
Parallel Computing 39 (2013) 638–651
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate /parco
Hybrid parallel computing of minimum action method
0167-8191/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.parco.2013.08.004

⇑ Corresponding author.
E-mail addresses: xlwan@math.lsu.edu (X. Wan), guang.lin@pnl.gov (G. Lin).
Xiaoliang Wan a,⇑, Guang Lin b

a Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
b Pacific Northwest National Laboratory, Richland, WA 99352, USA

a r t i c l e i n f o
Article history:
Received 18 October 2012
Received in revised form 4 June 2013
Accepted 10 August 2013
Available online 4 September 2013

Keywords:
Random perturbation
Dynamical system
Minimum action method
Rare events
Spectral elements
Heterogeneous computing
a b s t r a c t

In this work, we report a hybrid (MPI/OpenMP) parallelization strategy for the minimum
action method recently proposed in [17]. For nonlinear dynamical systems, the minimum
action method is a useful numerical tool to study the transition behavior induced by small
noise and the structure of the phase space. The crucial part of the minimum action method
is to minimize the Freidlin–Wentzell action functional. Due to the fact that the correspond-
ing Euler–Lagrange equation is, in general, highly nonlinear and of high order, we solve the
optimization problem directly instead of discretizing the Euler–Lagrange equation to pro-
vide a general but equivalent numerical framework. To enhance the efficiency of the min-
imum action method for general dynamical systems we consider parallel computing. In
particular, we present a hybrid parallelization strategy based on MPI and OpenMP. Numer-
ical results are presented to demonstrate the efficiency of the proposed parallelization
strategy.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Dynamical systems are often subject to random perturbations since noise is ubiquitous in nature. Even when these ran-
dom perturbations have a small amplitude, they can produce a profound effect on the long time dynamics by inducing rare
but important events. A large number of interesting phenomena in physics, chemistry and biology such as phase transitions,
biological switches and chemical reactions, etc., are examples of such noise-induced rare events [11].

When the random perturbations are small, the Freidlin–Wentzell theory of large deviations provides a rigorous mathe-
matical framework for us to understand how the transitions occur and how frequent they are. The transition pathways be-
tween metastable sets in a dynamical system often have a rather deterministic nature. As the noise amplitude decreases to
zero, the events for successful transitions between metastable sets have a sharply peaked probability around a certain deter-
ministic path that is least unlikely. Special features of such a path tell us crucial information about the mechanism of the
transition. One class of examples that have been well studied for a long time are the gradient systems, for which the vector
field is the gradient of a potential function. In gradient systems, the most probable transition path is the minimum energy
path (MEP), which passes through the basin boundary between the stable states at some saddle points of index one [13]. For
non-gradient systems we need to consider the action functional instead of the energy, which is the central object to the Fre-
idlin–Wentzell theory. The minimizer of the action functional provides the most probable transition path; the minimum of
the action functional provides an estimate of the probability and the rate of occurrence of the transition. Thus an important
practical task is to compute the minimum and minimizer of the action functional. A large number of algorithms have been
designed for gradient systems. Some popular algorithms include the string method [2,4], nudged elastic band method [10],
eigenvector-following-type method (e.g., [1]) as well as the dimer method [9], which usually take advantage of the fact that

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2013.08.004&domain=pdf
http://dx.doi.org/10.1016/j.parco.2013.08.004
mailto:xlwan@math.lsu.edu
mailto:guang.lin@pnl.gov
http://dx.doi.org/10.1016/j.parco.2013.08.004
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651 639
in gradient systems the transition paths are always parallel to the drift term of the stochastic differential equation. For non-
gradient systems, we need to minimize directly the Freidlin–Wentzell action functional and available algorithms include the
minimum action method (MAM) [3], the adaptive MAM [14], the geometric MAM [8] and a high-order MAM [17].

Although it has been demonstrated that the minimum action method can be very useful for the study of noise-induced
transitions and the structure of the phase space [3,15,16], the minimum action method and its variants are computationally
demanding especially for spatially extended dynamical systems. This has limited the application of the method. The diffi-
culty can be intuitively understood from the fundamental difference between deterministic and stochastic dynamics. To
solve a deterministic dynamical system, we start from one point in the phase space and follow the trajectory given exactly
by the equation. To study the transition between two states, we need to explore a set of transition paths, where due to the
noise, any curve connecting the two states in the phase space can be a transition path. More specifically, the numerical dif-
ficulties include: (1) The Euler–Lagrange equation of the Freidlin–Wentzell (F–W) action functional corresponds to a high-
order nonlinear ðdþ 1Þ-dimensional boundary value problem, where the differentiation order with respect to both space
and time will be doubled compared to the original partial differential equations (PDEs). Here d is the number of physical
dimensions and the extra dimension is from the time direction. (2) After the discretization, the F–W action functional be-
comes a highly nonlinear function. A general and efficient way to compute the gradient is required by most efficient opti-
mization solvers. (3) To accelerate the convergence of the optimization solver, an efficient preconditioner is desired,
where a general one is usually not available for a nonlinear objective function and the efficiency of the preconditioner should
be related to the dynamical system. (4) For large scale simulations, parallel computing is desired to enhance the numerical
efficiency, where scalable algorithms are needed, especially for petascale or even exascale computing based on a heteroge-
neous high performance computing (HPC) architecture. However, the nonlinear differential operator in the physical space
may not be in favor of direct parallelization. We now look at a real example. One classical dynamical system problem in fluid
mechanics is the nonlinear instability of parallel shear flows, where the transition mechanism from a laminar state to a tur-
bulence state is still not clear. This problem can be formulated and treated as a rare event [18], where the minimum action
method is required since Navier–Stokes equations correspond to a non-gradient system. We here only emphasize the neces-
sity of parallel computing in terms of the scale of the problem. The d + 1-dimensional boundary value problem mentioned in
issue (1) corresponds to a computation domain ½0; T� � D with D being the physical domain. Roughly speaking, the time T
should be of the same order as the Reynolds number. For example, for two-dimensional Poiseuille flows in a short channel,
we are typically interested in Reynolds number located in the range (2900, 5772). Thus T can be very large. Although the
deterministic Navier–Stokes equation may be simulated in physical domain D by a serial code, we need to consider the min-
imum action method to study the stochastic dynamics and it is impossible to deal with a computation domain, e.g., [0,
8000] � D, using serial simulations even D is two-dimensional.

In this work, we mainly address the parallelization of the minimum action method in terms of the version proposed in
[17]. We refer to this version as hpMAM for short, because it is formulated in the framework of hp finite element method,
which allows both h-, p-, and hp-refinement for the transition path and can be easily coupled with finite element or spectral
discretizations in the physical space. In hpMAM, components of the gradient of the F–W action functional are expressed
explicitly as inner products, which can be efficiently computed by Gauss-type quadrature rules. In this paper, we will iden-
tify the essential parallelism of hpMAM. In particular, we present a simple but effective hybrid MPI/OpenMP parallelization
strategy, which is consistent with the current high performance computing (HPC) architecture, e.g., a multi-socket multi-
core symmetric multiprocessing cluster.

