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Abstract

This paper presents explicit equilibrated fluxes for the local pure-Neumann problems used by the a posteriori error estimator in Ains-
worth and Oden [M. Ainsworth, J.T. Oden, A procedure for a posteriori error estimation for s#—p finite element methods, Comput. Meth-
ods Appl. Mech. Engrg. 101 (1992) 73-96]. We modify the target function for minimization to obtain new equilibrated fluxes in a
weighted form. We investigate the performance of the new equilibrated fluxes in two-dimensional spectral/Ap element approximations
of an elliptic equation using conforming triangle elements. The new fluxes appear more robust and lead to substantial computational
savings compared to the original numerical procedure in Ainsworth and Oden [Ainsworth and Oden et al., 1992].

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A posteriori error estimation has become an important
tool in the finite element method, as it can be used to con-
trol the numerical errors and guide goal-oriented mesh
adaptivity strategies. Many a posteriori error estimators
have been developed (see [2-4] and references therein),
which are mainly based on the residual method [5-9] or
on the recovery method [10,11]. Recently, a new approach
referred to as goal-oriented error estimation has been
developed, which measures the error of a linear functional
of the solution rather than the usual energy norm (see
[3,12,13] and references therein).

Among the residual type a posteriori error estimators
the equilibrated method [6,7] is now accepted as the most
effective one, as it can be applied reliably to /p finite ele-
ment methods. The equilibrated residual method is based
on the solutions of local Neumann type boundary-value
problems, where the proper flux boundary conditions are
usually obtained by post-processing the finite element
approximation. Such an idea goes back to the work in

E-mail address: xlwan@dam.brown.edu

0045-7825/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2007.08.015

[14,15,8]. In this paper we investigate the performance of
the equilibrated residual method proposed in [6,7] for the
spectral/hp element method [16]. To obtain consistent flux
conditions a singular linear system needs to be solved. In
[7], a numerical procedure was proposed. To avoid solving
such a singular linear system numerically, we derive the
equilibrated fluxes in an explicit form for the two-dimen-
sional finite elements. We subsequently introduce some
weights [17] into the target function for minimization and
obtain new equilibrated fluxes in a weighted form. We
compare the performance of the new fluxes with that given
in [6] using elliptic problems with smooth and singular
solutions. It appears that the new fluxes are less sensitive
to the deformation of the finite elements with low-order
polynomials; for p-version finite elements it is not so
important how to determine the equilibration because the
approximation solution can provide a good approximation
of flux. Furthermore, the cost for the equilibrated fluxes is
reduced to O(Npacn) for each interior vertex, where Npatch
is the number of elements forming the support of the cor-
responding linear shape function.

This paper is organized as follows: in the next section we
present the model problem and provide the polynomial
space used in this work. In Section 3, we derive explicit
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equilibrated fluxes for the procedure given in [6] and pro-
pose a weighted target function to determine the flux equil-
ibration. We study the new a posteriori error estimator
numerically in Section 5. We summarize and conclude
our work in Section 6.

2. Model problem and its discretization
Let Q C R* be a bounded domain with a Lipschitz

boundary 0Q. We consider the following elliptic bound-
ary-value problem:

—du+cu=f inQ, (1a)
Ou

8 on Ty, (1b)
u=0 on Ip, (1c)

where the boundary segments I'y and I'p are disjoint with
I'y UT'p = 0Q and c is a nonnegative constant. We assume
that f€ L,(Q2) and g € L,(I'y) guarantee a unique solution
u. Let

V={veH"(Q):v], =0}

The weak form for the model problem (1a) is to find u € V'
such that

Bu,v) = L(v) WoeV, 2)
where

B, v) = /Q (Vu - Vo + cuv)dx (3)
and

g(u):/gfvdx—i-/mgvds. (4)

Let 7, be a family of triangulations of @ with straight
edges. We assume that the family is regular, in other words,
the minimal angle of all the triangles is bounded from be-
low by a positive constant. However, the meshes are not as-
sumed to be quasiuniform. We define the finite element
space as

VE={v:voF € 2,(R)},

Vi={ve H(Q):v|, € VE K € T,},

where Fy is the mapping function for the element K which
maps the the reference element R to element K and 2,(R)
denotes the set of polynomials of degree up to p over R. We
assume that v, r, = 0,0, € V). The finite element solution

uy, satisfies:
Find u,, € V), such that

,@(uh,vh) = e?(Uh), Yo, € V. (5)
2.1. Reference elements

In this work we employ the spectral/Ap element spaces
defined in [16] for Z,(R).

