
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2017-0025

Vol. 23, No. 2, pp. 408-439
February 2018

An hp-Adaptive Minimum Action Method Based on

a Posteriori Error Estimate

Xiaoliang Wan1,∗, Bin Zheng2 and Guang Lin3

1 Department of Mathematics, Center for Computation and Technology, Louisiana
State University, Baton Rouge 70803, USA.
2 Pacific Northwest National Laboratory, Richland, WA 99352, USA.
3 Department of Mathematics & School of Mechanical Engineering, Purdue
University, West Lafayette, IN 47907, USA.

Received 27 January 2017; Accepted (in revised version) 9 May 2017

Abstract. In this work, we develop an hp-adaptivity strategy for the minimum action
method (MAM) using a posteriori error estimate. MAM plays an important role in
minimizing the Freidlin-Wentzell action functional, which is the central object of the
Freidlin-Wentzell theory of large deviations for noise-induced transitions in stochastic
dynamical systems. Because of the demanding computation cost, especially in spa-
tially extended systems, numerical efficiency is a critical issue for MAM. Difficulties
come from both temporal and spatial discretizations. One severe hurdle for the appli-
cation of MAM to large scale systems is the global reparametrization in time direction,
which is needed in most versions of MAM to achieve accuracy. We recently introduced
a new version of MAM in [22], called tMAM, where we used some simple heuristic cri-
teria to demonstrate that tMAM can be effectively coupled with h-adaptivity, i.e., the
global reparametrization can be removed. The target of this paper is to integrate hp-
adaptivity into tMAM using a posteriori error estimation techniques, which provides a
general adaptive MAM more suitable for parallel computing. More specifically, we use
the zero-Hamiltonian constraint to define an indicator to measure the error induced by
linear time scaling, and the derivative recovery technique to construct an error indica-
tor and a regularity indicator for the transition paths approximated by finite elements.
Strategies for hp-adaptivity have been developed. Numerical results are presented.

AMS subject classifications: 60H35, 65C20, 65N20, 65N30

Key words: Large deviation principle, small random perturbations, minimum action method,
rare events, uncertainty quantification.

∗Corresponding author. Email addresses: xlwan@math.lsu.edu (X. Wan), Bin.Zheng@pnnl.gov (B. Zheng),
guanglin@purdue.edu (G. Lin)

http://www.global-sci.com/ 408 c©2018 Global-Science Press



X. Wan, B. Zheng and G. Lin / Commun. Comput. Phys., 23 (2018), pp. 408-439 409

1 Introduction

Small random perturbations of dynamical systems can introduce rare but important
events, e.g., the transitions between different stable equilibrium states of a determinis-
tic dynamical system. Such noise-induced transitions have been observed on both small
and large scales, and are critical in many physical, biological and chemical systems. Ex-
amples include nucleation events of phase transitions, chemical reactions, regime change
in climate, conformation changes of biomolecules, hydrodynamic instability, etc.

The Freidlin-Wentzell (F-W) theory of large deviations provides a rigorous mathe-
matical framework to understand the transitions induced by small noise in general dy-
namical systems. The key object of the F-W theory of large deviations is the F-W action
functional, and the critical quantities are the minimizer of the F-W action functional and
the associated minimum value. Starting from [8], the large deviation principle given by
the F-W theory has been approximated numerically, and the numerical methods are, in
general, called minimum action method (MAM).

Consider an ordinary differential equations perturbed by small white noise

dXt=b(Xt)dt+
√

εdWt , (1.1)

where ε is a small positive parameter. We are interested in two types of problems:

Problem I : inf
φ(0)=x1,
φ(T)=x2

[

ST(φ)=
1

2

∫ T

0
|φ̇−b(φ)|2dt

]

(1.2)

and
Problem II : V(x1,x2)= inf

T>0
inf

φ(0)=x1,
φ(T)=x2

ST(φ), (1.3)

where x1 and x2 are two points in the phase space, ST(φ) is called the action functional,
and V(x1,x2) the quasi-potential from point x1 to x2. Here φ(t) is a transition path con-
necting x1 and x2 on the time interval [0,T]. The minimizers of Problem I and II character-
ize the difficulty of the noise-induced transition from x1 to the vicinity of x2, see Eqs. (2.4)
and (2.5). In Problem I, the transition is restricted to a certain time scale T, which is re-
laxed in Problem II. Let φ∗(t) be the minimizer of either Problem I or Problem II, which is
also called the minimal action path (MAP), or the instanton in physical literature related
to path integral. From the application point of view, solving Problem I and II is impor-
tant. For example, the minimizer of F-W action functional can be used to construct an
asymptotically efficient estimator in important sampling, where optimization problems
like Problem I and II need to be solved effectively [5, 17]. The MAM can help to explore
a high-dimensional phase space [18, 27]. Another example is the nonlinear instability of
wall-bounded shear flows, which can be modelled as a rare event of Navier-Stokes equa-
tions perturbed by small noise [20,23]. The most probable transition path provides useful
information that is difficult or impossible to obtain in a deterministic way.
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The original MAM given in [8] was for Problem I, where the action functional is dis-
cretized by the finite difference method and the optimization problem is solved by the
L-BFGS method. From then on, many efforts have been made to obtain an effective MAM
for Problem II. One main difficulty is that the quasi-potential will be achieved at an op-
timal integration time T∗=∞ if there exists at least one critical point on the MAP from
x1 to x2. Assume that Problem II can be well approximated by assigning a fixed but
sufficiently large T when T∗=∞. If we discretize the time interval [0,T] uniformly, it is
observed that along the path most grid points are clustered around the critical points due
to the slow dynamics there. Only a few grid points can contribute to capture the MAP,
which is mainly determined by fast dynamics. We call this a problem of clustering.

The problem of clustering was alleviated by geometric MAM (gMAM) [13], and adap-
tive MAM (aMAM) [26], which was improved recently by coupling WENO interpolation
in [28]. The formulations of aMAM and gMAM are quite different. First of all, aMAM
is formulated with respect to time while gMAM is formulated with respect to normal-
ized arc length through a change of variable. GMAM assumes that the total arc length of
the MAP is finite although T∗=∞. Second, aMAM redistributes the grid points every a
number of iteration steps by moving some grid points from the region of slow dynamics
to the region of fast dynamics such that the non-equidistant time mesh is nearly uniform
with respect to arc length while gMAM uses a uniform mesh with respect to arc length.
Both aMAM and gMAM have some limitations. First, aMAM works for Problem I and
partially for Problem II while gMAM works for Problem II only. AMAM is not able to
deal with Problem II with a finite T∗ since T must be prescribed. In gMAM, the integra-
tion time is determined by a mapping between time and arc length, implying that gMAM
does not work for Problem I where T can be arbitrarily chosen. Second, both aMAM and
gMAM need global reparametrization, which can become a bottleneck of parallel com-
puting [21] and limit the application of MAM especially in spatially extended systems.
A more flexible MAM is then expected, where both Problem I and II can be dealt with
and the global reparametrization is not needed. The tMAM developed in [22] shows that
such an MAM can be achieved. In tMAM, the action functional is formulated with re-
spect to time and the discretization is based on finite element method [19]. The key idea
of tMAM is to generate a sequence of T’s to approximate T∗ though optimal linear time
scaling and h-type adaptivity, i.e., element refinement.

One common component in all MAMs formulated with respect to time is adaptiv-
ity [19, 22, 26]. Furthermore, all the adaptivity criteria are based on the simple physical
intuition that the region of fast dynamics should be well resolved. However, the effec-
tiveness of physically based adaptivity criteria is often limited from the algorithm point
of view because they are not able to provide an accurate error or regularity estimate. In
this paper, we intend to construct rigorous adaptivity criteria for MAM that are consis-
tent with the approximation theory. More specifically, we use a posteriori error estima-
tion techniques to measure the quality of the mesh given by finite element discretization,
which results in an hp-adaptive tMAM. The adaptivity is used to control two types of ap-
proximation errors: model approximation and path approximation. The model approxi-
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mation indicates the assumption that Problem II can be well approximated by a sequence
of finite integration time T’s when T∗=∞. The path approximation indicates the finite
element discretization of the MAP [19]. For the error of model approximation, we use the
deviation from the surface H(φ,p)=0 (see Eq. (2.24)) to define an error indicator [13,22].
For the error of path approximation, we use the derivative recovery technique of adap-
tive finite element method to define an elementwise error indicator and an elementwise
regularity indicator. The error indicator helps to choose the elements for refinement, and
the regularity indicator decides that h-refinement or p-refinement should be employed.
Here h-refinement means to reduce the element size while p-refinement means to increase
the polynomial order. We choose the derivative recovery technique mainly based on the
following two observations: 1) The Euler-Lagrange equation associated with the action
functional is a nonlinear elliptic equation, and 2) The derivative recovery technique does
not depend on the nonlinearity of the system, which makes it more flexible and general.

