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In this paper we present a Multi-Element generalized Polynomial Chaos (ME-
gPC) method to deal with stochastic inputs with arbitrary probability measures.
Based on the decomposition of the random space of the stochastic inputs, we
construct numerically a set of orthogonal polynomials with respect to a con-
ditional probability density function (PDF) in each element and subsequently
implement generalized Polynomial Chaos (gPC) locally. Numerical examples
show that ME-gPC exhibits both p- and h-convergence for arbitrary probabil-
ity measures.
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1. INTRODUCTION

Due to the rapid developments in algorithm and computational capabil-
ity, accurate uncertainty modeling by non-statistical approach has received
great attention in recent years. An effective approach based on the the
homogeneous chaos theory of Wiener [1] is polynomial chaos, which has
been successfully used in mechanics [2, 3]. The original form of poly-
nomial chaos is a spectral expansion based on the Hermite orthogonal
polynomials in terms of Gaussian random variables. This approach was
extended into a broader framework, called “generalized Polynomial Chaos
(gPC)”, in [4], which employs a broad family of classical orthogonal poly-
nomials (the Askey scheme) as the expansion basis to represent non-
Gaussian process more efficiently. Within the framework of Wiener-chaos,
a Wiener–Haar method based on wavelets was recently studied in [5, 6].
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Based on the finite element framework, polynomial chaos was studied the-
oretically in [7]; in particular, this work focused on the h-type discretiza-
tion with h being the size of elements in random space. More theoretical
developments along the same lines are reported in [8–10], where the sto-
chastic finite element (SFE) is proposed.

Despite the success on some applications, polynomial chaos expan-
sions can be inefficient or convergence may even fail for problems requir-
ing long-term integration or problems involving discontinuities induced
by random inputs [5, 11], since increasing the order of polynomial chaos
can give rise to a undesirable complicated system of differential equations
or does not help at all. The SFE method reduces the stochastic prob-
lem to a high-dimensional deterministic one, and subsequently employs
deterministic finite element solvers, which rely on h-type discretization
for enhanced robustness as well as high accuracy. In [11], a ME-gPC
method for uniform distribution was presented, which can achieve hp-con-
vergence with p being the polynomial order of gPC. The ME-gPC method
is based on a decomposition of the random space of stochastic inputs, and
maintains an orthogonal polynomial basis in each random element. For
uniform random variables, such orthogonality can be inherited naturally
due to the nice properties of uniform distribution. However, for an arbi-
trary probability measure, the orthogonality will be ruined by the random
decomposition. In this paper, we generalize the ME-gPC method for an
arbitrary probability measure, where the orthogonality of the polynomials
in each random element can be maintained by a fast numerical reconstruc-
tion. The result is a new ME-gPC method that can achieve hp-conver-
gence efficiently for any probability measure.

2. ME-gPC METHOD

In this section we present the multi-element generalized polynomial
chaos (ME-gPC) method for random variables with arbitrary probability
measures.

Let (Ω,F, P ) be a probability space and

X : (Ω,F)→ (Rd ,Bd) (2.1)

be a R
d -valued continuous random variable. Let f (x) be the PDF of X

defined on B =×d
i=1[ai, bi ], where ai and bi are finite or infinite in R. We

define a decomposition D of B in the following way

D=
⎧
⎨

⎩

Bk = [ak,1, bk,1)× [ak,2, bk,2)×· · ·× [ak,d , bk,d ],
B =⋃N

k=1 Bk,

Bk1

⋂
Bk2 =∅, if k1 �=k2,

(2.2)
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where k, k1, k2 =1,2, . . . ,N . Based on the decomposition D, we define the
following indicator random variables

IBk
=

{
1 if X ∈Bk,
0 otherwise. (2.3)

It is obvious that

Pr(IBk
=1)=

∫

Bk

f (x)dx. (2.4)

Given any point q = (q1, q2, . . . , qd), we use X � q to denote xi � qi for
i =1,2, . . . , d. According to the properties of probability measure, we can
obtain

Pr(X �q)=
N∑

k=1

Pr(X �q|IBk
=1)Pr(IBk

=1). (2.5)

Eq. (2.5) implies that we can define a new random variable Xk subject to
a conditional PDF

f̂k(xk|IBk
=1)= f (xk)

Pr(IBk
=1)

(2.6)

in each random element Bk. Instead of considering X in the whole ran-
dom space, we first approximate the random field locally within each ran-
dom element Bk by gPC with respect to Xk, then reconstruct the original
random field. Once we get the localized random field, we can compute any
statistics in the following way

∫

B

g (u(x)) f (x)dx ≈
N∑

k=1

Pr(IBk
=1)

