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In this work, we present an adaptive high-order minimum action method for dynamical
systems perturbed by small noise. We use the hp finite element method to approximate
the minimal action path and nonlinear conjugate gradient method to solve the optimiza-
tion problem given by the Freidlin–Wentzell least action principle. The gradient of the dis-
crete action functional is obtained through the functional derivative and the moving mesh
technique is employed to enhance the approximation accuracy. Numerical examples are
given to demonstrate the efficiency and accuracy of the proposed numerical method.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Dynamical systems are often subject to random perturbations since noise is ubiquitous in nature. Even when these ran-
dom perturbations have a small amplitude, they can produce a profound effect on the long time dynamics by inducing rare
but important events. A large number of interesting phenomena in physics, chemistry and biology such as phase transitions,
biological switches and chemical reactions, etc., are examples of such noise-induced rare events [13].

When the random perturbations are small, the Freidlin–Wentzell theory of large deviations provides a rigorous mathe-
matical framework for us to understand how the transitions occur and how frequent they are. The transition pathways be-
tween metastable sets in a dynamical system often have a rather deterministic nature. As the noise amplitude decreases to
zero, the events for successful transitions between metastable sets have a sharply peaked probability around a certain deter-
ministic path that is least unlikely. Special features of such a path tell us crucial information about the mechanism of the
transition. One class of examples that have been well studied for a long time are the gradient systems, for which the vector
field is the gradient of a potential function. In gradient systems, the most probable transition path is the minimum energy
path (MEP), which passes through the basin boundary between the stable states at some saddle points with one dimensional
unstable manifold [16,20]. For non-gradient systems we need to consider the action functional instead of the energy, which
is the central object to the Freidlin–Wentzell theory. The minimizer of the action functional provides the most probable tran-
sition path; the minimum of the action functional provides an estimate of the probability and the rate of occurrence of the
transition. Thus an important practical task is to compute the minimum and minimizer of the action functional.

A large number of numerical algorithms have been designed for gradient systems. Some popular algorithms include the
string method [2,4], nudged elastic band method [12], eigenvector-following-type method (e.g. [1]) as well as the dimer
method [9], which usually take advantage of the fact that in gradient systems the transition paths are always parallel to
the drift term of the stochastic differential equation. For general (non-gradient) systems, we need to minimize directly
. All rights reserved.
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the Freidlin–Wentzell action functional and available algorithms include the minimum action method [3], the adaptive min-
imum action method [18] and the geometric minimum action method [8]. Compared to gradient systems, the transition
mechanism in non-gradient systems is usually much more subtle, since the phase space may display a very complicated
structure, where invariant sets can be fixed points, as well as limit cycles, tori or even chaotic strange attractors. We refer
to [19,21] for the study of the Lorenz system and the Kuramoto–Sivashinsky equation, where it is demonstrated that the
minimum action method can be a valuable tool to explore the phase space and study the transition mechanism in non-
gradient systems.

In this work, we develop an adaptive high-order minimum action method by coupling the hp finite element approxima-
tion and a preconditioned nonlinear conjugate gradient optimization solver. In the finite element framework, the gradient of
the action functional is formulated straightforwardly with respect to the functional derivative. To enhance the accuracy, we
employ the moving meshing technique to adjust the temporal discretization adaptively. The methodology is general and can
be easily applied to both gradient and non-gradient dynamical systems.

This paper is organized as follows. In Section 2 we briefly describe the problem and the theoretical background. We pres-
ent the developed numerical method in Section 3. In Section 4, we examine the accuracy and efficiency of the method using
dynamical systems given by an ordinary differential equation and a partial differential equation, respectively. Some discus-
sions are given in Section 5.
2. Problem description and theoretical background

We consider random perturbations of dynamical systems. Let the random process Xt ¼ XðtÞ : Rþ ! Rn defined by the fol-
lowing stochastic ordinary differential equation (SODE):
dXt ¼ bðXtÞdt þ
ffiffiffi
e
p

dWt ; ð1Þ
where Wt is a standard Wiener process in Rn and e is a small positive parameter. Let /ðtÞ 2 Rn be an absolutely continuous
function defined for t 2 [0,T]. The Wentzell–Freidlin theory tells us that the probability of X(t) passing through the d-tube
about / on [0,T] is
PrðqðX;/Þ < dÞ � exp �1
e

STð/Þ
� �

ð2Þ
with q(/,u) = supt2[0,T]j/(t) � u(t)j, j�j indicates the ‘2 norm in Rn, and ST(/) is the action functional of / on [0,T], defined as
STð/Þ ¼
1
2

Z T

0
Lð _/;/Þdt; ð3Þ
where L _/;/
� �

¼ _/� bð/Þ
�� ��2. In general, we have the following large deviation principle
lim
e!0

e log PrðX 2 AÞ ¼ �min
/2A

STð/Þ; ð4Þ
where A is a particular set of random events. Thus, in analogy with the Laplace’s method, the basic contribution to Pr(X 2 A) is
given by the neighborhood of the minimum of ST(/) when e is small enough. The minimizer /⁄, which satisfies ST(/⁄) = min/

2AST(/) is also called the ‘‘minimal action path’’ (MAP).
Different definitions of the set A in Eq. (4) correspond to many important phenomena that occur in dynamical systems.

For example,

� If we are interested in the probability of X(t) connecting one point a1 and the other point a2 in the phase space due to the
random perturbations, A can be defined as
A ¼ fXð0Þ ¼ a1;XðTÞ ¼ a2g:
The MAP will be the most probable path for the transition from a1 to a2 in the sense that the probability of the system taking
all the other paths decays exponentially with respect to the noise amplitude e according to the large deviation principle. Note
that when a1 and a2 are attractors, it is more appropriate to define the set A as
A ¼ fXð�1Þ ¼ a1;Xð1Þ ¼ a2g:
We keep a finite time interval here mainly due to the numerical approximation discussed later.
� If a1 and a2 are two adjacent stable states in gradient systems, the MAP will be consistent with the minimum energy path

(MEP), which passes through the basin boundary between a1 and a2 at a certain saddle point with one-dimensional unsta-
ble manifold.
� If there exists dynamics between a1 and a2, the MAP will be the path given by the dynamics corresponding to a zero action

functional, which implies that the MAP is also helpful for us to study the structure of the phase space. For instance, if a1

and a2 are two unstable fixed points and the MAP has a zero action functional, we can conclude that there exists a het-
eroclinic orbit between a1 and a2, which is given exactly by the MAP.



