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ARTICLE INFO ABSTRACT

Keywords: The committor function is central to investigating rare but critical events in molecular simulations.

Committor function However, computing the committor function suffers from the curse of dimensionality. Recently,

Eeep adaptive sampling using neural networks to estimate the committor function has gained attention due to its po-
are event

tential for high-dimensional problems. Training neural networks to approximate the committor
function requires sampling transition data from straightforward simulations of rare events, which
is highly inefficient. The scarcity of transition data poses a significant challenge for accurately
approximating the committor function. To address this issue, we propose an efficient framework
to generate data points in the transition state region, facilitating the effective training of neu-
ral networks to approximate the committor function. We introduce a Deep Adaptive Sampling
method for TRansition paths (DASTR), where deep generative models are employed to generate
samples that effectively capture the transition information. Specifically, we treat a non-negative
function in the integrand of the loss functional as an unnormalized probability density function
and approximate it using a deep generative model. The resulting samples from the deep genera-
tive model are concentrated in the transition state region, with fewer samples in other regions.
This distribution provides effective samples for approximating the committor function, signifi-
cantly improving accuracy. We demonstrate the effectiveness of the proposed method through
both simulations and realistic examples.

Transition path

1. Introduction

Understanding transition events between metastates in a stochastic system plays a central role in chemical reactions and statistical
physics [1-4]. The physical process can be formulated as the following stochastic differential equation (SDE)

dX, = =VV(X,)dt + \2p-1dW,, (1)

where X, € Q c R? is the state of the system at time ¢, V : Q — R denotes a potential function, f the inverse temperature, and W, the
standared d-dimensional Wiener process. For two disjoint subsets of this stochastic system, we are interested in the transition rate,
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\begin {equation}\label {eq_committor_sde} d \mb {X}_t = -\nabla {V(\mb {X}_t)}dt + \sqrt {2 \beta ^{-1}} d\mb {W}_t,\end {equation}


$\mb {X}_t \in \Omega \subset \xs {R}^d$


$t$


$V: \Omega \mapsto \xs {R}$


$\beta $


$\mb {W}_t$


$d$


$A, B \subset \Omega $


$A \cap B = \emptyset $


$\tau _{\omega }$


$\omega \subset \Omega $


$q: \Omega \mapsto [0,1]$


$q(\mb {x}) = \xs {P} \left ( \tau _{B} < \tau _{A} |\mb {X}_0 = \mb {x}\right )$


$\xs {P}$


$\mb {x} \in \Omega $


$B$


$A$


$q(\mb {x}) = 0$


$\mb {x} \in A$


$q(\mb {x}) = 1$


$\mb {x} \in B$


\begin {equation}\label {eq_committor_pde} \begin {aligned} -\beta ^{-1} \Delta q(\mb {x}) + \nabla V(\mb {x}) \cdot \nabla q(\mb {x}) &= 0, \quad \mb {x} \in \Omega \backslash (A \cup B), \\ q(\mb {x}) &= 0, \quad \mb {x} \in A, \\ q(\mb {x}) &=1 , \quad \mb {x} \in B, \\ \nabla q(\mb {x}) \cdot \mb {n} &= 0, \quad \mb {x} \in \partial \Omega \backslash (A \cup B), \end {aligned}\end {equation}


$\mb {n}$


$\partial \Omega \backslash (A \cup B)$


$q(\mb {x})$


$q$


$d$


$q_{\mb {\theta }}(\mb {x})$


$\mb {\theta }$


$\mb {x}$


\begin {equation}\label {eq_committor_var} \begin {aligned} & \ \min _{\mb {\theta }} \int _{\Omega \backslash (A \cup B)} \vert \nabla q_{\mb {\theta }}(\mb {x}) \vert ^2 e^{-\beta V(\mb {x})} d\mb {x}, \\ & \text {s.t.} \ q_{\mb {\theta }}(\mb {x}) = 0, \mb {x} \in A; q_{\mb {\theta }}(\mb {x}) = 1, \mb {x} \in B. \end {aligned}\end {equation}


\begin {equation}\label {eq_committor_uncons} \min _{\mb {\theta }} \int _{\Omega \backslash (A \cup B)} \vert \nabla q_{\mb {\theta }}(\mb {x}) \vert ^2 e^{-\beta V(\mb {x})} d\mb {x} + \lambda \bigg (\int _A q_{\mb {\theta }}(\mb {x})^2 p_A(\mb {x}) d\mb {x} + \int _B (1-q_{\mb {\theta }}(\mb {x}))^2p_B(\mb {x})d\mb {x}\bigg ),\end {equation}


$\lambda > 0$


$p_A$


$p_B$


$A$


$B$


$e^{-\beta V(\mb {x})}/Z$


$Z = \int _{\Omega \backslash (A \cup B)} e^{-\beta V(\mb {x})} d\mb {x}$


$A$


$B$


$q_{\mb {\theta }}$


$\mathsf {S} = \{\mb {x}_{i} \}_{i=1}^N$


$\mb {x}_{i} \in \Omega \backslash (A \cup B)$


$p$


$\mathsf {S}_A = \{\mb {x}_{A, i} \}_{i=1}^{N_A}$


$\mathsf {S}_B = \{\mb {x}_{B, i} \}_{i=1}^{N_B}$


$\mb {x}_{A,i}$


$\mb {x}_{B,i}$


$p_{A}$


$p_{B}$


\begin {equation}\label {eq_vardiscrete} \min _{\mb {\theta }} \frac {1}{N} \sum \limits _{i=1}^N \vert \nabla q_{\mb {\theta }}(\mb {x}_{i}) \vert ^2 \frac {e^{-\beta V(\mb {x}_i)}}{p(\mb {x}_i)} + \lambda \left (\frac 1{N_A}\sum _{i=1}^{N_A}q_{\mb {\theta }}(\mb {x}_{A,i})^2 + \frac 1{N_B}\sum _{i=1}^{N_B}(q_{\mb {\theta }}(\mb {x}_{B,i})-1)^2\right ).\end {equation}


$\mathsf {S}$


$q_{\mb {\theta }}$


$\mathsf {S}$


$\mathsf {S}_A$


$\mathsf {S}_B$


$k$


$q_{\mb {\theta }_k}$


$\mathsf {S}_k$


$q_{\mb {\theta }_k}$


$V$


$\mathsf {S}_{k}$


$\mathsf {S}_{k}$


$\mathsf {S}_{k+1}$


$q_{\mb {\theta }}$


$|\nabla _{\mb {x}} q|^2$


$V_{\text {bias}}$


$V$


$p_{V, q}$


$V$


$q_{\mb {\theta }}$


$p_{V, q}$


\begin {equation}\label {eq_committor_pdf1} p_{V, q}(\mb {x}) = \frac {\vert \nabla q_{\mb {\theta }}(\mb {x}) \vert ^2 e^{-\beta V(\mb {x})}}{C_1},\end {equation}


$C_1$


$V_{\text {bias}}$


\begin {equation}\label {eq_committor_pdf2} p_{V, q}(\mb {x}) = \frac {\vert \nabla _{\mb {x}} q_{\mb {\theta }}(\mb {x}) \vert ^2 e^{-\beta (V(\mb {x}) + V_{\text {bias}}(\mb {x}))}}{C_2},\end {equation}


$C_2$


$p_{\mathsf {KRnet}}(\mb {x};\Theta _f)$


$\Theta _f$


$p_{\mathsf {KRnet}}$


$f_{\mathsf {KRnet}}$


$\Theta _f$


\begin {equation*}\label {eq_krpdf} p_{\mathsf {KRnet}}(\mb {x};\Theta _f)=p_{\mb {Z}}(f_{\mathsf {KRnet}}(\mb {x})) \left |\det \nabla _{\mb {x}} f_{\mathsf {KRnet}} \right |,\end {equation*}


$p_{\mb {Z}}$


\begin {equation*}\mb {z} = f_{\mathsf {KRnet}}(\mb {x}) = L_{N} \circ f_{[K-1]}^{\textsf {outer}} \circ \cdots \circ f_{[1]}^{\textsf {outer}} (\mb {x}),\end {equation*}


$f_{[i]}^{\textsf {outer}}$


\begin {equation*}f_{[k]}^{\textsf {outer}} = L_S \circ f_{[k, L]}^{\textsf {inner}} \circ \cdots \circ f_{[k,1]}^{\textsf {inner}} \circ L_R.\end {equation*}


$f_{[k,i]}^{\textsf {inner}}$


$L$


$L_N$


$L_S$


$L_R$


$p_{V, q}$


\begin {equation*}\label {eqn:KL_opt} \Theta _f^*=\arg \min _{\Theta _f} D_{\mathsf {KL}}(p_{V, q}(\mb {x}) \| p_{\mathsf {KRnet}}(\bx ;\Theta _f)),\end {equation*}


$D_{\mathsf {KL}}(\cdot \|\cdot )$


$p_{V, q}$


$p_{\mathsf {KRnet}}$


\begin {equation*}H(p_{V, q}, p_{\mathsf {KRnet}})=- \int _{\Omega \backslash (A \cup B)}p_{V, q}(\mb {x}) \log p_{\mathsf {KRnet}}(\bx ;\Theta _f) d\mb {x}.\end {equation*}


$\Theta _f$


$p_{V, q}$


\begin {equation}\label {eqn:ce_approx} H(p_{V, q}, p_{\mathsf {KRnet}}) \approx -\frac {1}{N}\sum _{i=1}^{N} \frac {p_{V, q}(\mb {x}_i)}{p_{\mathsf {IS}}(\mb {x}_i)}\log p_{\mathsf {KRnet}}(\mb {x}_i;\Theta _f),\end {equation}


$p_{\mathsf {IS}}(\mb {x}_i)$


$\{\mb {x}_i\}_{i=1}^{N}$


$p_{\mathsf {IS}}(\mb {x}_i)$


$p_{\mathsf {IS}}(\mb {x}_i)$


$\Theta _f^{\prime }$


\begin {equation}\label {eqn:z_to_x} \mb {x}_i = f^{-1}_{\mathsf {KRnet}}(\mb {z}_i),\end {equation}