C;<1,71>§ Ca-vt ' D:ay

CB,
— >
— >
E.J]
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Fig. 1. Mapping between triangular elements and the reference element.

For a triangular reference domain, see Fig. 1, a hierar-
chical set of basis is given as
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where P‘;'ﬂ denotes pth order one-dimensional Jacobi poly-
nomials on (—1,1) with indexes o and f.

3. An element-residual a posteriori error estimator

Let ¢ =u — u;, denote the error for the finite element
solution u;,. The error e satisfies the following boundary
value problem in element K

gK(ev U) = (fa U)K - QK(M}H 1))
—|—/ v(ng - Vu)ds, Yve V(K), (6)
oK

where
V(IK)y={v:v=w|,VweT}
By (u,v) = /K(Vu - Vv + cuv)dx
(f,0), = /fvdx.
K
We note here that the flux on 0K (last term in Eq. (6)) is, in

general, unknown and needs to be constructed. By replac-
ing the true Neumann boundary data with an approxima-
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tion gx~ ng-Vulg, we obtain a local pure-Neumann
boundary value problem

Be(bi0) = (f10)5 — B () + / vgx s,

oK

Yo € V(K). (7)

The solution ¢ is an approximation to the true error on
the element K. It is known that if ¢ =0, the equilibration
condition

(fvl)K_%K(uhal)"i_‘/a ngSZOa (8>

must be satisfied by gx for the existence of a solution ¢. In
[3], a stronger condition

(fvv)K_'%K(uhaU)‘F/ gxvds =0, YveVy 9)
0K

was used to deal with general /p finite elements, which is
obviously a sufficient condition of Eq. (8). Also, gx should
satisfy the consistency condition

Z / gdes:/ gvds, YveV. (10)
oK I'y

KeT) V¢

Once the equilibrated fluxes gx are determined, we can ob-
tain a unique solution ¢ of the local problem (7). Let ||| - |||
denote the global energy norm and ||| - |||x the local one.
Based on { ¢k}, the upper bound of |||e||| can be guaranteed
by the following theorem.

Theorem 1 (cf. [3]). Suppose that g are a set of equili-
brated fluxes. The global error residual can be decomposed
into local contributions

vevrl,

B(e,v) = Z Br(Px,v),

KeT,,

where ¢x € V(K) is the solution of the local problem (7). The
global error in the finite element approximation may be
bounded by

llell” < D~ Melllx- (11)

KeT,,

3.1. Revisiting the Ainsworth—Oden (A-O) procedure for
flux splitting

For any K € 7, we denote by §(K) and A"(K) the sets
of its edges and vertices, respectively. Let &, = Uges, 6 (K)
and A", = Uger, A (K). We assume that all vertices in .47,
are regular nodes without hanging nodes. For each
x, € A", we define an element patch 2, as

2, =1{K :x,€ NV (K),VK € T}
and an edge patch &, as
gn = {'y L X, c (/‘/‘(E),VE (= é"h},

Let &, = & U &Y U &P, where
& ={ye&,:yCKNIy,Ke2,}
co‘(’nD:{yeg,,yCGKﬂFD,Ke?n}

and &' = &,\ &\ 7. We note here that there exists one-
to-one correspondence between x, and Z2,.

We here focus on the fluxes for the linear shape func-
tions {0,} corresponding to interior vertices. In Fig. 2, a
patch associated with an interior vertex is shown.

Let uy, = /. g0,ds denote the flux moment on edge 7.

Then the equilibration condition (9) and consistency condi-
tion (10) are equivalent to the following two lemmas [7,3],
respectively.