The paper is organized as follows. In Section 2, we describe the problem and briefly overview the high-order minimum
action method. In Section 3, we identify the parallelism of our algorithm and present a hybrid MPI/OpenMP parallelization
strategy. We test the scalability of the parallel hpMAM in Section 4, followed by a summary section.

2. Minimum action method

2.1. Description of the problem

We start from small random perturbations of an ordinary differential equation. Let Xt ¼ XðtÞ : Rþ ! Rn be a random pro-
cess defined by the following stochastic ordinary differential equation (SODE):
dXt ¼ bðXtÞdt þ
ffiffiffi
e
p

dWt ; ð1Þ
where Wt is a standard Wiener process in Rn and e is a small positive parameter. Let /ðtÞ 2 Rn be an absolutely continuous
function defined on t 2 ½0; T�. The Freidlin–Wentzell theory [6] tells us that the probability of XðtÞ passing through the d-tube
about / on ½0; T� is
PrðqðX;/Þ < dÞ � exp �1
e

STð/Þ
� �

; ð2Þ
where qð/;uÞ ¼ supt2½0;T�j/ðtÞ �uðtÞj, and STð/Þ is the action functional of / on ½0; T�, defined as

640 X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651
STð/Þ ¼
1
2

Z T

0
j _/� bð/Þj2dt ¼ 1

2
h _/� bð/Þ; _/� bð/Þit ; ð3Þ
where hv1;v2it indicates the inner product of vectors v1ðtÞ;v2ðtÞ 2 Rn on time interval ½0; T�. In general, we have the follow-
ing large deviation principle
lim
e�!0

e log PrðX 2 AÞ ¼ �min
/ðtÞ2A

STð/Þ; ð4Þ
where A is a particular set of random events. Hence, in analogy with the Laplace’s method, the basic contribution to PrðX 2 AÞ
is given by the neighborhood of the minimum of STð/Þ when e is small enough. The minimizer /�, which satisfies
STð/�Þ ¼min
/2A

STð/Þ ð5Þ
is called the ‘‘minimal action path’’ (MAP). Depending on the definition of A, the MAP can capture many important phenom-
ena induced by the small random perturbations, which can be rare but profound. Typical examples include chemical reac-
tions, bistable genetic toggle switch, nucleation events during phase transitions, regime changes in climate, etc., from
physical, biological and engineering applications.

For small random perturbations of a partial differential equation (SPDE)
@uðx; tÞ
@t

¼ Guðx; tÞ þ
ffiffiffi
e
p

_Wðx; tÞ; ð6Þ
where x 2 Rd; d ¼ 1;2;3 is the physical dimension, G indicates a differential operator in the physical space and _Wðx; tÞ is
space–time white noise, the action functional is, in general, defined as [5]
STðuÞ ¼
1
2

Z T

0

Z
D
ð@tu� Guðx; tÞÞ2dxdt ¼ 1

2
h@tu� Gu; @tu� Guix;t ; ð7Þ
where D � Rd is the physical domain, h�; �ix;t indicates the inner product with respect to both x and t. The minimal action path
u� for the action functional (7) is defined as
STðu�Þ ¼ min
uðx;tÞ2B

STðuÞ; ð8Þ
where B is the set of random events we are interested in about the stochastic dynamical system (6).
In this work, we focus on the parallelization strategy for numerical solutions of problems (5) and (8). For simplicity and

without loss of generality, we consider problem (5) with the set A defined as
A ¼ f/ð0Þ ¼ a1; /ðTÞ ¼ a2g: ð9Þ
where a1; a2 2 Rn are two points in the phase space. Then the MAP /� is the most probable transition path from a1 to a2 in-
duced by the small random perturbations. All our discussions later on about problem (5) can be generalized straightfor-
wardly to deal with problem (8).

2.2. An adaptive high-order MAM (hpMAM)

We briefly overview the hpMAM proposed in [17]. We consider a high-order finite element approximation of /ðtÞ with
respect to a partition T h of the time interval ½0; T�:
T h : 0 ¼ t0 < t1 < . . . < tNeþ1 ¼ T;
where Ne is the number of finite elements. On a reference element R ¼ ½�1;1�, we define PpðRÞ as the space spanned by the
following basis functions [12]:
ŵjðsÞ ¼

1�s
2 j ¼ 0;

1�s
2

1þs
2 P1;1

j�1ðsÞ; 0 < j < p;
1þs

2 j ¼ p;

8>><
>>: ð10Þ
where P1;1
j denote orthogonal Jacobi polynomials of degree j with respect to the weight function ð1� sÞð1þ sÞ. ŵ0ðsÞ, and

ŵpðsÞ are consistent with the linear finite element basis, and ŵiðsÞ, 0 < j < p, are introduced for high-order approximation.
Note that ŵjð	1Þ ¼ 0 for 0 < i < p. We call ŵ0ðsÞ and ŵpðsÞ left and right boundary modes, respectively, and
ŵjðsÞ; 0 < j < p, interior modes.

We then define the finite element approximation space for /ðtÞ as
VK
h ¼ fv : v
 F�1

k 2 PpðRÞg;
Vh ¼ fv 2 H1

0ð½0; T�Þ : v jK 2 VK
h ; K 2 T hg;

X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651 641
where the function Fk defines an affine mapping from element K ¼ ½tk; tkþ1�; k ¼ 0;1; . . . ; Ne, to the reference element
R ¼ ½�1;1�, and v jK is the restriction of v on element K. More specifically, VK

h is spanned by the following basis functions
wk;jðtÞ ¼ ŵjðFkðtÞÞ; t 2 K ¼ ½tk; tkþ1�; k ¼ 0; . . . ; Ne; j ¼ 0; . . . ; p: ð11Þ
Thus Vh consists of piecewise polynomials up to order p. Note here that Vh � H1
0ð½0; T�Þ due to the facts that /ð0Þ and /ðTÞ

are specified and the action functional STð/Þ takes the form of an inner product.

2.2.1. Gradient of the action functional
Let iðk; jÞ indicate a global index for the basis functions wk;jðtÞ 2 Vh. Then /ðtÞ has an approximation as
/ðtÞ � /hðtÞ ¼
XMt

i¼1

/iwiðk;jÞðtÞ; /i 2 Rn; ð12Þ
where Mt is the total number of degrees of freedom. Correspondingly, problem (5) takes a discrete form as
STð/�hÞ ¼ STð/�i ji¼1;...;Mt
Þ ¼ min

/i2Rn ;i¼1;...;Mt

STð/hÞ; ð13Þ
which is an unconstrained optimization problem. It is well known that the gradient of the objective function is crucial for the
efficiency of an optimization algorithm. We now derive the gradient of the action functional, i.e., @ST=@/i;l, where /i;l is the lth
component of /i.