X. Wan / Journal of Computational Physics 230 (2011) 8669–8682 8671
Although the Wentzell–Freidlin theory shows that it is very important to find out the MAP when we consider random
perturbations of dynamical systems, it is usually very difficult to obtain it analytically for a general dynamical system.
We need to consider numerical approximation in practice.

2.1. Available numerical approaches

We here only focus on numerical methods for general (non-gradient) dynamical systems, which are usually called min-
imum action methods (MAM).

� The original MAM. The original MAM was proposed in [3] coupling the finite difference discretization in time and an L-
BFGS optimization solver. The optimization problem given by Eq. (4) is solved on a finite time interval [0,T] although the
real time interval should be [0,1) if the end of the path is an attractor.
� The adaptive MAM. The adaptive MAM was proposed in [18]. The authors observed that a sufficiently large time interval

can resolve the MAP defined on an infinite time interval and the main reason that the original MAM may converge poorly
is due to the slow dynamics in the transition regions which makes the uniform temporal discretization dramatically
skewed with respect to the arc length. A moving mesh technique is then used to redistribute the grid points to make them
more uniform according to the arc length, which improves significantly both accuracy and efficiency.
� The geometric MAM. The geometric MAM was proposed in [8]. The authors considered discretization with respect to a

parametrization variable (the arc length) instead of time. Thus the aforementioned issues given by the temporal discret-
ization are avoid. However, the problem needs to be reformulated with respect to the parametrization variable, i.e., in the
space of curves.

3. An adaptive high-order minimum action method

A common feature of the minimum action methods summarized in Section 2.1 is to couple the finite difference discret-
ization with respect to time or arc length and an appropriate optimization solver. It is well known that the efficiency of al-
most all optimization algorithms requires the computation of the gradient. However, the gradient of the action functional
based on a finite difference discretization is not easy to generalize especially when the dynamical system is complex and
a high-order finite difference discretization is considered. Based such an observation, we consider the minimum action
method in the framework of finite element approximation. In particular, we look at the hp finite element discretization of
the action functional. For convenience, we study the discretization with respect to time instead of arc length such that
we do not have to reformulate the original problem.

3.1. A variational approach based on the hp finite element approximation

We first consider the optimization problem given by the large deviation principle in an abstract form:
min
/2A

STð/Þ ¼min
/2A

Z T

0
Lð _/;/Þdt; ð5Þ
where the constraints are
/ð0Þ ¼ a1; /ðTÞ ¼ a2: ð6Þ
Let dST
d/ be the functional derivative of ST with respect to /, which satisfies
dSTð/Þ ¼
dSTð/Þ

d/
; d/

� 	
t
¼ lim

�!0

STð/þ �d/Þ � STð/Þ
�

; ð7Þ
with d/ being an arbitrary perturbation testing function. Here hf(t),g(t)it indicates the inner product of functions
f ðtÞ; gðtÞ 2 Rn. It is well known that the Euler–Lagrange equation is given by
dST ð/Þ
d/ ¼ 0; t 2 ð0; TÞ;

/ðtÞ ¼ a1; t ¼ 0;
/ðtÞ ¼ a2; t ¼ T;

8><>: ð8Þ
whose solution is a local or global minimizer of ST(/). However, for a general dynamical system, the Euler–Lagrange equation
of ST(/) is usually a high-order nonlinear PDE, which is difficult to be discretized directly. Instead of considering the Euler–
Lagrange equation (8), we solve the optimization problem (5) using a variational approach. Suppose that we choose a finite
dimensional approximation space spanned by fwiðtÞg

M
i¼1 such that
/ðtÞ ¼
XM

i¼1

/iwiðtÞ; d/ðtÞ ¼
XM

i¼1

d/iwiðtÞ; ð9Þ
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where /i; d/i 2 Rn. We then have
dSTð/Þ ¼
dST

d/
; d/

� 	
t
¼
XM

i¼1

dST

d/
; d/iwiðtÞ

� 	
t
: ð10Þ
Consider the particular choice of d/, whose coefficients are equal to zero except the jth component d/i,j of d/i. We then
obtain
dSTð/Þ ¼
dST

d/
;wiðtÞej

� 	
t
d/i;j; ð11Þ
which implies that
ðrSTð/ÞÞkði;jÞ ¼
@ST

@/i;j
¼ dST

d/
;wiðtÞej

� 	
t

; ð12Þ
where ej 2 Rn is the unit Euclidean vector such that its jth component is 1 and the rest components are zero, k(i, j) is a global
index uniquely determined by i = 1, . . . ,M and j = 1, . . . ,n. Note that rST is usually required by an efficient optimization algo-
rithm, such as nonlinear conjugate gradient method, L-BFGS, etc.