Lemma 2. Let {0, : n € A(K)} be a basis for the local finite
element space V& on element K. The equilibration condition
(9) holds on K if and only if

D Hia = 4x(0,) Vne N (K), (12)
yCOK

with Ax(v) being the element residual
Ax(v) = B (up,v) — (f,0)- (13)

Lemma 3. The consistency condition (10) holds if and only if
the fluxes gx satisfy

gk =g onoKnNIy
gx+8r =0 ondKNoK',
which yields that

,u",V(_’n:/gG,,ds, y=0K NIy

M, + M, =0, 7 =0KNK"

Let fi, = f/ 0,(ng - V| )ds denote the approximate flux
moments. i, related to the vertex modes are selected by
the following problem [3]:

> (e = )’

KEPy yeb,NoK

. .
Minimize 5 )

subject to > uk, = A4x(6,) forall K € 2,
yeENOK '

with tn = [,g0,ds onye &) NOK

and M+, =0 onye & NOKNAK

(14)

Fig. 2. The patches 2, and &, of elements and edges influenced by the
basis function 0, associated with an interior vertex located at x,,.



570 X. Wan | Comput. Methods Appl. Mech. Engrg. 197 (2008) 567-576

The problem (14) leads to the following conditions satisfied
by the Lagrange multipliers {ox,: K € 2,} (see [3] for
more details):

Z (UKn_GK/_’n)‘i’z Z GK,n:ZK(Gn), VKGQ’”
K':0KNOK'e&?, yynoKes?
(15)

where Ay (0,) are modified element residuals

AK(gn) - 2 QK(uhven) - (,f; en)[( _/ <2ﬂ>6n dS:|
L ok \Ong

and the average flux is defined as

ou %(aa,‘,‘; Kt o K,> 7 € &, NOKNK
X
<an,<>: g y €& NOK

o 7€ EYNOK.

Then the equilibrated fluxes can be expressed as
%(O-K‘n - O-K',n) +%(ﬁ}(ﬂ - :ZL;(’,,,) s € 6;11 NOoK N aK/
J, &0 ds y€ &Y NoK
Ok + Tl y € &P NOK.
(16)

-
:ul( N/

3.2. Explicit equilibrated fluxes

We denote the linear system (15) in matrix form as

T,0, = A, (17)
For an interior vertex shown in Fig. 2, T, takes the form
2 1 . -1
-1 2 -1 0
T, = ,
0 -1 2 -1
-1 -1 2

where T, is singular with a one-dimensional kernel
dim(ker(7,)) = 1. We note that 7T is a circulant matrix cor-
responding to a finite difference scheme subject to periodic
boundary conditions. The eigenvalues and eigenvectors of
such a matrix can be found in [18]. We are interested in
the explicit formulas of (6,; — 0,+1). It is easy to verify
that the solvability condition ), y”A~K =0 is satisfied
due to the Galerkin projection. In [7] a procedure was pro-
posed to pick up a solution in a least-squares sense. How-
ever, such a procedure would give rise to more cost
compared to classical element residual estimators. Here
we present the equilibrated fluxes in an explicit form for
the two-dimensional case.

Lemma 4. For the patch shown in Fig. 2, the following
relations satisfy Eq. (17)

~ N-1 N
A — Z‘j:Z (N — J)An,m(jﬂ—l,N)
N )

(18)

Oni — Opirl —

wherei=1,2,...,N—1 and
mod(m + kN, N) if mod(m + kN,N) # 0;

mod(m,N) = .
( ) {N otherwise,

with k being any integer to make m + kN > 0. Furthermore,
the relations (18) are uniquely determined by Eq. (17). From
now on, we replace the symbol K; with i in the subscripts of
ok,» and Ay, , for convenience.

Proof. We first verify that the relations (18) satisfy the sys-
tem (17). It is easy to obtain that

*(Gn,i - O-n,iJrl) + (O-n,H»l - Gn,i+2)

~ N-1 N
B —A,; + ijz (N _J)An,ﬁ(ﬁ—i—lw)
o N
~ N-1 N
Apiv1 — Z_/zz (N _‘])Amﬁ(jﬁ»i,N)
* N

NZ‘n,i+1 - § :;\Izlzlnj ~
= = An,H—I-
N

Due to symmetry, we know that all equations in system
(17) are satisfied. We next show that the relations (18)
are uniquely determined by the system (17). Let