For both Problem I and II, we rescale the time interval from ΓT=[0,T] to Γ1=[0,1] by a
simple linear scaling τ=t/T. Then the solutions of Problem I and Problem II with a finite
T∗ will be defined on the space H1(Γ1;Rn). For Problem II with an infinite T∗, a com-
monly used strategy is to use a finite but large T for approximation. We will show that
in our formulation T does not need to be explicitly given. Instead, the discrete problem
can find an optimal T, which is always finite and depends on the finite element mesh.
This can be regarded as a regularization provided by discretization. This way, we only
need to focus on how to choose a sequence of finite element meshes on Γ1. The error
indicators will be defined on H1(Γ1;Rn). For Problem I and Problem II with a finite T∗,
the adaptive MAM is effective because the solution, which may have interior layers if T
or T∗ is large, is located in H1(Γ1;Rn). For problem II with an infinite T∗, the adaptive
MAM also works very well although the solution is not located in H1(Γ1;Rn). This is
because the adaptive finite element meshes can generate a minimizing sequence and the
main approximation errors are from the region of fast dynamics subject to a finite tran-
sition time. The convergence of the minimizing sequence is addressed in [25]. We will
demonstrate numerically that the h-adaptive MAM can recover the optimal convergence
rate O(N−2p) with respect to the error of action functional and the hp-adaptive MAM
can recover the exponential convergence.

This paper is organized as follows. We briefly review the minimum action method
with optimal linear time scaling in Section 2. We then develop our adaptivity strategy in
Section 3. Numerical results are given in Section 4 followed by a discussion section.

2 Minimum action method (MAM)

2.1 The large deviation principle (LDP)

We consider small random perturbations of a dynamical system. The random process
Xt =X(t) : R+→R

n is defined by the following stochastic ordinary differential equation
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(SODE):
dX(t)=b(X)dt+

√
εσ(X)dW(t), (2.1)

where W is a standard Wiener process in R
n and ε is a small positive parameter. We as-

sume that the drift vector b and the diffusion tensor α=σσT are bounded and uniformly
continuous, and α is uniformly elliptic, i.e., there exist C>0 such that 〈v,α(x)v〉≥C|v|2,
for any v∈R

n. In other words, for any x∈R
n, α(x) is symmetric and positive definite

(SPD). Here 〈·,·〉 indicates the inner product of two vectors and |·| the ℓ2 norm. For any
u,v,x∈R

n, we define a new inner product 〈u,v〉α=
〈

u,α−1(x)v
〉

, and the associated norm

|u|α = 〈u,u〉1/2
α .

Let φ(t)∈R
n be an absolutely continuous function defined on t∈ [0,T]. The Freidlin-

Wentzell theory of large deviations [12] asserts that the probability of X passing the δ-
tube about φ(t) on [0,T] is

Pr( sup
0≤t≤T

|X(t)−φ(t)|<δ)≈exp(−ε−1ST(φ)) (2.2)

when ε is small enough, and ST(φ) is called the action functional defined as

ST(φ)=
1

2

∫ T

0
|φ̇−b(φ)|2αdt=

1

2
〈φ̇−b(φ),φ̇−b(φ)〉α,t , (2.3)

where φ̇ indicates the derivative with respect to t and the subscript t indicates the inte-

gration with respect to t∈ [0,T]. We also define a weighted L2 norm ‖u‖α,t = 〈u,u〉1/2
α,t for

u(t)∈R
n, and t∈ [0,T]. The fact given in Eq. (2.2) implies the large deviation principle

(LDP), which says that the probability of some random events can be estimated asymp-
totically if the noise amplitude is small enough. For example, if A is a Borel subset in R

n,
we have the LDP that

lim
ε↓0

εlogPr(X(0)= x,X(T)∈A)=− inf
φ(0)=x,
φ(T)∈A

ST(φ), (2.4)

which means that the transition probability from x to A at time T is determined asymp-
totically by the minimizer of the action functional.

When ε ↓0, the time scale of some events will increase exponentially, e.g., exit of the
domain of attraction of a stable equilibrium. We then need to generalize the fact that T is
finite in Eq. (2.4) and define the quasi-potential between two points x1,x2∈R

n

V(x1,x2)= inf
T>0

inf
φ(0)=x1,
φ(T)=x2

ST(φ). (2.5)

The probabilistic meaning of the quasi-potential (2.5) is as follows

V(x1,x2)= lim
T→∞

lim
δ↓0

lim
ε↓0
−εlogPr(τδ≤T), (2.6)
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where τδ is the first entrance time of the δ-neighborhood of x2 for the process Xt start-
ing from x1. In other words, the quasi-potential V(x1,x2) characterizes the difficulty of
passage from x1 to a small neighborhood of x2. For example, let x1 and x2 be two stable
equilibrium states, then we have the LDP [12] that

lim
δ↓0

lim
ε↓0

εlogPr(transition from x1 to Bδ(x2))=−V(x1,x2), (2.7)

where Bδ(x2) is a ball with radius δ and center x2. It is seen that the LDPs given in
Eqs. (2.4) and (2.6) define Problem I and II, respectively.

2.2 A MAM based on optimal linear time scaling (tMAM)

In this section, we define our numerical strategy for approximating Problem I and II. The
approximation space will be given by finite elements. Since we focus on algorithm in this
work, the related convergence issues will be summarized into two assumptions.

2.2.1 Approximation space for transition paths

Consider the time interval ΓT = [0,T], where T is finite. The approximation space will
be defined on Γ1 = [0,1] with respect to a linearly scaled variable τ = t/T. Consider a
partition of Γ1

Th : 0=τ0<τ1< ···<τN =1.

Let R= [−1,1] be a reference element and Fei
an affine mapping from the element ei =

[τi,τi+1], i = 0,1,··· ,N−1, to the reference element R. Then in each element ei, we can
define a linear space spanned by polynomials

W
(p)
ei

={v : v◦F−1
ei
∈Pp(R)}, (2.8)

where Pp(R) denotes the set of polynomials of degree up to p over R. In particular, we
choose Pp(R)=span{ψ̂i(τ̂)}m

i=0, where

ψ̂i(τ̂)=































1− τ̂

2
, i=0,

1+ τ̂

2
, i=1,

1− τ̂

2
1+τ̂

2 P1,1
i−2(τ̂), 2≤ i≤m,

(2.9)

where P1,1
i (τ̂) denotes orthogonal Jacobi polynomials of degree i with respect to the

weight function (1− τ̂)(1+ τ̂) [14]. Note the polynomial order of ψ̂i is equal to i for i≥2.
For the partition Th, we define the following finite element approximation space

W
(p)
h =

{

v : v∈R
n,vi∈H1(Γ1),vi|e j

∈W
(p)
e j

,v(0)= x1,v(1)= x2

}

⊂H1(Γ1;Rn), (2.10)
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where i=1,··· ,n, and j=0,··· ,N−1, and the regularity requirement is due to the definition
of action functional.

It is seen that W
(p)
h consists of piecewise polynomials up to degree p and associated

with the partition Th. ψ̂0(τ̂) and ψ̂1(τ̂) are consistent with linear finite element basis, and
ψ̂i(τ̂), 2≤ i≤m, are introduced for high-order approximation. Note that ψ̂i(±1)= 0 for
2≤ i≤m. We call ψ̂0(τ̂) and ψ̂1(τ̂) boundary modes, and ψ̂i(τ̂), 2≤ i≤m, interior modes.
According to the definition of the finite element basis (2.9), we have dual convergence
paths: h- and p-convergence.

2.2.2 Two assumptions

It is seen in Section 2.1 that the critical issue for the application of the quasi-potential is
to address the following optimization problem, i.e., Problem II

V(x1,x2)=ST∗(φ
∗)= min

T∈R
+,

φ(0)=x1,
φ(T)=x2

[

ST(φ)=
1

2
‖φ̇−b(φ)‖2

α,t

]

, (2.11)

where the minimizer φ∗ subject to the optimal transition time T∗ is the minimal action
path (MAP). T∗ can be finite or infinite, depending on x1, x2 and the structure of the
phase space. For instance, if either x1 or x2 is a critical point, then T∗=∞. To approxi-
mate the quasi-potential, all transition paths will be approximated by the finite element

space W
(p)
h , which will always correspond to a finite optimal integration time (see Lemma

2.1). We have two related convergence issues, both of which are from commonly used
techniques in numerical approximation. We summarize them into two assumptions.