We subsequently present a choice of the approximation space of /(t), which allows high-order approximation. Consider a
(nonuniform) partitioning T h of the time interval [0,T]:
T h : 0 ¼ t0 < t1 < � � � < tNþ1 ¼ T:
We define the finite element approximation space as
VK
h ¼ fv : v � F�1

k 2 PpðRÞg;

Vh ¼ v 2 H1
0ðTÞ : vjK 2 VK

h ;K 2 T h

n o
;

where FK is the mapping function for the element K = [ti, ti+1], i = 0,1, . . . ,N, which maps the reference element R = [�1,1] to
element K, and PpðRÞ denotes the set of polynomials of degree up to p over R. On the reference element R, we assume that
PpðRÞ consists of linear combinations of the following basis functions [14]:
ŵiðsÞ ¼

1�s
2 i ¼ 0;

1�s
2

1þs
2 P1;1

i�1ðsÞ; 0 < i < p;
1þs

2 i ¼ p;

8><>: ð13Þ
where P1;1
i denote orthogonal Jacobi polynomials of degree i with respect to the weight function (1 � s)(1 + s). ŵ0ðsÞ, and

ŵpðsÞ are consistent with linear finite element basis, and ŵiðsÞ; 0 < i < p, are introduced for high-order approximation. Note
that ŵið�1Þ ¼ 0 for 0 < i < p. We call ŵ0ðsÞ and ŵpðsÞ boundary modes, and ŵiðsÞ, 0 < i < p, interior modes. Note here that
Vh � H1

0ð½0; T	Þ due to the facts that /(0) and /(T) are specified and the action functional ST(/) takes the form
STð/Þ ¼
1
2

_/� bð/Þ; _/� bð/Þ
D E

t
: ð14Þ
Let fwiðtÞg
M
i¼1 expand the finite element approximation space Vh, where M is the total number of degrees of freedom. The

absolutely continuous function /ðtÞ 2 Rn can be approximated as
/ðtÞ � /hðtÞ ¼
XM

i¼1

/iwiðtÞ; /i 2 Rn: ð15Þ
Then the action functional takes an approximate form
STð/hÞ ¼
1
2

Z T

0
L
XM

i¼1

/i
_wiðtÞ;

XM

i¼1

/iwiðtÞ
 !

dt: ð16Þ
3.2. Computation of the gradient of ST(/h)

Let /
h ¼
PM

i¼1/


i wiðtÞ be the finite element expansion of the MAP /⁄. Then the finite element coefficients /
i;j 2 R of the

MAP /⁄ will satisfy the discrete optimization problem
ST /
h

 �

¼min
/h2A

STð/hÞ ¼min
/h2A

STð/i;jÞ; ð17Þ
where i = 1, . . . ,M and j = 1, . . . ,n.
We now derive the gradient @ST(/h)/@/i,j. For clarity, we rewrite the action functional as
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STð/hÞ ¼
1
2

_/h � bð/hÞ; _/h � bð/hÞ
D E

t
: ð18Þ
We assume that the linear part of the perturbation of b(/) is given as
bð/þ d/Þ ¼ bð/Þ þ b̂ð/Þd/þ Oðd2/Þ; ð19Þ
where d/ is an arbitrary small perturbation of /(t). We then have
STð/h þ d/hÞ � STð/hÞ ¼
1
2

_/M þ d _/M � bð/hÞ � b̂ð/hÞd/h;
_/M þ d _/M � bð/hÞ � b̂ð/hÞd/h

D E
t

� 1
2

_/M � bð/hÞ; _/M � bð/hÞ
D E

t
þ Oðd2/hÞ þ O d/hd _/M

� �
¼ _/M � bð/hÞ; d _/M � b̂ð/hÞd/h

D E
t
þ Oðd2/hÞ þ O d/hd _/M

� �
:

Taking the linear part of ST(/h + d/h) � ST(/h), we have the functional derivative
dSTð/hÞ
d/h

; d/h

� 	
t

¼ _/M � bð/hÞ; d _/M � b̂ð/hÞd/h

D E
t
: ð20Þ
Let d/h = d/i,jwi(t)ej. Using Eq. (12), we obtain the gradient of ST(/h) as
ðrSTð/hÞÞkði;jÞ ¼
@STð/hÞ
@/i;j

¼ _/h � bð/hÞ; _wiðtÞej � b̂ð/hÞwiðtÞej

D E
t
: ð21Þ
It is observed that the computation of @ST/@ /i,j is an integration problem, which can be easily dealt with by using Gauss-type
quadrature formulas.

Once the gradient of the action functional is obtained, we use the nonlinear conjugate gradient (CG) method to solve the
optimization problem to get the MAP /
h. Let U 2 RMn be a global vector whose components are /i,j. The nonlinear CG method
can be summarized as
Ukþ1 ¼ Uk þ akdk;

dkþ1 ¼ �gkþ1 þ bHZ
k dk; d0 ¼ �g0;

�
ð22Þ
where the subscript k indicates the iteration step, the positive step size ak is obtained by a line search algorithm,
gk =rST(Uk), and bHZ

k is the CG update parameter. We define bHZ
k ¼maxfbk;gkg as in [7]:
bk ¼ yk � 2dk
jykj

2

dT

k yk

 !T

gkþ1

dT

k yk

; gk ¼
�1

jdkjminf0:01; jgkjg
ð23Þ
with yk = gk+1 � gk.
When the preconditioning is desired, we consider a new variable U ¼ SbU, where S is an invertible matrix chosen to speed-

up the convergence. Writing the nonlinear CG method with respect to bU and converting it back to U we obtain the precon-
ditioned nonlinear CG method:
Ukþ1 ¼ Uk þ akdk;

dkþ1 ¼ �Pgkþ1 þ �bHZ
k dk; d0 ¼ �Pg0;

�
ð24Þ
where P = SST. The parameter �bHZ
k is the same as bHZ

k except that gk and dk are replaced by STgk and S�1dk, respectively. How-

ever, we do not need to know S explicitly by observing that STgk


 �TðSTgkÞ ¼ gT
k SSTgk ¼ gT

k Pgk and S�1dk

� �T

ðSTykÞ ¼

dT

k S�TSTyk ¼ dT

k yk. Thus we only need to know the matrix P. An effective preconditioner P is, in general, an approximation
of the Hessian. Unfortunately, it is usually difficult to find an effective preconditioner for a general nonlinear function, which
is heavily problem dependent. In this work we use the inverse of the linear part of the Euler–Lagrange equation of the action
functional as a preconditioner whenever possible, see Section 4.2 for an application of such a strategy.

