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Abstract

This paper presents explicit equilibrated fluxes for the local pure-Neumann problems used by the a posteriori error estimator in Ains-
worth and Oden [M. Ainsworth, J.T. Oden, A procedure for a posteriori error estimation for h–p finite element methods, Comput. Meth-
ods Appl. Mech. Engrg. 101 (1992) 73–96]. We modify the target function for minimization to obtain new equilibrated fluxes in a
weighted form. We investigate the performance of the new equilibrated fluxes in two-dimensional spectral/hp element approximations
of an elliptic equation using conforming triangle elements. The new fluxes appear more robust and lead to substantial computational
savings compared to the original numerical procedure in Ainsworth and Oden [Ainsworth and Oden et al., 1992].
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A posteriori error estimation has become an important
tool in the finite element method, as it can be used to con-
trol the numerical errors and guide goal-oriented mesh
adaptivity strategies. Many a posteriori error estimators
have been developed (see [2–4] and references therein),
which are mainly based on the residual method [5–9] or
on the recovery method [10,11]. Recently, a new approach
referred to as goal-oriented error estimation has been
developed, which measures the error of a linear functional
of the solution rather than the usual energy norm (see
[3,12,13] and references therein).

Among the residual type a posteriori error estimators
the equilibrated method [6,7] is now accepted as the most
effective one, as it can be applied reliably to hp finite ele-
ment methods. The equilibrated residual method is based
on the solutions of local Neumann type boundary-value
problems, where the proper flux boundary conditions are
usually obtained by post-processing the finite element
approximation. Such an idea goes back to the work in
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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[14,15,8]. In this paper we investigate the performance of
the equilibrated residual method proposed in [6,7] for the
spectral/hp element method [16]. To obtain consistent flux
conditions a singular linear system needs to be solved. In
[7], a numerical procedure was proposed. To avoid solving
such a singular linear system numerically, we derive the
equilibrated fluxes in an explicit form for the two-dimen-
sional finite elements. We subsequently introduce some
weights [17] into the target function for minimization and
obtain new equilibrated fluxes in a weighted form. We
compare the performance of the new fluxes with that given
in [6] using elliptic problems with smooth and singular
solutions. It appears that the new fluxes are less sensitive
to the deformation of the finite elements with low-order
polynomials; for p-version finite elements it is not so
important how to determine the equilibration because the
approximation solution can provide a good approximation
of flux. Furthermore, the cost for the equilibrated fluxes is
reduced to O(Npatch) for each interior vertex, where Npatch

is the number of elements forming the support of the cor-
responding linear shape function.

This paper is organized as follows: in the next section we
present the model problem and provide the polynomial
space used in this work. In Section 3, we derive explicit
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Fig. 1. Mapping between triangular elements and the reference element.
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equilibrated fluxes for the procedure given in [6] and pro-
pose a weighted target function to determine the flux equil-
ibration. We study the new a posteriori error estimator
numerically in Section 5. We summarize and conclude
our work in Section 6.

2. Model problem and its discretization

Let X � R2 be a bounded domain with a Lipschitz
boundary oX. We consider the following elliptic bound-
ary-value problem:

� Duþ cu ¼ f in X; ð1aÞ
ou
on
¼ g on CN ; ð1bÞ

u ¼ 0 on CD; ð1cÞ

where the boundary segments CN and CD are disjoint with
CN [ CD ¼ oX and c is a nonnegative constant. We assume
that f 2 L2(X) and g 2 L2(CN) guarantee a unique solution
u. Let

V ¼ fv 2 H 1ðXÞ : vjCD
¼ 0g:

The weak form for the model problem (1a) is to find u 2 V

such that

Bðu; vÞ ¼LðvÞ 8v 2 V ; ð2Þ
where

Bðu; vÞ ¼
Z

X
ðru � rvþ cuvÞdx ð3Þ

and

LðvÞ ¼
Z

X
fv dxþ

Z
CN

gvds: ð4Þ

Let Th be a family of triangulations of X with straight
edges. We assume that the family is regular, in other words,
the minimal angle of all the triangles is bounded from be-
low by a positive constant. However, the meshes are not as-
sumed to be quasiuniform. We define the finite element
space as

V K
h ¼ fv : v � F �1

K 2 PpðRÞg;

V h ¼ fv 2 H 1ðXÞ : vjK 2 V K
h ;K 2Thg;

where FK is the mapping function for the element K which
maps the the reference element R to element K and PpðRÞ
denotes the set of polynomials of degree up to p over R. We
assume that vhjCD

¼ 0; 8vh 2 V h. The finite element solution
uh satisfies:

Find uh 2 Vh such that

Bðuh; vhÞ ¼LðvhÞ; 8vh 2 V h: ð5Þ
2.1. Reference elements

In this work we employ the spectral/hp element spaces
defined in [16] for PpðRÞ.
For a triangular reference domain, see Fig. 1, a hierar-
chical set of basis is given as