Let b̂ð/Þ indicate the perturbation operator defined as
bð/h þ d/hÞ � bð/hÞ þ b̂ð/hÞd/h; ð14Þ
where d/hðtÞ is a perturbation function with d/hð0Þ ¼ d/hðTÞ ¼ 0. We then have the variation of the action functional as
dSTð/hÞ ¼ STð/þ d/hÞ � STð/hÞ ¼ h _/h � bð/hÞ; d _/h � b̂ð/hÞd/hit : ð15Þ
Note that d/h also has an expansion in Vh
d/hðtÞ ¼
XMt

i¼1

d/iwiðtÞ: ð16Þ
Thus
dSTð/hÞ ¼
XMt

i¼1

h _/h � bð/hÞ; d/i
_wi � b̂ð/hÞd/iwiit : ð17Þ
Consider the particular choice of d/h, whose coefficients are equal to zero except the lth component d/i;l of d/i. Eq. (17)
becomes
dSTð/Þ ¼ h _/h � bð/hÞ; _wiðtÞel � b̂ð/hÞwiðtÞelitd/i;j;
which implies that
@ST

@/i;l
¼ h _/h � bð/hÞ; _wiel � b̂ð/hÞwielit ; ð18Þ
where el 2 Rn is the unit Euclidean vector such that its l-th component is 1 and the rest components are zero.

2.2.2. Time mesh adjustment
One difficulty of approximating the MAP is that the dynamics can significantly affect the quality of temporal discretiza-

tion. Since we are looking for a curve in the phase space, we can also describe it by the arc length, i.e., the temporal discret-
ization corresponds to an arc length discretization of the MAP. Specifically, the time element ½tk; tkþ1� corresponds to the arc

length element
R tk

0

ffiffiffiffiffiffiffiffi
j _/j2

q
dt;
R tkþ1

0

ffiffiffiffiffiffiffiffi
j _/j2

q
dt

� �
. However, due to the nonlinear relation between time and arc length, a uniform

discretization with respect to time may correspond to a highly nonuniform discretization with respect to arc length. For
example, the time element ½tk; tkþ1� has an element size tkþ1 � tk while the corresponding arc length element has an element

size
R tkþ1

tk

ffiffiffiffiffiffiffiffi
j _/j2

q
dt, which is determined by _/. In the transition region close to fixed points, the dynamics will become very

slow, i.e., _/ is close to zero, the arc length elements become very small and do not contribute to the approximation of the
MAP. To improve the accuracy, we employ the moving mesh technique proposed in [14].

Let s 2 ½0;1� indicate a scaled arc length such that the total length of the MAP is equal to 1. We need to find a mapping
from a temporal discretization to a (nearly) uniform discretization with respect to s. A variational approach was used in [14],
which minimizes the following functional

642 X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651
EðsÞ ¼
Z T

0
w�1ðtÞ ds

dt

� �2

dt; ð19Þ
where wðtÞ is a monitor function chosen as wðtÞ ¼
ffi
1þ Cj _/j2

q
with C being a positive constant. Note when C goes to infinity,

wðtÞ � j _/j. The Euler–Lagrange equation of the functional (19) is
d
dt w�1ðtÞ ds

dt

� �
¼ 0; t 2 ð0; TÞ;

sð0Þ ¼ 0; sðTÞ ¼ 1:

(
ð20Þ
For mesh adjustment, we first map the current time mesh to a discretization of ½0;1� with respect to s by solving Eq. (20).
Second, we map a uniform discretization of ½0;1�with respect to s to a discretization of ½0; T� by computing t�1ðsÞ. This will be
our new time mesh. Third, we project the current path /hðtÞ onto the new time mesh.

2.2.3. Nonlinear conjugate gradient method
Once the gradient of the action functional is obtained, we use the nonlinear conjugate gradient (CG) method to solve the

optimization problem to get the MAP /�h. Let U 2 RMt n be a global vector whose components are /i;l. The nonlinear CG meth-
od can be summarized as
Umþ1 ¼ Um þ amdm;

dmþ1 ¼ �gmþ1 þ bmdm; d0 ¼ �g0;

	
ð21Þ
where the subscript m indicates the iteration step, the positive step size am is obtained by a line search algorithm,
gm ¼ rSTðUmÞ, and bm is the CG update parameter. We define bm ¼maxfb̂m;gmg as in [7]:
b̂m ¼ ym � 2dm
jymj

2

dT

mym

 !T

gmþ1

dT

mym

; gk ¼
�1

jdmjminf0:01; jgmjg
ð22Þ
with ym ¼ gmþ1 � gm.
When the preconditioning is desired, we consider a new variable U ¼ SÛ, where S is an invertible matrix chosen to speed-

up the convergence. Writing the nonlinear CG method with respect to Û and converting it back to U we obtain the precon-
ditioned nonlinear CG method:
Umþ1 ¼ Um þ akdm;

dmþ1 ¼ �Pgmþ1 þ �bmdm; d0 ¼ �Pg0;

	
ð23Þ
where P ¼ SST. The parameter �bm is the same as bm except that gm and dm are replaced by STgm and S�1dm, respectively. How-
ever, we do not need to know S explicitly by observing that STgk

� �T
STgm

� �
¼ gT

mSSTgm ¼ gT
k Pgm and

S�1dk

 �T

STym

� �
¼ dT

mS�TSTym ¼ dT

mym. Thus we only need to know the matrix P. An effective preconditioner P is, in general,
an approximation of the Hessian. Unfortunately, it is usually difficult to find an effective preconditioner for a general non-
linear function, which is heavily problem dependent. In [17], it was shown that the inverse of the linear part of the Euler–
Lagrange equation of the F–W action functional may serve as a good preconditioner.

Algorithm 1. Adaptive high-order MAM

Project the initial path /ðtÞ onto a uniform time mesh T h of ½0; T� and define U0 which is a global vector containing all
unknown coefficients of the finite element approximation;

Start the iteration of nonlinear CG solver (21)
Umþ1 ¼ Um þ amdm
Check the mesh quality very m iteration steps.
� Compute the arc length for each element according to the monitor function wðtÞ.
� If the ratio rs between the largest arc length and the smallest one is larger than a prescribed threshold, solve equation

(20) to obtain a new time mesh.
� Project the current path onto the new time mesh and update Um.

Stop the CG iteration when error tolerance or the maximum iteration number is achieved.

3. Hybrid Parallelization of hpMAM

In this section we identify the main parallelism of Algorithm 1. Algorithm 1 mainly consists of the following four com-
ponents: evaluation of STð/hÞ, evaluation of the gradient rSTð/hÞ, time mesh adjustment and nonlinear CG iteration, for
which we consider parallel implementations.

X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651 643
We note that parallelizing the evaluations of STð/hÞ and rSTð/hÞ should depend on the structure of bð/hÞ, which deter-
mines the perturbation operator b̂ð/hÞ. Since bð/hÞ is usually a nonlinear function of /h, which is not in favor of a direct par-
allelization, we will assume that no explicit information is known about bð/hÞ and will not incorporate its structure into the
parallelization either, although we believe that such an incorporation may generate a more efficient parallelization strategy,
especially for a PDE problem.