The first assumption is from truncation, where a large but finite integration time is
used to deal with the case that T∗ = ∞. This assumption has been used in [15, 26] for
algorithm construction.

Assumption 2.1. Consider the transition from x1 to x2 in the phase space. If T∗=∞ for the
quasi-potential V(x1,x2), we assume that {(Tk,φ∗k )}∞

k=1 provides a minimizing sequence
and {φ∗k} contains a subsequence that converges to φ∗ with respect to an appropriate
norm, where {Tk} is an increasing sequence going to ∞ and φ∗k is the minimizer of STk

(φ).

Let
V(t,x1,x2)= min

φ(0)=x1,
φ(t)=x2

St(φ).

The Hamilton-Jacobi equation for V(t,x1,x2) takes the form [1]

∂V

∂t
+H(φ,∇φV)=0,

where H(φ,p) is the Hamiltonian, see Eq. (2.22). If T∗=∞, the Hamilton-Jacobi equa-
tion has a steady solution. Assumption 2.1 can be regarded as that the Hamilton-Jacobi
solution evolves up to a large but finite time.
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From the definition of action functional, it is seen that the rescaled MAP φ∗ should
be searched in H1(Γ1;Rn) if T is prescribed. For numerical approximation, we need a
subspace of H1(Γ1;Rn), which introduces our second assumption.

Assumption 2.2. Let Ŵβ⊂H1(Γ1;Rn) and Ŵβ→H1(Γ1;Rn) as β→0, where β should be

regarded as a parameter indicating the convergence of Ŵβ to H1(Γ1;Rn) (For a fixed p,

if we choose W
(p)
h defined in Section 2.2.1, the parameter β can be regarded as h). Let

φ∗β and T∗β be the approximations of φ∗ and T∗, respectively, where φ∗∈H1(Γ1;Rn), and

φ∗β∈Ŵβ. We assume that φ∗β→φ∗ as β→0.

Assumption 2.2 is a very general assumption, which basically says that the numerical
solution φ∗β is consistent with the direct approximation of φ∗ given by Ŵβ. The main

reason that we make such an assumption is that the convergence analysis of MAM has
not been fully implemented although many versions of discretization have been devel-
oped, including finite difference method [9,26] and finite element method [19]. So far the
development of MAM has been mainly focused on the problem of clustering induced by
the case that T∗=∞, which corresponds to the fact that the Euler-Lagrange equation is a
singularly perturbed problem for a large T (see Eq. (3.2)). Hence, a uniform discretization
does not have the optimal convergence rate. The main goal of this paper is to recover the
optimal convergence rate more effectively through adaptivity.

2.2.3 Generate a minimizing sequence by optimal linear time scaling

We rewrite the action functional with respect to the rescaled time τ= t/T [22]

ST(φ)=
T

2

∥

∥

∥
T−1φ′(τ)−b(φ)

∥

∥

∥

2

α,τ
, (2.12)

where φ′(τ) is the derivative with respect to τ. According to Assumption 2.1, we can
consider the following constrained optimization problem

min
T∈[0,M],
φ(0)=x1,
φ(1)=x2

ST(φ), (2.13)

where M is a large but finite number. If the minimizer is not reached at the boundary
T=M, the following optimality conditions should be satisfied:

∂ST

∂T
=0,

δST

δφ
=0, (2.14)

where we used functional derivative in the second equation. It is easy to see that for any
given φ, ∂ST/∂T=0 has a unique solution [22]

T= T̂(φ)=
‖φ′‖α,τ

‖b(φ)‖α,τ

. (2.15)
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Then problem (2.13) can be simplified as

min
φ(0)=x1,
φ(1)=x2

ST̂(φ)(φ), (2.16)

where the optimality condition with respect to T is enforced. This simplification is true if
T∗ is finite since there always exists an M>T∗. However, when T∗=∞, the minimizer of
problem (2.13) will be reached at T=M, which makes the linear scaling not valid.

To verify the effectiveness of linear scaling for the case that T∗=∞, we need to look

into the discrete version of problem (2.16). Let φh∈W
(p)
h be an approximation of φ, where

we fixed p (this does not affect our following argument). We write the discrete version of
problem (2.16) as

min
φh(0)=x1,
φh(1)=x2

ST̂(φh)
(φh). (2.17)

The key observation is the following lemma [25]:

Lemma 2.1. If φ∗h ∈W
(p)
h is a (local) minimizer of problem (2.17), we have

T̂(φ∗h)<∞. (2.18)

Proof. We argue by contradiction. Note that

T̂2(φ∗h)=
‖(φ∗h)′‖2

α,τ

‖b(φ∗h)‖2
α,τ

≤
supτ∈[0,1]‖α−1(φ∗h)‖‖(φ∗h)′‖2

τ

‖b(φ∗h)‖2
α,τ

≤C
supτ∈[0,1]‖α−1(φ∗h)‖‖φ∗h‖2

τ

‖b(φ∗h)‖2
α,τ

,

where the last inequality is from the inverse inequality of finite element discretization and
the constant C only depends on mesh [6]. Due to the properties of α and the continuity
of φh, supτ∈[0,1]‖α−1‖<∞. If T̂(φ∗h)=∞, we have two possible cases: ‖b(φ∗h)‖α,τ = 0 or

‖φ∗h‖τ =∞. The first case implies that φ∗h is a fixed point almost everywhere for τ∈ [0,1],
which is not true. The second case implies that φ∗h must go to infinity somewhere due to
the continuity. It is reasonable to assume that infinity is not a saddle point, which means
that this case is also impossible if φ∗h is a (local) minimizer.

Since T̂(φ∗h)<∞, problem (2.17) is well defined. In other words, although problems
(2.13) and (2.16) are, in general, not equivalent, their discrete versions are equivalent in
the sense that there always exists an M such that M> T̂(φ∗h). Thus, the discrete version
of the original problem (2.11), i.e.,

min
T∈R

+,
φh(0)=x1,
φh(T)=x2

ST(φh) (2.19)
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can only reach its minimum at a finite time although T∗=∞, i.e., Lemma 2.1 establishes
the equivalence between problems (2.19) and (2.17). It can be shown that T̂(φ∗h) goes to
infinity as the mesh is refined, see Remark 2.1 for an example. This way, we do not need
to choose M explicitly as in problem (2.13). Instead we consider a sequence of refined
meshes for problem (2.17), and obtain a minimizing sequence {(T̂(φ∗h),φ∗h)} as h goes to
zero.

Remark 2.1. Consider a special case that φh is defined on a quasi-uniform mesh, and α

is an identity matrix, and b(φ) is linear with respect to φ. We have

T̂(φ∗h)=
‖
(

φ∗h
)′‖τ

‖b(φ∗h)‖τ
∼ ‖

(

φ∗h
)′‖τ

‖φ∗h‖τ
∼ 1

h
<∞,

where h−1 is from the inverse inequality of finite element discretization. For this case,
T̂(φ∗h) is of O(h−1), and goes to infinity as h→0.

Remark 2.2. According to Assumption 2.1, we assume that φ∗h→φ∗ with respect to a

proper norm. From the proof of Lemma 2.1, it is seen that T̂(φ∗h)→∞ implies ‖
(

φ∗h
)′‖τ→

∞ since ‖b(φ∗h)‖α,τ>0. This means that φ∗ /∈H1(Γ1;Rn) although φ∗h∈H1(Γ1;Rn) for any
h, which is not surprising since we are not able to implement linear scaling on an infinite
time interval. So the convergence of φ∗h to φ∗ needs to be addressed in a larger space than
H1(Γ1;Rn), e.g., the space of absolutely continuous functions [25].

2.2.4 The zero-Hamiltonian constraint

Although we can use problem (2.17) to generate a minimizing sequence, the fact that
problem (2.16) is not well defined for T∗=∞ implies that the minimizer φ∗ should satisfy
a stronger condition than the optimal linear time scaling. Consider a change of variable
in general, say s= s(t), we have (see Lemma 3.1, Ch. 4 in [12])

ST(φ)≥S(φ̃)=
∫ s(T)

s(0)
(|φ̃′|α|b|α−〈φ̃′,b〉α)ds, (2.20)

where φ̃(s)=φ(t(s)), φ̃′ is the derivative with respect to s, and the equality holds if the
mapping from t to s is given by the condition

|φ̇|α = |b(φ)|α, ∀t. (2.21)

Another way to obtain this constraint is to consider the Hamiltonian

H(φ,p)= 〈b(φ),p〉+ 1

2
〈p,αp〉, (2.22)

which is obtained from the Legendre transform of the Lagrangian

L(φ,φ̇)=
1

2
〈φ̇−b(φ),φ̇−b(φ)〉α (2.23)
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with respect to φ̇. Since the Hamiltonian does not depend on time, we know it is a first
integral, i.e., H≡ cnst. If x1 and x2 are located on a trajectory of the unperturbed system,
the minimizer φ∗ is nothing but the trajectory implying that p= ∂L

∂φ̇
=α−1(φ̇−b(φ))=0

and H(φ,p)=0. We then have

H

(

φ,
∂L

∂φ̇

)

=
1

2
〈φ̇,φ̇〉α−

1

2
〈b(φ),b(φ)〉α =0, (2.24)

which yields the constraint (2.21). We refer to it as zero-Hamiltonian constraint in this
paper. According to Maupertuis’ principle of least action, the minimizer φ∗ can be found
in the geometrically fixed curves lying on the surface H(φ,p)=0 and connecting x1 and
x2 [1], where the geodesic lines are defined by the metric ds= |φ̇|αdt= |b(φ)|αdt. Instead
of using transition paths parametrized by time, the gMAM uses the geodesic lines on the
surface H(φ,p)=0 [13].