Vertex A :
1� g1

2

1� g2

2
;

Vertex B :
1þ g1

2

1� g2

2
;

Vertex C :
1þ g2

2
;

Edge AB :
1� g1

2

1þ g1

2
P 1;1

p�1ðg1Þ
1� g2

2

� �pþ1

ð0< p< P 1Þ;

Edge AC :
1� g1

2

1� g2

2

1þ g2

2
P 1;1

q�1ðg2Þ ð0< q< P 2Þ;

Edge BC :
1þ g1

2

1� g2

2

1þ g2

2
P 1;1

q�1ðg2Þ ð0< q< P 2Þ;

Interior :
1� g1

2

1þ g1

2
P 1;1

p�1ðg1Þ
1� g2

2

� �pþ1 1þ g2

2
P 2pþ1;1

q�1 ðg2Þ;

ð0< p;q;p< P 1;pþ q< P 2;P 1 6 P 2Þ

subject to the mapping

g1 ¼ 2
1þ n1

1� n2

� 1; g2 ¼ n2;

where P a;b
p denotes pth order one-dimensional Jacobi poly-

nomials on (�1,1) with indexes a and b.
3. An element-residual a posteriori error estimator

Let e = u � uh denote the error for the finite element
solution uh. The error e satisfies the following boundary
value problem in element K

BKðe; vÞ ¼ ðf ; vÞK �BKðuh; vÞ

þ
Z

oK
vðnK � ruÞds; 8v 2 V ðKÞ; ð6Þ

where

V ðKÞ ¼ fv : v ¼ wjK ; 8w 2 V g

BKðu; vÞ ¼
Z

K
ðru � rvþ cuvÞdx

ðf ; vÞK ¼
Z

K
fv dx:

We note here that the flux on oK (last term in Eq. (6)) is, in
general, unknown and needs to be constructed. By replac-
ing the true Neumann boundary data with an approxima-
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tion gK � nK Æ $ujK, we obtain a local pure-Neumann
boundary value problem

BKð/K ; vÞ ¼ ðf ; vÞK �BKðuh; vÞ þ
Z

oK
vgK ds;

8v 2 V ðKÞ: ð7Þ

The solution /K is an approximation to the true error on
the element K. It is known that if c = 0, the equilibration
condition

ðf ; 1ÞK �BKðuh; 1Þ þ
Z

oK
gK ds ¼ 0; ð8Þ

must be satisfied by gK for the existence of a solution /K. In
[3], a stronger condition

ðf ; vÞK �BKðuh; vÞ þ
Z

oK
gKvds ¼ 0; 8v 2 V K

h ð9Þ

was used to deal with general hp finite elements, which is
obviously a sufficient condition of Eq. (8). Also, gK should
satisfy the consistency condition

X
K2Th

Z
oK

gKvds ¼
Z

CN

gvds; 8v 2 V : ð10Þ

Once the equilibrated fluxes gK are determined, we can ob-
tain a unique solution /K of the local problem (7). Let k| Æ k|
denote the global energy norm and k| Æ k|K the local one.
Based on {/K}, the upper bound of k|ek| can be guaranteed
by the following theorem.

Theorem 1 (cf. [3]). Suppose that gK are a set of equili-

brated fluxes. The global error residual can be decomposed

into local contributions

Bðe; vÞ ¼
X

K2Th

BKð/K ; vÞ; v 2 V ;

where /K 2 V(K) is the solution of the local problem (7). The

global error in the finite element approximation may be

bounded by

kjekj2 6
X

K2Th

kj/Kkj
2
K : ð11Þ
1γ

2γ

3γ

4γ

nx
N

Nγ

2 3

1 4

Fig. 2. The patches Pn and En of elements and edges influenced by the
basis function hn associated with an interior vertex located at xn.
3.1. Revisiting the Ainsworth–Oden (A–O) procedure for

flux splitting

For any K 2Th we denote by EðKÞ and NðKÞ the sets
of its edges and vertices, respectively. Let Eh ¼ [K2ThEðKÞ
and Nh ¼ [K2ThNðKÞ. We assume that all vertices in Nh

are regular nodes without hanging nodes. For each
xn 2Nh we define an element patch Pn as

Pn ¼ fK : xn 2NðKÞ; 8K 2Thg
and an edge patch En as

En ¼ fc : xn 2NðEÞ; 8E 2 Ehg:
Let En ¼ EI
n [ EN

n [ ED
n , where

EN
n ¼ fc 2 En : c � oK \ CN ;K 2 Png

ED
n ¼ fc 2 En : c � oK \ CD;K 2 Png

and EI
n ¼ En n EN

n n ED
n . We note here that there exists one-

to-one correspondence between xn and Pn.
We here focus on the fluxes for the linear shape func-

tions {hn} corresponding to interior vertices. In Fig. 2, a
patch associated with an interior vertex is shown.