3.3. Some computational issues

We subsequently discuss some important computation issues with respect to the numerical efficiency and accuracy.

3.3.1. Parallel computing
Parallel computing is the most straightforward means to deal with large scale simulations, for which the scalability of the

algorithm is essential. For simplicity, we here only consider the parallelization with respect to the temporal discretization.
The key observation is that both ST and @ST/@/i,j are expressed as a time integration, which can be further decomposed into
location time integrations in each finite element. Suppose that the same polynomial order is employed in each finite
element, then all the finite elements can be uniformly distributed onto the CPU processors. Due to the choice of the finite
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element basis, i.e., ŵið�1Þ ¼ 0 for 0 < i < p, only the coefficients of ŵ0 or ŵp need to be exchanged between two adjacent CPU
processors. In this sense, the proposed numerical method is highly scalable for parallel computing.

3.3.2. Complexity
With respect to complexity, the finite element approximation of the MAP has the following two main advantages: (1)

When we add more interior basis functions wi(t) (p-refinement) or more elements (h-refinement) to refine the approxima-
tion, the computation of the gradient of the action functional requires no extra reformulations; (2) Since interior basis func-
tions vanish at element boundaries, the information exchanged between CPU processors will remain the same for both h-
and p-refinement.

If we employ finite difference methods to approximate the action functional, the complexity for the aforementioned two
issues will increase. First, it is not easy to derive a uniform formula of gradient for finite difference discretizations of an arbi-
trary order and the formula can become much more complicated when a high-order finite difference scheme is employed;
Second, when a larger stencil is employed, more information need to be exchanged between CPU processors and decreases
the scalability of the algorithm for parallel computation.

3.3.3. Adaptivity
One difficulty of approximating the MAP is that the dynamics can significantly affect the quality of temporal discretiza-

tion. Since we are looking for a curve in the phase space, we can also describe it by the arc length, i.e., the temporal discret-
ization corresponds to an arc length discretization of the MAP. Specifically, the time element [ti, ti+1] corresponds to the arc

length element
R ti

0

ffiffiffiffiffiffiffiffiffiffi
j/tj

2
q

dt;
R tiþ1

0

ffiffiffiffiffiffiffiffiffiffi
j/t j

2
q

dt
 �

. However, due to the nonlinear relation between time and arc length, a uniform

discretization with respect to time may correspond to a highly nonuniform discretization with respect to arc length. For
example, the time element [ti, ti+1] has an element size ti+1 � ti while the corresponding arc length element has an element

size
R tiþ1

ti

ffiffiffiffiffiffiffiffiffiffi
j/t j

2
q

dt, which is determined by /t. In the transition region close to fixed points, the dynamics will become much

slower, i.e., /t is close to zero, the arc length elements become very small and do not contribute to the approximation of the
MAP. To improve the accuracy, we employ the moving mesh technique proposed in [18].

Let s 2 [0,1] indicate a scaled arc length such that the total length of the MAP is equal to 1. We need to find a mapping
from a temporal discretization to a (nearly) uniform discretization with respect to s. A variational approach was used in [18],
which minimizes the following functional
EðsÞ ¼
Z T

0
w�1ðtÞ ds

dt

� �2

dt; ð25Þ
where w(t) is a monitor function chosen as wðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Cj/t j

2
q

with C being a positive constant. Note when C goes to infinity,
w(t) � j/tj. The Euler–Lagrange equation of the functional (25) is
d
dt w�1ðtÞ ds

dt


 �
¼ 0; t 2 ð0; TÞ;

sð0Þ ¼ 0; sðTÞ ¼ 1:

(
ð26Þ
For mesh adjustment, we first map the current time mesh to a discretization of [0,1] with respect to s by solving Eq. (26). A
quadratic finite element approximation is employed. Specifically, we separate the boundary modes from the interior second-
order modes. It is easy to see that the Schur complement for the boundary modes is a tridiagonal matrix which can be in-
versed with a linear cost. Second, we map a uniform discretization of [0,1] with respect to s to a discretization of [0,T] by
computing t�1(s). This will be our new time mesh. Third, we project the current path /h(t) onto the new time mesh. Instead
of projecting the current path onto the approximation space given by the whole new time mesh, we implement the projec-
tion element-wisely, which corresponds to inverse the mass matrix in each element. We use this strategy mainly for numer-
ical efficiency. The drawback of the element-wise projection is that the coefficients of boundary modes given by two adjacent
elements may be different. We currently use the coefficient given by the left element for a certain boundary mode although a
certain type of average may yield a better result from the approximation point of view. Numerical experiments show that the
nonlinear CG iteration is not sensitive to such a discontinuity since the discontinuity only comes from the element bound-
aries and the action functional is an integration. To this end, we can continue the nonlinear CG iteration.

We use a low-order finite element approximation to solve Eq. (26) for two reasons: (1) we just need a nearly uniform arc
length discretization; (2) t�1(s) can be computed explicitly for a second-order piecewise polynomial. The cost for computing
the new mesh is O(N), where N is the number of elements. Since the Cholesky factorization of the local mass matrix in each
element can be pre-computed, we only need to inverse N small lower-triangular matrices for the projection. Thus the cost for
projection is O(p2N), where p is the polynomial order in each element. Since M � pN, the overall cost is O(pM), which is linear
with respect to the total number of degrees of freedom.