$\mb {z}_i$


$\Theta _f^*$


$\mathsf {S}_{0} = \{\mb {x}_{0,i} \}_{i=1}^{N_0}$


$p_{0}(\mb {x})$


$\Omega \backslash (A \cup B)$


$\mathsf {S}_{0}$


$q_{\mb {\theta }_1}$


$q_{\mb {\theta }_1}$


$p_1 = p_{\mathsf {KRnet}}(\bx ;\Theta _f^{*, (1)})$


$\mathsf {S}^g_{1} = \{\mb {x}_{1,i} \}_{i=1}^{n_1}$


$n_1 \leq N_0$


$f^{-1}_{\mathsf {KRnet}}(\mb {z}_i;\Theta _f^{*,(1)})$


$n_1$


$\mathsf {S}_0$


$\mathsf {S}^g_1$


$\mathsf {S}_1$


$q_{\mb {\theta }_1}$


$\mathsf {S}_{1}$


$q_{\mb {\theta }_0}$


$N_{\rm adaptive}$


$N_e, N_e^{\prime }$


$m, m^{\prime }$


$\mathsf {S}_{0} = \{\mb {x}_{0,i} \}_{i=1}^{N_0}$


$k = 0:N_{\rm adaptive}-1$


$i = 1:N_e$


$l$


$m$


$\mathsf {S}_{k}$


$q_{\mb {\theta }}(\mb {x})$


\begin {equation}\label {eqn_update_theta} \mb {\theta }_{k+1}= \arg \min _{\mb {\theta }} \sum \limits _{j=0}^k \frac {1}{n_j} \sum \limits _{i=1}^{n_j} \alpha _j \vert \nabla q_{\mb {\theta }}(\mb {x}_{j,i}) \vert ^2 \frac {e^{-\beta V(\mb {x}_{j,i})}}{p_{j}(\mb {x}_{j,i})},\end {equation}


$i = 1:N_e^{\prime }$


$l$


$m^{\prime }$


$p_{\mathsf {KRnet}}(\bx ;\Theta _f)$


$H(p_{V,q},p_{\mathsf {KRnet}})$


$p_{k+1}$


$\mathsf {S}_{k+1}$


$q_{\mb {\theta }}$


$k$


$n_j$


$\mathsf {S}^g_{j} = \{\mb {x}_{j,i} \}_{i=1}^{n_j}$


$p_j$


$j = 1, \ldots , k$


$p_j$


$j$


$p_{j-1} = p_{\mathsf {KRnet}}(\mb {x}_i;\Theta _f^{\prime })$


$\mathsf {S}_k$


$k$


$\mb {x}_{j,i}$


$\mathsf {S}_{k}$


$q_{\mb {\theta }_{k+1}}$


$q_{\mb {\theta }}$


$q_{\mb {\theta }_{k}}$


$\alpha _j = n_j/\sum _{j=0}^{k}{n_j}$


$p_j$


$n_0$


$\mathsf {S}_0$


$k$


$p_{k} = p_{\mathsf {KRnet}}(\bx ;\Theta _f^{*,(k)})$


$p_{\mathsf {KRnet}}(\bx ;\Theta _f)$


$p_{k+1}$


$\mathsf {S}^g_{k+1} = \{\mb {x}_{k+1, i} \}_{i=1}^{n_{k+1}}$


$\mathsf {S}^g_{k+1}$


$\mathsf {S}_{k+1}$


$q_{\mb {\theta }}$


$p_{V,q}$


$p_{V,q}$


$\mb {s}(\mb {x}) = [s_1(\mb {x}), \ldots , s_m(\mb {x})]^\top $


$m \ll d$


$d$


$\mb {x}$


\begin {equation}\label {eq_pvq_cv} p_{V,q}(\mb {s}(\mb {x})) = p_{V, q}(\mb {x}),\end {equation}


$p_{V, q}(\mb {x})$


$\mb {s}(\mb {x})$


$\mb {x}$


$\mb {x}$


$q_{\mb {\theta }_0}$


$N_{\rm adaptive}$


$N_e, N_e^{\prime }$


$m, m^{\prime }$


$\mathsf {S}_{0} = \{\mb {x}_{0,i} \}_{i=1}^{N_0}$


$\mathsf {S}_0$


$k = 0:N_{\rm adaptive}-1$


$i = 1:N_e$


$l$


$m$


$\mathsf {S}_{k}$


$q_{\mb {\theta }}(\mb {x})$


$i = 1:N_e^{\prime }$


$l$


$m^{\prime }$


$p_{\mathsf {KRnet}}(\mb {s}(\bx );\Theta _f)$


$H(p_{V,q},p_{\mathsf {KRnet}})$


\begin {equation}\label {eqn:ce_approx_cv_auto} H(p_{V, q}, p_{\mathsf {KRnet}}) \approx -\frac {1}{N}\sum _{i=1}^{N} \frac {p_{V, q}(\mb {s}(\mb {x}_i))}{p_{\mathsf {KRnet}}(\mb {s}(\mb {x}_i);\Theta _f^{\prime })}\log p_{\mathsf {KRnet}}(\mb {s}(\mb {x}_i);\Theta _f),\end {equation}


$p_{\mathsf {KRnet}}(\mb {s}(\bx );\Theta _f)$


$H(p_{V,q},p_{\mathsf {KRnet}})$


\begin {equation}\label {eqn:ce_approx_cv_us} H(p_{V, q}, p_{\mathsf {KRnet}}) \approx -\frac {1}{N}\sum _{i=1}^{N} \frac {p_{V, q}(\mb {s}(\mb {x}_i))}{p_{\mathsf {IS}}(\mb {s}(\mb {x}_i))}\log p_{\mathsf {KRnet}}(\mb {s}(\mb {x}_i);\Theta _f),\end {equation}


$\mb {x}$


$\mathsf {S}_{k+1}$


$q_{\mb {\theta }}$


$\mb {s}$


$\mb {s}$


$p_{\mathsf {IS}}(\mb {s}(\mb {x}_i)) = e^{-\beta V_{\text {modified}}(\mb {x}_i)}$


$\mb {x}_i$


$\mb {x}$


$\mb {s}$


$\mb {x}$


$\mb {s}(\mb {x})\approx \mb {s}$


$V_{\text {modified}}$


\begin {equation*}V_{\text {modified}}(\mb {x}) = V(\mb {x}) + V_{\text {US}}(\mb {x}),\end {equation*}


$V$


$V_{\text {US}}(\mb {x})$


\begin {equation}\label {Umbrella_potential} V_{\text {US}}(\mb {x}) = \frac {1}{2} \sum _{i=1}^{m} k_{\text {us}} (s_{i}(\mb {x}) - s_{i}(\mb {x}_0))^2.\end {equation}


$s_{i}(\mb {x}_0)$


$s_{i}(\mb {x})$


$\mb {x}$


$m$


$k_{\text {us}}$


$\mathsf {S}_0$


$\mathsf {encoder} = \mb {s}(\mb {x})$


$\mathsf {decoder} = \mb {S}(\mb {s}(\mb {x}))$


\begin {equation*}\frac {1}{N} \sum \limits _{i=1}^N (\mb {S}(\mb {s}(\mb {x}_i)) - \mb {x}_i)^2.\end {equation*}


$\Theta _f^{\prime }$


$\mb {s}$


$97\,\%$


$\mb {z}_0$


$d = 66$


$V(\mb {x}) = V_{\mathrm {rm}}(x_1, x_2) + 1/(2 \sigma ^2) \sum _{i=3}^{10} x_i^2$


$\mb {x} \in \mathbb {R}^{10}$


$V_{\mathrm {rm}}(x_1, x_2)$


$[-1.5, 1] \times [-0.5, 2]$


\begin {equation*}V_{\mathrm {rm}}(x_1, x_2) = \sum \limits _{i=1}^4 D_i e^{a_i(x_1 - \xi _i)^2 + b_i(x_1 - \xi _i)(x_2 - \eta _i) + c_i(x_2 - \eta _i)^2} + \gamma \mathrm {sin}(2k\pi x_1) \mathrm {sin}(2k \pi x_2).\end {equation*}


$\sigma = 0.05$


$\beta = 1/10$


$A$


$B$


$[x_1, x_2] = [-0.558, 1.441]$


$[x_1, x_2] = [0.623, 0.028]$


$0.1$


$q(\mb {x}) = q_{\mathrm {rm}}(\mb {x})$


$L^{2}$


$\norm { \mb {q}_{\mb {\theta }} - \mb {q}_{\rm {ref}}}{2}/\norm {\mb {q}_{\rm {ref}}}{2}$


$\mb {q}_{\mb {\theta }}$


$\mb {q}$


$q_{\mb {\theta }}$


$q_{\rm {ref}}$


$x_1$


$x_2$


$x_3, \ldots , x_{10}$


$1/2$


$q \approx 1/2$


$x_1\,-\,x_2$


$x_1\,-\,x_2$


$A$


$B$


$x_1$


$x_2$


$S_1(x) = x_1$


$S_2(x) = x_2$


\begin {equation}\label {Guassian_potential} V_{G,t}(\mb {x}) = \sum _{t^{\prime }=0, \tau , 2\tau , \ldots }^{t^{\prime } < t} w \exp \left ( -\sum _{i=1}^{m} \frac {(s_i(\mb {x}) - s_i(\mb {x}_{t'}))^2}{2\sigma _i^2} \right ),\end {equation}


$w = 5$


$\sigma _1 = \sigma _2 = 0.05$


$\Delta t = 10^{-5}$


$k = 2, 15, 30$


$5000$


$\Omega \backslash (A \cup B)$


$10$


$q_{\rm {ref}}$


$4 \times 10^5$


$4 \times 10^5$


$10$


$10$


$4$


$\pm $


$L^{2}$


$12099$


$1/2$


$q(\mb {x}) \approx 0.5$


$10^{-4}$


$\mathsf {S}_A$


$\mathsf {S}_B$


$\Omega \backslash {A \cup B}$


$(\mb {X}_t)_{t \geq 0} \in \mathbb {R}^d$


$\mb {x} \in \mathbb {R}^d$


$\mb {X}_t = \mb {x} + \mb {W}_t$


$\nabla {V(\mb {X}_t)} = 0$


$\beta = 1/2$


$A$


$B$


$A = \{ \mb {x} \in \mathbb {R}^d : \norm {\mb {x}}{2} < a \}, B = \{ \mb {x} \in \mathbb {R}^d : \norm {\mb {x}}{2} > b \}$