Let lc
K;n ¼

R
c ghn ds denote the flux moment on edge c.

Then the equilibration condition (9) and consistency condi-
tion (10) are equivalent to the following two lemmas [7,3],
respectively.

Lemma 2. Let fhn : n 2NðKÞg be a basis for the local finite

element space V K
h on element K. The equilibration condition

(9) holds on K if and only if

X
c�oK

lc
K;n ¼ DKðhnÞ 8n 2NðKÞ; ð12Þ

with DK(v) being the element residual

DKðvÞ ¼ BKðuh; vÞ � ðf ; vÞK : ð13Þ

Lemma 3. The consistency condition (10) holds if and only if

the fluxes gK satisfy

gK ¼ g on oK \ CN

gK þ gK 0 ¼ 0 on oK \ oK 0;

which yields that

lc
K;n ¼

Z
c

ghn ds; c ¼ oK \ CN

lc
K;n þ lc

K 0 ;n ¼ 0; c ¼ oK \ oK 0:

Let ~lc
K;n ¼

R
c hnðnK � ruhjKÞds denote the approximate flux

moments. lc
K;n related to the vertex modes are selected by

the following problem [3]:

Minimize 1
2

P
K2Pn

P
c2En\oK

ðlc
K;n � ~lc

K;nÞ
2

subject to
P

c2E\oK
lc

K;n ¼ DKðhnÞ for all K 2 Pn

with lc
K;n ¼

R
c ghn ds on c 2 EN

n \ oK

and lc
K;n þ lc

K 0 ;n ¼ 0 on c 2 EI
n \ oK \ oK 0

9>>>>>>=
>>>>>>;
ð14Þ
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The problem (14) leads to the following conditions satisfied
by the Lagrange multipliers frK;n : K 2 Png (see [3] for
more details):X
K 0 :oK\oK 02EI

n

ðrK;n� rK 0 ;nÞþ 2
X

c:c\oK2ED
n

rK;n ¼ ~DKðhnÞ; 8K 2Pn;

ð15Þ
where ~DKðhnÞ are modified element residuals

~DKðhnÞ ¼ 2 BKðuh; hnÞ � ðf ; hnÞK �
Z

oK

ouX

onK

� �
hn ds

� �

and the average flux is defined as

ouX

onK

� �
¼

1
2

oun
onK
jK þ oun

onK
jK 0

� 	
c 2 EI

n \ oK \ oK 0

g c 2 EN
n \ oK

ouh
onK

c 2 ED
n \ oK:

8>><
>>:

Then the equilibrated fluxes can be expressed as

lc
K;n ¼

1
2
ðrK;n � rK 0 ;nÞ þ 1

2
ð~lc

K;n � ~lc
K 0;nÞ c 2 EI

n \ oK \ oK 0R
c ghn ds c 2 EN

n \ oK

rK;n þ ~lc
K;n c 2 ED

n \ oK:

8>><
>>:

ð16Þ
3.2. Explicit equilibrated fluxes

We denote the linear system (15) in matrix form as

Tnrn ¼ ~Dn; ð17Þ
For an interior vertex shown in Fig. 2, Tn takes the form

Tn ¼

2 �1 � � � �1

�1 2 �1 � � � 0

..

. ..
.

0 � � � �1 2 �1

�1 � � � �1 2

2
6666664

3
7777775
;

where Tn is singular with a one-dimensional kernel
dim(ker(Tn)) = 1. We note that T is a circulant matrix cor-
responding to a finite difference scheme subject to periodic
boundary conditions. The eigenvalues and eigenvectors of
such a matrix can be found in [18]. We are interested in
the explicit formulas of (rn,i � rn,i+1). It is easy to verify
that the solvability condition

P
K2Pn

~DK ¼ 0 is satisfied
due to the Galerkin projection. In [7] a procedure was pro-
posed to pick up a solution in a least-squares sense. How-
ever, such a procedure would give rise to more cost
compared to classical element residual estimators. Here
we present the equilibrated fluxes in an explicit form for
the two-dimensional case.

Lemma 4. For the patch shown in Fig. 2, the following

relations satisfy Eq. (17)

rn;i � rn;iþ1 ¼
~Dn;i �

PN�1
j¼2 ðN � jÞ~Dn;modðjþi�1;NÞ

N
; ð18Þ
where i = 1, 2, . . . ,N � 1 and

modðm;NÞ ¼
modðmþ kN ;NÞ if modðmþ kN ;NÞ 6¼ 0;

N otherwise;




with k being any integer to make m + kN > 0. Furthermore,

the relations (18) are uniquely determined by Eq. (17). From

now on, we replace the symbol Ki with i in the subscripts of
rKi ;n and ~DKi;n for convenience.