Remark 1. Due to the choice of finite element approximation, the projection from the old time mesh to the new time mesh
is natural. When finite difference discretization is used, an interpolation algorithm, such as spline interpolation, is needed.
Our experience shows that the spline interpolation usually introduces extra fluctuations, which can result in a large increase
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of the action functional and deteriorate the efficiency of the nonlinear CG iteration. The projection strategy usually does not
affect the value of the current action functional even for a low-order finite element approximation.
3.4. Generalization for SPDEs

The proposed MAM can be easily generalized to study random perturbations of stochastic partial differential equations
@uðx; tÞ
@t

¼ Guðx; tÞ þ
ffiffiffi
e
p

_Wðx; tÞ; ð27Þ
where x 2 D � Rd; d ¼ 1;2;3;G indicates a differential operator in the physical space and _Wðx; tÞ is space-time white noise.
The action functional for the SPDE (27) is defined as [5]
STðuÞ ¼
1
2

Z T

0

Z
D
ð@tu� Guðx; tÞÞ2 dxdt ¼ 1

2
h@tu� Gu; @tu� Guix;t; ð28Þ
where hf,gix,t indicates the inner product of f and g with respect to both x and t.
Let fhiðxÞgNx

i¼1 and fwiðtÞg
Nt
i¼1 be the approximation bases for space and time, respectively. Then u(x, t) has the following

approximation
uðx; tÞ � uhðx; tÞ ¼
XNx

i¼1

XNt

j¼1

ui;jhiðxÞwjðtÞ:
We define the perturbation operator bG as
Gðuþ duÞ ¼ Guþ bGduþ Oðd2uÞ:
Then we have
STðuþ duÞ � STðuÞ ¼ h@tu� Gu; @tdu� bGduix;t ;
which implies that the gradient with respect to ui,j can be expressed as
ðrSTÞkði;jÞ ¼
@STðuhÞ
@ui;j

¼ hð@t � GÞuh; ð@t � bGÞðhiðxÞwjðtÞÞix;t; ð29Þ
where i = 1,2, . . . ,Nx and j = 1,2, . . . ,Nt. Once the gradient rST is obtained, it is straightforward to apply the (preconditioned)
nonlinear CG optimization solver, described in Section 3.2.

Remark 2. Although the main numerical strategy of MAM for SPDEs is similar with that for SODEs, the large number of
degrees of freedom from spatial discretization can make the problem computationally challenging. Note the Euler–Lagrange
equation for the action functional of SPDEs takes the form
dST

du
¼ @t � bG� �


ð@t � GÞu ¼ 0;
where ð@t � bGÞ
 is the adjoint operator of @t � G, which is a high-order nonlinear (d + 1)-dimensional partial differential
equation. Obviously, it is not enough to only consider the parallelization in the time direction, since the number of CPU pro-
cessors is limited by Nt while Nx can be large. The study of such an issue will be reported elsewhere.

Algorithm 1: Adaptive high-order MAM

Project the initial path /(t) onto a uniform time mesh T h of [0,T] and define U0 which is a global vector containing all
unknown coefficients of the finite element approximation;

Start the iteration of nonlinear CG solver (22)
Ukþ1 ¼ Uk þ akdk:
Check the mesh quality very m iteration steps.
� Compute the arc length for each element according to the monitor function w(t).
� If the ratio rs between the largest arc length and the smallest one is larger than a prescribed threshold, solve Eq. (26)

to obtain a new time mesh.
� Project the current path onto the new time mesh and update Uk.

Stop the CG iteration when error tolerance or the maximum iteration number is achieved.
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4. Numerical examples

In this section, we apply the adaptive high-order MAM to two dynamical systems: one is an SODE example and the other
one is an SPDE example. For the SODE example we focus on the examination of the accuracy and efficiency according to the
exact solution and for the SPDE example we demonstrate a practical application of the method to a complex dynamical
system.

4.1. An SODE example

We consider the following example, for which the MAP can be obtained explicitly:
dx ¼ �@xVðx; yÞdt þ
ffiffiffi
e
p

dWx
t ;

dy ¼ �@yVðx; yÞdt þ
ffiffiffi
e
p

dWy
t ;

(
ð30Þ
where the potential V(x,y) is
Vðx; yÞ ¼ ð1� x2 � y2Þ2 þ y2=ðx2 þ y2Þ: ð31Þ
The dynamical system has two stable fixed points a1 = (�1,0) and a2 = (1,0), which are local minima of the potential V(x,y).
We consider the MAP in the upper half-plane connecting a1 and a2 through the saddle point a3 = (0,1). Then the explicit form
of this MAP is the upper branch of the unit circle: x2 + y2 = 1. The exact action functional is 2 � (V(a3) � V(a1)) = 2. After some
simple algebra, we obtain the linear part b̂ðx; yÞ 2 R2�2 as
b̂11ðx; yÞ ¼ 4ð1� 3x2 � y2Þ þ 2y2

ðx2 þ y2Þ2
� 8x2y2

ðx2 þ y2Þ3
;

b̂12ðx; yÞ ¼ �8xyþ 4xy

ðx2 þ y2Þ2
� 8xy3

ðx2 þ y2Þ3
;

b̂21ðx; yÞ ¼ �8xy� 4xy

ðx2 þ y2Þ2
þ 8x3y

ðx2 þ y2Þ3
;

b̂22ðx; yÞ ¼ 4ð1� x2 � 3y2Þ � 2x2

ðx2 þ y2Þ2
þ 8x2y2

ðx2 þ y2Þ3
:

We first examine the convergence of the proposed method. This example was intensively studied in [18] using an adap-
tive minimum action method based on the finite difference temporal discretization and an L-BFGS optimization solver.
According to the study in [18] we choose the time interval as [0,T] = [0,50] to replace the time interval [�1,1], which is
enough to resolve the problem accurately. The same initial path is used here for the nonlinear CG solver:
xðtÞ ¼ �1þ 2t=T; t 2 ½0; T	; yðtÞ ¼
2:4t=T; t 2 ½0; T=4	;
0:6; t 2 ½T=4;3T=4	;
2:4t=T � 1:2; t 2 ½3T=4; T	:

8><>: ð32Þ
Some important parameters are chosen as follows. The mesh quality is checked every 10 iteration steps. The constant C in the
monitor function w(t) is set to be 1000, and the threshold for the ratio rs between the largest arc length and the smallest one
is set to be 3.