&n = AO',,,
where
1 -1 0 0 [ 01— 02 |
0 1 -1 0 Op2 — O0p3
A = 3 &n =
0 1 -1 ON-1 — ON
0 0 1 L oy ]
It is easy to obtain the inverse of 4 as
1 1 1 1
0 1 1 1
A =
0 11
0 0 1
Thus, the system (17) can be rewritten as
2 1 1 1 01[oi—a2 | [4du ]
-1 1 0 0 0|]|02—03 A
0 -1 1 0| ]|oy1—on Aun-i
-1 -1 =2 0] |oay | | Aoy |
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Since dim(ker(7,)) =1, we only need to consider the first
N — 1 equations, which yield a linear system related to
O-n,i - O-n,i+1

2 1 1 o] o) — 02 Z"’ﬂl

-1 1 0 O] o2—0s Az
Bé, = -

0 0o --- —1 1 ON—1 — ON Z‘n,N*l

Since det(B) = N, the conclusion follows immediately.
To this end, we have obtained the explicit forms of
equilibrated fluxes for the interior vertex.

3.2.1. Two-dimensional flux splitting based on weighted
target functions

In [6] the non-uniqueness of equilibrated fluxes is
removed by minimizing the value of

_Z Z :uKn .“Kn . (19)

Ke?, ye&,noK

By noting that the function 6, introduces a factor [(y)
(length of y) into uy,, we use a weighted version of Eq.
(19) as

—Z > Wi, -

KEP, y€6,nK

Fica)’s (20)

where we add weights w; into Eq (19). In this work we
investigate a weight factor w; = V) with y € £, N 0K;. By
noting that f 0,ds = =Z, it is clear that we are minimizing
the difference between the mean values of true fluxes ai“
and numerical fluxes a“h with respect to 0, along the edges
y € &,. It was shown in [19] that such a weight factor can
improve the performance of the residual-type a posteriori
error estimator proposed in [14]. We subsequently present
the explicit equilibrated fluxes corresponding to the
weighted target function (20) and investigate the influence
of the weights on the performance of a posteriori error esti-
mator given by Theorem 1.

Following a similar procedure as in [3], we can derive the
equilibrated fluxes as

1B (okn = 0xra) +3 (g, — iy ,) 7 € E,NOKNOK'

tic, =< J,g0nds 7 €&V NOK
Lo+ Ik, y €6 NOK
(21)
where og,, must satisfy
% Z lf(O’K‘n — 0xra) + Z l')z,van‘i = Ag(0,).
7:yNOKNAK’ €6, y:yNOK €SP
(22)

For the patch 2, corresponding to an interior vertex, T, in
Eq. (17) takes the form

T,
r2 2 2 2T
l"V] + l‘/z _1“/'1 o _l“fl
2 2 2 2
_l“/z l + lh _11’3 o 0
0 e =L L +L =D
N-1 IN-1 N N
P - P P+
- 1 N N 7 -

Using the similar idea as in the proof of Lemma 4, it can be
proved that:

Lemma 5. For the patch shown in Fig. 2, the following
relations are uniquely determined by Eq. (22)

- No1~
A — 2/:2 AnHmH N)Hzlj

Opi — Opitl = Zz 12 ZN Kl ) (23)
nonsi=ln
where
N—j 12
H . = Vi (24)
ij P .
k=1 Vod(i—kN

3.2.2. High-order equilibration conditions

We now consider the equilibration condition for the
edge modes. Due to the Galerkin projection, the high-order
equilibration actually looks trivial, see [1,3]. We here sum-
marize the results as

Lemma 6. Given an element K and edge modes 0, the
equilibrated flux moments can be expressed as

e, =Ax 7 €K N(EUE),

) 25
,u}'(‘n:/ge,,ds yeang’nV, (25)
where
Ak (0,) = B (un, 0,) — (f,0n) - (26)

Remark 7. Explicit fluxes for elements with hanging nodes.
In the adaptive mesh refinement, it is convenient to use
meshes with hanging nodes. We expect to obtain the expli-
cit forms of equilibrated fluxes for such kinds of finite ele-
ment meshes. Actually it can be done easily using the idea
of macro-element defined in [3], if we assume that there
exists at most one hanging node on an edge. The macro-
element is defined as follows (see Fig. 3 for an example
[3]): “If x, is a hanging node, the macro-element K, = K
with K being an element containing the node x,,; otherwise,
K is the domain formed from K and elements having a
hanging node in common with K, but not containing the
node x,, itself.”

