts with neural
networks. Phys. Rev. Lett. 124(1), 010508 (2020)

19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
20. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. arXiv preprint

arXiv:1807.03039 (2018)
21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
22. Liu, S., Li, W., Zha, H., Zhou, H.: Neural parametric Fokker–Planck equations. SIAM J. Sci. Comput.

60(3), 1385–1449 (2022)
23. Meng, X., Karniadakis, G.E.: A composite neural network that learns frommulti-fidelity data: application

to function approximation and inverse PDE problems. J. Comput. Phys. 401, 109020 (2020)
24. Pang, G., Lu, L., Karniadakis, G.: fPINNs: fractional physics-informed neural networks. SIAM J. Sci.

Comput. 41, A2603–A2626 (2019)
25. Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows

for probabilistic modeling and inference. J. Mach. Learn. Res. 22, 1–64 (2021)
26. Qin, T., Chen, Z., Jakeman, J.D., Xiu, D.: Deep learning of parameterized equations with applications to

uncertainty quantification. Int. J. Uncertain. Quantif. 11(2) (2021)
27. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning frame-

work for solving forward and inverse problems involving nonlinear partial differential equations. J.
Comput. Phys. 378, 686–707 (2019)

28. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields
from flow visualizations. Science 367(6481), 1026–1030 (2020)

29. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference
on Machine Learning, pp. 1530–1538. PMLR (2015)

30. Sheng, H., Yang, C.: PFNN: A penalty-free neural network method for solving a class of second-order
boundary-value problems on complex geometries. J. Comput. Phys. 428, 110085 (2021)

31. Sheng, H., Yang, C.: PFNN-2: A domain decomposed penalty-free neural network method for solving
partial differential equations. arXiv preprint arXiv:2205.00593 (2022)

32. Shlesinger, M., Zaslavsky, G., Frisch, U.: Lévy Flights and Related Topics in Physics. Lecture Notes in
Physics, Springer, Berlin (1995)

33. Sirignano, J., Spiliopoulos, K.: DGM: A deep learning algorithm for solving partial differential equations.
J. Comput. Phys. 375, 1339–1364 (2018)

34. Sukumar, N., Srivastava, A.: Exact imposition of boundary conditions with distance functions in physics-
informed deep neural networks. Comput. Methods Appl. Mech. Eng. 389, 114333 (2022)

35. Tang, K., Wan, X., Liao, Q.: Deep density estimation via invertible block-triangular mapping. Theor.
Appl. Mech. Lett. 10(3), 143–148 (2020)

36. Tang, K., Wan, X., Liao, Q.: Adaptive deep density approximation for Fokker–Planck equations. J. Com-
put. Phys. 457, 111080 (2022)

37. Tang, K.,Wan, X., Yang, C.: DAS-PINNs: a deep adaptive samplingmethod for solving high-dimensional
partial differential equations. J. Comput. Phys. 476, 111868 (2023)

38. Terrell, G.R., Scott, D.W.: Variable kernel density estimation. Ann. Stat. 1236–1265 (1992)
39. Weinan, E., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving varia-

tional problems. Commun. Math. Stat. 6(1), 1–12 (2018)
40. Xu, Y., Zan, W., Jia, W., Kurths, J.: Path integral solutions of the governing equation of SDEs excited by

Lévy white noise. J. Comput. Phys. 394, 41–55 (2019)
41. Yang, L.,Meng,X., Karniadakis, G.E.: B-PINNs: Bayesian physics-informed neural networks for forward

and inverse PDE problems with noisy data. J. Comput. Phys. 425, 109913 (2021)
42. Yang, L., Zhang, D., Karniadakis, G.E.: Physics-informed generative adversarial networks for stochastic

differential equations. SIAM J. Sci. Comput. 42(1), A292–A317 (2020)
43. Yang, Y., Perdikaris, P.: Adversarial uncertainty quantification in physics-informed neural networks. J.

Comput. Phys. 394, 136–152 (2019)

123

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1807.03039
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2205.00593

Journal of Scientific Computing (2023) 97:68 Page 31 of 31 68

44. Zan, W., Xu, Y., Kurths, J., Chechkin, A., Metzler, R.: Stochastic dynamics driven by combined Lévy-
Gaussian noise: fractional Fokker–Planck–Kolmogorov equation and solution. J. Phys. A Math. Theor.
53 (2020)

45. Zang, Y., Bao, G., Ye, X., Zhou, H.: Weak adversarial networks for high-dimensional partial differential
equations. J. Comput. Phys. 411, 109409 (2020)

46. Zhang, H., Jiang, X., Yang, X.: A time-space spectral method for the time-space fractional Fokker–Planck
equation and its inverse problem. Appl. Math. and Comput. 320, 302–318 (2018)

47. Zhang, H., Xu, Y., Li, Y., Kurths, J.: Statistical solution to SDEs with α-stable Lévy noise via deep neural
network. Int. J. Dyn. Control 8(4), 1129–1140 (2020)

48. Zhang, L., Han, J., Wang, H., Car, R., Weinan, E.: Deep potential molecular dynamics: a scalable model
with the accuracy of quantum mechanics. Phys. Rev. Lett. 120(14), 143001 (2018)

49. Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep learning for high-
dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys.
394, 56–81 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Adaptive Deep Density Approximation for Fractional Fokker–Planck Equations
	Abstract
	1 Introduction
	2 Problem Setup
	2.1 Fractional Fokker–Planck Equations

	3 Stationary Fractional FPE
	3.1 A Bird's-Eye View of Proposed Approaches
	3.1.1 MCNF
	3.1.2 GRBFNF

	3.2 The Density Model pKRnet, θ
	3.2.1 Actnorm Layer: Scale and Bias Layer
	3.2.2 Affine Coupling Layer

	3.3 Stochastic Approximation of the Fractional Operator
	3.4 The Auxiliary Density Model pGRBF,tildeθ
	3.5 An Adaptive Strategy for the Training Process
	3.5.1 Where Do We Need Adaptivity
	3.5.2 Adaptivity of MCNF
	3.5.3 Adaptivity of GRBFNF

	4 Time-Dependent Fractional FPEs
	4.1 Time-Dependent Density Model
	4.2 Adaptive Procedure of MCTNF

	5 Numerical Experiments
	5.1 FPE with Only Fractional Laplacian
	5.2 Bimodal Distribution
	5.3 High Dimensional Fractional Fokker–Planck Equations
	5.4 Time-Dependent Fractional FPE: Cauchy Distribution

	6 Conclusions
	Acknowledgements
	References