It is easy to see that the functional T̂(φ) is consistent with the constraint H=0 for any
fixed T. Note that if

∣

∣

∣

∣

dφ

dt

∣

∣

∣

∣

α

=

∣

∣

∣

∣

dφ

dτ

∣

∣

∣

∣

α

T−1= |b(φ)|α , ∀τ∈ [0,1],

we can obtain T= T̂(φ) by integrating both sides on Γ1. This means that if T∗ is finite, it
can be recovered by φ∗ as T∗= T̂(φ∗).

The deviation of φ∗h (the solution of problem (2.17)) from the surface H(φ,p) = 0 is
twofold: First, φh cannot satisfy Eq. (2.21) pointwisely due to the non-differentiation of
boundary modes (see Eq. (2.9)). Second, when T∗=∞ the integration time is truncated
by the optimal linear time scaling enforced in problem (2.17). However, as the mesh is
refined, the deviation from the surface H(φ,p) = 0 should decrease. Since H = 0 is a
necessary condition satisfied by the MAP φ∗, we also want to minimize the deviation of
φ∗h from the surface H(φ,p)=0 through mesh refinement.

2.2.5 An outline of our algorithm

To this end, we are able to provide an outline of our algorithm:

(1) Choose an approximation space W
(p)
h for φh.

(2) Solve the discrete problem (2.17) to obtain φ∗h .

(3) Examine the quality of the mesh. Refine the mesh and go to step (2).

The loop generated by step (2) and (3) will be stopped when a certain criterion is reached.
The rest of this paper will focus on step (3). In particular, we will consider hp-refinement
of the mesh.
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3 An hp-adaptive tMAM

3.1 Properties of dynamics

We first derive the Euler-Lagrange equation of problem (2.17), and then illustrate the
necessity of adaptivity using a typical scenario for noise-induced transitions.

Lemma 3.1. The Euler-Lagrange equation of problem (2.17) is

T̂−1
(

α−1(T̂−1φ′h−b)
)′
+

(

(∇φh
b)Tα−1− 1

2
BT

)

(T̂−1φ′h−b)=0. (3.1)

Here B∈R
n×n satisfies

δ
(

α−1
)

(T̂−1φ′h−b)=Bδφh,

where δ
(

α−1
)

∈R
n×n is the linear perturbation of α−1 subject to a perturbation function δφh∈

R
n. For a fixed integration time, we can replace T̂ with T.

Proof. Let δφh be a arbitrary perturbation function with δφh(0)= δφh(1)= 0. Let δT̂ be
the first-order variation of T̂(φh) and δ(α−1) be the linear perturbation of the matrix α−1.
Let f = T̂−1φ′h−b. Then the linear part of ŜT̂(φh+δφh)

(φh+δφh)−ŜT̂(φh)
(φh) is

δŜT̂ = T̂〈 f ,δ f 〉α,τ+
1

2
T̂〈 f ,δ(α−1) f 〉τ+

1

2
δT̂〈 f , f 〉α,τ .

Substituting δ f=T̂−1δφ′h−T̂−2φ′hδT̂−∇φh
bδφh and δ(α−1) f=Bδφh, we have δŜT̂= I1+I2,

where I2 includes all terms related to δT̂. We have

I2=
1

2
δT̂〈 f , f 〉α,τ−δT̂〈 f ,T̂−1φ′h〉α,τ

=−1

2
δT̂(T̂−2‖φ′h‖2

α,τ−‖b‖2
α,τ)=0,

where we used Eq. (2.15). I1 can be expressed as

I1= 〈 f ,δφ′h〉α,τ− T̂〈 f ,∇φh
bδφh〉α,τ+

1

2
T̂〈 f ,Bδφh〉τ

=−〈(α−1 f )′,δφh〉τ− T̂〈(∇φh
b)T(α−1) f ,δφh〉τ+

1

2
T̂〈BT f ,δφh〉τ,

where integration by parts is applied. Due to the arbitrariness of δφh, δŜT̂ =0 yields that

(α−1 f )′+ T̂

(

(∇φh
b)T(α−1)− 1

2
BT

)

f =0.

The proof is completed.
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Let α= I with I being an identity matrix. The E-L equation (3.1) becomes

T̂−2φ′′h + T̂−1
(

(∇φh
b)T−∇φh

b
)

φ′h−(∇φh
b)Tb=0, (3.2)

which corresponds to a nonlocal nonlinear elliptic boundary value problem. If T∗=∞,
we know that T̂(φ∗h)→∞ as h→0. Then Eq. (3.2) should have similar properties with the
following singularly perturbed equation

ǫ2φ′′+ǫ
(

(∇φb)T−∇φb
)

φ′−(∇φb)Tb=0,

where 0 < ǫ ≪ 1. It is well known that a singularly perturbed problem has inter-
nal/boundary layers, which need to be resolved by adaptivity, i.e., fine mesh in the
internal/boundary layers and coarse mesh elsewhere. For our problem, the inter-
nal/boundary layers are related to critical points.

Consider a MAP φ∗1→s from a fixed point x1 to a saddle point xs without any other
critical points along the MAP. Apparently, the dynamics is slow around x1 and xs, and
fast elsewhere. Let φ∗T,1→s be an approximation of φ∗1→s given by a finite T. With respect
to the scaled parameter τ∈[0,1], we have the following picture of φ∗T,1→s. When T is large
enough, the zero-Hamiltonian constraint should hold approximately, i.e.,

T−1|(φ∗T,1→s)
′|α≈|b(φ∗T,1→s)|α, ∀τ. (3.3)

In the region of fast dynamics, |b(φ∗T,1→s)|α =O(1), which implies that |(φ∗T,1→s)
′|α =

O(T). In other words, the time taken in the region of fast dynamics is O(T−1). Then, on
the time interval [0,1], we can have an internal boundary layer of width O(T−1), which
contributes most to the transition and must be well resolved.

3.2 Indicators of hp-adaptivity

When we move from the original problem (2.11) to the discrete problem (2.17), we include
two types of approximation:

• Model approximation: When T∗ is finite, the optimal linear time scaling is a global
effect of the zero-Hamiltonian constraint defined pointwisely. However, this is not
true for the case that T∗=∞. We regard the deviation from the surface H(φ,p)=0
as the error of model approximation.

• Path approximation: We use problem (2.17) to generate a minimizing sequence.
When T∗ = ∞, there always exists a larger integration time such that the corre-
sponding MAP yields a smaller action. We regard the deviation of current MAP
from the MAP given by a larger integration time as error of path approximation
(see Remark 3.1).
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To measure the quality of the numerical MAP, we will define an error indicator for
each type of approximation. We will also define a regularity indicator to help us make a
choice between h- and p-refinement.

Remark 3.1. For the path approximation, if T∗ is finite, φ∗ ∈H1(Γ1;Rn) and we define
the difference between φ∗h and φ∗ as the error of path approximation. When T∗=∞, we
cannot do this because φ∗h ∈H1(Γ1;Rn) while φ∗ /∈H1(Γ1;Rn). The convergence of φ∗h to
φ∗ cannot be addressed in H1(Γ1;Rn) but in the space of absolutely continuous functions.
This issue is not practically important. We can always consider an approximation φM,∗

of φ∗ subject to an integration time M that is larger than T̂(φ∗h). As long as M is finite,
we know that φM,∗∈H1(Γ1;Rn) subject to a linear time scaling. We can use the difference
between φM,∗ and φ∗h to measure the error of path approximation.