3.1. Parallelizing the time direction

Due to the employment of the finite element framework, it is natural to first consider a decomposition of the partition T h.
Let Nnode denote the number of computation nodes. For simplicity, we assume that the polynomial order in each time ele-
ment is the same and r1 ¼ Neþ1

Nnode
is an integer. In other words, each computation node will be assigned r1 elements and the

loading balance is about uniformly distributed.
Let ek denote the element ½tk; tkþ1�; k ¼ 0; . . . ; Ne. Let T i

h; i ¼ 0; . . . ; Nnode � 1, indicate the sub-partition on computation
node i, which consists of elements eir1 ; . . . ; eðiþ1Þr1�1. Let ei

k ¼ eir1þk; k ¼ 0;1; . . . ; r1 � 1, indicate the kth element in the sub-
partition T i

h. Then /hðtÞ can be written as
/hðtÞ ¼
XNnode�1

i¼0

Xr1�1

k¼0

Xp

j¼0

/i
k;jw

i
k;jðtÞ; /i

k;j 2 Rn: ð24Þ
where wi
k;jðtÞ is the jth basis function in element ei

k located in sub-partition T i
h (see Eq. (11)). Due to the continuity, the coef-

ficient of the right boundary mode in ek should be equal to the coefficient of the left boundary mode in ekþ1, which implies
that for two adjacent sub-partitions T i

h and T iþ1
h , the coefficients /i

r1�1;p and /iþ1
0;0 should be the same. Since all interior modes

are equal to zero on boundaries, /i
r1�1;p ¼ /iþ1

0;0 is the only information shared by the i- and ðiþ 1Þth adjacent computation
nodes. We call such a parallelization of time elements as level-one parallelization, which indicates the parallelization be-
tween computation nodes. The level-one parallelization can be achieved efficiently by message passing interface (MPI),
see Section 3.4, where each MPI process is associated with one computation node and deals with a certain number of time
elements.

Although such a basic parallelization strategy has a good scalability, we immediately have a problem that the maximum
number of computation nodes is limited by the number of elements. Such a problem becomes more severe when a high order
p is employed or the dimension of /hðtÞ, i.e., n, is large. One typical example is small random perturbations of partial differ-
ential equations, where n can be arbitrarily large. One possible solution is that we can also parallelize the components of /hðtÞ,
which corresponds to a domain decomposition in the physical space if a partial differential equation is considered. However,
for such a parallelization strategy the most favorable case is that equations for the components of /hðtÞ are decoupled, which
rarely occurs in practice. Otherwise, the communication scenario between computation nodes is similar with an N-body prob-
lem, which is not scalable at all unless bð/hÞ has some special properties we can use. In other words, parallelizing /hðtÞ is, in
general, not an efficient strategy for level-one parallelization without any acknowledgement of the structure of bð/hÞ .

3.2. Parallelizing the gradient

We first note that both STð/hÞ and rSTð/hÞ have an integration form, which corresponds to an element-wise expression
STð/hÞ ¼
XNnode�1

i¼0

Xr1�1

k¼0

1
2

_/hjei
k
� b /hjei

k

 �
; _/hjei

k
� b /hjei

k

 �D E
t

ð25Þ

@ST

@/i
k;j;l

¼ _/hjei
k
� b /hjei

k

 �
; _wi

k;jel � b̂ /hjei
k

 �
wi

k;jel

D E
t
; ð26Þ
where /i
k;j;l is the lth component of the coefficient associated with the jth basis function on element ei

k of sub-partition T i
h.

Depending on the polynomial order of /hðtÞ and the nonlinearity of bð/hÞ and b̂ð/hÞ, the element-wise inner product can be
well approximated using a sufficient number of Gauss-type quadrature points.

Since we do not take into account the structure of bð/hÞ, the parallelization for STð/hÞ cannot go further than an element-
wise strategy when the level-one parallelization is considered. However, the situation forrSTð/hÞ is different. First, when the
dimension n is large, the computation of rSTð/hÞ can be much more expensive than the computation of STð/hÞ. Paralleliza-
tion is more desired for the gradient. Second, each component of STð/hÞ is associated with one basis function in element ei

k

through an element-wise inner product. All these inner products share the element-wise information about
_/hjei

k
; bð/hjei

k
Þ and b̂ð/hjei

k
Þ. Other than that, the computations of @ST=@/

i
k;j;l are actually independent of each other, which

are determined only by the associated basis functions wi
k;jel. Such an independence gives us a chance to compute rSTð/hÞ

in parallel once the shared information is obtained. Obviously, such a parallelization with respect to the components of
rST is not involved with communications between computation nodes. For such a reason, we call it level-two parallelization,
which happens within each computation node. Level-two parallelization can be achieved by open multi-processing (Open-
MP), see Section 3.4, where multiple threads are used and each thread deals with a certain number of components of the

644 X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651
gradient of the action functional. Apparently, level-two parallelization can also be achieved through GPU computing for more
efficiency. In this work, we only consider OpenMP for simplicity.

Remark 1. Before computing the action functional and its gradient, the global vector U used by the nonlinear CG solver will
be scattered to each time element. Once the element-wise operations are finished, all information will be gathered and
passed to the nonlinear CG solver. The scattering and gathering operations are also parallelized through OpenMP using a
mapping between the global vector and the local vectors in each time element.
3.3. Parallelization of the time mesh adjustment

For the time mesh adjustment, two things need to be done: compute a new time mesh and project the current MAP to the
new time mesh. To obtain a new time mesh, we use a second-order finite element method to solve Eq. (20), since we only
need a nearly uniform mesh with respect to arc length and the inverse t�1ðsÞ can be computed explicitly for second-order
piecewise polynomials. Furthermore, solving Eq. (20) corresponds to inverse a tridiagonal stiffness matrix, whose cost is just
linear of OðNeÞ. The projection from the old time mesh to the new one will be done element-wisely, corresponding to a cost
Oðp2NeÞ, which is more expensive than obtaining a new time mesh. Actually, it could be not necessary to consider a parallel
solver of Eq. (20) due to the linear cost. We can use one computation node to compute and broadcast the new time mesh. The
parallelization for the projection operation can be a little complicated due to the fact that we keep a fixed number of ele-
ments in each computation node instead of a fixed time interval. Determined by the skewness of the old mesh, one compu-
tation node may need to talk to quite a number of computation nodes for the information of /hðtÞ, which implies that the
loading on each computation node and communications between computation nodes can be highly nonuniform. Fortunately,
such a situation will mainly happen in the early stage of the nonlinear CG iteration and will be improved as the iteration
converges. Due to the fact that the mesh only needs to be checked every a certain number of iteration steps and the fre-
quency for mesh adjustment will decay as the mesh is being stabilized, the possible low efficiency for the parallelization
of the projection operation is overall not important.