Proof. We first verify that the relations (18) satisfy the sys-
tem (17). It is easy to obtain that

�ðrn;i � rn;iþ1Þ þ ðrn;iþ1 � rn;iþ2Þ

¼
�~Dn;i þ

PN�1
j¼2 ðN � jÞ~Dn;modðjþi�1;NÞ

N

þ
~Dn;iþ1 �

PN�1
j¼2 ðN � jÞ~Dn;modðjþi;NÞ

N

¼
N ~Dn;iþ1 �

PN
j¼1

~Dn;i

N
¼ ~Dn;iþ1:

Due to symmetry, we know that all equations in system
(17) are satisfied. We next show that the relations (18)
are uniquely determined by the system (17). Let
r̂n ¼ Arn;

where

A ¼

1 �1 0 � � � 0

0 1 �1 � � � 0

..

. ..
.

0 � � � 1 �1

0 � � � 0 1

2
6666664

3
7777775
; r̂n ¼

rn;1 � rn;2

rn;2 � rn;3

..

.

rN�1 � rN

rN

2
66666664

3
77777775
:

It is easy to obtain the inverse of A as

A�1 ¼

1 1 1 � � � 1

0 1 1 � � � 1

..

. ..
.

0 � � � 1 1

0 � � � 0 1

2
6666664

3
7777775
:

Thus, the system (17) can be rewritten as

2 1 1 � � � 1 0

�1 1 0 � � � 0 0

..

. ..
.

0 � � � �1 1 0

�1 �1 � � � �2 0

2
6666664

3
7777775

r1 � r2

r2 � r3

..

.

rN�1 � rN

rN

2
66666664

3
77777775
¼

~Dn;1

~Dn;2

..

.

~Dn;N�1

~Dn;N

2
66666664

3
77777775
:
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Since dim(ker(Tn)) = 1, we only need to consider the first
N � 1 equations, which yield a linear system related to
rn,i � rn,i+1

Br̂n ¼

2 1 1 � � � 1

�1 1 0 � � � 0

..

. ..
.

0 0 � � � �1 1

2
666664

3
777775

r1 � r2

r2 � r3

..

.

rN�1 � rN

2
666664

3
777775
¼

~Dn;1

~Dn;2

..

.

~Dn;N�1

2
6666664

3
7777775
:

Since det(B) = N, the conclusion follows immediately.
To this end, we have obtained the explicit forms of

equilibrated fluxes for the interior vertex.

3.2.1. Two-dimensional flux splitting based on weighted

target functions

In [6] the non-uniqueness of equilibrated fluxes is
removed by minimizing the value of

1

2

X
K2Pn

X
c2En\oK

ðlc
K;n � ~lc

K;nÞ
2
: ð19Þ

By noting that the function hn introduces a factor l(c)
(length of c) into lc

K;n, we use a weighted version of Eq.
(19) as

1

2

X
K2Pn

X
c2En\oK

w2
i ðl

c
K;n � ~lc

K;nÞ
2
; ð20Þ

where we add weights wi into Eq. (19). In this work we
investigate a weight factor wi ¼ 1

lðcÞ with c 2 En \ oKi. By
noting that

R
c hn ds ¼ lðcÞ

2
, it is clear that we are minimizing

the difference between the mean values of true fluxes ou
onK

and numerical fluxes ouh
onK

with respect to hn along the edges
c 2 En. It was shown in [19] that such a weight factor can
improve the performance of the residual-type a posteriori
error estimator proposed in [14]. We subsequently present
the explicit equilibrated fluxes corresponding to the
weighted target function (20) and investigate the influence
of the weights on the performance of a posteriori error esti-
mator given by Theorem 1.

Following a similar procedure as in [3], we can derive the
equilibrated fluxes as

lc
K;n ¼

1
2
l2
cðrK;n� rK 0 ;nÞþ 1

2
ð~lc

K;n� ~lc
K 0;nÞ c 2 EI

n \ oK \ oK 0R
c ghn ds c 2 EN

n \ oK

l2
crK;nþ ~lc

K;n c 2 ED
n \ oK

8>><
>>:

:

ð21Þ

where rK,n must satisfy

1

2

X
c:c\oK\oK 02EI

n

l2
cðrK;n � rK 0 ;nÞ þ

X
c:c\oK2ED

n

l2
crn;i ¼ ~DKðhnÞ:

ð22Þ

For the patch Pn corresponding to an interior vertex, Tn in
Eq. (17) takes the form
Tn

¼

l2
c1
þ l2

c2
�l2

c1
� � � �l2

c1

�l2
c2

l2
c2
þ l2

c3
�l2

c3
� � � 0

..

. ..
.