$b > a > 0$


$d \geq 3$


$q(\mb {x}) = (a^2 - \norm {\mb {x}}{2}^{2-d} a^2)/(a^2 - b^{2-d} a^2)$


$d = 20$


$a = 1, b = 2$


$L^{2}$


$5000$


$\{(\kappa , \ldots , \kappa )^\top : \kappa \in [a/\sqrt {d}, b/\sqrt {d}]\}$


$5000$


$\{ \mb {x} \in \mathbb {R}^d : \norm {\mb {x}}{2} = a \}$


$\{ \mb {x} \in \mathbb {R}^d : \norm {\mb {x}}{2} = b\}$


$20$


$\{(\kappa , \ldots , \kappa )^\top : \kappa \in [a/\sqrt {d}, b/\sqrt {d}]\}$


$20$


$L^2$


$20$


$2$


$20$


$4$


$\pm $


$L^{2}$


$T= 300K$


$d = 66$


$\phi $


$\psi $


$C_{7eq}$


$C_{ax}$


$(\phi , \psi ) = (-85^\circ , 75^\circ )$


$(72^\circ , -75^\circ )$


$A$


$B$


\begin {align*}A &= \left \{ \mb {x}: \norm {(\phi (\mb {x}), \psi (\mb {x})) - C_{7eq}}{2} < 10^\circ \right \}, \\ B &= \left \{ \mb {x}: \norm {(\phi (\mb {x}), \psi (\mb {x})) - C_{ax}}{2} < 10^\circ \right \}.\end {align*}


$C_{7eq}:(\phi , \psi ) \approx (-85^\circ , 75^\circ )$


$C_{ax}:(\phi , \psi ) \approx (72^\circ , -75^\circ )$


$(a):(\phi , \psi ) \approx (0^\circ , -65^\circ )$


$(b):(\phi , \psi ) \approx (130^\circ , -125^\circ )$


$A$


$B$


$A$


$B$


$\phi $


$\psi $


$1/2$


$1 \times 10^{7}$


$q_{\mb {\theta }}$


$\Gamma := \{\mb {x}: | q_{\mb {\theta }}(\mb {x})- 0.5 |\} \leq 5 \times 10^{-5}$


$200$


$\Gamma $


$\Gamma $


$N_t$


$n$


$B$


$A$


$B$


$A$


$q$


$q_{\mb {\theta }}$


$n/N_t$


$0.5$


$(4N_t)^{-1}$


$\phi $


$\psi $


$1/2$


$q_{\mb {\theta }}$


$q_{\mb {\theta }}$


$q \approx 0.5$


$\Gamma $


$1/2$


$1/2$


$\phi $


$\psi $


$\phi $


$\psi $


$d_{\text {latent}} = 2, 3, 5$


$A$


$B$


$A$


$B$


$1\times 10^5$


$1\times 10^5$


$d_{\text {latent}} = 2, 3, 5$


$97.52\,\%, 97.20\,\%$


$97.49\,\%$


$2.3\,\%$


$4\,\%$


$\phi $


$\psi $


$1/2$


$q_{\mb {\theta }}$


$1/2$


$\mathcal {N} \left (0.5, (4N_t)^{-1} \right )$


$\mathcal {N}\left ( 0.5, (4N_t)^{-1} \right )$


$\pm $


$\Gamma $


$q_{\mb {\theta }}$


$u = q + \gamma \eta $


$\gamma \eta $


$q$


$\gamma $


$\eta $


$q$


$\eta $


\begin {equation}\label {eq_committor_var_derive} \begin {aligned} 0 &= \frac {1}{2} \frac {\partial }{ \partial \gamma }|_{\gamma = 0} \int _{\Omega \backslash (A \cup B)} \vert \nabla u(\mb {x}) \vert ^2 e^{-\beta V(\mb {x})} d\mb {x} \\ & = \int _{\Omega \backslash (A \cup B)} \nabla q(\mb {x}) \cdot \nabla \eta (\mb {x}) e^{-\beta V(\mb {x})} d\mb {x} \\ & = \int _{\Omega \backslash (A \cup B)} \nabla \cdot \left ( \nabla q(\mb {x}) \eta (\mb {x}) e^{-\beta V(\mb {x})}\right ) d\mb {x} - \int _{\Omega \backslash (A \cup B)} \eta (\mb {x}) \nabla \cdot \left ( \nabla q(\mb {x}) e^{-\beta V(\mb {x})} \right ) d\mb {x} \\ & = - \int _{\Omega \backslash (A \cup B)} \eta (\mb {x}) \nabla \cdot \left ( \nabla q(\mb {x}) e^{-\beta V(\mb {x})} \right ) d\mb {x}\\ & = - \int _{\Omega \backslash (A \cup B)} \eta (\mb {x}) e^{-\beta V(\mb {x})} \left ( \Delta q(\mb {x}) - \beta \nabla V(\mb {x}) \cdot \nabla q(\mb {x}) \right )d\mb {x}, \end {aligned}\end {equation}


$\eta $


$\Delta q(\mb {x}) - \beta \nabla V(\mb {x}) \cdot \nabla q(\mb {x}) = 0$


$q_{\mb {\theta }}$


$100$


$120$


$\Omega \backslash (A \cup B)$


$p_{V, q}(\mb {x})=\vert \nabla q_{\mb {\theta }}(\mb {x}) \vert ^2 e^{-\beta V(\mb {x})}$


$\left [ -1.5,1 \right ]\times \left [ -0.5,2 \right ]\times \left [ -1,1 \right ]^{d-2}$


$A$


$B$


$\lambda = 10$


$0.0001$


$0.8$


$200$


$q_{\mb {\theta }}$


$m = m^{\prime } = 5000$


$N_{\rm {adaptive}} = 30$


$N_e = N_e^{\prime } = 50$


$\beta ' = 1/20$


$\Delta t = 10^{-5}$


$q_{\mb {\theta }}$


$100$


$q_{\mb {\theta }}$


$120$


$0.001$


$0.8$


$200$


$q_{\mb {\theta }}$


$N_{\rm {adaptive}} = 30$


$N_e = N_e^{\prime } = 50$


$q_{\mb {\theta }}$


$m = 1000$


$m^{\prime } = 5000$


$N_0$


$\Omega \backslash (A \cup B)$


$N_0 / 2$


$\partial A$


$\partial B$
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which can be characterized by the committor function. For two distinct metastable regions A, B C Q, and A n B = @, denoting by 7,
the first hitting time of a subset w C Q for a trajectory, the committor function g : Q — [0, 1] is defined as ¢g(x) = P(TB <74l Xg= x),
where P denotes the probability. The committor function is a probability that a trajectory of SDE starting from x € Q first reaches
B rather than A. By definition, it is easy to see that g(x) = 0 for x € A and ¢(x) = 1 for x € B. This committor function provides the
information of the transition process, and it is governed by the following partial differential equation (PDE) [5,6]

—B7 ' Ag(x) + VV(x) - Vg(x) =0, x €Q\(AU B),

qgx)=0, x€A, @
qg(x)=1, x € B,

Vg(x)-n=0, xe€dQ\(AU B),

where n is the outward unit normal vector of the boundary 0Q\(A U B). Once the committor function ¢(x) is found, we can use it to
extract the statistical information of reaction trajectories [2,4] and compute transition rates.

1.1. Connections with prior work and contributions

Obtaining the committor function ¢ needs to solve the above high-dimensional PDE, which is computationally infeasible for
traditional grid-based numerical methods. In Chen et al. [7], a low-rank tensor train approach is proposed to compute the committor
function, which relies on the low-rank tensor train approximation of the Boltzmann-Gibbs distribution. This approach cannot be
directly applied to realistic problems if no explicit low-rank tensor train formats for the potential are given. Some efforts have been
made to employ deep neural networks to approximate the committor function [6,8-12]. The key idea is that committor functions are
represented by deep neural networks that can be trained by minimizing a variational loss functional [6,8] or a residual loss functional
[11,12]. The training data points for discretizing the variational loss are usually sampled from the equilibrium distribution of the SDE
(i.e. the Gibbs measure) [8,13,14], which requires simulating the stochastic differential equations. This sampling method is inefficient
due to the scarcity of transition data, especially for realistic systems at low temperatures. Modified sampling methods are proposed
in Li et al. [6], Rotskoff et al.[15], Hasyim et al.[16], Kang et al.[17], Lin and Ren[18], Singh et al.[19], Das et al.[20], Singh
and Limmer [21,22] to alleviate this issue, where a new probability measure for sampling is constructed by modifying the potential
function so that more samples can be obtained in the transition state region.

When the transition is rare, samples from the transition state region are difficult to obtain from simulating the SDE [15,17]. If
insufficient data points are located on the transition paths, the trained neural network for approximating the committor function will
have a large generalization error. To address this problem, we propose a new framework called Deep Adaptive Sampling on rare
TRansition paths (DASTR) to train the deep neural network. More specifically, we generate samples in the transition state region
using an iterative construction. To do this, we define a proper sampling distribution using both the current approximate committor
function and the potential function, in contrast to merely modifying the potential function as in Li et al. [6], Rotskoff et al. [15], Hasyim
etal.[16], Kang et al. [17], Lin and Ren [18]. The key idea is to reveal the transition information by taking into account the properties
of the committor function. Unlike the methods based on local approximation of the committor and the SDE [23,24], the new sampling
distribution is approximated by a deep generative model based on which new samples are generated and added to the training set.
Once the training set is updated, the neural network model for approximating the committor function is further trained for refinement.
This procedure is repeated to form a deep adaptive sampling approach on rare transition paths.

It is challenging to deal with high-dimensional realistic problems using deep generative models because we need to ensure two
things: one is that more samples are located in the transition state region, and the other is that all samples must obey the molecular
configurations. Directly approximating and sampling a high-dimensional distribution may result in a relatively large number of
samples with unreasonable molecular configurations, which limits the application of DASTR. To deal with this issue, we combine
the proposed DASTR method with dimension reduction techniques to automatically select the collective variables (CVs), where
an autoencoder is trained to help avoid hand-craft selections of collective variables. Such a dimension reduction step helps avoid
generating physically unreasonable configurations, thereby not only reducing computational complexity but also enhancing sampling
efficiency. To summarize, the main contributions of this work are as follows:

* We propose a general framework, called deep adaptive sampling on rare transition paths (DASTR), for estimating high-dimensional
committor functions.

e For high-dimensional realistic problems, the proposed DASTR method can be applied to the latent collective variables obtained
by an autoencoder without hand-picking. One can reduce computational complexity and enhance sampling efficiency by adaptive
sampling in the latent space. We demonstrate the effectiveness of the proposed method with the alanine dipeptide problem.

1.2. Related work

1.2.1. Adaptive sampling of neural network solver

The basic idea of adaptive sampling involves utilizing a non-negative error indicator, such as the residual square, to refine collo-
cation points in the training set. Sampling approaches [25] (e.g., Markov Chain Monte Carlo) or deep generative models [26-28] are
often invoked to sample from the distribution induced by the error indicator. Typically, an additional deep generative model (e.g.,
normalizing flow models) or a classical model (e.g., Gaussian mixture models [29,30]) for sampling is required. This work uses the
variational formulation and defines a novel indicator for adaptive sampling by incorporating the traits of committor functions.