3.3.1. Parallelizing the projection
First of all, the projection will be implemented element-wisely. Second, due to the reparametrization the projection onto

a certain element may need to communicate with more than one sub-partitions of the old time mesh. Based on these two
facts, we parallelize the projection as follows:

� We keep a copy of global time mesh on each computation node although each computation node only deals with a sub-
partition.
� On the ith computation node, we classify the elements in the new sub-partition T̂ i

h into two groups: Gi
1 and Gi

2. Gi
1

includes the elements for which the projection can be determined by the old sub-partition T i
h; Gi

2 includes the elements
for which the projection needs information from other sub-partitions.
� For elements in Gi

1, the projection can be done locally without communications between computation nodes; For ele-
ments in Gi

2, we need all computation nodes to work together in a proper way to exchange information appropriately.
Since we keep a copy of the global time mesh on each computation node, a unique rule can be generated simultaneously
and followed by all computation nodes to deal with elements in Gi

2 in parallel.

As an illustration, an example can be found in Fig. 1, where both the old time mesh and the new one have four three-ele-
ment sub-partitions. It can be seen that the first element ê1;0 of T̂ 1

h needs information from T 0
h and T 1

h , and the first element
ê3;0 of T̂ 3

h needs information of T 2
h and T 3

h. The projections for elements ê1;0 and ê3;0 can be implemented in parallel. We also
note that projections for all elements in T̂ 0

h, the second element in T̂ 1
h , all elements in T̂ 2

h and the last two elements in T̂ 3
h can

be implemented in parallel since they only require information from the corresponding old sub-partitions, which is available
locally on each computation node.

We note that the parallelization of the projection can be a mix of level-one and level-two parallelization. All aforemen-
tioned parallelization of the projection can be implemented through MPI since the parallelization is with respect to the sub-
partition T̂ h, i.e., computation node or MPI process. Within each computation node, it is possible to implement level-two
Fig. 1. Illustration of the parallelization of the projection from the old time mesh to the new one.

X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651 645
parallelization. For example, the three elements in T̂ 0
h only depend on the local information about T 0

h and the projection can
be implemented by three threads in parallel. However, some elements in T̂ 0

h may share a certain element in T 0
h. If we asso-

ciate one thread to each of those elements in T̂ 0
h, we need to synchronize those threads to make sure that the memory of the

shared element in T 0
h is used correctly without being updated simultaneously by more than one thread. Considering the lin-

ear cost of the overall projection, we do not consider the level-two parallelization for the projection, i.e., the projection of the
three elements in T̂ 0

h will be implemented element-by-element serially on computation node 0.
3.4. A hybrid MPI/OpenMP parallel strategy

To obtain an efficiently scalable parallel algorithm, we need to take into account the underlying hardware architecture.
The mainstream of current high performance computing (HPC) architecture is designed to be highly hierarchical. A typical
multi-socket multi-core symmetric multiprocessing (SMP) cluster is shown in Fig. 2, where SMP nodes are coupled via high-
speed interconnect network. Inside each SMP nodes, two or more multi-core processors are connected to a single shared
main memory, where each core can work independently as a single processor.

There exist two typical methods: message passing interface (MPI) and open multi-processing (OpenMP) to achieve par-
allelism in a program. Both methods can be applied to the aforementioned hybrid clusters. However, we need to be aware of
the difference between these two methods to achieve parallelism. MPI assumes that all parallel processes have their own
memory. All MPI processes communicate with each other by sending and receiving messages, no matter that they are located
on the same SMP node or not. In other words, an MPI process will always copy the received message to its own memory.
However, OpenMP assumes that all its threads share the same main memory. When communications occur, one thread only
need to tell others where the information is located in the main memory and no copy is implemented. Thus it is natural to
expect that OpenMP can be more efficient on a single SMP node, although it is possible to extend OpenMP to the whole SMP
cluster using ‘‘distributed virtual shared memory’’ technology like Intel Cluster OpenMP.

Although there is evidence that a pure MPI program can be more efficient, where every CPU core is treated as a separate
MPI entry with its own address space, a pure MPI strategy is not suitable here because we assume no direct parallelization, or
level-one parallelization, of the components of bð/hÞ. We instead focus on a hybrid MPI/OpenMP strategy, which uses Open-
MP for parallelization inside a SMP node and MPI for message passing between SMP nodes. More specifically, we use MPI for
level-one parallelization, which indicates the parallelization of time elements between SMP nodes, and OpenMP for level-
two parallelization, which indicates the parallelization within SMP nodes. For each SMP node, we assign one MPI process,
which deals with r1 elements corresponding to a certain sub-partition T i

h. Any two adjacent MPI processes only share the
information /i

r1�1;p ¼ /iþ1
0;0 , which is the minimum amount of information if the components of /h are not parallelized di-

rectly. For level two parallelization, the shared information needs to be obtained first before the parallelization can be imple-
mented. More specifically, after we obtain the shared information _/hjek

; bð/hjek
Þ and b̂ð/hjek

Þ, we can distribute the
components @ST=@/

i
k;j;l located in sub-partition T i

h uniformly to OpenMP threads for independent computations, where
bð/hjek

Þ is located in the single main memory and can be used by any thread whenever necessary.
Although a hybrid MPI/OpenMP parallel strategy seems more suitable, it is not trivial to generate an efficient hybrid par-

allel minimum action method. For example, there does not exist a standard criterion to choose the number of MPI processes
and the number of OpenMP threads. In other words, there do not exist a simple answer to the fundamental question of how
to map the algorithm to the hybrid HPC architecture to achieve the best scalability. We will study this issue through numer-
ical experiments.
Fig. 2. A typical multi-socket multi-core SMP cluster.

646 X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651
Algorithm 2. Parallel adaptive high-order MAM

Decompose the time partition T h uniformly with respect to available SMP nodes. Each SMP node is associated with one

MPI process, and deals with a sub-partition T i
h, i ¼ 0; . . . ; Nnode � 1.

Project the initial path /ðtÞ onto sub-partitions T i
h of ½0; T� and define Ui

0 which is a vector containing all unknown

coefficients related to T i
h.

Start the iteration of nonlinear CG solver (21)
Ui
mþ1 ¼ Ui

m þ amdi
m;
where the gradient of the action functional and the vector operations are computed in parallel through both MPI and
OpenMP.

Check the mesh quality every m iteration steps.
� Compute the arc length for each element according to the monitor function wðtÞ.
� Compute ri

s for each sub-partition T i
h, which is the ratio between the largest arc length and the smallest one. If

maxi¼0;...;Nnode�1ri
s is larger than a prescribed threshold, solve Eq. (20) to obtain a new time mesh.

� Project the current path onto the new time mesh and update Ui
m, where the projection is implemented in parallel

though MPI.
Stop the CG iteration when error tolerance or the maximum iteration number is achieved.