0 � � � �l2
cN�1

l2
cN�1
þ l2

cN
�l2

cN

�l2
c1

� � � �l2
cN

l2
cN
þ l2

c1

2
666666664

3
777777775
:

Using the similar idea as in the proof of Lemma 4, it can be
proved that:

Lemma 5. For the patch shown in Fig. 2, the following

relations are uniquely determined by Eq. (22)

rn;i � rn;iþ1 ¼
~Dn;i �

PN�1
j¼2

~Dn;modðjþi�1;NÞH i;j

l2
c1

l2
c2

PN
i¼1

1
l2
ci

; ð23Þ

where

Hi;j ¼
XN�j

k¼1

l2
ci

l2
c

modði�k;NÞ

: ð24Þ
3.2.2. High-order equilibration conditions
We now consider the equilibration condition for the

edge modes. Due to the Galerkin projection, the high-order
equilibration actually looks trivial, see [1,3]. We here sum-
marize the results as

Lemma 6. Given an element K and edge modes hn, the

equilibrated flux moments can be expressed as

lc
K;n ¼ DK c 2 oK \ ðEI

n [ ED
n Þ;

lc
K;n ¼

Z
c

ghn ds c 2 oK \ EN
n ;

ð25Þ

where

DKðhnÞ ¼ BKðuh; hnÞ � ðf ; hnÞK : ð26Þ

Remark 7. Explicit fluxes for elements with hanging nodes.

In the adaptive mesh refinement, it is convenient to use
meshes with hanging nodes. We expect to obtain the expli-
cit forms of equilibrated fluxes for such kinds of finite ele-
ment meshes. Actually it can be done easily using the idea
of macro-element defined in [3], if we assume that there
exists at most one hanging node on an edge. The macro-
element is defined as follows (see Fig. 3 for an example
[3]): ‘‘If xn is a hanging node, the macro-element K�n ¼ K
with K being an element containing the node xn; otherwise,
K�n is the domain formed from K and elements having a
hanging node in common with K, but not containing the
node xn itself.’’

We note that there are no hanging nodes any more on
the edges of macro-elements. The point is that if we define
the element patch Pn and En using the macro-elements we
can get the explicit equilibrated fluxes on edges of the



nx
nx

Fig. 3. Left: a mesh with hanging nodes. Right: the patch Pn consisting of
macro-elements associated with vertex xn.
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macro-elements for hn using the formulas in Lemmas 4 and
5. Subsequently, we can follow the procedure given in [3]
(see Section 6.6.4) to recover explicitly the equilibrated
fluxes for edges with hanging nodes.
3.2.3. Computational cost

We consider here only the cost for the first-order equil-
ibrated fluxes, which is the dominant part for the flux equil-
ibration. We assume that the usual type of small angle
condition is satisfied and the number of elements forming
the support of any linear shape function hn is bounded
above by Npatch independently of the mesh size. To obtain
(rn,i � rn,i+1) a cost of order Npatch is needed (see Lemma
4). Using the relation rn;iþ1 � rn;iþ2 ¼ ~Dn;iþ1 þ ðrn;i � rn;iþ1Þ
recursively, we can obtain the equilibrated fluxes moments
lc

n;i for each patch by a total cost of O(2Npatch) compared
to the cost of Oð1

3
N 3

patch þ 1
2
N 2

patchÞ given in [7], where rn,i

is computed numerically. Thus, the cost can be reduced sig-
nificantly by using the explicit solutions of equilibrated flux
moments.

4. Non-homogeneous Dirichlet boundary conditions

In last section we assume that the Dirichlet boundary
conditions are homogeneous. However, the Dirichlet
boundary conditions are, in general, non-homogeneous,
which implies that the approximation error of Dirichlet
boundary conditions should be taken into account for
the a posteriori error estimate. In fact, such an error can
affect the effectiveness of a posteriori error estimators sig-
nificantly in some cases, e.g., linear finite elements. In this
work, we use the method given in [20] to decompose the
error e into two parts as

e ¼ eG þ eD;

where the Galerkin error, eG 2 H 1
0ðXÞ, satisfies

BðeG; vÞ ¼ Bðe; vÞ 8v 2 H 1
0ðXÞ ð27Þ

and the Dirichlet error, eD 2 H1(X), satisfies

BðeD; vÞ ¼ Bðe; vÞ �BðeG; vÞ ¼ 0 8v 2 H 1
0ðXÞ

eD ¼ q� qh on CD;
ð28Þ

where q and qh are the true and approximated Dirichlet
boundary conditions. Following these definitions, it can
be shown [20] that in the energy norm
kjekj2 ¼ kjeGkj2 þ kjeDkj2: ð29Þ

k|eGk| can be bounded using the equilibrated residual meth-
od described in last section; k|eDk| can be readily bounded
by

kjeDkj2 6
X

K2Th

kjwKkj
2
; ð30Þ

where wK is the solution of the local problems

BKðwK ; vÞ ¼ 0 8v 2 H 1
0ðKÞ

wK ¼
eD on oK \ CD

0 on oK n CD:


 ð31Þ

Since such local problems are solved only in the Dirichlet
boundary elements, the cost for eD is usually much smaller
than that for eG.