We define the L1 error of the approximate MAP as the maximum value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
� 1

�� �� on some Gauss-type quad-
rature points. In Fig. 1 we plot the h-convergence where we use linear finite elements for approximation and refine the
solution by increasing the element number. It is seen that the adaptive minimum action method provides a second-order
accuracy which cannot be achieved without the reparametrization of the time mesh [18]. In Fig. 2 we show the p-conver-
gence, i.e., spectral convergence, where we fixed the element number as 10 and refine the approximation by increasing
the polynomial order. We obtain an overall p-convergence for both the L1 error of the approximate MAP and the error of
the approximate action functional. In Fig. 3 we compare the h-convergence and p-convergence with respect to the total num-
ber of degrees of freedom using the error of the action functional. It is seen that when the MAP is smooth enough the p-con-
vergence can be much more efficient than the h-convergence.

We subsequently discuss the effect of constant C in the monitor function w(t). We choose polynomial order p = 5, element
number N = 50 and the skewness parameter rs = 3. We test the following two cases: C = 103 and C = 109. In Fig. 4 we plot the
two final adaptive meshes. It is seen that the time interval can be roughly decomposed as [0,50] = [0,10] [ [10,12.5] [
[12.5,37.5] [ [37.5,50]. In the region [0,10] [ [12.5,37.5] [ [37.5,50], the particle stays around the fixed points and has a
very small velocity. Thus a longer time is needed to make the arc length close to L/50, where L is the arc length of the
MAP. Since when C goes to infinity, w(t) � j/tj, we then have a more uniform mesh with respect to arc length when C is lar-
ger. It is observed that fewer points are required in the transition regions for a larger C. Although such a strategy can improve
the accuracy significantly, this does not mean that the accuracy is a monotonically decreasing function of C. Actually, the



Fig. 2. p-convergence for the SODE example. 10 finite elements are used for approximation. Left: the L1 error of the MAP versus the polynomial order.
Right: the error of the action functional versus the polynomial order.

Fig. 1. h-convergence for the SODE example. Linear finite elements are used for approximation. The straight lines are reference lines with slopes �2. Left:
the L1 error of the MAP versus the element number. Right: the error of the action functional versus the element number.

Fig. 3. Convergence with respect to the number of degrees of freedom. The line with squares is given by h-convergence where linear finite elements are
used; the line with circles is given by p-convergence where 100 elements are used.
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Fig. 4. Two final adaptive time meshes. p = 5 and N = 50. Left: C = 103; Right: C = 109.
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errors of the action functional are O(10�6) and O(10�3) for C = 103 and C = 109, respectively. This is mainly due to the fact that
our approximation is with respect to time. It is obvious that for a certain polynomial order, the approximation error will be-
come larger as the element size increases. Thus, the optimal choice of the constant C is problem dependent. A more efficient
and robust monitor function deserves further study to balance the mesh adjustment and the approximation errors in each
element.

4.2. An SPDE example

We now apply the developed method to random perturbations of the normalized Kuramoto–Sivashinsky (K–S) equation
defined as
ut þ 4uxxxx þ a uxx þ 1
2 ðuxÞ2

h i
¼ 0; ðx; tÞ 2 ð0;2pÞ � Rþ;

uðx;0Þ ¼ u0ðxÞ; uðx; tÞ ¼ uðxþ 2p; tÞ;

(
ð33Þ
where a is a bifurcation parameter. This is one of the simplest spatially extended nonlinear systems of physical interest. It
was derived in 1970s by Kuramoto [15] and Sivashinsky [17]. Holmes et al. [11] provided a delightful discussion of why this
system is a good model problem for studying turbulence in the full-fledged Navier–Stokes boundary shear flows. As the
bifurcation parameter a increases, the solution of K–S equation undergoes a complex bifurcation sequence including fixed
points, traveling waves, invariant tori and homoclinic orbits [10] on the route of transition to chaos.

Eq. (33) is characterized by a second order negative diffusion (due to the sign of the Laplacian), a fourth-order stabilizing
term and a quadratic nonlinear coupling term. For example, the trivial solution u  0 is a global attractor when a 6 4, and
becomes unstable as soon as the bifurcation parameter a is larger than 4. This is reflected in the spectrum of (33) linearized
at u = 0, where the eigen-functions are the expðikxÞ; k 2 Z, and the sequence of eigenvalues is
Kk ¼ ak2 � 4k4
:

When a is large enough, the K–S equation will exhibit temporal chaos. On the other hand, the existence of a unique compact
inertial manifold was establish in [6]. Thus, the solution of the K–S equation is characterized by the coexistence of coherent
spatial structures with complex temporal dynamics. Since the mean mode
�uðtÞ ¼ 1
2p

Z 2p

0
uðx; tÞdx
is unbounded, we consider the equation for vðx; tÞ ¼ uðx; tÞ � �uðtÞ for convenience [10]:
v t þ 4vxxxx þ a vxx þ
1
2
ðvxÞ2

 �
þ _�uðtÞ ¼

ffiffiffi
e
p

_Wðx; tÞ; ð34Þ
where
_�uðtÞ ¼ �a
4p

Z 2p

0
ðuxÞ2 dx ¼ �a

4p

Z 2p

0
ðvxÞ2 dx:
Define the operator G in the action functional (28) as
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Gvðx; tÞ ¼ �4vxxxx � a vxx þ
1
2
ðvxÞ2

 �
þ a

4p

Z 2p

0
ðvxÞ2 dx: ð35Þ
Then the perturbation operator bG is
bGdvðx; tÞ ¼ �4dvxxxx � a½dvxx þ vxdvx	 þ
a