2
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1.2.2. Autoencoder for protein systems

As a dimension reduction technique, autoencoders have shown the potential for the protein structure prediction and generation
[31]. Autoencoders compress the input data into a lower-dimensional latent space and then reconstruct the input data through a
decoder, enabling the learning of underlying features in the data. This approach not only helps reduce the computational resources
needed for protein simulations but also significantly lowers the dimensionality and complexity of the problem. The prediction and
generation of new protein structures can also be assisted by analyzing the variables in the latent space [32-34]. In our framework, the
deep generative model can be used in the latent space to adaptively generate latent variables, which helps us explore the transition
paths more efficiently and avoid selecting collective variables by hand-picking.

1.3. Organization

The rest of the paper is organized as follows. Details of neural network methods for computing committor functions are introduced
in Section 2. Our DASTR approach is presented in Section 3. In Section 4, we demonstrate the effectiveness of our DASTR approach
with numerical experiments. Finally, we conclude in Section 5.

2. Neural network solver for committor functions

The neural network approximation of partial differential equations involves minimizing a proper loss functional, e.g., the residual
loss [35-37] or the variational loss [38-40]. For the committor function, we consider the variational loss [6] instead of the residual
loss. The variational loss involves up to first-order derivatives of the committer function, while the residual loss requires computing
the second-order derivatives. In other words, computing the residual loss is more expensive, especially for high dimensional problems
(large d in (2)). Let go(x) be a neural network parameterized with 6, where the input of the neural network is the state variable x.
One can solve the following variational problem to approximate the committor function

min/ |Vq9(x)|Ze’ﬂV(x)dx,
9 Ja\(auB)

(3)
S.t. gg(x) =0,x € A;g9(x)=1,x € B.

The details of the derivation of (3) can be found in Appendix A. We then obtain the following unconstrained optimization problem
by adding a penalty term

min / |Vq0(x)|2e—”"<">dx+,1< / Go(x)*pa(x)dx + / a —qo(x))zpB(x)dx>, (&)
0 Jo\(auB) A B

where A > 0 is a penalty parameter, p, and pp are two probability density functions on A and B respectively.

To optimize the above variational problem, one needs to generate some random collocation points from a proper probability
distribution to estimate the integral in (3). One choice is to sample collocation points from the Gibbs measure ¢#Y®/Z, where
Z = fg\( AUB) e PY®dx is the normalization constant, and this can be done by simulating the SDE defined in (1). However, generating
collocation points by the SDE is inefficient for approximating the committor function, especially for molecular systems with low
temperatures (or high energy barriers). This is because the committor function is characterized by the behavior in the transition area
while the samples generated by the Langevin dynamics (Eq. (1)) cluster around the metastable regions A and B. In other words, the
samples from the SDE may not include sufficient effective samples for training g,. Hence, we need a strategy to seek more effective
samples to approximate the committor function, which will be presented in the next section.

Now suppose that we have a set of collocation points S = {x; }i’i |» Where each x; € Q\(A U B) is drawn from a certain probability

distribution p, and two sets of collocation points S, = {x; }Z’I and Sp = (xp; }i]:’f, where each x,; and each xp; are drawn from p,
and pp respectively. The optimization problem (4) can be discretized as follows

1Y L
1 e, L N2
+a< N, [:ZICIQ(XA,,) N g;(qg(xg,,) ) > (5)

The key point here is to choose an effective set S to train gy. In the next section, we will show how to adaptively generate effective
collocation points (a high-quality dataset) on rare transition paths, based on which we can improve the accuracy of the approximate
solution of (2). Considering that the main difficulties come from the transition state region, we will focus on how to choose S and
assume that the integral on the boundary is well approximated by two prescribed sets S, and Sp. For simplicity, we will ignore the
penalty term when discussing our method.

e PV (xi)

p(x;)

N
1 2
min — ; IVao(x,)|

3. Deep adaptive sampling on rare transition paths
3.1. Main idea

Our goal is to adaptively generate more effective data points distributed in the transition state region, which will be achieved by
constructing a deep adaptive sampling method on the transition paths.

Suppose that at the k-th step, we have obtained the current approximate solution gg, with S;. We want to use the information
of g, and the potential function V' to detect where the transition area is, based on which we expect to generate new data points in

3
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the transition state region that can help improve the discretized loss given by S,. We then refine S, to get S;,; for the next training
step. The more effective data points in the transition area we have, the more accurate solution gy we can obtain. To achieve this,
we define a proper probability distribution for sample generation based on the following observations: First, |V,¢|*> has a peak in
the transition state region, implying that more data points should be introduced around the peak. Second, we may lower the energy
barrier to facilitate transitions between the metastable states, which can be done by adding a biased potential V4, to the original
potential V' [6,17].

3.2. Sample generation

Let py , be a probability density function (PDF) that is dependent on V' and g,. Here, we present two choices for constructing py ,.
One choice is to set

[Vge(x)|>e PV

c , (6

Py (%) =

where C,; is the normalization constant. That is, we treat the nonnegative integrand in (3) as an unnormalized probability density

function. If there exists a high energy barrier, we can use a biased potential V;;,; to lower the energy barrier, which yields the

following sampling distribution

|que(x)|2€—/3(V(X)+Vbias(x))
G

Py ()= , (7)
where C, is the corresponding normalization constant. The biased potential can be chosen to be an umbrella potential [41] or a
potential derived from the metadynamics [42,43].

Now the question is how we can generate samples from the above sampling distribution. Here, we use KRnet, which is a type of
flow-based generative models [44,45], for PDF approximation and sample generation. We note that other deep generative models with
exact likelihood computation [46,47] can also be used here. Following Tang et al. [26,28,48], we use KRnet for sample generation
since it can be regarded as a generalization of real NVP [48], while it does not require numerically solving ordinary differential
equations during sampling, compared with continuous normalizing flows. Let pyrae:(x; ® ) be a PDF model induced by KRnet with
parameters @ ; [26,48-50]. The PDF model pyg,, is induced by a bijection fyg.ey with parameters © ,:

pKRnet(x; ®j) = pZ(fKRnet(x))|det foKRnet

B

where p is a prior PDF (e.g., the standard Gaussian distribution). The overall structure of KRnet is defined as follows
Z = firnet(X) = Ly °f[(}§119]5° Of[(ﬁner(x),
where f[‘i’]Uter is defined as

outer _ inner inner
f[k] = LSOf[k,L] o~--of[k,” oLp.

More specifically, f [il??]er is a combination of L affine coupling layers [44,45] and one scale and bias layer, and Ly, Lg and Ly denote

the nonlinear layer, the squeezing layer and the rotation layer respectively, where details can be found in the literature [26,48,49,51].
We can approximate py, , through solving the optimization problem

@; =arg néin Dy (py () Prrnet (%5 © 1)),
)

where Dy (+||-) indicates the Kullback-Leibler (KL) divergence between two distributions. Minimizing the KL divergence is equivalent
to minimizing the cross entropy between py, , and pygaet [52,531:

0y pined == [ 9y (39)108 g (30
Q\(AUB)

The normalization constants in (6) and (7) do not affect the optimization with respect to ® Iz Since the samples from Py 4 are not

available, one can approximate the cross entropy using the importance sampling technique:

N

1 Py g(x))
Hpy D 1 20, g
(pV.q pKRnet) N “~ pIS(xi) ngKRnet(xl f) ( )

where pis(x;) is a known PDF model and {xi}fi are the samples from p;g(x;). For example, the PDF model p;5(x;) can be chosen to
be a PDF model induced by a known KRnet with parameters @’f, ie.,

X = ficgnet (2 ©)

with z; being sampled from the standard Gaussian distribution. We then minimize the discretized cross entropy (8) to obtain an
approximation of @*f.
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Fig. 1. The schematic of DASTR for computing the committor function. Training a deep neural network g, to approximate the high-dimensional
committor function must use a high-quality dataset (i.e. data points from the transition area). Typically, the data points from Langevin dynamics
are not in the transition state region since the transition between two metastable states is rare and difficult to sample. The proposed DASTR method
can adaptively generate effective data points on the transition area according to the information of the current approximate solution. The key point
is to define a sampling distribution p,, , dependent on the current approximate solution and the potential. Effective data points in the transition area
are generated by sampling from p,, ,, which is achieved through training a deep generative model.

3.3. DASTR algorithm

Our adaptive sampling strategy is stated as follows. Let S = {x; },1101 be a set of collocation points that are sampled from a given
distribution py(x) in Q\(A U B). Using S, we minimize the empirical loss defined in (5) to obtain 4o, - With dg,> We minimize the
. X! . . _ (1
cross entropy in (8) to get p; = Pxraet(X; @7( )). A new set S% = {x;}11, with n; < N, is generated by fKRlnet(z,-;Gj( )) (see (9)) to
refine the training set. To be more precise, we replace n; points in S, with Sf to get a new set S,. Then we continue to update the

approximate solution gy using S; as the training set. In general, at the k-stage, suppose that we have n; samples Sf ={x;; }I"; , from
pj for j = 1,.... k, where p; is the PDF model at the j-th stage and it can be trained by letting p;_; = pxrae:(¥;3 (—)}) in (8). The training

5
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Algorithm 1 DASTR.

Input: Initial gg , maximum stage number N q,pi,., maximum epoch number N,, N, batch size m, n’, initial training set Sy = {x; R
1: for k=0 Nygypiive — 1 dO

2: fori=1: N, do
3 for / steps do
4 Sample m samples from S;.
5: Update gy(x) by descending the stochastic gradient of the discrete variational loss (see (10)).
6: end for
7 end for
8 fori=1: N/ do
9 for [ steps do
10: Sample m’ samples from the standard Gaussian distribution.
11: Generate samples using (9).
12: Update pygner(x; @ ;) by descending the stochastic gradient of H(py ;. Pkraet) (€€ (8)).
13: end for
14: end for
15: Refine the training set: use p,,; to get S, ;.
16: end for
Output: gy

set S, at the k-th stage consists of x; ;. We use S, to obtain qq,, as

k n;

. 1 § 2
Oy =argmin ) — )Y a;|Vqy(x; )" ——F,
0 ;) n; ,Z' pj(x;)

—ﬁV(x‘_,‘)
¢~ (10)

where gy is initialized as qg,, a; = n;/ Zf:o n; is a weight to balance the different distributions p;, and n, is the number of points

kept in S, at the k-th stage. Starting with p, = pxrpet(X; @j’,’(k)), the density model pygqe:(x; ® ) is updated by (8) to get p;, ;. A new
set Si w1 = Xk };'S‘ of collocation points is generated by (9). We then use Si 4 to refine the training set to get S;,,. We repeat the

above procedure to obtain Algorithm 1 for the deep adaptive sampling on transition paths. We call this method DASTR for short. The
main idea of our algorithm is also illustrated in Fig. 1.