We note that there are no hanging nodes any more on
the edges of macro-elements. The point is that if we define
the element patch 2, and &, using the macro-elements we
can get the explicit equilibrated fluxes on edges of the



572 X. Wan | Comput. Methods Appl. Mech. Engrg. 197 (2008) 567-576

Fig. 3. Left: a mesh with hanging nodes. Right: the patch 2, consisting of
macro-elements associated with vertex x,,.

macro-elements for 0, using the formulas in Lemmas 4 and
5. Subsequently, we can follow the procedure given in [3]
(see Section 6.6.4) to recover explicitly the equilibrated
fluxes for edges with hanging nodes.

3.2.3. Computational cost

We consider here only the cost for the first-order equil-
ibrated fluxes, which is the dominant part for the flux equil-
ibration. We assume that the usual type of small angle
condition is satisfied and the number of elements forming
the support of any linear shape function 0, is bounded
above by N, independently of the mesh size. To obtain
(Oni— Opi+1) & cost of order Np,en is needed (see Lemma
4). Using the relation 6,11 — 0pir2 = dpis1 + (0ni — Oniv1)
recursively, we can obtain the equilibrated fluxes moments
1, for each patch by a total cost of O(2Npucn) compared
to the cost of OGN}, +3Noy) given in [7], where a,,;
is computed numerically. Thus, the cost can be reduced sig-
nificantly by using the explicit solutions of equilibrated flux
moments.

4. Non-homogeneous Dirichlet boundary conditions

In last section we assume that the Dirichlet boundary
conditions are homogeneous. However, the Dirichlet
boundary conditions are, in general, non-homogeneous,
which implies that the approximation error of Dirichlet
boundary conditions should be taken into account for
the a posteriori error estimate. In fact, such an error can
affect the effectiveness of a posteriori error estimators sig-
nificantly in some cases, ¢.g., linear finite elements. In this
work, we use the method given in [20] to decompose the
error e into two parts as

e =eg +ep,

where the Galerkin error, eq € Hy (<), satisfies

Bleg,v) = Ble,v) Vv H(Q) (27)
and the Dirichlet error, ey, € H'(Q), satisfies

Bep,v) = B(e,v) — Bleg,v) =0 Vv € Hy(Q)

(28)
ep=4¢g—gq, onlp,

where ¢ and ¢, are the true and approximated Dirichlet
boundary conditions. Following these definitions, it can
be shown [20] that in the energy norm

llell* = llleall” + llleolI* (29)

llesll| can be bounded using the equilibrated residual meth-
od described in last section; |||epl||| can be readily bounded
by

llenlll> < D vl (30)

KeTy,
where / is the solution of the local problems
Bx(Yy,v) =0 Vv Hy(K)
ep onoKNIp (31)
Yy = 0

on 0K \ I'p.
Since such local problems are solved only in the Dirichlet
boundary elements, the cost for e is usually much smaller
than that for eg.

5. Numerical examples

In this section we demonstrate numerically the influence
of weights we put into the A—O procedure.

5.1. Efficiency for smooth solutions

We first consider a symmetric elliptic operator with a
smooth solution [1]:

—Au+u=0 in Q (32)

subject to the boundary conditions
u(0,y) = (e*v e 1) sin2my, 0<y<1/2,

u(x,0) = u(0,1/2) =0, 0<x<1/2, (33)
ou/on=0, x=1/2, 0<y<1/2.

The true solution for this problem is
u(x,y) = (exp ((x - Dv1+4 4n2)
Texp (—x\/l n 4n2)) sin 27y. (34)

We study this problem numerically using the periodic cell
patterns [19] in Fig. 4, which consist of triangle elements.
The computation domain 2 is decomposed by one of these
cells periodically. We control the deformation of triangle
elements by the ratio a/b. In this work we basically check
two cases: a/b =1 and a/b = 4. We denote the decomposi-
tion of the computation domain Q by a cell matrix (M,N),
where M is the number of cells in the y-direction and N is
the number of cells in the x-direction. Thus, the total ele-
ments number is N.MN, where N, is the number of ele-
ments in a certain cell pattern. Let ||le,||l/||le]|] be the
effectivity index, which is the ratio of estimated error over
the true error. We use E; , to denote the effectivity index
from the weighted fluxes and E, ; from the A—O procedure,
where s indicates the cell patterns from (a) to (f).