2p

Z 2p

0
vxdvx dx: ð36Þ
Due to the periodic boundary conditions in space, we choose the Fourier spectral method for the spatial discretization to take
advantage of the Fast Fourier Transform (FFT). In other words, the approximation space for x is defined as
BNx ¼ spanfcosðmxÞ;0 6 m 6 Nx=2g [ fsinðmxÞ; 1 6 m 6 Nx=2� 1g; ð37Þ
where Nx is an even integer and BNx has dimension Nx. We order the basis functions as follows
1; cosðxÞ; cosð2xÞ; . . . ; cos
Nx

2
x

� �
; sin

Nx

2
� 1

� �
x

� �
; . . . ; sinðxÞ
and denote them as hm(x), 1 6m 6 Nx. Note here that since the mean �uðtÞ is subtracted, the coefficient for the mean mode is
always zero. Then the MAP has an expansion
vðx; tÞ ¼
XNx

m¼1

XNt

j¼1

vm;jhmðxÞwjðtÞ:
To evaluate ST(v) and @ST/@vm,j exactly in the x-direction, 2Nx points are needed for the FFT due to the nonlinearity.

4.2.1. A practical preconditioner
The Euler–Lagrange equation of the action functional
�@2
t þ a2@4

x þ 8a@6
x þ 16@8

x


 �
v þNðvÞ ¼ 0; ð38Þ
where NðvÞ is the non-linear part. From the linear part of the Euler–Lagrange equation (38), we see that the ratio between
the largest and smallest eigenvalues is Ck = (a k2 � 4k4)2/(a � 4)2, where k 2 Z and the smallest absolute value of k is equal to
1 since the mean mode is taken out. When 32 Fourier modes are employed, C16 = O(107), which implies that the condition
number of the Hessian can be very large. Thus an efficient preconditioner is necessary to improve the convergence of the
nonlinear CG iteration.

We use the inverse of the linear part of the Euler–Lagrange equation, i.e. �@2
t þ a2@4

x þ 8a@6
x þ 16@8

x


 ��1
, as the precondi-

tioner for the nonlinear CG method. In other words, for a certain v(x, t), we need to solve the following equation
@2
t v̂ ¼ a2@4

x v̂ þ 8a@6
x v̂ þ 16@8

x v̂ �
dST
dv ðvÞ; ðx; tÞ 2 ð0;2pÞ � Rþ;

v̂ðx;0Þ ¼ v̂ðx; TÞ ¼ 0; v̂ðx; tÞ ¼ v̂ðxþ 2p; tÞ;

(
ð39Þ
where dST/dv is the functional derivative of v(x, t). Homogeneous boundary conditions are used such that they will not affect
the force term. Let
v̂ ¼
XNx=2

m¼1

v̂a;mðtÞ cosðmxÞ þ
XNx=2�1

m¼1

v̂b;mðtÞ sinðmxÞ: ð40Þ
Taking Galerkin projection of Eq. (39) with respect to cos(nx) or sin(nx), we obtain a system of decoupled one-dimensional
wellposed elliptic equations
d2

dt2 v̂a;m ¼ ða2m4 � 8am6 þ 16m8Þv̂a;m �
dST

dv ; cosðmxÞ
� 	

x

; 1 6 m 6 Nx=2; ð41Þ

d2

dt2 v̂b;m ¼ ða2m4 � 8am6 þ 16m8Þv̂b;m �
dST

dv ; sinðmxÞ
� 	

x
; 1 6 m < Nx=2; ð42Þ
by noting that a2m4 � 8am6 + 16m8 = m4(a � 4m2)2 P 0. Then Eqs. (41) and (42) can be solved one by one.
Let
v̂ðx; tÞ ¼
XNx

m¼1

v̂mðtÞhmðxÞ ¼
XNx

m¼1

XNt

j¼1

v̂m;jhmðxÞwjðtÞ:
With respect to hm(x), we rewrite Eqs. (41) and (42) as
d2

dt2 v̂mðtÞ ¼ cmv̂mðtÞ �
dST

dv ;hmðxÞ
� 	

x
: ð43Þ
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We then use the finite element space fwjðtÞg
Nt
j¼1 to approximate Eq. (43) corresponding to the weak form
XNt

j¼1

v̂m;j

Z T

0

dwj

dt
dwl

dt
þ cmwjwl

� �
dt ¼ @ST

@vm;j
; 1 6 l 6 Nt; ð44Þ
by noting that
dST

dv ; hmðxÞwjðtÞ
� 	

x;t

¼ @ST

@vm;j
:

Using a similar technique as we did for the mesh adjustment, we separate the boundary modes from the interior modes. The
Schur complement for the boundary modes is a tridiagonal matrix and the matrix for the interior modes is block-wisely diag-
onal. The cost for the preconditioning step is thus O((N + p2N)Nx) � O(pNtNx), which is linear with respect to the total number
of degrees of freedom.

4.2.2. Boundaries of the MAP
We choose a = 52, for which there exist two types of attractors: one is a fixed point vF(x) and the other one is a traveling

wave vTW(x + ct), shown in Fig. 5. We consider the transition from the fixed point vF(x) to the traveling wave vTW(x + ct) using
the proposed method. Due to the even-order spatial derivatives and quadratic nonlinearity, the K–S equation is invariant
with respect to translation and reflection. We refer to [21] for discussions about the relation between the boundaries of
the MAP and the equivalent solutions of K–S equation. We here focus on the performance of the proposed numerical method
and the boundaries of the MAP are chosen as snapshots of the two attractors.