3.4. DASTR in the latent space

For complex systems, such as protein molecules, directly applying DASTR will result in the generation of physically unreason-
able molecular configurations during the adaptive sampling procedure. The reason behind this is the strong correlation among the
atomic coordinates required by physically reasonable protein structures. As a result, directly using the atomic coordinates as input
to the KRnet may fail to capture the interatomic relationships effectively. This observation is demonstrated in Fig. 2. The molecular
configurations in the left plot, which are almost physically unreasonable, are sampled from a trained KRnet in the original high-
dimensional space, while the molecular configurations in the right plot, which are physically consistent, are sampled using latent
collective variables as discussed later in Section 3.4.2.

To resolve this issue, we resort to sampling in the latent space, where we consider two strategies: one is based on the collective
variables (CVs) method [54-56] (see Section 3.4.1), and the other is based on autoencoders (see Section 3.4.2). CVs refer to variables
that can capture critical information about molecular structures. For example, the dihedral angles of the backbone atoms or distance
between atoms can be selected as the CVs in protein systems. CVs can help reduce the computational complexity and enhance the
sampling correctness. Moreover, we propose using an autoencoder to automatically select latent CVs that help generate physically
reasonable molecular configurations, even though these latent CVs typically lack explicit physical meanings.

The basic idea of the collective variables method is to replace the original coordinates with some collective variables s(x) =
[51(x), ..., s,(x)]T with m < d, where d is the dimensionality of x. Then we can restrict our attention to the collective variables during
the adaptive sampling procedure:

Py 4(8(x)) = py 4(%), (1D

where the py (0 corresponds to the term defined in Egs. (6) and (7). Since the collective variables can capture the essential structural
features of molecules, one can take adaptively sampling step on the collective variables s(x) as illustrated in Algorithm 1. To generate
samples in the latent space, we need to train KRnet using the CVs as input to learn the probability distribution in the latent space.
Similar to the discussions in Section 3.2, training KRnet can be performed by minimizing the cross entropy loss defined in the latent
space. This way, the deep generative model is used to generate samples of the collective variables instead of the coordinates x.
After generating the collective variables, one can do some post-processing steps to obtain new samples of x. This will reduce the
probability of generating nonphysical samples. If there is no prior information for selecting the proper collective variables, we use an
autoencoder to learn some latent variables from the data and use them as the collective variables. The overall procedure along this
line is summarized in Algorithm 2.
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® )
J
9
(a) Molecules generated using coordinates of (b) Molecules generated using latent CVs as

heavy atoms as the input to KRnet. the input to KRnet.

Fig. 2. Molecular configurations of alanine dipeptide generated by two different settings in DASTR: (a) the inputs of KRnet are the coordinates
of heavy atoms (b) the inputs of KRnet are the latent CVs. The hydrogen atoms are completed by the software package PyMOL [57]. This figure
demonstrates that using the latent collective variables to conduct DASTR is more effective.

Algorithm 2 DASTR in the latent space.

Input: Initial g, maximum stage number N, N°
1: if Using autoencoder then

Train the autoencoder using Sy,

3: end if

4: for k=0 Nygupive — | do
5 fori=1: N, do

6: for / steps do
7.
8
9

adaptive> Maximum epoch number N,, N, batch size m, ', initial training set S = {xg,},_

N

Sample m samples from S,.
Update gy(x) by descending the stochastic gradient of the discrete variational loss (see (10)).
: end for
10:  end for
11: fori=1: N, do

12: for / steps do

13: Sample m’ samples from the standard Gaussian distribution.

14: if Using autoencoder then

15: Update pygpet(s(x); © ) by descending the stochastic gradient of H(py ;. Pxrnet) USing (14).
16: else

17: Update pyrper(s(x); © ) by descending the stochastic gradient of H(py ;. Pxrnet) Using (12))
18: end if

19: end for

20: end for

21: Generate new samples of the latent collective variables by the trained KRnet.

22: Use the pretrained decoder to get new samples of x.

23: Refine the training set to get S; ;.

24: end for

Output: gy

3.4.1. Hand-picking CVs with umbrella sampling

We first consider that the explicit collective variables are available. For alanine dipeptide studied in this work, the dihedral
angles of the backbone atoms are selected as CVs [6]. As discussed above, we need to ensure that the samples obey the molecular
configurations during the adaptive sampling procedure.

It is straightforward to train a KRnet to model the distribution in terms of collective variables s. The KRnet that maps the collective
variables s to a standard Gaussian is obtained by minimizing the following cross entropy

N
l Z pV,q(s(xi))

H(py 4 Prroet) ® =7
V.,q> PKRnet Ni=1 pIS(s(xi))

lngKRnet(s(xi);G)f)’ (12)
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where p5(s(x;)) = e #¥modified™)) and each x; is a sample drawn from the previous step. The generation of new samples for x is achieved
in two steps: we first generate samples for the collective variables s using the trained KRnet, and then sample x that satisfies s(x) ~ s
using umbrella sampling [41] (see Appendix B.4 for more details).

The potential function Vj;y4ifieq is used to simulate the SDE to generate new samples

Vnodified(X) = V(x) + Vys(x),

where V is the original potential in (1) and Vyg(x) is the umbrella potential with the following form
1 m
Vs = 5 ; Ky (5;(x) — 5,(x0))%. 13)

Here, s;(x,) is the target CVs generated by the trained KRnet, s;(x) represents the CVs with respect to x, m is the number of CVs, and
ks is the force constant. We perform a rapid iterative process of umbrella sampling to transfer the CVs to the target region, and finally
sample near the target CVs in the modified potential. This ensures the physical validity of the molecular configurations during the
adaptive sampling procedure. However, selecting proper collective variables requires additional domain-specific knowledge, which
is not a trivial task. Additionally, this strategy for implementing adaptive sampling in the latent space still requires simulating the
SDE, which limits its sampling efficiency.

3.4.2. Latent CVs with autoencoder

In this section, we propose an alternative method that employs an autoencoder to automatically select the latent variables as the
collective variables. The autoencoder can be trained before the first stage in Algorithm 2 using the data from metadynamics. After
training, the autoencoder is fixed during the adaptive sampling procedure.

The configurations of molecular systems are primarily determined by the positions of the heavy atoms and the positions of the
hydrogen atoms can be inferred from the positions of the heavy atoms. Based on this observation, we selected the coordinates of all the
heavy atoms of molecules from S, as the dataset for training the autoencoder. The autoencoder consists of two parts: an encoder = s(x)
and a decoder = S(s(x)). Both the encoder and decoder are modeled by neural networks. Training the autoencoder aims to minimize
the mean squared error

N
< ;(S(S(xi)) —x)2.

Once the autoencoder is trained, the latent CVs can be obtained by the encoder. To this end, we utilize KRnet to learn the distribution
of the latent CVs by minimizing the following cross entropy with respect to the latent CVs

1w Prg(sx)
H(py 4 Pkrnet) & N 2 m 10g prnet (5(x;); © 1), 14
where the parameters @', can be chosen from the previous step.

Once we have the trained KRnet in hand, we can generate samples s in the latent space. These samples are subsequently decoded
using the pretrained decoder to reconstruct the positions of all the heavy atoms. The hydrogen atoms are automatically completed us-
ing the software package PyMOL [57]. Finally, we calculate the potential energy of the generated molecular configurations to exclude
those samples with excessively high potential energies, thus avoiding the generation of physically unreasonable configurations. The
generated molecular configurations are illustrated in Fig. 2b. The proportion of reasonable configurations generated by this method
exceeds 97 % (details can be found in Section 4.3.2). The computation process is illustrated in Fig. 3.

Remark 1. The key point here is that the autoencoder helps us automatically obtain the latent collective variables that reflect
the molecular configuration, which serve as the input of KRnet, without the need of hand-picking physical CVs. In Section 4.3.1,
we use KRnet to learn the distribution corresponding to the physical CVs and employ umbrella sampling to generate samples of
molecules based on these physical CVs. However, this process consumes significant time and computational resources because um-
brella sampling is still based on the SDE simulation. In contrast, the autoencoder explores latent CVs, allowing us to break free from
the reliance on physical CVs and the associated SDE-based sampling methods. Moreover, the decoder can quickly reconstruct the
molecular structure, significantly improving the computational efficiency. We compare the sampling time of the two methods in
Section 4.3.2.

4. Numerical study

We conduct three numerical experiments to demonstrate the effectiveness of the proposed method. The first one is a 10-dimensional
rugged Mueller potential problem, the second one is a 20-dimensional standard Brownian motion problem, and the last one is the
alanine dipeptide problem with the dimension d = 66. The performance of DASTR with the collective variables method and the
autoencoder method is investigated using the alanine dipeptide problem. The detailed settings of numerical experiments are provided
in Appendix B.
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Fig. 3. The schematic of adaptive sampling in the latent space. We first train an autoencoder to obtain the latent variables as the collective
variables (CVs), and then use KRnet to approximate the distribution of the CVs. After training KRnet, we use a random sample z, from the standard
Gaussian distribution to generate a new sample of latent CVs. We can feed this new sample of latent CVs into the decoder to obtain a new sample
of molecules after the post-processing step. Such a new sample of molecules is located in the transition state region. The autoencoder not only
provides an effective way to automatically choose the collective variables, but also enhances the sampling efficiency of molecules in the transition
state region.

4.1. Rugged mueller potential

We consider the extended rugged Mueller potential embedded in the 10-dimensional space, which is a well-known test problem
in computational chemical physics [6,13]. The extended rugged Mueller potential is given by V(x) = V,,,(x;, x,) + 1/(262) Z, =3 x s
where x € R!% and V,,(x;, x,) is the rugged Mueller potential defined in [-1.5, 1] x [-0.5,2]

4

Vim(x1.3%0) = Y D=8 b= Eammre o) 4 ysin(2kzxy )sin(2kaxy).

i=1
We set ¢ = 0.05 as in Li et al. [6], and the other parameters are set to be the same as in Lai and Lu[5]. The inverse temperature is
set to f = 1/10. In this test problem, the two metastable sets A and B are two cylinders with centers [x,, x,] = [-0.558,1.441] and
[x1,x,] = [0.623,0.028] respectively with radius 0.1. In this setting, the solution of this 10-dimensional problem is the same as that
of the two-dimensional rugged Mueller potential, i.e., g(x) = ¢,,(x) [6,13]. So, we can use the finite element method implemented
in FEniCS [58,59] to obtain a reference solution to evaluate the performance. For comparison, we also implement the artificial
temperature method and metadynamics [6] as the baseline model. Here we define the L? relative error ||qg — gret||o/||9ret|l,» Where
gy and q denote two vectors whose elements are the function values of g and g,; at some grids respectively. We compute the relative
error on some given points. For the first two-dimensional variables x; and x,, we use the meshgrid generated in FEniCS to compute
the relative error. We simulate the dynamics to get some samples for the rest of the variables (x3, ..., x;(). Finally, we concatenate
these two parts to obtain the test dataset for computing the relative error. The settings of neural networks and training details can be
found in Appendix B.1.