3.2.1 Adaptivity in aMAM and tMAM

Adaptivity is a crucial component for both the aMAM [26] and tMAM [22]. In aMAM, a
moving mesh technique is employed to redistribute all grid points every a certain num-
ber of iteration steps such that the grid points are nearly uniform with respect to arc
length. In tMAM, h-adaptivity is employed, where the elements of the largest arc length
are refined. In other words, both aMAM and tMAM use the arc length as an indicator for
the region that needs a better resolution. In gMAM [13], no adaptivity is used because it
is formulated directly with respect to rescaled arc length α∈[0,1]. The internal/boundary
layers are thus removed and a uniform mesh with respect to α can be used. However, it
is not surprising that the nonlinear mapping between α and t is not well behaved around
critical points, e.g., the Jacobian is singular at critical points. If there exist unknown criti-
cal points along the MAP, they must be identified to avoid deterioration of accuracy [13].
This implies that h-refinement might be necessary for gMAM to capture the unknown
saddle points while maintaining the accuracy. In [28], it is confirmed that a non-uniform
mesh with respect to arc length yields a better accuracy assuming that the saddle point
on the MAP is not explicitly specified.

Simply speaking, in current MAMs the most effective way to improve accuracy is to
use non-uniform meshes given by physically based adaptivity criteria. The drawback
of current adaptivity criteria is that they do not take into account the regularity of MAP
with respect to either time or arc length, which is particularly important for high-order
approximation. Thus, new strategies are needed when considering hp-adaptivity.

3.2.2 Indicator for the zero-Hamiltonian constraint

We first look at the model approximation. The zero-Hamiltonian constraint is a neces-
sary condition satisfied by the minimizer. Since the consistency between the linear time
scaling and the zero-Hamiltonian constraint can only be reached when T∗ is finite, it is
important to measure the deviation of φh from the zero-Hamiltonian constraint when
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T∗=∞. We define the following indicator on element ei :=[τi,τi+1] [22]:

θ2
ei
=
∫ T̂τi+1

T̂τi

(|φ̇h|α−|b|α)2dt

= T̂
∫ τi+1

τi

(T̂−1|φ′h|α−|b|α)2dτ, i=0,··· ,N−1. (3.4)

We use θei
as an indicator of the error of model approximation, which should decrease to

zero as the mesh is refined. Let θmax and θmin be the maximum and minimum values of
θei

respectively. If θmax/θmin>βθ , we will apply h-refinement to elements with the largest
θei

, where βθ is a prescribed threshold. In other words, we expect that the element-wise
distribution of the deviation from the zero-Hamiltonian constraint will be uniform. We
do not consider p-refinement for model approximation.

3.2.3 Error indicator based on derivative recovery

We now look at the path approximation, i.e., solving problem (2.17). We will construct
error indicators using the derivative recovery technique [3, 4] in this work. Other tech-
niques of a posteriori error estimate, such as residual-based estimate, can also be consid-
ered. The motivation we use derivative recovery is its simplicity and flexibility, where
we only work with the numerical path and do not need the information of b(φ).

For any vector function φ∈L2(Γ1;Rn), we define the projection operatorQh satisfying

〈Qhφ,ψh〉τ = 〈φ,ψh〉τ, ∀ψh∈W
(1)
h , (3.5)

where we simply do an L2 projection onto linear finite element space for each component
of φ. We also define a smoothing operator Sh=I−λ−1Ah, where I is an identity operator

and Ah :W
(1)
h →W

(1)
h is uniquely determined by

〈Ahφh,ψh〉τ = 〈φ′h,ψ′h〉τ+〈φh,ψh〉τ, ∀φh,ψh∈W
(1)
h . (3.6)

Here λ=ρ(Ah)≃h−2 with h being the element size. We employ the smoothing operator
Sh mainly because that the E-L equation (3.1) is a (nonlinear) elliptic equation.

Let φhp ∈W
(p)
h be a finite element approximation of a vector function φ∈R

n. The

p-th derivative φ
(p)
hp is a piecewise constant vector. Then the recovered p-th derivative is

defined as Rφ
(p)
hp = Sm

h Qhφ
(p)
hp . Our error estimator will be based on the following two

theorems.

Theorem 3.1. Let φi be the i-th component of φhp, i= 1,··· ,n. Assume that φi ∈Hp+2(Γ1)∩
W p+1,∞(Γ1), and φhp∈W

(p)
h be an approximation of φ satisfying

‖φ−φhp‖h,p−1,Γ1
.h2|φ|p+1,Γ1

, (3.7)

‖φ−φhp‖h,p−1,∞,Γ1
.h2|φ|p+1,∞,Γ1

, (3.8)
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where ‖∗‖h,·,Γ1
indicates the discrete norm defined as ‖∗‖h,·,Γ1

=∑
N−1
i=0 ‖∗‖·,ei

. Then

‖φ(p)−Rφ
(p)
hp ‖0,Γ1

.h(mh1/2+ǫm)|||φ|||, (3.9)

‖(φ(p)−Rφ
(p)
hp )′‖0,Γ1

. (mh1/2+ǫm)|||φ|||, (3.10)

where |||φ|||= ‖φ‖p+2,Γ1
+|φ|p+1,∞,Γ1

, ǫm =(1−κ−1)m with κ =(Ch2)λ for some constant C
and small m∈N.

Theorem 3.2. Assume that the hypotheses of Theorem 3.1 hold and there exists a positive con-
stant C(φ) such that

‖φ(p)−φ
(p)
hp ‖0,Γ1

≥C(φ)h. (3.11)

Then
∣

∣

∣

∣

∣

∣

‖(I−R)φ(p)
hp ‖0,Γ1

‖φ(p)−φ
(p)
hp ‖0,Γ1

−1

∣

∣

∣

∣

∣

∣

. (mh1/2+ǫm)|||φ|||. (3.12)

Remark 3.2. Theorem 3.1 mostly is a restatement of Theorems 2.5 and 2.6 in [3] with
respect to appropriate norms for the vector function φ. Theorem 3.2 can be easily derived
from Theorem 3.1, also see [4]. In [3], the operator R= Sm

h Qh was studied for high-
order derivatives of a finite element solution defined on unstructured but shape regular
triangulations. The results remain valid for one-dimensional functions. Theorem 3.1
can be proved by following the proof of Theorem 2.5 in [3], where the key modification
is to replace trace theorem with Sobolev inequality since we have point values on the
boundary instead of a manifold. Due to this observation, we omit the tedious proof here.

Theorems 3.1 investigates the superconvergence of Rφ
(p)
hp to the true derivative φ(p)

in an asymptotically exact sense, i.e, the right-hand sides of inequality (3.9) and (3.10)
goes to zero as h→ 0 and m→∞ in a appropriate fashion, also see [2]. Theorem 3.1

implies that (I−R)φ(p)
hp can be used as an estimator of the error φ(p)−φ

(p)
hp . The operator

R=Sm
h Qh consists of two consecutive steps: L2 projection given byQh and multigrid-like

smoothing given by Sm
h . Note that Qh always projects a piecewise constant vector onto

W
(1)
h , which does not depend on the polynomial order p. In other words, we can apply

R to φ
(p)
hp repeatedly starting from p=1 such that the error of high-order derivatives can

be estimated and p-adaptivity becomes feasible.

We now focus on the polynomial approximation φp on element ei. For simplicity, we
here neglect the subscript h. Let ψi be the i-th local basis function, where the subscript
i is equal to the polynomial order for i ≥ 2, see Eq. (2.9). We consider the following
polynomial extension φ̃p+1 of degree p+1:

φ̃p+1−φp=diag(c)(ψp+1−Ppψp+1), (3.13)
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where c∈R
n, ψp+1 =ψp+1[1,1,··· ,1]T, and Pp is a projection operator for each compo-

nent of ψp+1 onto the space span{ψi}p
i=0 with p≥ 1. Since ψp+1 is not orthogonal to

span{ψi}p
i=0, its projection needs to be removed from the extension. Taking the (p+1)-th

derivative of both sides of Eq. (3.13), we have

ci =
(

φ̃
(p+1)
p+1

)

i

(

ψ
(p+1)
p+1

)−1

i
, i=1,··· ,n. (3.14)

We then use (Rφ
(p)
p )′ to approximate φ̃

(p+1)
p+1 to obtain c. Noting the formula

dj

dτ̂ j
P

α,β
i (τ̂)=

Γ(i+ j+α+β+1)

2jΓ(i+α+β+1)
P

α+j,β+j
i−j (τ̂), (3.15)

where the function Γ(·) satisfies Γ(m+1)=m! for m∈N0, we can obtain that

dp+1

dτ̂p+1
ψ̂p+1(τ̂)=

dp+1

dτ̂p+1

(

1− τ̂

2

1+ τ̂

2
P1,1

p−1(τ̂)

)

=

(

p+1

2

)

d2

dτ̂2

(

(1− τ̂)(1+ τ̂)

4

)

dp−1

dτ̂p−1
P1,1

p−1(τ̂)

=−Γ(2p+1)

2p+1Γ(p)
.