For linear elements we enrich the local finite element
space V) (v) by polynomial order 1 or 2. In Tables 1-4,
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a b "N& ioe \
b B, B,
c
a v, B, v,
d e f

Fig. 4. Different cell patterns consisting of triangle elements.

Table 1 Table 3

Effectivity indices for cell pattern (a)—(c) Effectivity indices for cell pattern (a)—(c)

(M, N) Era Eou Erp E,» Ey. E,. (M, N) Era Eou Erp E,p Ei. E,.
(1,1) 1.088 1.086 0.999 1.015 1.414 1.232 (1,1) 1.192 1.191 1.057 1.056 1.553 1.294
(2,2) 1.045 1.045 1.074 1.049 1.135 1.107 (2,2) 1.163 1.163 1.176 1.160 1.339 1.252
(3,3) 1.029 1.030 1.077 1.045 1.111 1.120 (3,3) 1.148 1.149 1.201 1.175 1.326 1.277
(4,4) 1.021 1.023 1.077 1.044 1.103 1.130 (4,4) 1.141 1.144 1.219 1.185 1.324 1.294
(4,1) 0.954 0.908 1.191 1.324 1.129 1.145 (4,1) 1.126 1.106 1.398 1.590 1.608 2.448
(8,2) 0.946 0.925 1.102 1.287 1.083 1.145 (8,2) 1.183 1.180 1.325 1.573 1.493 2.509

(12,3) 0.946 0.933 1.092 1.274 1.092 1.155 (12,3) 1.205 1.205 1.333 1.582 1.468 2.502

(16,4) 0.946 0.939 1.096 1.259 1.113 1.165 (16,4) 1.215 1.218 1.350 1.584 1.473 2.488

Linear elements and increment of polynomial order 1 are considered.

Linear elements and increment of polynomial order 2 are considered.

Table 2 Table 4

Effectivity indices for cell pattern (d)—(f) Effectivity indices for cell pattern (d)—(f)

(M,N) Epq E,q Ep, E,. Er E,, (M, N) Epq E,q Ep. E,. E. s E,s
(1,1) 1.931 1.859 1.009 1.010 1.048 1.045 (1,1) 2.102 1.913 1.054 1.055 1.110 1.112
(2,2) 1.309 1.603 1.031 1.031 1.030 1.029 (2,2) 1.512 1.758 1.120 1.119 1.107 1.107
(3,3) 1.233 1.514 1.024 1.024 1.021 1.021 (3,3) 1.436 1.683 1.120 1.119 1.115 1.113
(4,4) 1.196 1.452 1.020 1.020 1.017 1.018 (4,4) 1.403 1.630 1.121 1.119 1.120 1.117
(4,1) 0.965 2.081 1.214 1.379 1.148 1.032 (4,1) 1.712 3.070 1.365 1.516 1.301 1.144
(8,2) 1.016 1.812 1.275 1.495 1.089 1.012 (8,2) 1.764 2.814 1.414 1.624 1.256 1.143

(12,3) 1.028 1.679 1.327 1.537 1.068 1.008 (12,3) 1.763 2.733 1.460 1.662 1.239 1.148

(16,4) 1.030 1.586 1.362 1.555 1.057 1.007 (16,4) 1.761 2.680 1.491 1.679 1.230 1.152

Linear elements and increment of polynomial order 1 are considered.

we show the effectivity indices of the two a posteriori error
estimators for different linear triangulations .7, given by
cell patterns (a)—(f). We observe the following:

e Both a posteriori error estimators can give asymptoti-
cally upper bounds of the error |||e]||.

e When a/b = 1, both a posteriori error estimators show
similar performance for all cell patterns (a)—(f); when
a/b =4, the a posteriori error estimator with weights

Linear elements and increment of polynomial order 2 are considered.

appears more robust than that without weights, espe-
cially for the large deformation, e.g., cell patterns (b),
(d) and (e).