Fig. 4 shows the samples from different sampling strategies, where these samples are projected onto the x; — x, plane. Specifically,
Fig. 4a shows the samples generated by SDE defined in (1). It can be seen that the samples from SDE are located around the two
metastable states A and B, which are ineffective for approximating the committor function. Fig. 4b shows the samples from SDE
with the artificial temperature method. While more samples show up in the transition state region compared with Fig. 4a, there
is still insufficient data to accurately capture the committor function. Fig. 4c shows the samples from metadynamics. We choose
the coordinates x; and x, (i.e., S;(x) = x;, S,(x) = x, in (B.1)) by adding 2000 Gaussian functions with height w =5 and width
o, = 0, = 0.05 into the potential, one for every 500 time steps. Then a set of data are sampled by simulating the Langevin dynamics
using the modified potential with the time step At = 10~>. As shown in Fig. 4d—f, our method is able to provide effective samples in
the transition area. The evolution of the training set with respect to adaptivity iterations k = 2, 15, 30 is presented, where we randomly
select 5000 samples in the training set for visualization. Compared to other approaches, many more samples are distributed in the
transition state region (Q\(A U B)), which is desired for approximating the committor function.

In Fig. 5a-d, we compare the reference solution g,.; obtained by the finite element method, the DASTR solution given by 4 x 10
samples and the approximate solution given by 4 x 10° samples from metadynamics and the artificial temperature method. Fig. 6a

9
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Fig. 4. DASTR, samples for the 10-dimensional rugged Mueller potential problem. The red line denotes the test points from the 1/2-isosurface
(g ~ 1/2) projected onto the x, — x, plane. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

shows the error behavior of different methods. Fig. 6b shows the relative errors with respect to different sample sizes. From Fig. 6b, it
is seen that the DASTR method is much more accurate than the method of sampling from dynamics. Due to the difficulty of sampling in
the transition state region using SDE with the artificial temperature method, the solution obtained through the artificial temperature
method fails to accurately capture the information of the committor function in the transition state region. To further investigate the
performance of the proposed method, in Table 1, we show the L? relative errors of neural networks with varying numbers of neurons
subject to different sample sizes. Here, we sample 12099 points near the 1/2-isosurface ( g(x) ~ 0.5 ) to compute the relative error.
Meanwhile, we note that the boundary error is near zero (about 10~*) since we choose two sufficient large sets S 4 and Sp to enforce
the boundary condition. The number of samples for training the neural network to approximate the boundary condition is the same
as that of in Q\A U B.

From Table 1, it is seen that our DASTR method is one order of magnitude more accurate than the artificial temperature method
in all settings and has competitive performance compared with metadynamics for this rugged Mueller potential test problem.

4.2. Standard Brownian motion

In this test problem, we consider the committor function under the standard Brownian motion [60,61]. For a stochastic process
(X)is0 € R4, which is a standard Brownian motion starting at x € R, that is, X, = x + W/, corresponding to VV(X,) =0 and § = 1/2
in (1). The two metastable sets A and B are defined as A = {x € R? : ||x||, < a}, B = {x € R? : ||x||, > b} with b > a > 0. With these
settings, for d > 3, there exists an analytical solution g(x) = (a* — ||x||§‘daz)/(a2 — b*~94%). In this test problem, we set d = 20 and
a = 1,b = 2. The settings of neural networks and training details can be found in Appendix B.2. Since the solution to this test problem
cannot be projected onto the low-dimensional space, we here compare different sampling methods by computing the L? relative error
at a validation set with 5000 data points along a curve {(x, ..., k)" : « € [a/ \/E N \/EJ} [61]. Meanwhile, we select 5000 points from
the boundary {x € R : ||x|, = a} and {x € R? : ||x||, = b} to compute the boundary errors.

Fig. 7 shows the results of the 20-dimensional standard Brownian motion test problem. Specifically, Fig. 7a shows the solutions
obtained by different sampling methods, where it can be seen that the DASTR solution is more accurate than those of other sampling
strategies. Fig. 7b shows the behavior of relative errors during training, where DASTR performs better than the uniform sampling
strategy and SDE. Fig. 7c shows the relative errors for the uniform sampling method, SDE, and DASTR, where different numbers of
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Table 1
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10-dimensional rugged Mueller potential test problem: errors for different settings of neural networks and sampling strategies. We
take 4 independent runs to compute the error statistics (relative error: mean =+ standard deviation, log boundary error: mean).

Sampling Method

1S1

Number of Neurons in Hidden Layer

Log Boundary Error

20

50

100

A B

SDE with the artificial temperature method

1x10°
2x10°
3x10°
4x10°

0.5446 + 0.0724
0.3183 + 0.0592
0.2717 + 0.0487
0.3822 + 0.0555

0.4693 + 0.0627
0.2677 + 0.0708
0.2780 + 0.0584
0.3019 + 0.0649

0.4023 + 0.0819
0.3063 + 0.0477
0.3955 + 0.0311
0.3822 + 0.1213

-2.0917 -2.0276
—-2.0940 -2.0654
—-2.0784 —-2.0238
—2.0890 —1.9449

Metaynamics

1x10°
2x10°
3x10°
4x10°

0.0535 + 0.0022
0.0413 + 0.0025
0.0419 + 0.0023
0.0440 + 0.0042

0.0426 + 0.0033
0.0451 + 0.0073
0.0352 + 0.0075
0.0300 + 0.0041

0.0409 + 0.0028
0.0384+ 0.0048
0.0294 + 0.0033
0.0306 + 0.0021

-3.9793 —2.3869
—3.2065 —2.3682
-2.3967 -2.3791
—-2.3983 -2.3771

DASTR (this work)

1x10°
2x10°
3x10°
4x10°

0.0620 + 0.0070
0.0498 + 0.0102
0.0386 + 0.0089
0.0371 + 0.0056

0.0602 + 0.0113
0.0443 + 0.0049
0.0412 + 0.0091
0.0343 + 0.0065

0.0615 + 0.0071
0.0310 + 0.0024
0.0172 + 0.0028
0.0206 + 0.0052

-3.8727 —2.4399
-3.2961 —2.4276
-2.7152 -2.3933
-2.4379 -2.4139
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Fig. 7. Solutions evaluated along a curve and the behavior of relative errors, 20-dimensional standard Brownian motion test problem. The relative
error is computed at the points along the curve {(x,...,x)" : x € [a/\/g, b/\/zj}.
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20-dimensional standard Brownian motion test problem: errors for different settings of neural networks and
sampling strategies. We take 4 independent runs to compute the statistics of the error (relative error: mean +
standard deviation, log boundary error: mean).

Number of Neurons in Hidden Layer

Log Boundary Error

Sampling Method S| 20 50 100 A B
5x10° 0.1767 + 0.0240  0.1906 + 0.0214  0.4555 + 0.0557  —0.3062 —0.3102
Uniform 1x10* 0.1861 £ 0.0319  0.1760 + 0.0492  0.1310 +£ 0.0197  -1.9812 —2.8424
1.5x 10* 0.2125 + 0.0220 0.2003 + 0.0295 0.1454 + 0.0609 —2.0001 —3.0748
2% 10* 0.1963 + 0.0866  0.1611 + 0.0227  0.1402 + 0.0515  —2.4052 —3.4057
5% 10° 0.2127 £ 0.0802  0.2641 + 0.0416  0.3696 + 0.0633  —0.4601 —0.4928
SDE 1x10* 0.2846 + 0.0523 0.2606 + 0.0343 0.1586 + 0.0179 -1.7785 —2.5162
15x10*  0.2861 +£0.0177  0.1865+ 0.0220  0.1706 + 0.0434  —2.3749 -3.1361
2% 10* 0.2321 £ 0.0278  0.1864 + 0.0254  0.1342 + 0.0434  —2.5961 —3.4535
5% 10° 0.0996 + 0.0374  0.1073 £ 0.0128  0.1266 + 0.0277  -1.8125 -1.8270
DASTR (this work) 1x10* 0.0835 + 0.0215 0.0415 + 0.0167 0.0410 + 0.0106 -1.8741 —2.0758
1.5x10*  0.0824 +0.0412  0.0197 + 0.0045  0.0141 + 0.0053 -2.0812  -2.1624
2x10* 0.0227 + 0.0051  0.0209 + 0.0096  0.0114 + 0.0021  —2.0991 —-2.0811

samples are tested. From Fig. 7c, it is clear that, as the number of samples increases, the relative error of DASTR decreases more
quickly than those of SDE and the uniform sampling strategy.

To see why DASTR works well, let us visualize the L>-norm of samples from different sampling strategies. Fig. 8 shows the
histogram of the norm of samples for different sampling strategies. From Fig. 8a and b, we can see that most of the samples fall into
the interval where the norm of samples is near 2. This means that it is difficult to generate samples in the transition state region
using the uniform sampling strategy or SDE. Indeed, in high-dimensional spaces, most of the volume of an object concentrates around
its surface [62,63]. Hence, using uniform samples or samples generated by SDE is inefficient for estimating the committor function.
Fig. 8c—f show the histogram of the norm of samples from DASTR. These histograms imply that the samples from DASTR capture the
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Fig. 8. Histogram of the norm of samples, 20-dimensional test problem.

Table 3
Time comparison of DASTR with the explicit collective variables and umbrella sampling and
DASTR with the learned latent variables for different numbers of samples (the unit is seconds).

Number of Samples

Sampling Method 1x10* 2x10* 5x10* 1x10° 2x10°
DASTR with umbrella sampling 234.01s  476.19s 1213.17s  2406.86s  4771.42s
DASTR with learned latent variables 10.26 s 18.10 s 46.33 s 92.94 s 175.98 s

information of transitions, which improves the accuracy of estimating the committor function. In Table 2, we again present the L?
relative errors of neural networks with varying numbers of neurons subject to different sample sizes and the boundary errors with the
neurons of the neural network set to 100. Our DASTR method is one order of magnitude more accurate than the baseline methods in
most settings and the boundary errors are close.