Taking into account the scaling factor (τi+1−τi)
p+1/2p+1, we have

c=−(Rφ
(p)
p )′

Γ(p)(τi+1−τi)
p+1

Γ(2p+1)
. (3.16)

Let ǫei
= φ̃p+1−φp. According to Theorem 3.2, we expect that

‖(I−R)φ(p)
hp ‖0,ei

≈‖ǫ(p)
ei
‖0,ei

,

if the (p+1)-th derivative can be well recovered. In the region near singularity or with
rapid changes, we do not expect that the (p+1)-th derivative can be well approximated
and need to consider the following scaling factor [4]

αei
=
‖(I−R)φ(p)

hp ‖0,ei

‖ǫ(p)
ei
‖0,ei

.

We will use αei
as a regularity indicator in element ei. Generally speaking, we consider

p-refinement if αei
is close to 1 and h-refinement if αei

is far from 1.
We also use ǫei

to define a local error indicator as

ηei
= |αei

ǫei
|1,ei
≈|φ∗−φhp|1,ei

, i=0,··· ,N−1. (3.17)
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Then the total error is

η=

(

N−1

∑
i=0

η2
ei

)1/2

. (3.18)

Note that ηei
is just for the approximation of problem (2.17), which is not aware of the

error induced by Assumption 2.1.

The following lemma shows that η can also be used to control the error of action
functional, where we remove the error of model approximation by considering a fixed T.

Lemma 3.2. Assume that b(φ)∈C2(Rn), φ∗ ∈C1(Γ1;Rn)∩H1(Γ1;Rn) and α−1 = I. For a
fixed integration time T, the approximation φhp of the (local) minimizer φ∗ satisfies

|ST(φhp)−ST(φ
∗)|≤C|φ∗−φhp|21≈Cη2, (3.19)

where C is a constant.

Proof. We have the second-order variation around the MAP φ∗:

ST(φ
∗+δφ)−ST(φ

∗)=δST(φ
∗,δφ)+δ2ST(φ

∗,δφ)+O(|δφ|3).

Due to the fact that φ∗ corresponds to a local minimum of ST, we have

δST(φ
∗,δφ)=0 δ2ST(φ

∗,δφ)>0, ∀δφ 6=0.

Let F(φ,φ′)= 1
2 T〈T−1φ′−b(φ),T−1φ′−b(φ)〉. The second-order variation can be written

as

δ2ST =
1

2

[

〈Fφφδφ,δφ〉τ+2〈Fφ′φδφ,δφ′〉τ+〈Fφ′φ′δφ′,δφ′〉τ
]

,

where

Fφ′i φ
′
j
=

1

2T
δij, Fφ′i φj

=−∂φj
bi, Fφiφj

=−T〈∂φi
b,∂φj

b〉−T〈T−1(φ∗)′−b,∂φiφj
b〉.

Due to the regularity assumption, Fφφ, Fφ′φ and Fφ′φ′ are continuous with respect to
τ∈ [0,1]. Let δφ=φ∗−φhp. We then have

|ST(φhp)−ST(φ
∗)|≤1

2
|φ∗−φhp|21 max

τ∈[0,1]
‖Fφ′φ′‖+

1

2
|φ∗−φhp|20 max

τ∈[0,1]
‖Fφφ‖

+|φ∗−φhp|1|φ∗−φhp|0 max
τ∈[0,1]

‖Fφ′φ‖.

Using the Poincaré inequality, we obtain Eq. (3.19).
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Remark 3.3. To compute ǫ
(p)
ei

, we also need to compute ψ
(p)
p+1, where the following for-

mula can be used: for p≥2,

dp

dτ̂p
ψ̂p+1(τ̂)=

dp

dτ̂p

(

1− τ̂

2

1+ τ̂

2
P1,1

p−1(τ̂)

)

=

(

p

1

)(

1− τ̂2

4

)′
dp−1

dτ̂p−1
P1,1

p−1(τ̂)

+

(

p

2

)(

1− τ̂2

4

)′′
dp−2

dτ̂p−2
P1,1

p−1(τ̂)

=− pΓ(2p+1)

2pΓ(p+2)
τ̂−
(

p

2

)

Γ(2p)

2p−1Γ(p+2)
P

p−1,p−1
1 (τ̂)

=− Γ(2p+1)

2p+1Γ(p)
τ̂,

where in the last step we use the fact that

P
p−1,p−1
1 (τ̂)= pτ̂.

Remark 3.4. When dealing with elements of different polynomial orders, we first project
the solution elementwisely to span{ψi}p

i=0 and then apply the derivative recovery tech-
nique to obtain ηei

for the elements of polynomial order p. The projection is necessary
because ψi are not orthogonal to each other. After p is looped from the lowest order to
the highest one, ηei

will be obtained for all elements.

3.3 Criteria for hp-adaptivity

After removing the global reparametrization, the adaptive tMAM shares the same sce-
nario of adaptive finite element method:

Solve→Estimate→Mark→Refine.

There exist many strategies to mark the elements that need refinement. We consider
two strategies in this paper. The first strategy is based on [4], where a target number
of degrees of freedom (DOFs) is specified for the new mesh; The second strategy is the
Dölfler’s strategy, where the elements that have the largest error will be refined.

3.3.1 Strategy one

Let pave be the average polynomial order. Before enriching the approximation space
through hp-adaptivity, we can set up a target number of DOFs as

Mhp=Mold

(

1+pave

pave

)

, (3.20)
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where Mold is the number of DOFs before adaptive refinement. It is seen that if pave =1,
Mnew matches the number of DOFs after a uniform h-refinement.

Let αave be the average of αei
. If a certain element needs to be refined, we choose either

h- or p-refinement according to the following criterion:

Qhp(ei)=

{

1, if αei
<2min{αave,αQ} (p-refinement),

0, otherwise (h-refinement).
(3.21)

Note here that we define a threshold αQ in addition to the average αave. The main moti-
vation is that α can be large in most of the elements when the mesh is coarse. Then αQ

can help to trigger h-refinement instead of p-refinement. When the mesh is fine enough,
αave will be close to one and αQ will be not necessary any more.

Following is the first strategy of hp-adaptivity, where we first address the error of
numerical approximation and then deal with the discrepancy between the optimal linear
time scaling and the zero-Hamiltonian constraint:

(1) Refine ei with the largest ηei
according to Qhp(ei) if M<Mhp, where M is the current

number of DOFs. Here we may also consider multi-level h-refinement.

(2) If θmax/θmin>βθ and (M−Mhp)<rM(Mhp−Mold), refine ei with the largest θei
by h-

refinement, where rM >0 is a prescribed constant. Here we only consider one-level
h-refinement.

First of all, we use Mhp as a target number of DOFs for hp-adaptivity based on ηei
.

If θei
varies significantly, we will trigger h-refinement to deal with the deviation from

the zero-Hamiltonian constraint. Since the error of path approximation is usually domi-
nant, we will only add a small number of additional DOFs for model approximation, in
other words, we choose rM to be biased to 0. Second, whenever h-refinement is imple-
mented, the element is decomposed into two equidistant ones. Local indicators ηei

and
θei

can be computed in child elements from the information that is inherited from the par-
ent element. The parameter αei

will be passed directly from the parent element to child
elements. The child elements can also be considered for h-refinement. This way, a multi-
level h-refinement is allowed. Third, when p-refinement is implemented, the polynomial
order will be increased by one from p to p+1 if a prescribed maximum polynomial order
is not reached. Due to the lack of information of derivative of order p+2, we are not able
to estimate the local error after p-refinement. Then elements after p-refinement will be
not allowed to be refined any further.

Remark 3.5. Although the multi-level h-refinement works well if the starting mesh is
relatively fine, we will focus on the case that the starting mesh has only a few time ele-
ments, e.g., two or three elements, and will not consider multi-level h-refinement in our
numerical experiments.
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Algorithm 1 hp-adaptive tMAM using strategy one

while k≤Kmax or ǫ>ǫtol do

Compute θei
, ηei

, αei
and Mhp.

Build up a max-heap Hη of elements according to ηei
.

while M<Mhp do

Consider the element with largest ηei
.

if Qhp(ei) then
Do p-refinement.
Set the local error ηei

=0.
else

Do h-refinement.
if multi-level h-refinement is allowed then

Update errors for new elements and add them to the heap Hη .
else

Set the local error ηei
=0 for child elements.

end if

end if

Update M.
end while

if θmax/θmin >βθ then

while M−Mhp< rM(Mhp−Mold) do

Do h-refinement for the element with largest θei
.