5. Numerical examples

In this section we demonstrate numerically the influence
of weights we put into the A–O procedure.

5.1. Efficiency for smooth solutions

We first consider a symmetric elliptic operator with a
smooth solution [1]:

�Duþ u ¼ 0 in X ð32Þ

subject to the boundary conditions

uð0; yÞ ¼ e�
ffiffiffiffiffiffiffiffiffi
1þ4p2
p

þ 1
� 	

sin 2py; 0 < y < 1=2;

uðx; 0Þ ¼ uð0; 1=2Þ ¼ 0; 0 < x < 1=2;

ou=on ¼ 0; x ¼ 1=2; 0 < y < 1=2:

ð33Þ

The true solution for this problem is

uðx; yÞ ¼ exp ðx� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

p� 	�

þ exp �x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

p� 		
sin 2py: ð34Þ

We study this problem numerically using the periodic cell
patterns [19] in Fig. 4, which consist of triangle elements.
The computation domain X is decomposed by one of these
cells periodically. We control the deformation of triangle
elements by the ratio a/b. In this work we basically check
two cases: a/b = 1 and a/b = 4. We denote the decomposi-
tion of the computation domain X by a cell matrix (M,N),
where M is the number of cells in the y-direction and N is
the number of cells in the x-direction. Thus, the total ele-
ments number is NcMN, where Nc is the number of ele-
ments in a certain cell pattern. Let k|ehk|/k|ek| be the
effectivity index, which is the ratio of estimated error over
the true error. We use Ek,s to denote the effectivity index
from the weighted fluxes and Eo,s from the A–O procedure,
where s indicates the cell patterns from (a) to (f).

For linear elements we enrich the local finite element
space V K

h ðvÞ by polynomial order 1 or 2. In Tables 1–4,
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Fig. 4. Different cell patterns consisting of triangle elements.

Table 1
Effectivity indices for cell pattern (a)–(c)

(M,N) Ek,a Eo,a Ek,b Eo,b Ek,c Eo,c

(1,1) 1.088 1.086 0.999 1.015 1.414 1.232
(2,2) 1.045 1.045 1.074 1.049 1.135 1.107
(3,3) 1.029 1.030 1.077 1.045 1.111 1.120
(4,4) 1.021 1.023 1.077 1.044 1.103 1.130

(4,1) 0.954 0.908 1.191 1.324 1.129 1.145
(8,2) 0.946 0.925 1.102 1.287 1.083 1.145

(12,3) 0.946 0.933 1.092 1.274 1.092 1.155
(16,4) 0.946 0.939 1.096 1.259 1.113 1.165

Linear elements and increment of polynomial order 1 are considered.

Table 2
Effectivity indices for cell pattern (d)–(f)

(M,N) Ek,d Eo,d Ek,e Eo,e Ek,f Eo,f

(1,1) 1.931 1.859 1.009 1.010 1.048 1.045
(2,2) 1.309 1.603 1.031 1.031 1.030 1.029
(3,3) 1.233 1.514 1.024 1.024 1.021 1.021
(4,4) 1.196 1.452 1.020 1.020 1.017 1.018

(4,1) 0.965 2.081 1.214 1.379 1.148 1.032
(8,2) 1.016 1.812 1.275 1.495 1.089 1.012

(12,3) 1.028 1.679 1.327 1.537 1.068 1.008
(16,4) 1.030 1.586 1.362 1.555 1.057 1.007

Linear elements and increment of polynomial order 1 are considered.

Table 3
Effectivity indices for cell pattern (a)–(c)

(M,N) Ek,a Eo,a Ek,b Eo,b Ek,c Eo,c

(1,1) 1.192 1.191 1.057 1.056 1.553 1.294
(2,2) 1.163 1.163 1.176 1.160 1.339 1.252
(3,3) 1.148 1.149 1.201 1.175 1.326 1.277
(4,4) 1.141 1.144 1.219 1.185 1.324 1.294

(4,1) 1.126 1.106 1.398 1.590 1.608 2.448
(8,2) 1.183 1.180 1.325 1.573 1.493 2.509

(12,3) 1.205 1.205 1.333 1.582 1.468 2.502
(16,4) 1.215 1.218 1.350 1.584 1.473 2.488

Linear elements and increment of polynomial order 2 are considered.