3.5. Comments on the parallel MAM for stochastic partial differential equations

The scenario of the MAM for partial differential equations is similar with the MAM for ordinary differential equations
with a large n. For partial differential equations we need to discretize the physical space. Assume that the approximation
space is spanned by fhiðxÞgMx

i¼1 such that uðx; tÞ can be approximated as
uðx; tÞ � uhðx; tÞ ¼
XMx

i¼1

XMt

j¼1

ui;jhiðxÞwjðtÞ:
Define the perturbation operator Ĝ as
Gðuþ duÞ ¼ Guþ Ĝduþ Oðd2uÞ:
Then the action functional and its gradient take the form as [17]
STðuhÞ ¼
1
2
hð@t � GÞuh; ð@t � GÞuhix;t ; ð27Þ

@STðuhÞ
@ui;j

¼ hð@t � GÞuh; ð@t � ĜÞðhiðxÞwjðtÞÞix;t: ð28Þ
First of all, the number Mx of degrees of freedom in the physical space can be relatively large, especially for two- and
three-dimensional cases, parallelizing the gradient rSTðuhÞ for SPDEs is more desired than that for SODEs. Second, before
computing STð/hÞ and rSTð/hÞ for SODEs, bð/hÞ and the perturbation operator b̂ð/hÞ will be computed on quadrature points.
Since both bð/hÞ and b̂ð/hÞ are not a differential operator, they only need to be computed once. Then the element-wise cost
for STð/hÞ is the cost for bð/hÞ plus the cost for the inner product. The element-wise cost for rSTð/hÞ is the cost for nðpþ 1Þ
inner products and the cost for b̂ð/hÞ. Thus, the cost for each component of rSTð/hÞ is much cheaper than that for STð/hÞ on
average. However, for SPDEs, ĜhiðxÞ needs to be computed for each hiðxÞ since Ĝ is usually a differential operator in the phys-
ical space and depends on uh, which implies that the cost for STðuhÞ is comparable with that for each component of rSTðuhÞ.
In this sense, the level-two parallelization is more important for SPDEs.

4. Numerical examples

For numerical study, we focus on the following two cases:

(i) The number of time elements is much larger than the dimensionality, i.e., Ne n. For this case we expect that the
hybrid strategy should be biased to MPI for more efficiency.
(ii) The number of time elements is of the same order as the dimensionality, i.e., Ne � n. For this case it is not clear about
the best balance between MPI and OpenMP and we need to clarify it through numerical experiments.

X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651 647
We will use both SODE and SPDE examples to discuss the above two cases. In particular, we use the SODE example to
study case (i) and the SPDE example to study cases (ii).

4.1. Study of case (i): Ne n

For this case, we consider the following example, for which the MAP can be obtained explicitly:
Fig. 3.
Relative
dx ¼ �@xVðx; yÞdt þ
ffiffiffi
e
p

dWx
t

dy ¼ �@yVðx; yÞdt þ
ffiffiffi
e
p

dWy
t

(
ð29Þ
where the potential Vðx; yÞ is
Vðx; yÞ ¼ ð1� x2 � y2Þ2 þ y2=ðx2 þ y2Þ: ð30Þ
The dynamical system has two stable fixed points a1 ¼ ð�1;0Þ and a2 ¼ ð1;0Þ, which are local minima of the potential
Vðx; yÞ. We consider the MAP in the upper half-plane connecting a1 and a2 through the saddle point a3 ¼ ð0;1Þ. Then the ex-
plicit form of this MAP is the upper branch of the unit circle: x2 þ y2 ¼ 1. The exact action functional is
2� ðVða3Þ � Vða1ÞÞ ¼ 2.

In the following numerical experiments, the numbers of elements are just chosen for the scalability study, which can be
much larger than the number of elements needed to identify the MAP between a1 and a2. In the left plot of Fig. 3 we plot the
strong scaling for the problem with 1024000 linear elements for the discretization, where a pure MPI parallelization is con-
sidered and the solution time is taken as the mean solution time given by 10 independent runs. Since each computation node
we used has 8 cores, we use the results given by the parallel computation with 8 MPI processes as the reference for the
strong scaling. Super linear speedup is observed up to 1024 cores, which should be due to the cache effect resulting from
the memory hierarchy of the computer. From the algorithm point of view, the main bottleneck for the strong scaling seems
to be the cost for adaptive mesh adjustment. In the right plot of Fig. 3, we plot the relative cost of the mesh adjustment de-
fined as the ratio between the time for mesh adjustment and the solution time. We then increase the polynomial order in
each element from 1 to 4, and plot the strong scaling for this problem in the left plot of Fig. 4 and the relative cost of the mesh
adjustment in the right plot of the same figure. Strong scaling is again observed until the relative cost of the mesh adjust-
ment becomes important.

We subsequently test the strong scaling of OpenMP for a relatively small problem. The solution time for each case is the
mean time of 10 independent runs. Here each thread corresponds to one core on a computation node. In the left plot of Fig. 5,
we plot the strong scaling for a problem where 1024 linear elements are used for the discretization. The solid line indicates
the Amdahl’s law defined as
S ¼ 1
fpar
Pc
þ ð1� fparÞ

; ð31Þ
where S is the parallel speedup, fpar the parallel fraction of the code and Pc the number of cores. The parallel fraction fpar is
estimated using the solution time given by one- and two-core simulations, which is about 95%. It is seen that the speedup
agrees well with the Amdahl’s law up to 5 cores. In the right plot of Fig. 5, we plot the strong scaling for a problem where
10240 linear elements are used for the discretization. The solid line indicates the linear scaling. It is seen that a superlinear
scaling is obtained for up to 8 cores. Note here for the OpenMP tests we switch off the mesh adaptivity since the time mesh
101 102 103
100

101

102

Number of cores

S
pe

ed
up

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of cores

R
al

at
iv

e
co

st
 o

f m
es

h
ad

ju
st

m
en

t

102400 linear elements are used for the discretization. Left: Strong scaling with respect to the solution time for a pure MPI parallelization. Right:
cost of mesh adjustment.

101 102 103
100

101

102

Number of cores

S
pe

ed
up

0 200 400 600 800 1000 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of cores

R
al

at
iv

e
co

st
 o

f m
es

h
ad

ju
st

m
en

t

Fig. 4. 102400 elements with polynomial order 4 are used for the discretization. Left: Strong scaling with respect to the solution time for a pure MPI
parallelization. Right: Relative cost of mesh adjustment.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

Number of cores

S
pe

ed
up

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

Number of cores

S
pe

ed
up

Fig. 5. Strong scaling of parallelization through OpenMP. Left: 1024 linear elements are used for the discretization. The solid line indicates the Amdahl’s
law, where the parallel fraction of the code is estimated using the results given by 2 threads. Right: 10240 linear elements are used, where the solid line
indicates the linear scaling.

648 X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651
adjustment is parallelized through MPI. We observe that the efficiency of the parallelization through OpenMP varies accord-
ing the problem size, where a superlinear speedup can be achieved for a certain range of problem sizes. Such a phenomena is
also related to the memory hierarchy of the computer.