4.3. Alanine dipeptide

In this test problem, the isomerization process of the alanine dipeptide in vacuum at T = 300K is studied, which is a widely used
benchmark in the literature [6,17]. Two approaches are considered. In Section 4.3.1, we assume that the collective variables are
known. Then, the proposed DASTR approach is applied to the collective variables, which will improve the robustness of DASTR in
approximating the committor function. In Section 4.3.2, the collective variables are not explicitly given, which is a more realistic
setting. We use an autoencoder to find some latent variables to serve as the collective variables.

The molecule we consider here consists of 22 atoms, each of which has three coordinates. This means that the dimension of the
state variable is d = 66 in (2). There are two important dihedrals related to their configurations: ¢ (C-N-CA-C) and y (N-CA-C-N). The
two metastable conformers of the molecule are C;,, and C,, located around (¢,y) = (—85°,75°) and (72°, —75°) respectively. More
specifically, the two metastable sets A and B are defined as Li et al. [6]:

A= {x @ e - ¢, < 10°},
B={x: (@), wx) - Cyhll, < 10°}.

In Fig. 9, the molecule structures of two metastable states and two transition states are displayed.

The goal is to compute the committor function under the CHARMM force field [64-66]. Due to the high energy barrier between
the two metastable states A and B, it is almost impossible for the molecule to cross this barrier from A to B. Consequently, sampling
in the transition state region with SDE is extremely challenging.
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C?eq

Fig. 9. The two metastable states and two transition states of the alanine dipeptide. C;,, : (¢,y) ~ (=85°,75°) and C,, : (¢, y) =~ (72°,-75°) are two
metastable states, (a) : (¢, w) ~ (0°,—65°) and (b) : (¢, ) =~ (130°,—125°) are two transition states.
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Fig. 10. Samples during training for the alanine dipeptide test problem. We use DASTR to generate target CVs in the transition state region; the
umbrella sampling method is employed to generate samples around the target CVs to refine the training set. The figures are shown that the samples
(scatter plot) distributed on the energy landscape with respect to ¢ and .
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Fig. 11. The alanine dipeptide test problem: the histograms of the committor function values on the 1/2-th isosurface of g, with different numbers
of neurons. g, is a five-layer fully connected neural network. The training details can be found in Appendix B.3.
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Fig. 12. Visualization of the latent collective variables, the two metastable states A and B, and samples from DASTR at the final stage in the latent
space. The data points are projected onto a two-dimensional plane by UMAP [67] for visualization.

4.3.1. DASTR with explicit collective variables

In this section, we study the performance of DASTR with explicit collective variables. The collective variables is set to the two
dihedrals ¢ (C-N-CA-C) and y (N-CA-C-N). For this realistic problem, we need to ensure that the samples from deep generative
models conform to physically valid molecular configurations, making the problem far more challenging. To handle this difficulty, we
combine our DASTR method with the umbrella sampling method [41] and the collective variables method. Simply speaking, we use
the proposed DASTR method to generate the target collective variables in the umbrella potential. The details of the overall procedure
can be found in Appendices B.3 and B.4.

For this problem, it is intractable to obtain the reference solution with grid-based numerical methods. To assess the performance
of our method, we again consider those samples from the 1/2-isosurface. More specifically, we first use umbrella sampling (see
Appendix B.4) to sample 1 x 107 points. After that, we use the trained model to compute g, at these sample points and filter to keep
points on thesetT" := {x : |gg(x) — 0.5]} < 5 x 107>, We conduct 200 simulations of SDE for each point in I to obtain the corresponding
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(a) The proportion of valid molecular configurations (b) The proportion of valid molecular configurations
when using the coordinates of the heavy atoms as when using the latent CVs as the input to KRnet
the input to KRnet. (diatent = 3).

Fig. 13. The proportions of valid molecular configurations for two different settings in DASTR are shown. This figure demonstrates the advantage
of performing DASTR in the latent space.

Table 4

The Wasserstein distance between N (0.5,(4N,)™!) and the empirical dis-
tribution obtained by DASTR and metadynamics. We take 10 independent
runs to compute the distance (mean + standard deviation).

Method Settings Mean Wasserstein Distance

Gaussian Terms

5000 0.4411  0.1192 + 0.0027
Metadynamics 7500 0.4432  0.1426 + 0.0029

10,000 0.4319  0.1131 + 0.0025

Latent CVs

2 0.4894  0.0853 + 0.0009
DASTR with Latent CVs 3 0.4702  0.0866 + 0.0006

5 0.4738  0.1021 + 0.0007

trajectories. Specifically, for each sample in I', we generate N, trajectories by simulating the Langevin dynamics and use » to denote
the number of trajectories ending up in region B before A. By counting the number of times of these points first reaching B before A,
we can estimate ¢ for such points by the definition of committor functions. If the trained model ¢, is indeed a good approximation
of the committor function, the probability distribution of n/ N, should be close to a normal distribution with mean 0.5 and variance
@N)™' [71.

The results are shown in Figs. 10 and 11. In Fig. 10a—c, we show the candidate samples generated by DASTR. It is clear that
these samples are located in the transition state region. To ensure that the samples obey the molecular configuration, we use the
umbrella sampling method to refine them as shown in Fig. 10d and e. From Fig. 11a—c, it is seen that the probability distribution is
not consistent with a normal distribution with mean 0.5, which means that the trained model using data from metadynamics fails to
approximate the committor function near g ~ 0.5. Also, the number of points in I' is much smaller than that of DASTR. This is due
to the lack of sufficient samples in the transition state region, leading to the large generalization error in this area. In contrast, from
Fig. 11d and e, it is seen that the approximate committor function values cluster around 1/2, which indicates that our DASTR method
performs significantly better and provides a good approximation on the 1/2-isosurface.

4.3.2. DASTR with latent collective variables

In the previous experiment, the collective variables ¢ and y are given. We use KRnet to learn the features of ¢ and y in the
transition state region. Such learned features are used for umbrella sampling to refine the training set. However, this still cannot
avoid the need of SDE simulations after training deep generative models. In this section, we use autoencoders to learn the latent
collective variables (CVs) that can help avoid repeated umbrella sampling simulations during sample generation.

As discussed in Section 3, the input of the autoencoder is the coordinates of the 10 heavy atoms of the alanine dipeptide. We
perform self-supervised learning to train the autoencoder to learn the latent CVs. The KRnet is used to learn the distribution of the
latent CVs in the transition state region, which is similar to the approach adopted in Section 4.3.1 except for the choice of the latent
CVs. The settings of neural networks and training details can be found in Appendix B.3.
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(g) dlatent = 57 k=2 (h) dlatent = 5: k=5. (1) dlatent = 5a k=8.

Fig. 14. Samples during training for different latent dimensions, the alanine dipeptide test problem. The figures are shown that the samples (scatter
plot) distributed on the energy landscape with respect to ¢ and y.
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Fig. 15. Conducting DASTR in the latent space for the alanine dipeptide test problem: the histograms of the committor function values on the 1/2-th
isosurface of ¢, for different latent dimensions.
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In this experiment, we test three different latent dimensions dj ey = 2,3,5. In Fig. 12, we use UMAP [67] to project the data
points onto a two-dimensional plane for visualization, where the points include the two metastable states A and B, samples from
metadynamics, and the latent variables from DASTR at the final stage.

During the adaptive sampling procedure, we need to filter out those samples with excessively high potential energies. This will help
avoid generating unreasonable molecular configurations. To this end, we set an energy threshold at 150 kJ/mol in this experiment.
This means that any molecules with potential energies exceeding this threshold are discarded when generating new molecules during
the adaptive sampling procedure. As a reference, we employ the umbrella sampling method in Section 4.3.1 to sample 1 x 10° points
in the transition state region, yielding a maximum energy of approximately 115.5kJ/mol. We generate 1 x 10° samples in the latent
space and use the decoder to reconstruct the coordinates of the heavy atoms. The configuration can be completed after adding the
hydrogen atoms by PyMOL [57]. For different latent dimensions dj,een; = 2,3,5, the proportions of the samples with energies of
less than 150kJ/mol are approximately 97.52 %, 97.20 %, and 97.49 % respectively. For comparison, we also train KRnet using the
coordinates of the heavy atoms as the input, and then added hydrogen atoms using PyMOL. In this setting, about 2.3 % of the samples
have energies of less than 3000 kJ/mol—most of the samples do not have physically reasonable configurations! Fig. 13 shows the
comparison of proportions of valid molecular configurations between the vanilla DASTR and the DASTR in the latent space. It is clear
that the sampling efficiency is improved significantly when applying DASTR in the latent space.

The decoding step requires almost no time when using the autoencoder to generate new molecules. The main time cost for this
step is from the hydrogen atom completion in PyMOL, which is also negligible. In Table 3, we compare the time cost of conducting
DASTR in the latent space and DASTR with umbrella sampling for different numbers of samples. One can observe that the time
required to generate the molecules using the latent CVs is less than 4 % of that of the strategy in Section 4.3.1. With the autoencoder,
one can apply the proposed DASTR method to the latent space. This technique eliminates the need for simulating SDE to obtain
samples in the transition state region and significantly reduces the computational cost, as demonstrated in Table 3. As shown in
Fig. 14, the generated samples are mainly located in the transition state region across the different latent dimensions studied. From
Figs. 11 and 15, it is evident that the latter has a smaller variance and thus has a better approximation of the committor function on
the 1/2-isosurface.

To measure the quality of the trained model, we use the SciPy package to compute the Wasserstein distance between
N'(0.5,(4N,)7") and the empirical distribution obtained by DASTR or metadynamics. Table 4 shows the Wasserstein distance for
different methods with different settings. We observe that, when using metadynamics, the number of samples in I' is significantly
smaller than that of DASTR, which is primarily because there are far fewer training samples in the transition region, making the
neural network model ¢, difficult to capture the transition information. For this alanine dipeptide test problem, our DASTR method
outperforms metadynamics.

5. Conclusion

We have developed a novel deep adaptive sampling approach on rare transition paths (DASTR) for estimating the high-dimensional
committor function. With DASTR, the scarcity of effective data points can be addressed, and the performance of neural network
approximation for the high-dimensional committor function is improved significantly.

