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Long-term behavior of polynomial chaos in stochastic flow simulations
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Abstract

In this paper we focus on the long-term behavior of generalized polynomial chaos (gPC) and multi-element generalized polynomial
chaos (ME-gPC) for partial differential equations with stochastic coefficients. First, we consider the one-dimensional advection equation
with a uniform random transport velocity and derive error estimates for gPC and ME-gPC discretizations. Subsequently, we extend these
results to other random distributions and high-dimensional random inputs with numerical verification using the algebraic convergence
rate of ME-gPC. Finally, we apply our results to noisy flow past a stationary circular cylinder. Simulation results demonstrate that ME-
gPC is effective in improving the accuracy of gPC for a long-term integration whereas high-order gPC cannot capture the correct asymp-
totic behavior.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Polynomial chaos (PC) has been used extensively in the last decade to model uncertainty in physical applications [1–6]. It
is based on the original ideas of homogenous chaos (Wiener-chaos) first formulated by Wiener as the span of Hermite poly-
nomial functionals of a Gaussian process [7]. Ghanem and Spanos were the first to combine Wiener-chaos with a finite
element method to model uncertainty addressing solid mechanics applications [1,8,9]. A more general framework, termed
generalized polynomial chaos (gPC), was proposed in [10] by Xiu and Karniadakis, following the framework of Ghanem
and Spanos, based on the correspondence between the PDFs of certain random variables and the weight functions of
orthogonal polynomials of the Askey scheme. The family of gPC includes Hermite-chaos as a subset and provides optimal
bases for stochastic processes represented by random variables of commonly used distributions, such as uniform distribu-
tion, Beta distribution, etc. Polynomial chaos was combined with wavelets in [11,12] to deal with discontinuities for uni-
form random inputs for which standard PC or gPC fails to converge. To solve differential equations with stochastic inputs
following the procedure established by Ghanem and Spanos, the random solution is expanded spectrally by polynomial
chaos and a Galerkin projection scheme is subsequently used to transform the original stochastic problem into a determin-
istic one with a large dimensional parameter [1,10,6].

On the other hand, Deb et al. [13] have proposed to employ finite elements in the random space to approximate the
stochastic dependence of the solution. This approach also reduces a stochastic differential equation to a high dimensional
deterministic one. This method was later studied theoretically within the framework of deterministic finite element method
in [14]. Since a finite element method is generally used to solve the obtained deterministic PDE system, the above methods
are called stochastic Galerkin finite element method in [14] while the scheme in [1,10] is classified as p · h version and the
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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scheme in [13] as k · h version. Here p denotes the polynomial order of polynomial chaos, k the element size in the random
space, and h the element size in the physical space. Both schemes use finite elements in the physical space. The p · h version
relies on the global representation in the entire random space by polynomial chaos while the k · h version is based on the
discretization of the random space using the same basis as the deterministic finite element method to approximate the ran-
dom field locally. Both concepts and the terminology introduced here have similarities with the spectral/hp element method
for deterministic problems [15,16].

Although gPC works effectively for many problems, e.g., elliptic and parabolic PDEs with stochastic coefficients [14,6], it
cannot deal with some other differential equations, e.g., the Kraichnan–Orszag’s three-mode ODE system for modeling
turbulence [17] or the Navier–Stokes equations for unsteady noisy flows such as flow past a stationary cylinder [18].
For these problems gPC fails to converge after a short time, and increasing the polynomial order helps little for the con-
vergence. There exist at least two reasons for the divergence of gPC:

(1) singularity in the random space, and
(2) long-term integration.

The former was studied in [11,12] with Wiener–Haar expansions and in [19,20] with ME-gPC. In this work, we focus on
the second one: long-term integration. In particular, we are interested in the cases which are related to random frequencies.
We use a simple one-dimensional advection equation with a uniform random transport velocity as a model problem. We
first derive the error estimates of gPC and ME-gPC for the Legendre-chaos expansion. Based on these error estimates we
obtain a relation between gPC and ME-gPC, which we verify by numerical computations. We subsequently generalize such
a relation to other random distributions and more general random inputs. Lastly, we consider a physical problem: noisy
flow past a stationary circular cylinder, where we use the obtained results to analyze the convergence of gPC and ME-gPC.

This paper is structured as follows. In Section 2 we present an overview of gPC and ME-gPC. In Section 3 we study
theoretically the one-dimensional stochastic advection equation. In Section 4 we present results for stochastic simulations
of noisy flow past a stationary circular cylinder. We conclude with a short discussion in Section 5.

2. Overview of gPC and ME-gPC

Let ðX;F; P Þ be a complete probability space, where X is the sample space, F is the r-algebra of subsets of X and P is a
probability measure. An Rd-valued random variable is defined as

Y ¼ ðY 1ðxÞ; . . . ; Y dðxÞÞ : ðX;FÞ 7! ðRd ;BdÞ; ð1Þ
where d 2 N and Bd is the r-algebra of Borel subsets of Rd . If uncertainty is included in the PDEs, the solutions can be
referred to as a random field u(x, t;x), where x denotes the physical space and t the time. For any fixed x and t, u(x, t;x) is a
Rdp -valued random variable, where dp is the dimension of physical domain (dp 6 3). We generally assume that u(x, t;x) is a
second-order random field denoted as uðx; t; xÞ 2 L2ðX;F; PÞ, whereZ

X
u2ðx; t; xÞdP ðxÞ <1. ð2Þ

We expect that all viscous flows satisfy this constraint.