We now consider the strong scaling of the hybrid code, where the number of threads is fixed on each computation node.
In Fig. 6 we plot the speedup with respect to the number of computation nodes. It is seen that linear or superlinear scaling is
obtained when the number of nodes is relatively small (6 32). As the problem size becomes smaller on each node, the intra-
node communications from OpenMP will deteriorate the strong scaling. We also observe that the strong scaling with 4 fixed
threads on each node is better than that with 8 threads on each node. This is also consistent with our observations about the
strong scaling of the pure MPI code, where the strong scaling is observed up to 1024 cores for the same problem size.

In summary, a good strong scaling has been observed for the pure MPI code. The scaling of the hybrid code also depends
on the problem size assigned to each computation node. From the algorithm point of view, the main bottleneck for the strong
scaling is from the time mesh adjustment. More specifically, it depends on how often the mesh adjustment is implemented
and how soon the adaptive mesh becomes stabilized. Both of these two issues are problem dependent. Due to the robustness
of the hpMAM [17], it is, in general, not necessary to check the mesh quality very often, which can weaken the effect of the
adaptivity on the strong scaling. The second issue is mainly related to the complexity of the structure of the phase space. The
simpler the structure of the phase space is, the sooner the adaptive time mesh becomes stabilized.

4.2. Study of case (ii): Ne � n

For this case, we consider the two-dimensional Navier–Stokes equations perturbed by small divergence-free space–time
white noise, which can be regarded as a typical application of minimum action method to spatially extended non-gradient

2 4 8 16 32 64 128
100

101

102

Number of nodes

S
pe

ed
up

8 threads on each node
4 threads on each node
linear scaling

Fig. 6. Strong scaling of the hybrid code. 102400 linear elements are used for the discretization. The scaling is with respect to the number of nodes, where
on each node the number of threads are fixed. The speedup is computed with respect to the solution time given by the two-node simulations.

X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651 649
systems. In particular, we use two-dimensional Poiseuille flow as an example. The mathematical model takes the following
form:
@u
@t þ ðu � rÞu ¼ �rpþ 1

Re Duþ
ffiffiffi
e
p _Wðx; tÞ;

r � u ¼ 0;

(
ð32Þ
where u ¼ ðu;vÞ 2 R2, Re is the Reynolds number, and _Wðx; tÞ is divergence-free space–time white noise. We define the
physical domain ðx; yÞ 2 D :¼ ½0;2p� � ½�h;h�, where h is a positive real number. The boundary conditions are then given as
ujx¼0 ¼ ujx¼2p

pjx¼0 ¼ pjx¼2p

ujy¼	h ¼ 0

8><
>: ð33Þ
i.e., we consider periodic boundary conditions in x direction and non-slip boundary condition at walls y ¼ 	h. The base flow
takes the form
ub ¼ ð1� ðy=hÞ2;0Þ; pb ¼ �
2
Re

x

h2 : ð34Þ
One important problem in fluid mechanics is the instability of parallel shear flows. The linear stability theory or the Orr–
Sommerfeld equation yields a critical number ReL � 5772 for two-dimensional Poiseuille flows, beyond which the base flow
is linearly unstable. The nonlinear stability theory says that there exists a global critical Reynolds number ReG � 2900, be-
yond which another stable traveling wave solution can exist and below which the base flow is the only stable solution. Non-
modal stability theory or energy theory gives the critical Reynolds number ReE � 89, below which the energy of any
perturbation will decay monotonically. However, all these critical Reynolds numbers cannot describe the stochastic dynam-
ics under noise, since the transition between the base flow and another stable solution is allowed. The minimum action
method can help us understand this classical problem in the probabilistic sense, which is more general. More discussions
about this problem and the numerical method can be found in [18].

The action functional for the stochastic Navier–Stokes Eq. (32) can be rewritten as
STðu;pÞ ¼
1
2

Z T

0

@u
@t
� ðu � rÞuþrp� 1

Re
Du

����
����

2

2
dt; ð35Þ
where k � k indicates the L2 norm in the physical space [18]. We then consider the optimization problem
STðu�; p�Þ ¼ min
ðu;pÞ2A

STðu; pÞ; ð36Þ
subject to the divergence free condition r � u ¼ 0 and the constraints given by the boundary conditions (33), where A is a
certain set of paths in the configuration space of Navier–Stokes equations. For example, A can be a set of transition paths
from the base flow to the stable traveling wave solution. Solving problem (36) is much more difficult than the deterministic
Navier–Stokes equations. First of all, the Euler–Lagrange equation of problem (36) is a PDE of differentiation order 4 in space
and of differentiation order 2 in time. Second, the scale of integration time T is of OðReÞ. Simply speaking, solving problem

650 X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651
(36) is equivalent to solve a boundary-value problem, represented by a fourth-order nonlinear PDE, on a three-dimensional
domain ½0;2p� � ½�h;h� � ½0; T ¼ OðReÞ�. Even for two-dimensional Navier–Stokes equations, we cannot afford the cost with-
out parallel computing. Since T is large, the parallelization in time direction is particularly important.

The minimum action method for small random perturbations of Navier–Stokes equations was developed in [18]. The dis-
cretization of the action functional is based on spectral discretization in the physical space and hp finite element discretiza-
tion in the time direction. The constraints from the divergence-free condition and the boundary conditions are removed by
carefully choosing the approximation space such that the optimization problem becomes an unconstrained one. A simple
diagonal preconditioner can also be found in [18].

For a certain range of Reynolds numbers and wave numbers, the plane Poiseuille flow has two stable solutions: one is the
base flow ðub; pbÞ and the other one is a non-attenuated traveling wave ðû; p̂Þ. Since we are mainly interested in the scala-
bility of the hybrid code in this paper, we consider the following simple problem without loss of generality and more results
about the transitions between the base flow and the stable traveling wave solution can be found in [18]. We take one snap-
shot of the traveling wave ðûðt0Þ; p̂ðt0ÞÞ at t0, and use it as the initial condition for a dynamic solver of the Navier–Stokes
equations to evolve time T. We then use ðûðt0Þ; p̂ðt0ÞÞ and ðûðt0 þ TÞ; p̂ðt0 þ TÞÞ as the two ends of the transition path, in other
words, we consider the following optimization problem
Fig. 7.
modes
respect
the two
STðu�;p�Þ ¼ min
uð0Þ¼ûðt0Þ; pð0Þ¼p̂ðt0 Þ

uðTÞ¼ûðt0þTÞ; pðTÞ¼p̂ðt0þTÞ

STðu; pÞ: ð37Þ
In other words, the set A is defined as
A ¼ fAll transition paths on½0; T� from ðûðt0Þ; p̂ðt0ÞÞ to ðûðt0 þ TÞ; p̂ðt0 þ TÞÞ:g
Since there exists dynamics between ðûðt0Þ; p̂ðt0ÞÞ and ðûðt0 þ TÞ; p̂ðt0 þ TÞÞ, the minimal action path should be consistent
with the trajectory of the traveling wave, along which the action functional is equal to zero. Then we can use the trajectory
given by a dynamic solver of Navier–Stokes equations to verify the results given by the minimum action method.