The transition from vF(x) to vTW(x + ct) was studied in [21] based on the following ODE system
dv
dt
¼ PNx LðvÞ þ PNx Nðv; tÞ þ

ffiffiffi
e
p

_WðtÞ; ð45Þ
where v 2 RNx�1 indicates the Fourier coefficients of vðx; tÞ;PNx LðvÞ is the projection of the linear operator L(v) =
�4vxxxx � avxx onto BNs , and PNx Nðv; tÞ the similar projection of the nonlinear operator NðvÞ ¼ � a

2 v2
x � _�uðtÞ. Eq. (45) corre-

sponds to the action functional
bSTðvÞ ¼
1
2

Z T

0
j _v � PNx LðvÞ � PNx Nðv; tÞj2 dt: ð46Þ
In this work, we consider the action functional (28) directly without implementing the projection of the original stochas-
tic PDE. Note that when we implement the Galerkin projection of the original stochastic PDE, the higher-order modes given
by the nonlinear operator will be eliminated. Thus for a stable fixed point v̂ðxÞ of Eq. (45), k@tv̂ � Gv̂k2 may be not exactly
equal to zero, where k�k indicates the L2 norm in space. However since
k@tv̂ðxÞ � Gv̂ðxÞk2 ¼ pj _̂v � PNx Lðv̂Þ þ PNx Nðv̂; tÞj2 þ �;
where � is the contribution from the higher-order modes given by the nonlinear operator Nðv̂Þ, which is positive and small,
the MAP given by a direct approximation of the action functional (28) should be close to the MAP of the ODE system (45)
when the number of Fourier modes is large enough. Furthermore, if @tv̂ðxÞ � Gv̂ðxÞk k ¼ 0; v̂ must be a fixed point of Eq. (45).
Fig. 5. Profiles of the attractors. Left: fixed point, vF(x); Right: traveling wave, vTW(x + ct).
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4.2.3. Numerical results
We first look at the effectiveness of the proposed preconditioner (39). We use 500 linear finite elements for temporal dis-

cretization and 32 Fourier modes for spatial discretization. The mesh quality is checked every 50 iteration steps. The constant
C in the monitor function w(t) is set to be 1000, and the threshold for the ratio rs between the largest arc length and the
smallest one is set to be 10. In Fig. 6, we plot the convergence behavior of the nonlinear CG iterations. The solid line corre-
sponds to the nonlinear CG solver without preconditioner, and the dash line is given by the preconditioned nonlinear CG
solver. We first notice that the value of the action functional keeps decreasing, which means that the projection of the
MAP from the old time mesh to the new time mesh does not result in any significant increase of the action functional. Sec-
ond, we see that the preconditioner significantly improve the efficiency of the nonlinear CG iteration, which implies that the
preconditioner is an effective approximation of the Hessian.

We subsequently look at the transition from the fixed point vF(x) to the traveling wave vTW(x + ct). In this work we use the
stable solutions given by the ODE system (45), see Fig. 5, as the boundaries of the MAP, since the boundaries of the MAP can
be two arbitrary points or sets in the phase space and are not restricted to stable solutions. In Fig. 7 we compare the MAPs
given by the action functional (28) and the projected ODE system (45), respectively. On the time interval [0,30], 3000 grid
points are used for discretization. For the action functional (28), the linear finite element discretization is used; for the action
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Fig. 6. Convergence behavior of the nonlinear CG iterations. The solid line is given by a nonlinear CG solver without preconditioner; The dash line is given
by the preconditioned nonlinear CG solver.

Fig. 7. MAP of the K–S equation between vF(x) and vTW(x + ct) discretized by 3000 points in the time interval [0,30]. The solid line is given by the minimum
action method based on the linear finite element discretization of action functional (28), and the dotted line is given by the minimum action method based
on the finite difference discretization of action functional (46). Left: MAP in the phase space with respect to the coefficients of cos(x), cos(2x) and cos(3x);
Right: A close-up view of the region marked by the dotted ellipse in the left figure.
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functional (46) given by the projected ODE system (45), the finite difference discretization is used. 32 Fourier modes are used
for the physical discretization. It is seen that the local minimizer of the action functional (28) agrees very well with that of
the action functional (46). Although the positions of fixed points are slightly different due to the Galerkin projection, the
dynamical properties remain the same. In other words, if we want to study the phase space of the ODE equation (45), we
can also use the MAP given by the action functional (28). We refer to [21] for a detailed study of the configuration space
of the K–S equation based on the minimal action path.

We now look at the numerical efficiency. We know that the MAP approaches saddle points from their stable manifold and
leaves from their unstable manifold, which implies that the MAP may just have C0 regularity at saddle points with respect to
the arc length. From the numerical point of view, we need to rely on h-convergence, i.e., small elements, around the saddle
points to avoid the Gibbs phenomena in spectral methods. In [21], we identified five zones along the MAP, where saddle
points are found, which is the reason that we only consider linear finite element discretization for this problem. However,
we also observe that between saddle points the MAP usually has a much better regularity, which means that higher-order
polynomial approximation can be more efficient in such a region. In other words, hp-adaptivity can be implemented to fur-
ther improve the numerical efficiency. In this work, we focus on the general methodology and only consider a uniform poly-
nomial order in each element. The hp-adaptivity will remain as a research issue for future study.

5. Summary and discussions

In this work we formulate the minimum action method in the framework of finite element method. This version of the
minimum action method has the following main features: (1) An hp finite element space is used for the approximation of the
MAP, which allows both h- and p-refinement. (2) Formulas for the computation of the gradient of the action functional are
simple and can be easily coupled with finite element approximations or spectral approximations in the physical space for a
general partial differential equation. (3) In the mesh adjustment, the mapping of the MAP from the old time mesh to the new
one based on projection appears to introduce no significant increase of the action functional.

Overall the current version of the minimum action method seems more flexible and robust than the minimum action
methods based on the finite difference discretization and interpolation, especially for the study of complex dynamical sys-
tems modeled by partial differential equations. We currently use the same polynomial order in each finite element. However,
the study of the configuration space of the Kuramoto–Sivashinsky equation shows that the hp adaptivity is necessary to fur-
ther improve the efficiency of the method. If the minimum action method is formulated with respect to time, it was shown
that the time mesh adjustment is important for the numerical accuracy and efficiency [18]. However, more understanding
about the balance between the uniformness of arc length elements and the approximation errors of the MAP with respect to
time is still required to further improve the robustness of the monitor function for the time mesh adjustment.
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