Set the local indicator θei
=0 for child elements.

end while

end if

Solve problem (2.17) using new partition T k+1
h to obtain MAP φ

∗,k+1
h .

ǫ←
(

S
T(φ∗,kh )

(φ∗,kh )−S
T(φ∗,k+1

h )
(φ∗,k+1

h )
)

/S
T(φ∗,k+1

h )
(φ∗,k+1

h ).

k← k+1
end while

3.3.2 Strategy two

For the second strategy, we do not specify a target number of degrees of freedom for
the hp-adaptivity based on ηei

. Instead, we want to make sure that the error of path
approximation will be reduced by a certain percentage. To do this, we consider Dölfler’s
strategy. Let J = {i|0≤ i≤N−1} be the index of all elements. We look for a subset Ĵ⊂ J
such that for rη∈ (0,1],

rη ∑
i∈J

η2
ei
≤∑

i∈ Ĵ

η2
ei

. (3.22)
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To uniquely specify Ĵ, we choose the elements that have the largest error, i.e.,

min
i∈ Ĵ

ηei
≥max

i∈J\ Ĵ
ηei

.

Once a certain element is marked, Qhp(ei) is used as usual to make a decision for ei-
ther h-refinement or p-refinement. We can also consider multi-level h-refinement in this
strategy.

For the updated mesh, we will determine whether the refinement for model ap-
proximation is necessary by checking the ratio θmax/θmin. Whenever necessary, we
employ the same criterion as in strategy one, i.e., we refine ei with the largest θei

if
M−Mhp < rM(Mhp−Mold), where Mhp is not a precomputed number any more but the
number of DOFs of the updated mesh by hp-adaptivity. We will not consider multi-level
h-refinement for θei

.

3.3.3 Some implementation issues

First, we choose the integer m = 1 or 2 for the smoothing operator R. Theoretically, m
should grow in a logarithmic-like fashion. The choice m≤2 is suggested in [2,4] based on
empirical investigations. Numerical experiments show that this choice is also sufficient
for our cases.

Second, the parameter λ in Sh will never be computed explicitly. Instead of we use m
Jacobi-conjugate gradient iterations to solve the linear system Ax=0 [2], where A is the

stiffness matrix induced by Ah with an initial guess Qhφ
(p)
hp . Since m is small, the cost is

O(pnNe).

Third, two types of L2 projection are involved for adaptivity: the projection induced
by Qh and the path projection from the old mesh to the new one. For the former case,
we need to invert a Ne tridiagonal matrix pn times with a cost of O(pnNe). For the latter
case, we need to invert the local mass matrix for a certain number of elements with a cost
of O(p2Ne).

Overall, the cost for adaptivity is O(pnNe) since the dimension n is usually compa-
rable to or larger than the polynomial order p. Note that the total number of DOFs is
O(pnNe). So, the total cost for adaptivity is linear with respect to the total number of
degrees of freedom, which is small compared to the cost for the optimization iterations.

4 Numerical experiments

In this section, we implement some numerical experiments to examine our hp adaptivity
strategies. The optimization is based on the nonlinear conjugate gradient (CG) method
[16, 19].
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Algorithm 2 hp-adaptive tMAM using strategy two

while k≤Kmax or ǫ>ǫtol do

Compute θei
, ηei

and αei
.

Build up a max-heap Hη of elements according to ηei
.

while rη ∑i∈J η2
ei
>∑i∈ Ĵ η2

ei
do

Consider the element with largest ηei
.

if Qhp(ei) then
Do p-refinement.
Set the local error ηei

=0.
else

Do h-refinement.
if multi-level h-refinement is allowed then

Update errors for new elements and add them to the heap Hη .
else

Set the local error ηei
=0 for child elements.

end if

end if

end while
if θmax/θmin >βθ then

Compute Mhp of the updated mesh.
while M−Mhp< rM(Mhp−Mold) do

Do h-refinement for the element with largest θei
.

Set the local indicator θei
=0 for child elements.

end while

end if

Solve problem (2.17) using new partition T k+1
h to obtain MAP φ

∗,k+1
h .

ǫ←
(

S
T(φ∗,kh )

(φ∗,kh )−S
T(φ∗,k+1

h )
(φ∗,k+1

h )
)

/S
T(φ∗,k+1

h )
(φ∗,k+1

h ).

k← k+1
end while

4.1 A simple linear SODE system

We use the following linear SODE system to test some essential numerical issues:

dX(t)=AX(t)dt+
√

εdW(t), (4.1)

where A∈R
2×2 has real and negative eigenvalues such that a=(0,0)T is a stable fixed

point. For simplicity, we choose A=diag{λ1,λ2} as a diagonal matrix, where λi <0, and
|λ1|≥|λ2|. For any give point X(0)=x in phase space, there exist a trajectory X(t)= etAx
converging to a when ε=0. If we consider such a trajectory as a transition path from x to
a, we have V(x,a)=0 and the associated optimal integral time T∗=∞. We then use the
trajectory from x to a as a reference solution to test the effectiveness of our hp adaptivity
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Figure 1: DOF versus ηei
and true error for the linear SODE. All adaptive meshes start from two linear time

elements. Left: hp- refinement with a constraint that p≤4; Right: hp-adaptivity with no constraint on p.

strategies.

We first verify the effectiveness of the error indicator ηei
. To do it, we consider a

finite integration time, i.e., we consider the transition from x to etAx for a fixed t. To
mimic the scale separation of fast and slow dynamics, we choose t large enough such
that |etAx|≪1. Note that in the definition of the smoother operator Sh, each component
of φh is dealt with independently using the same formula. We then choose |λ1|≫ |λ2| to
test the effectiveness of ηei

. We construct the matrix A as

A=B−1JB=

[

a −b
b a

][

λ1 0
0 λ2

][

a b
−b a

]

,

where a,b∈R and a2+b2=1. We have

etA =B−1diag{eλ1t,eλ2t}B.

Let λ1 =−10, λ2 =−0.01, and a = 1/3. We choose the starting point x = (1,1) and
the ending point eTs Ax. The larger Ts is, the closer eTs Ax is to the fixed point a. We con-
sider hp-adaptivity for numerical approximation starting from two linear time elements.
Because we use a finite Ts, we switch off the h-adaptivity for model approximation.

In Fig. 1, we plot η and the true error of adaptive meshes with a constraint p≤ 4 on
the left, and without a constraint on the polynomial order on the right. It is seen that
there exists a large discrepancy between η and the true error when the mesh is coarse
and η captures the true error well once the number of DOFs is large enough. If there is
no constraint on the polynomial order, we observe p-convergence with respect to DOF; if
the polynomial order is limited by pmax, we observe a transition from p-convergence to
h-convergence with an optimal rate O(N−pmax) [22].
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4.2 A non-gradient SODE system

We consider the following Maier-Stein model [13]:
{

dX=(X−X3−βXY2)dt+
√

εdWx,

dY=−(1+X2)Ydt+
√

εdWy,
(4.2)

where Wx and Wy are independent Wiener processes and β > 0 is a parameter. This
is a non-gradient system except when β = 1. This system has two stable fixed points:
a1=(−1,0)T and a2=(1,0)T, and a saddle point a3=(0,0)T. For numerical experiments,
we set β=10 such that the system is not gradient.

We then consider the transition from a1 to a2. The MAP passes the saddle point a3,
but is not the heteroclinic orbit connecting a1 and a2 due to the fact that the system is
non-gradient. In Fig. 2, we plot the convergence behavior of h- and hp-refinement given
by strategy one and two. For both strategies, we set rM = 0.1. In other words, once the
adaptivity is done for the numerical approximation, we seek 10% extra DOFs to deal with
model approximation. We set αQ =4.0, βθ =10.0 and rη =0.9. It is seen that both strategy
one and two show similar convergence behavior. The optimal convergence rateO(N−2p)
is obtained for h-refinement in terms of the error of quasi-potential [22]. We also observe
p-convergence for the hp-refinement. For strategy two, the ratio rη controls the incre-
ment of DOFs. We have tested several rη ∈ [0.5,0.9], which result in similar convergence
behavior. The main difference is that more intermediate meshes will be generated if rη is
smaller. Fig. 2 shows that the singularity induced by T∗=∞ can be effectively dealt with
by hp-adaptivity.