In Fig. 7, we plot the strong scaling of the hybrid code for the discretization with 2048 linear finite elements in the time
direction, 10 Fourier modes in the x direction and 32 Legendre modes in the y direction, where eight threads are used on each
computation node and the strong scaling is with respect to the number of computation nodes. It is seen that a good scala-
bility is obtained. Compared to the SODE case, the better strong scaling for the SPDE case is mainly due to the facts that (1)
for each component of the gradient, the linear operator Ĝ needs to be evaluated, which makes the evaluation of the gradient
the most time-consuming part for each nonlinear CG iteration; (2) the finite element discretization in the time direction
makes the computation of the gradient an element-wise operation, where OpenMP is effective since all local operations
in each element share the information about the operator G. For this test, we switched off the adaptivity in the time direction
since it is problem dependent as discussed before.

Remark 2. For this problem, the hybrid strategy will be more effective in the sense that we can only use up to 2048 cores for
a pure MPI strategy since we have 2048 time elements while the hybrid code can be implemented theoretically on
2048 � 8 = 16384 cores.
2 4 8 16 32 64 128 256
100

101

102

103

Number of nodes

S
pe

ed
up

8 threads on each node
linear scaling

Strong scaling of the hybrid code for two-dimensional channel flow. 2048 linear elements are used for the discretization in time direction, 10 Fourier
are used for the x direction and 32 Legendre modes are used for the y direction. The total number of unknowns is 1162696. The scaling is with
to the number of nodes, where on each node the number of threads are fixed. The speedup is computed with respect to the solution time given by
-node simulations.

X. Wan, G. Lin / Parallel Computing 39 (2013) 638–651 651
Remark 3. Since the discretized action functional is a nonlinear non-negative function, there must exist at least one min-
imum. However, this function is, in general, not convex. It is possible that the optimization solver will converge to a local
minimum depending on the initial guess. In this sense, we need to couple the MAP with the study of the deterministic
dynamical system for verification or for further improvement by choosing a more appropriate initial guess. We refer to
[16] for more discussions about this issue.
5. Summary

In this work we present a hybrid (MPI/OpenMP) parallel strategy for the minimum action method to deal with small ran-
dom perturbations of dynamical systems. Numerical experiments show that the developed hybrid algorithm has a good
strong scalability. The main bottleneck for the scalability is from the time mesh adjustment. To alleviate such a difficulty,
we need to enhance the parallel efficiency for the projection from the old time mesh to the new time mesh. A possible strat-
egy is that we can solve the optimization problem using a sequence of time meshes where the time mesh will be refined
gradually. Then the added time elements will be mainly local to each MPI process and will not introduce too many inter-
node communications. In this work, we do not consider the parallelization of the nonlinear differential operator in space,
which can be another bottleneck for spatially extended dynamical systems. The study of these issues is in progress.

Acknowledgments

This work was supported by Applied Mathematics program of the US DOE Office of Advanced Scientific Computing Re-
search. X. Wan also acknowledges support from NSF grant DMS-1115632. The parallel computation was implemented on
supercomputers supported by the Louisiana Optical Network Institute (LONI).

References

[1] C. Cerjan, W. Miller, On finding transition states, J. Chem. Phys. 75 (6) (1981) 2800–2806.
[2] W. E, W. Ren, E. Vanden-Eijnden, String method for the study of rare events, Phys. Rev. B 66 (2002) 052301.
[3] W. E, W. Ren, E. Vanden-Eijnden, Minimum action method for the study of rare events, Commun. Pure Appl. Math. 57 (2004) 637–656.
[4] W. E, W. Ren, E. Vanden-Eijnden, Simplified and improved string method for computing the minimum energy paths in barrier-crossing events, J. Chem.

Phys. 126 (2007) 164103.
[5] W. Faris, G. Jona-Lasinio, Large fluctuations for a nonlinear hear equation with noise, J. Phys. A: Math. Gen. 15 (1982) 3025–3055.
[6] M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems, 2nd Edition., Springer-Verlag, New York, 1998.
[7] W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim. 16 (1) (2005) 170–192.
[8] M. Heymann, E. Vanden-Eijnden, The geometric minimum action method: a least action principle on the space of curves, Commun. Pure Appl. Math. 61

(2008) 1052–1117.
[9] G. Henkelman, H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys.

111 (15) (1999) 7010–7022.
[10] H. Jònsson, G. Mills, K. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in: B. Berne, G. Ciccotti, D. Coker (Eds.),

Classical and Quantum Dynamics in Condensed Phase Simulations (1998).
[11] N. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, 1981.
[12] G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, second ed., Oxford University Press, 2005.
[13] L. Onsager, S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91 (1953) 1505–1512.
[14] X. Zhou, W. Ren, W. E, Adaptive minimum action method for the study of rare events, J. Chem. Phys. 128 (2008) 104111.
[15] X. Zhou, W. E, Study of noise-induced transitions in the Lorenz system using the minimum action method, Commun. Math. Sci. 8 (2) (2010) 341–355.
[16] X. Wan, X. Zhou, W. E, Study of the noise-induced transition and the exploration of the configuration space for the Kuramoto–Sivashinsky equation

using the minimum action method, Nonlinearity 23 (2010) 475–493.
[17] X. Wan, An adaptive high-order minimum action method, J. Comput. Phys. 230 (2011) 8669–8682.
[18] X. Wan, A minimum action method for random perturbations of two-dimensional parallel flows, J. Comput. Phys. 235 (2013) 497–514.

http://refhub.elsevier.com/S0167-8191(13)00096-3/h0005
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0010
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0015
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0020
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0020
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0025
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0030
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0030
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0035
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0040
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0040
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0045
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0045
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0050
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0050
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0050
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0050
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0050
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0055
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0055
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0060
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0060
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0065
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0070
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0075
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0080
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0080
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0085
http://refhub.elsevier.com/S0167-8191(13)00096-3/h0090

	Hybrid parallel computing of minimum action method
	1 Introduction
	2 Minimum action method
	2.1 Description of the problem
	2.2 An adaptive high-order MAM (hpMAM)
	2.2.1 Gradient of the action functional
	2.2.2 Time mesh adjustment
	2.2.3 Nonlinear conjugate gradient method

	3 Hybrid Parallelization of hpMAM
	3.1 Parallelizing the time direction
	3.2 Parallelizing the gradient
	3.3 Parallelization of the time mesh adjustment
	3.3.1 Parallelizing the projection

	3.4 A hybrid MPI/OpenMP parallel strategy
	3.5 Comments on the parallel MAM for stochastic partial differential equations

	4 Numerical examples
	4.1 Study of case (i): ?
	4.2 Study of case (ii): ?

	5 Summary
	Acknowledgments
	References