Table 4
Effectivity indices for cell pattern (d)–(f)

(M,N) Ek,d Eo,d Ek,e Eo,e Ek,f Eo,f

(1,1) 2.102 1.913 1.054 1.055 1.110 1.112
(2,2) 1.512 1.758 1.120 1.119 1.107 1.107
(3,3) 1.436 1.683 1.120 1.119 1.115 1.113
(4,4) 1.403 1.630 1.121 1.119 1.120 1.117

(4,1) 1.712 3.070 1.365 1.516 1.301 1.144
(8,2) 1.764 2.814 1.414 1.624 1.256 1.143

(12,3) 1.763 2.733 1.460 1.662 1.239 1.148
(16,4) 1.761 2.680 1.491 1.679 1.230 1.152

Linear elements and increment of polynomial order 2 are considered.
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we show the effectivity indices of the two a posteriori error
estimators for different linear triangulations Th given by
cell patterns (a)–(f). We observe the following:

• Both a posteriori error estimators can give asymptoti-
cally upper bounds of the error k|ek|.

• When a/b = 1, both a posteriori error estimators show
similar performance for all cell patterns (a)–(f); when
a/b = 4, the a posteriori error estimator with weights
appears more robust than that without weights, espe-
cially for the large deformation, e.g., cell patterns (b),
(d) and (e).

The first observation is due to the Theorem 1. The second
one can be explained using the target function (20). If we
use the factor 1

lðcÞ as a weight function, lc
K;n and ~lK;n will

have larger difference on a longer edge, which is reasonable
since the linear function along a longer edge usually yields



Table 5
Effectivity indices for cell pattern (a)–(c)

(M,N) Ek,a Eo,a Ek,b Eo,b Ek,c Eo,c

(1,1) 1.009 0.991 1.097 1.013 1.037 0.988
(2,2) 1.039 1.030 1.067 1.043 0.996 0.999
(3,3) 1.047 1.040 1.064 1.036 0.999 1.003
(4,4) 1.050 1.043 1.062 1.033 1.002 1.006

(4,1) 0.925 0.920 1.038 1.042 1.172 1.148
(8,2) 0.951 0.927 1.080 1.039 1.215 1.237

(12,3) 0.964 0.932 1.099 1.035 1.227 1.259
(16,4) 0.972 0.936 1.112 1.032 1.232 1.271

Spectral/hp elements and increment of polynomial order 2 are considered.
Due to p-convergence, sixth-order polynomials are used for pattern (a)
while eighth-order polynomials are used for pattern (b) and (c).

Table 7
Overall performance of the two a posteriori error estimators for the
smooth problem

a/b = 1 a/b = 4

Ek Eo Ek Eo

Increment 1 for V K
h ðvÞ (Linear elements)

Mean 1.127 1.148 1.095 1.277
Std. 0.200 0.225 0.115 0.311

Increment 2 for V K
h ðvÞ (Linear elements)

Mean 1.257 1.258 1.414 1.806
Std. 0.229 0.237 0.193 0.652

Increment 2 for V K
h ðvÞ (Spectral/hp elements)

Mean 1.031 1.017 1.124 1.100
Std. 0.032 0.020 0.090 0.112
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a larger approximation error. Thus, weights in Eq. (20)
may have a large influence on the robustness of the a pos-
teriori error estimator for the linear elements.

For spectral/hp elements we enrich the local finite
element space V K

h ðvÞ by polynomial order 2. In Tables 5
and 6, we show the effectivity indices for the spectral/hp ele-
ments. It can be seen that the two posteriori error estima-
tors show similar performance for all different cell
patterns and different deformation, which implies that for
spectral/hp elements the flux lc

K;n will be mainly determined
by the numerical approximation 1

2
ð~lc

K;n � ~lc
K 0 ;nÞ and the

equilibration parts 1
2
ðrK;n � rK 0 ;nÞ or 1

2
l2
cðrK;n � rK 0;nÞ

becomes less important compared to the linear elements.
Thus, the a posteriori error estimators are not sensitive to
the weights in Eq. (20) due to the fast p-convergence in
spectral/hp elements.

To give an overall measurement of the performance of
the two a posteriori error estimators, we show some statis-
tics in Table 7. We compute the mean and standard devia-
tion of the effectivity index for the deformation a/b = 1 and
a/b = 4. It can be seen that for the linear elements both
mean and standard deviation of Ek are smaller than those
of Eo, which implies that the weights in Eq. (20) improve
effectively the robustness of a posteriori error estimator.
For the spectral/hp elements, Ek and Eo show similar mean
and standard deviation.
Table 6
Effectivity indices for cell pattern (d)–(f)

(M,N) Ek,d Eo,d Ek,e Eo,e Ek,f Eo,f

(1,1) 0.998 1.006 1.032 1.008 1.062 1.023
(2,2) 0.988 0.991 1.020 1.017 1.061 1.035
(3,3) 0.984 0.989 1.019 1.017 1.059 1.039
(4,4) 0.982 0.988 1.019 1.018 1.059 1.041

(4,1) 1.118 1.245 1.173 1.075 1.150 1.070
(8,2) 1.157 1.245 1.190 1.083 1.157 1.084