∫

Bk

g
(
ûk(xk)

)
f̂ (xk|IBk

=1)dxk,

(2.7)

where g(·)∈L1(Ω,F, P ) is any function of random field u(X), and ûk(Xk)

denotes the approximated local random field in element Bk by gPC.
Let ue(Xk) denote the exact form of local random field determined

by a stochastic differential equation. We know that u(X) in element Bk

should have the same form with ue(Xk) because X and Xk have the same
range ×d

i=1[ak,i , bk,i) in element Bk and their forms only depend on a par-
ticular stochastic differential euqation. We know that ûk(Xk) in polyno-
mial chaos expansion converges to ue(Xk) in the L2 sense with respect to
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f̂k(xk|IBk
= 1) [12, 4, 9]. Since f̂k(xk|IBk

= 1) is the same with the density
function f (x) except a constant factor, we can obtain that

N∑

k=1

Pr(IBk
=1)

∫

Bk

g
(
ûk(xk)

)
f̂ (xk|IBk

=1)dxk

=
N∑

k=1

∫

Bk

g
(
ûk(xk)

)
f (xk)dxk

→
N∑

k=1

∫

Bk

g (ue(xk)) f (xk)dx =
∫

B

g (u(x)) f (x)dx, (2.8)

where the arrow indicates a L2 convergence on (Ω,F, P ).
To this end, we give a procedure of random decomposition. Based on

such a random decomposition, we have the following choices to solve the
stochastic differential equations:

1. The basis of finite element method can be introduced, which
yields a variation of the stochastic finite element (SFE) method
[7–9].

2. Based on the conditional PDF in each element, we can con-
struct a new set of orthogonal polynomials in terms of Xk and
implement a truly generalized polynomial chaos (gPC) [2, 4, 10]
element by element.

In this work, we focus on the second choice. It is a distinctive fea-
ture of orthogonal polynomials, compared to other orthogonal systems,
that they satisfy a three-term recurrence relation,

πk,i+1(t)= (t −αk,i)πk,i(t)−βk,iπk,i−1(t), i =0,1, . . . ,

πk,0(t)=1, πk,−1(t)=0, (2.9)

where coefficients αk,i and βk,i are uniquely determined by the weight
function, and {πk,i(t)} is a set of (monic) orthogonal polynomials in ele-
ment k,

πk,i(t)= t i + lower-degree terms, i =0,1, . . . (2.10)

Given a weight function we can first compute the recurrence coefficients
αk,i and βk,i numerically, then determine the Gauss-type quadrature points
and corresponding integration weights based on αk,i and βk,i . In this
work, we use the Stieltjes procedure and the Lanczos algorithm [13, 14]
to compute the recurrence coefficients αk,i and βk,i . For efficiency, we pre-
fer to use relative low-order polynomials, e.g. p = 3 to 5, in the ME-gPC
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method, which means that we can construct the new orthogonal polyno-
mials on-the-fly in the pre-processing stage. For example, the Beta dis-
tribution Be(1,2) on [−1,1] can be decomposed into 1000 equidistant
random elements in about 0.1 seconds on an AMD 1.5GHz CPU, where
orthogonal polynomials of up to fifth order are constructed numerically
in each element with the error of recurrence coefficients being O(10−13).
Another choice is to make some standard meshes for commonly used ran-
dom variables and organize the data into a table for future use. If the
orthogonal chaos basis is available, we can implement gPC locally. For
deterministic differential equations we have to guarantee the continuity
(e.g., C0 for ∇2 operators) on the interface between two adjacent elements
in physical space. However, we do not have to worry about this for the
stochastic case, because the probability measure of the points on the inter-
face where C0-type continuity in random space may not be satisfied is zero
and the influence of such points on the interior values can be captured by
the localized gPC. Furthermore, most statistics we are interested in, such
as mean and variance, are defined as Lebesgue integrations, which implies
that countable sets of zero measure have no contribution to the integra-
tion. This feature makes ME-gPC amenable to high-degree of paralleliza-
tion and adaptivity.

3. NUMERICAL EXAMPLES

In this section we present some numerical examples of ME-gPC
method including an algebraic equation and a typical ODE.