The first observation is due to the Theorem 1. The second
one can be explained using the target function (20). If we
use the factor ; ) as a weight function, pj, and jix, will
have larger dlﬂerence on a longer edge, which is reasonable
since the linear function along a longer edge usually yields
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Table 5

Effectivity indices for cell pattern (a)—(c)

(M, N) Ep. E,q Epp E,p Ey. E,.
(1,1) 1.009 0.991 1.097 1.013 1.037 0.988
(2,2) 1.039 1.030 1.067 1.043 0.996 0.999
(3.,3) 1.047 1.040 1.064 1.036 0.999 1.003
(4,4) 1.050 1.043 1.062 1.033 1.002 1.006
(4,1) 0.925 0.920 1.038 1.042 1.172 1.148
(8,2) 0.951 0.927 1.080 1.039 1.215 1.237

(12,3) 0.964 0.932 1.099 1.035 1.227 1.259

(16,4) 0.972 0.936 1.112 1.032 1.232 1.271

Spectral/hp elements and increment of polynomial order 2 are considered.
Due to p-convergence, sixth-order polynomials are used for pattern (a)
while eighth-order polynomials are used for pattern (b) and (c).

a larger approximation error. Thus, weights in Eq. (20)
may have a large influence on the robustness of the a pos-
teriori error estimator for the linear elements.

For spectral/hp elements we enrich the local finite
element space V7 (v) by polynomial order 2. In Tables 5
and 6, we show the effectivity indices for the spectral//ip ele-
ments. It can be seen that the two posteriori error estima-
tors show similar performance for all different cell
patterns and different deformation, which implies that for
spectral/ip elements the flux uj , will be mainly determined
by the numerical approximation i (fiy, — fi,,) and the
equilibration  parts 3 (ox, — 0x,) Or 3L (0ks — 0xs)
becomes less important compared to the linear elements.
Thus, the a posteriori error estimators are not sensitive to
the weights in Eq. (20) due to the fast p-convergence in
spectral/hp elements.

To give an overall measurement of the performance of
the two a posteriori error estimators, we show some statis-
tics in Table 7. We compute the mean and standard devia-
tion of the effectivity index for the deformation a/b = 1 and
a/b=4. Tt can be seen that for the linear elements both
mean and standard deviation of Ej are smaller than those
of E,, which implies that the weights in Eq. (20) improve
effectively the robustness of a posteriori error estimator.
For the spectral/hp elements, E;, and E, show similar mean
and standard deviation.

Table 6

Effectivity indices for cell pattern (d)—(f)

(M, N) Eia Eyq Epe Eoe Err E,z
(1,1) 0.998 1.006 1.032 1.008 1.062 1.023
(2,2) 0.988 0.991 1.020 1.017 1.061 1.035
(3,3) 0.984 0.989 1.019 1.017 1.059 1.039
(4,4) 0.982 0.988 1.019 1.018 1.059 1.041
(4,1) 1.118 1.245 1.173 1.075 1.150 1.070
(8,2) 1.157 1.245 1.190 1.083 1.157 1.084

(12,3) 1.168 1.238 1.191 1.086 1.157 1.090

(16,4) 1.176 1.231 1.190 1.087 1.155 1.093

Spectral/hp elements and increment of polynomial order 2 are considered.
Due to p-convergence, sixth-order polynomials are used for pattern (e)
and (f) while eighth-order polynomials are used for pattern (d).

Table 7
Overall performance of the two a posteriori error estimators for the
smooth problem

alb=1 alb=4

E; E, E; E,
Increment 1 for VK (v) (Linear elements)
Mean 1.127 1.148 1.095 1.277
Std. 0.200 0.225 0.115 0.311
Increment 2 for VK (v) (Linear elements)
Mean 1.257 1.258 1.414 1.806
Std. 0.229 0.237 0.193 0.652
Increment 2 for VK (v) (Spectrallhp elements)
Mean 1.031 1.017 1.124 1.100
Std. 0.032 0.020 0.090 0.112
5.2. Singular solution: the Motz problem

We now consider the Motz problem (see Fig. 5):
Au=0 1in Q (35)
subject to the boundary conditions
u(r,m)=0, 0<r<l1, Ou/on=0, 0<r<l1, 0=0.
(36)

On the rest of the boundary 0Q we use the exact solution
1/2 1
u(r,0) =r'/*cos z() (37)

as the Dirichlet boundary condition. For this problem
there exist a singular point at the origin.