We next look at the distribution of element size and polynomial order of adaptive
meshes. In Fig. 3, we plot the distribution of element size of a final h-adaptive mesh
with respect to time and arc length respectively. The elements are split into two groups:
the first group indicated by blue color corresponds to the MAP from a1 to a3 and the
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Figure 2: Convergence behavior of adaptive meshes in terms of the error of action functional. All adaptive
meshes start from three equidistant linear elements. Left: strategy one; Right: strategy two.
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Figure 3: Distribution of element size with respect to time (left plot) or arc length (right plot). This is the final
mesh in the left plot of Fig. 2 given by h-refinement with p= 3. Blue color indicates the MAP from a1 to a3
and red color indicates the MAP from a3 to a2.

second group indicated by red color corresponds to the MAP from a3 to a2. In the region
of slow dynamics, i.e., around the critical points, the element size is relatively larger
with respect to time. However, with respect to arc length, the element size is relatively
larger in the region of fast dynamics. This is consistent with the observation in [19] that
a time mesh that is more uniform with respect to arc length may not result in a better
accuracy in aMAM. We refer to [28] for more studies about this phenomena. The existence
of outliers in the right plot is simply because only a portion of elements in the region
of fast dynamics will trigger the adaptivity criterion. To illustrate this, we compare, in
Fig. 4, the distribution of element size with respect to arc length from four consecutive
h-adaptive meshes. In Fig. 5, we plot the distribution of element size and polynomial
order for a final hp-adaptive mesh. It is seen that the distribution of element size has
the same trend as that of h-adaptive meshes. The polynomial order is between 5 and 9,
indicating that high-order approximation is efficient. It appears that in the region of slow
dynamics a higher polynomial order is preferred. This is not surprising. We look at the
first component x(τ) of the transition path. x(τ) looks like a step function jumping from
-1 to 0, and then to 1. The flat part corresponds to the region of slow dynamics and the
part of sharp transition corresponds to the region of fast dynamics. Thus it is more easier
for the regularity indicator to trigger p-refinement in the region of slow dynamics and
h-refinement in the region of fast dynamics.

We now switch off the adaptivity for the model approximation. The convergence
behavior of adaptive meshes is shown in Fig. 6 for strategy one. It is seen that the re-
finement for model approximation does not affect h-adaptivity much, but it has a major
impact on hp-adaptivity. Without the adaptivity for model approximation, the error of
hp-adaptive meshes decays slowly in the early stage and plummets suddenly at a cer-
tain point. Starting from three elements, ηei

mainly triggered h-refinement of the middle
element and p-refinement for the first and last elements. Without the h-refinement from
θei

, the polynomial order in the first and last elements keeps increasing until the specified



434 X. Wan, B. Zheng and G. Lin / Commun. Comput. Phys., 23 (2018), pp. 408-439

0 20 40 60
0

0.05

0.1

0.15

0.2

0 50 100
0

0.02

0.04

0.06

0.08

0.1

0 50 100
0

0.02

0.04

0.06

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

(a) (b)

(d)(c)

Figure 4: Evolution of element size with respect to arc length. The x-axis is element index and the y-axis is the
element size in arc length. The meshes are based on h-adaptivity with a fixed polynomial order 3. The meshes
are refined from (a) to (d). The plot (c) corresponds to the right plot of Fig. 3.
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Figure 5: Distributions of element size with respect to time (left plot) and polynomial order (right plot). This
is the final mesh in the left plot of Fig. 2 given by hp-refinement. Blue color indicates the MAP from a1 to a3
and red color indicates the MAP from a3 to a2.

maximum polynomial order 15 is reached. Once h-refinement is triggered in the first and
last elements, the error drops quickly. This experiment demonstrates that h-refinement
for the model approximation is necessary for robustness.
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Finally, we look at the behavior of the approximate MAP around the saddle point a3.
It is known that in aMAM [26] there exists a tangling phenomena meaning that a lot of
grid points are in a tangle around fixed points especially for a large integration time T.
These tangled grid points do not contribute to the path approximation. Such a tangling
phenomena is removed in [28] by an improved moving mesh technique coupling with
WENO interpolation. We plot the approximate MAP given by the hp-adaptive mesh in
Fig. 7 including a close-up view around the saddle point a3. It is seen that the abrupt
turn at the saddle point a3 is well captured and no tangling phenomena is observed.
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4.3 A non-gradient SPDE system

The algorithm developed can also be applied to study small random perturbations of
spatially extended systems [7, 10, 11]. We subsequently consider the following infinite
dimensional analogue of the Maier-Stein model [13]:

{

∂tu=κ∂xxu+u−u3−βuv2+
√

εẆu(x,t),

∂tv=κ∂xxv−(1+u2)v+
√

εẆv(x,t),
(4.3)

where x∈[0,1], κ>0 is a parameter, and Ẇu and Ẇv are space-time white noise. We assume
that the above equations satisfy periodic boundary conditions in x direction. The system
has two stable fixed points: (u−,v−) = (−1,0) and (u+,v+) = (+1,0). We consider the
MAP from (u−,v−) to (u+,v+). Compared to the finite-dimensional Maier-Stein model,
we have an additional parameter κ. When κ < κcrit = 1/(4π2)≈ 0.0253, there exist non-
constant saddle points of the form (u(x),0). More details about the profile of u(x) can be
found in [13]. We here consider the case β=10 and κ=0.01 for numerical experiments.

Consider Eq. (4.3) is a spatially extended system, we consider a modified action func-
tional. Let φ=[u,v]T∈R

2. The deterministic dynamical system, i.e., ε=0, is

∂tφ=κ∂xxφ+ f (φ), (4.4)

where f (φ) indicates the nonlinear terms in Eq. (4.3). To solve Eq. (4.4), we need spatial
discretization. If we consider periodic boundary conditions, we often use the Fourier
expansion of φ, say φh. For numerical approximation, we need to choose a procedure,
e.g., Galerkin projection, to obtain a closed system of ordinary differential equations for
the Fourier coefficients of φh. LetPh indicates such a procedure and Ph f the projection of
f (φh) onto the truncated Fourier space. Since the dynamic solver solves an approximated
system

∂tφh=κ∂xxφh+Ph f (φh), (4.5)

it is more appropriate to consider the action functional induced by Eq. (4.5) instead of
Eq. (4.4). In other words, we modify the action functional slightly as

ST(φh)=
1

2

∫ T

0
‖∂tφh−∂xxφh−Ph f (φh)‖2

2dt, (4.6)

where ‖·‖2 indicates L2 norm in physical space. Note that f (φh) is replaced by Ph f (φh),
and such a replacement is often necessary from the numerical point of view [24]. In this
work we use the discrete Fourier transform (DFT) to approximate Ph f . Depending on the
nonlinearity of f , the number of grid points for DFT can be chosen to reduce or remove
the aliasing error.

In Fig. 8, we plot the convergence behavior of adaptive meshes given by strategies
one and two. It is observed that the optimal convergence rate of h-convergence has been
recovered and the hp-refinement provides fast (exponential) convergence.



X. Wan, B. Zheng and G. Lin / Commun. Comput. Phys., 23 (2018), pp. 408-439 437

102 103 104

DOF

10-10

10-5

100

R
el

at
iv

e 
er

ro
r

strategy ONE, h-refinement, p=1
strategy ONE, h-refinement, p=2
strategy ONE, hp-refinement

O(N-4)

O(N-2)

102 103 104

DOF

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
er

ro
r

strategy TWO, h-refinement, p=1
strategy TWO, h-refinement, p=2
strategy TWO, hp-refinement

O(N-2)

O(N-4)

Figure 8: Convergence behavior of adaptive meshes in terms of the error of action functional. All adaptive
meshes start from four equidistant time elements. Left: strategy one; Right: strategy two.

5 Conclusion and discussions

In this work, we have developed new criteria for the hp-adaptivity of the minimum ac-
tion method using a posteriori error estimation techniques. The final adaptive MAM is a
general algorithm for both SODEs and SPDEs. To alleviate the singularity T∗=∞, we use
the discrete problem (2.17) to generate a minimizing sequence, where the optimal linear
time scaling is enforced. We need to address two types of numerical errors, which are
from model approximation and path approximation, respectively. We used the Hamil-
tonian to define an error indicator for the model approximation. Using the derivative
recovery technique, we constructed an error indicator and an regularity indicator for a
finite element discretization of transition paths. Based on the proposed error and regu-
larity indicators, strategies have been developed for hp-adaptivity. It has been demon-
strated by numerical experiments that the approximation errors can be effectively dealt
with by h- or hp-adaptivity, which means that global reparametrization is not necessary.
For the first time we have addressed the adaptivity of minimum action method based
on indicators that are consistent with the approximation theory. The numerical results
are very promising. Considering that the minimum action method is computationally
demanding for spatially extended systems and the theory of a posteriori error estimate
of finite element methods has been well developed, it is a very interesting problem to
seek more effective adaptivity strategies for the minimum action method when applied
to large scale problems, such as Navier-Stokes equations [23].
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