3.1. A Simple Stochastic Algebraic Equation

We reconsider the following stochastic algebraic equation given in [7]

â(ω)u(ω)=1, (3.1)

where â is a positive random variable in [a, b] with an arbitrary prob-
ability measure. The reason we study this model is that it has many of
the same essential properties as the following stochastic partial differential
equation of elliptic type [7, 8]

∇ · (â(ω)∇u(x;ω))=h(x). (3.2)

Let â be a general Beta random variable with PDF

f (x)= (b−x)α(x −a)β

(b−a)α+β+1B̂(α +1, β +1)
, a �x �b, (3.3)



460 Wan and Karniadakis

where B̂(q1, q2)=Γ(q1)Γ(q2)/Γ(q1 +q2) is the beta function.
Here we set a = 2, b = 3, α = 0 and β = 1. To employ the standard

Jacobi-chaos defined in [−1,1] for â, we first apply the following linear
transform

â = 1
2
ξ + 5

2
. (3.4)

Then we use Jacobi-chaos in terms of ξ to solve Eq. (3.1). As for the
ME-gPC, we construct numerically the orthogonal polynomial bases for
elements [ai, bi ] of the decomposition of [a, b] with respect to the corre-
sponding conditional PDFs

f̂i (xi)= 2(xi −2)

(bi −ai)(ai +bi −4)
. (3.5)

In Fig. 1, we compare ME-gPC with the Jacobi-chaos. It is well
known that gPC relies on a three-dimensional table 〈ΦiΦjΦk〉 for Galer-
kin projection, where Φi is a basis mode of gPC and 〈·〉 denotes the
ensemble average. Here we set the integration error of table 〈ΦiΦjΦk〉 to
be 10−14. It can be seen that the two error curves are perfectly matched
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Fig. 1. Comparison of gPC and ME-gPC with one element.
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when p is less than 6. When the error is close to 10−14, the error curve
of original gPC becomes flat while the error curve of ME-gPC has some
fluctuation because the actual errors of the recurrence coefficients αi and
βi in Eq. (2.9) are a little bigger than 10−14. In Fig. 2, we show the
p-convergence on the left and h-convergence on the right. For the
h-convergence the index of algebraic convergence is about 2(p+1), which
is consistent with the estimate given in [7]. In Fig. 3 the third- and fourth-
order orthogonal polynomials and the corresponding (unscaled) PDFs of
a two-element decomposition are shown. It can be seen that the polyno-
mials with same order in different elements are slightly different.
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Fig. 2. Convergence of ME-gPC for the stochastic algebraic equation. Normalized errors
of variance using uniform meshes. Left: p-convergence with N being number of elements;
Right: h-convergence with p being polynomial order.
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3.2. One-Dimensional ODE Model

Next we consider the following ODE equation studied with the orig-
inal gPC in [4]

du

dt
=−σκ(ω)u, u(0;ω)=u0, (3.6)

where σ and u0 are constant and κ(ω) is a random variable of Beta
distribution or Gaussian distribution. For the Beta distribution, the ran-
dom variable is defined on [−1,1]. For the Gaussian distribution, we only
use the middle element [−6,6] and drop the tail elements since the con-
tribution of the tail elements is neglectable in probability (Pr(I[6,∞] =1)=
9.87×10−10).

In Fig. 4 we show the p-convergence of ME-gPC for different ran-
dom inputs. Comparing to the original gPC, the accuracy is significantly
improved by increasing the number of random elements without losing the
exponential convergence. In Fig. 5 we study the index of algebraic con-
vergence (h-convergence). The slope of straight solid lines is −2p −2. We
can see that the index of algebraic convergence of ME-gPC goes asymp-
totically to 2(p + 1) as estimated. We show the third- and fourth-order
orthogonal polynomials and the corresponding (unscaled) PDFs of a two-
element random decomposition in Fig. 6 for a Beta distribution Be(1,2).

4. SUMMARY

A multi-element generalized polynomial chaos (ME-gPC) method
based on polynomial functionals is developed. Unlike any previous work,
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Fig. 6. A two-element decomposition for a Beta random variable on [−1,1] with α =1 and
β = 2. Left: (unscaled) PDFs; Right: Third- and fourth-order orthogonal polynomials based
on Gauss quadrature points.

here we construct these polynomials on-the-fly based on the correspon-
dence established in previous work between probability measures and
orthogonality weights in the polynomial basis, [4, 15]. The ME-gPC
method can achieve hp-convergence for any probability measure. In this
first paper, we demonstrate the high accuracy and efficiency of the method
using a simple algebraic equation and an ODE model, both of which have
been used in previous work [7, 4]. Compared to the Monte Carlo method,
the speedup of ME-gPC can be estimated from the hp-convergence [9, 7,
4] because the local orthogonality can be maintained on-the-fly. For exam-
ple, the h-type error O(N−2(p+1)) of ME-gPC is much smaller than the
error O(N−1/2) of the Monte Carlo method. The current work provides
the fundamental ideas for interfacing numerical simulation and experimen-
tal inputs with uncertainty, and thus the construction of new effective data
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assimilation techniques. It also provides the necessary approximation pro-
cedures for adaptive domain decomposition techniques in random space.
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