To study this problem we focus on the cell pattern (b) in
Flg 4. We set B4C/B4Bz =0.9 and V]B4/V1 V4 =0.2. Let
ViBi/V1V,=a. We change the value of a to control the
deformation of the elements. The domain Q2 is decomposed
by a cell matrix (2,8), which yields 128 elements. It was
shown in [1] that for such a singular problem a large incre-
ment of polynomial order in the local finite element space
VX is necessary to get good error estimates. In this work,
we consider an increment up to 4.

In Fig. 6 we plot the effectivity indices Ej and E, versus
the value of a for linear and quadratic elements with differ-
ent increments in the local finite element space V5 . It is seen

u(r,0)=r" COS%G

6

u
< =0 —><——=0—

on

Fig. 5. Geometry and boundary conditions for the Motz problem.
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Fig. 6. Effectivity index versus the deformation of linear elements for the Motz problem. Left: p = 1; Right: p = 2.

Table 8
Effectivity indices for different meshes when B4C/B4B>=0.9, V B4/
Vl V4 =0.2 and VlBl/Vl Vz =0.001

Mesh p=1 p=2
Ek Ea Ek Eo

(a) 1.453 1.729 3.217 3.213
(b) 1.216 2.381 1.112 2.467
(c) 1.283 3.135 1.081 1.327
(d) 1.278 2.495 1.514 1.641
(e) 1.251 5.331 1.137 1.620
(f) 1.307 3.193 1.081 1.326

The increments are 2 and 4 for p =1 and p = 2, respectively, in the local
finite element space V.

that for the linear elements E, increases as a decreases
while E; remains almost the same (less than 2). For an
increment of 4, E,> 10 for « = 0.001, which means that
E, overestimates the error by an order. For this case, the
weights improve the efficiency of the a posteriori error esti-
mator significantly.

Similar behavior is observed for the quadratic elements.
However, for this case E, increases much slower as a
decreases, which implies that if the numerical boundary
fluxes are more accurate the error estimator will be less sen-
sitive to the equilibration of boundary fluxes. We note that
for this case an increment of 4 is necessary for Ej to give an
upper bound of the true error.

We study next the dependence of the a posteriori error
estimators on the meshes. We set B4C/BsB>=10.9, V B4/
V1V4=0.2 and a = 0.001. The effectivity indices for differ-
ent meshes are shown in Table 8. It is seen that the weights
can, in general, improve the efficiency of the a posteriori
error estimator for a large deformation, especially in linear
elements.

6. Summary

In this paper we presented explicit formulas of the equil-
ibrated fluxes used in the flux-type a posteriori error esti-
mators and investigated a different target function for the

equilibrated fluxes. We applied the obtained a posteriori
error estimator to elliptic problems with smooth and singu-
lar solutions. The numerical studies show that for large ele-
ment deformation and low-order polynomials the new
equilibrated fluxes are, in general, more robust. For spec-
tral/hp elements with high-order polynomials, it is less
important how to choose the equilibrated fluxes due to
the p-convergence. Since the cost for the equilibrated fluxes
is reduced significantly, the a posteriori error estimator
given in [6] can be adopted into the adaptive spectral/hp
element method more efficiently. However, we obtain only
the explicit formulas for the two-dimensional case. In the
three-dimensional case, the equilibrated fluxes for edge
functions can be obtained using the same formulas for
the two-dimensional vertex functions. It is still not clear
how to obtain explicitly the equilibrated fluxes for three-
dimensional vertex functions. One possible way to simplify
the procedure is to hybrid the procedures of implicit a pos-
teriori error estimates and equilibrated fluxes, in other
words, we can first impose mean fluxes on some faces to
make the singular matrices for the vertex functions the
same as those for two-dimensional vertex functions. Then
we can get the explicit equilibrated fluxes using the formu-
las in this work. Since we pick up one choice of the equil-
ibrated fluxes, we should obtain an asymptotically
guaranteed error bound. However, the performance of
the obtained equilibrated fluxes needs to be studied
numerically.
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