For high-dimensional realistic molecular systems, to address the issue that deep generative models alone may fail to generate phys-
ically reasonable molecular configurations, we apply DASTR to the latent space, where two options for selecting the latent variables
are provided. The first option is to combine physically explicit collective variables with umbrella sampling, and the second is to train
an autoencoder to find the latent collective variables. Compared to the samples from the directly approximated high-dimensional
distribution, the two latent-space-based approaches take into account the physics either through domain-specific knowledge or data.
Numerical experiments show that the second choice does not require domain-specific knowledge, except for data used to select the
collective variables, potentially providing a generic strategy to deal with larger, more realistic molecular systems. Many questions
remain open, especially regarding the correlation between representation learning and physically consistent sample generation. These
questions will be left for future study.
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Appendix A. Derivation of variational formulation

Let u = g + yn be the result of a perturbation y# of g, where y is small and 7 is a differentiable function. Since g is the minimizer
of (3), for any 7, we have
0= li|y:0/ |Vux)|?e Y ®dx
2 dy Q\(AUB)

/ Vq(x) - Vn(x)e PV ®dx
Q\(AUB)

= / V- (Vgn(x)e ™ @) dx — / n(x)V - (Vg@x)e PV ®)dx (AD)
Q\(AUB) Q\(AUB)

=- / NV - (Vgx)e V) dx
Q\(AUB)

=- / n(®)e PO (Ag(x) - BVV (x) - Va(x))dx,
Q\(AUB)

where the fourth equality follows from the integration by parts and the Neumann condition in (2). Because (A.1) holds for any 5, we
have Ag(x) — pVV (x) - Vg(x) = 0, which is the desired PDE form of the committor function.

Appendix B. Implementation details
B.1. Rugged Mueller potential

We choose a four-layer fully connected neural network gy with 100 neurons to approximate the solution. The activation function is
chosen to be the hyperbolic tangent function for the hidden layers and the sigmoid function for the output layer. For KRnet, we take
five blocks and eight affine coupling layers in each block. A two-layer fully connected neural network with 120 neurons is employed
in each affine coupling layer. The activation function of KRnet is the rectified linear unit (ReLU) function. To generate points in
Q\(A U B), we use the KRnet to learn the sampling distribution py ,(x) = |Vgg(x)|>¢™#"*® in the box [-1.5,1] x [-0.5,2] X [-1, 11972,
and then remove points within the region 4 and B. This can be done by adding a logistic transformation layer [26] or a new coupling
layer proposed in Zeng et al. [68]. We set A = 10 in (4). The learning rate for the ADAM optimizer is set to 0.0001, with a decay rate
0.8 applied every 200 epochs for training gy and no decay for training KRnet, and the batch size is set to m = m’ = 5000. The numbers
of adaptivity iterations is set to N,q,pive = 30 When N, = N] = 50 in Algorithm 1. In this test problem, we replace all the data points
in the current training set with new samples.

It is difficult to sample in the transition state region when simulating the SDE. We implement the artificial temperature method as
the baseline. More specifically, we increase the temperature by setting #/ = 1/20 to obtain the modified SDE. This modified Langevin
equation is solved by the Euler-Maruyama scheme with the time step Ar = 107>, With this setting, the data points are sampled from
the trajectory of the modified Langevin equation. In this example, we compare the results obtained from DASTR with those from the
artificial temperature method.

B.2. Standard Brownian motion

We choose a four-layer fully connected neural network g, with 100 neurons to approximate the solution, and the activation
function of gy is set to the square of the hyperbolic tangent function. For KRnet, we take five blocks and eight affine coupling layers
in each block. A two-layer fully connected neural network with 120 neurons is employed in each affine coupling layer. The activation
function of KRnet is the rectified linear unit (ReLU) function. The learning rate for the ADAM optimizer is set to 0.001, with a decay
rate 0.8 applied every 200 epochs for training g, and no decay for training KRnet. We set the number of adaptivity iterations to
Nadaptive = 30, with N, = N = 50 training epochs per stage. The batch size for training gy is set to m = 1000 and for training the PDF
model is set to m’ = 5000. In the first stage, we generate N uniform samples from Q\(A4 U B) and N,)/2 points each from 0A and 9B.
For the remaining stages, we select N /2 points from the uniform samples and N, /2 points from the deep generative model. We set
A =1000 in (4).

We use the deep generative model to approximate py ,(x) = [Vgg(x)|>¢=PV ™), where the probability density function induced by
the deep generative model is defined in the box [-2,2]¢. To ensure points in Q\(A U B), we just remove points within the region A
and B generated by the deep generative model. For comparison, we also use the SDE to generate data points to train gy, where the
Euler-Maruyama scheme with the time step At = 107° is applied to get the trajectory.
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B.3. Alanine dipeptide

DASTR with Explicit Collective Variables. In this test problem, we choose the dihedrals ¢ (with respect to C-N-CA-C), y (with respect
to N-CA-C-N) as the collective variables (CVs). For this realistic example, it is not suitable to use the uniform samples as the initial
training set, since uniform samples are not effective for solving this high-dimensional (¢ = 66) problem and also do not adhere to the
molecular configuration. We use metadynamics to generate samples as the initial training set.

Metadynamics is an enhanced sampling technique to explore free energy landscapes of complex systems. The idea of metadynamics
is to add a history-dependent biased potential to the system to discourage it from revisiting previously sampled states [42,43]. This
is done by periodically depositing Gaussian potentials along the trajectory of the CVs. Mathematically, the Gaussian potential can be
expressed as:

<t m s
Vo= 3 wp<zw> ®1)

2
'=0,7.27,... i=1 20;

where w is the height of the Gaussian potential, ¢ is the width of the Gaussian potential, m is number of CVs, and s,(x,) denotes the
collective variables at time 7. After adding the above Gaussian potential, we generate samples using the modified potential:

Vinodified (%) = V(%) + Vg, (),

where V' (x) is the original potential. That is, the biased potential in (7) is the Gaussian potential function V; ,. During the simulation,
the Gaussian potential lowers the energy barrier, allowing the system to explore more configurations of molecules. So, we can generate
effective data points as the initial training set by metadynamics for this alanine dipeptide problem.

We simulate the Langevin dynamics with the time step Ar = 0.1fs and a damping coefficient 1 ps~!. One term of the Gaussian
potential is added every 1000 steps, with parameters w = 1.0kJ/mol, ¢ = 0.1 rad. We finally get a total of 5000 terms in (B.1). Then
we conduct the metadynamics with 7500 and 10,000 terms for comparison. Fig. B.16 shows that the more terms we add, the more
thoroughly the free energy surface is explored, and the more samples we obtain in the transition state region. Samples are selected
outside the regions A and B, and system configurations are saved to conduct the importance sampling step in (10). The simulation
is conducted in OpenMM [69], a molecular dynamics simulation toolkit with high-performance implementation. Fig. B.16 shows the
samples from the original dynamics and metadynamics. From this figure, it is clear that using metadynamics to generate initial data
points is better since more samples are located in the transition state region.

We choose a five-layer fully connected neural network g, (with 100, 120, 150 neurons) to approximate the solution, and the activa-
tion function for the hidden layers is set to the hyperbolic tangent function. The activation function for the output layer is the sigmoid
function. Here, we only use the deep generative model to model the sampling distribution in terms of the collective variables ¢ and
y. The trained KRnet is used to generate s(x,) = [¢, w1" in (13) (see B.4). For KRnet, we take one block and six affine coupling layers
in each block. A two-layer fully connected neural network with 64 neurons is employed in each affine coupling layer. The activation
function of KRnet is the rectified linear unit (ReLU) function. The learning rate for the ADAM optimizer is set to 0.0001, with a decay
factor of 0.5 applied every 200 epochs for training gy and no decay for training KRnet. We set the batch size m = 5000, m’ = 10000 and
N, =300, N, = 1000. The numbers of adaptivity iterations is set to Nygypive = 10. We sample 1.5 x 10* points in A and B respectively
to enforce the boundary condition in the training process for all stages. We set A = 10 in (4).

We employ KRnet to learn the sampling distribution in (7). In the first stage, we train the neural network g, using 2 x 103 points
sampled by metadynamics. Then we use these points to train the PDF model induced by KRnet with support [—180°, 180°]%, with the
bias potential V},;,; in (7) being the Gaussian potential V;, defined in (B.1). In the rest of the stages, we train the neural network gq
with 5 x 10* points sampled by umbrella sampling with the bias potential V{5 (see B.4). We train the KRnet using the same sample
points as those of training g,.

During the training procedure, we increase k, in (13) from 200 kJ/mol to 400 kJ/mol. We sample 100 points for each target CVs
in the umbrella sampling procedure. For comparison, we use the solution obtained by training a neural network g, with 150 neurons
with 2 x 10° points sampled via metadynamics for 3000 epochs.

DASTR with Latent Collective Variables. In this experiment, both the encoder and decoder are implemented using fully connected
neural networks. The encoder architecture is set as [30, 100, 50, 50, 30, d}iencl, While the decoder is set as [d),ent- 30, 50, 50, 100, 30],
with the Swish activation function. For training the autoencoder, we use 2 X 10° samples generated by metadynamics (with 10,000
terms in (B.1)) as the training set. The batch size is set to 1000. The model is trained with 5000 epochs.

The committor function is approximated by a five-layer fully connected neural network g, with 150 neurons, where the activation
function for the hidden layers is set to the hyperbolic tangent function, and the activation function for the output layer is the sigmoid
function. In this experiment, we use the deep generative model to model the probability distribution in terms of the latent CVs
obtained from the autoencoder. The learning rate for the ADAM optimizer is set to 0.0001, with a decay factor of 0.5 applied every
200 epochs for training gy and no decay for training KRnet. The batch size is set to m = 5000, m’ = 10000 and N, = 200, N} = 500.
In the first stage, we use 2 x 10° points sampled from metadynamics (10000 terms in (B.1)) as the initial dataset to train gp- In the
rest stages, we use 1 x 103 points sampled from metadynamics and 1 x 10° points from KRnet and the pretrained autoencoder. Other
settings are the same as those in Section 4.3.1.
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Fig. B.16. Samples from the original dynamics and metadynamics.

B.4. Umbrella sampling

The umbrella sampling method is also an enhanced sampling technique. It introduces external biased potentials to pull the system
out of local minima, thereby enabling a more uniform exploration of the entire free energy surface. This method is particularly effective
in calculating free energy differences and studying reaction pathways in complex molecular processes. The umbrella sampling method
employs a series of biased simulations, dividing the reaction space of collective variables into multiple overlapping windows, where
each biased potential is applied in its corresponding window [41]. The umbrella potential is usually defined as:

Vis(x) = % 3 ks 5i(x) = s5,(x0))% (B.2)
i=1

where s;(x) represents the CVs with respect to x, m is the number of CVs, and kg is the force constant. In this work, we focus on
sampling in the final window, helping us effectively sample the desired regions of CVs. Therefore, we perform a rapid iterative process
of umbrella sampling to transfer the CVs to the target region, and finally sample near the target CVs in the modified potential:

Vinodified ) = V' (x) + Vys(x),
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where V is the original potential, and s;(x) in (B.2) is the target CVs generated by the trained deep generative model.
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