(12,3) 1.168 1.238 1.191 1.086 1.157 1.090
(16,4) 1.176 1.231 1.190 1.087 1.155 1.093

Spectral/hp elements and increment of polynomial order 2 are considered.
Due to p-convergence, sixth-order polynomials are used for pattern (e)
and (f) while eighth-order polynomials are used for pattern (d).
5.2. Singular solution: the Motz problem

We now consider the Motz problem (see Fig. 5):

Du ¼ 0 in X ð35Þ
subject to the boundary conditions

uðr; pÞ ¼ 0; 0 < r < 1; ou=on ¼ 0; 0 < r < 1; h ¼ 0:

ð36Þ

On the rest of the boundary oX we use the exact solution

uðr; hÞ ¼ r1=2 cos
1

2
h

� �
ð37Þ

as the Dirichlet boundary condition. For this problem
there exist a singular point at the origin.

To study this problem we focus on the cell pattern (b) in
Fig. 4. We set B4C/B4B2 = 0.9 and V1B4/V1V4 = 0.2. Let
V1B1/V1V2 = a. We change the value of a to control the
deformation of the elements. The domain X is decomposed
by a cell matrix (2,8), which yields 128 elements. It was
shown in [1] that for such a singular problem a large incre-
ment of polynomial order in the local finite element space
V K

h is necessary to get good error estimates. In this work,
we consider an increment up to 4.

In Fig. 6 we plot the effectivity indices Ek and Eo versus
the value of a for linear and quadratic elements with differ-
ent increments in the local finite element space V K

h . It is seen
θθ
2

1
cos),( 2/1rru =

r
θ

0=
∂
∂
n
u

0=u

Fig. 5. Geometry and boundary conditions for the Motz problem.
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Table 8
Effectivity indices for different meshes when B4C/B4B2 = 0.9, V1B4/
V1V4 = 0.2 and V1B1/V1V2 = 0.001

Mesh p = 1 p = 2

Ek Eo Ek Eo

(a) 1.453 1.729 3.217 3.213
(b) 1.216 2.381 1.112 2.467
(c) 1.283 3.135 1.081 1.327
(d) 1.278 2.495 1.514 1.641
(e) 1.251 5.331 1.137 1.620
(f) 1.307 3.193 1.081 1.326

The increments are 2 and 4 for p = 1 and p = 2, respectively, in the local
finite element space V K

h .
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that for the linear elements Eo increases as a decreases
while Ek remains almost the same (less than 2). For an
increment of 4, Eo > 10 for a = 0.001, which means that
Eo overestimates the error by an order. For this case, the
weights improve the efficiency of the a posteriori error esti-
mator significantly.

Similar behavior is observed for the quadratic elements.
However, for this case Eo increases much slower as a

decreases, which implies that if the numerical boundary
fluxes are more accurate the error estimator will be less sen-
sitive to the equilibration of boundary fluxes. We note that
for this case an increment of 4 is necessary for Ek to give an
upper bound of the true error.

We study next the dependence of the a posteriori error
estimators on the meshes. We set B4C/B4B2 = 0.9, V1B4/
V1V4 = 0.2 and a = 0.001. The effectivity indices for differ-
ent meshes are shown in Table 8. It is seen that the weights
can, in general, improve the efficiency of the a posteriori
error estimator for a large deformation, especially in linear
elements.
6. Summary

In this paper we presented explicit formulas of the equil-
ibrated fluxes used in the flux-type a posteriori error esti-
mators and investigated a different target function for the
equilibrated fluxes. We applied the obtained a posteriori
error estimator to elliptic problems with smooth and singu-
lar solutions. The numerical studies show that for large ele-
ment deformation and low-order polynomials the new
equilibrated fluxes are, in general, more robust. For spec-
tral/hp elements with high-order polynomials, it is less
important how to choose the equilibrated fluxes due to
the p-convergence. Since the cost for the equilibrated fluxes
is reduced significantly, the a posteriori error estimator
given in [6] can be adopted into the adaptive spectral/hp

element method more efficiently. However, we obtain only
the explicit formulas for the two-dimensional case. In the
three-dimensional case, the equilibrated fluxes for edge
functions can be obtained using the same formulas for
the two-dimensional vertex functions. It is still not clear
how to obtain explicitly the equilibrated fluxes for three-
dimensional vertex functions. One possible way to simplify
the procedure is to hybrid the procedures of implicit a pos-
teriori error estimates and equilibrated fluxes, in other
words, we can first impose mean fluxes on some faces to
make the singular matrices for the vertex functions the
same as those for two-dimensional vertex functions. Then
we can get the explicit equilibrated fluxes using the formu-
las in this work. Since we pick up one choice of the equil-
ibrated fluxes, we should obtain an asymptotically
guaranteed error bound. However, the performance of
the obtained equilibrated fluxes needs to be studied
numerically.
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