2.1. Generalized polynomial chaos (gPC)

Generalized polynomial chaos is a spectral polynomial expansion for a second-order random field u(x, t;x), i.e.,

uðx; t; xÞ ¼
X1
i¼0

âiðx; tÞUiðYðxÞÞ; ð3Þ

where {Ui(Y)} denote the basis of gPC in terms of Y; this spectral expansion converges in the L2 sense. We usually select a
weighted orthogonal system {Ui(Y)} in L2ðX;F; P Þ satisfying the orthogonality relation

hUiUji ¼ hU2
i idij; ð4Þ

where dij is the Kronecker delta, and hÆ, Æi denotes the ensemble average with respect to the probability measure P. The
index in Eq. (3) and d 2 N are, in general, infinite. In practice, both limits will be truncated at a certain level.

For a certain Rd-valued random variable Y, the gPC basis {Ui} can be chosen in such a way that its weight function has
the same form as the probability density function (PDF) of Y. The corresponding type of classical orthogonal polynomials
{Ui} and their associated random variable Y are listed in Table 1 [10]. For arbitrary probability measures, the orthogonal-
ity must be maintained numerically, as we explain in the next subsection.



Table 1
Correspondence of the type of Wiener–Askey polynomial chaos and their underlying random variables

Random variables Y Wiener–Askey chaos {Ui(Y)} Support

Continuous

Gaussian Hermite-chaos (�1,1)
Gamma Laguerre-chaos [0,1)
Beta Jacobi-chaos [a,b]
Uniform Legendre-chaos [a,b]

Discrete

Poisson Charlier-chaos {0,1,2, . . .}
Binomial Krawtchouk-chaos {0,1, . . . ,N}
Negative binomial Meixner-chaos {0,1,2, . . .}
Hypergeometric Hahn-chaos {0,1, . . . ,N}

N P 0 is a finite integer.
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2.2. Multi-element generalized polynomial chaos (ME-gPC)

We assume that Y is defined on B ¼ �d
i¼1½ai; bi�, where ai and bi are finite or infinite in R and the components of Y are

independent identically-distributed (i.i.d.) random variables. We define a decomposition D of B as

D ¼

Bk ¼ ½ak;1; bk;1Þ � ½ak;2; bk;2Þ � � � � � ½ak;d ; bk;d �;

B ¼
SN
k¼1

Bk;

Bk1
\ Bk2

¼ ; if k1 6¼ k2;

8>>><>>>: ð5Þ

where k,k1,k2 = 1,2, . . . ,N. Based on the decomposition D, we define the following indicator random variables

IBk ¼
1 if Y 2 Bk;

0 otherwise.

�
ð6Þ

Thus, X ¼
SN

k¼1I�1
Bk
ð1Þ is a decomposition of the sample space X, where

I�1
Bi
ð1Þ \ I�1

Bj
ð1Þ ¼ ; for i 6¼ j. ð7Þ

Subsequently, we define a new Rd-valued random variables fk : I�1
Bk
ð1Þ 7! Bk on the probability space ðI�1

Bk
ð1Þ;F \ I�1

Bk
ð1Þ;

P ð�jIBk ¼ 1ÞÞ subject to a conditional PDF

fkðyjIBk ¼ 1Þ ¼ f ðyÞ
PrðIBk ¼ 1Þ ; ð8Þ

where f(y) denotes the PDF of Y and PrðIBk ¼ 1Þ > 0. In practice, we usually map fk to a new random variable Yk defined
on [�1,1]d to avoid numerical overflow in computer [20], using the following linear transform

fk;i ¼ gðY k;iÞ : fk;i ¼
bk;i � ak;i

2
Y k;i þ

bk;i þ ak;i

2
; ð9Þ

where i = 1,2, . . . ,d and k = 1,2, . . . ,N. To this end, we present a decomposition of random space, which is very similar
with the decomposition of physical space using separable elements.

Based on the random variables {Yk}, a scheme, called multi-element generalized polynomial chaos (ME-gPC), was pro-
posed in [19,20]. Based on ME-gPC, u(x, t;x) can be expressed as [19]

uðx; t; xÞ ¼
XN

k¼1

XM

i¼0

âk;iðx; tÞUk;iðYkðYÞÞIBk ; ð10Þ

where {Uk,i} is the local chaos basis in element k and M is the number of chaos modes. The key idea of ME-gPC is to
implement gPC element-by-element when the global spectral expansion is not efficient to capture the random behavior.
Thus, the basic procedure of ME-gPC is quite similar with the deterministic spectral element method. In the decomposition
of physical space using continuous Galerkin projections, we need to treat carefully the connectivity (C0 continuity) between
two adjacent elements; however, in the decomposition of random space the following C0-type continuity

uB1
ðYÞ ¼ uB2

ðYÞ; Y 2 B1 \ B2; ð11Þ
where Bi is the closure of element Bi, is not required since the Lebesgue measure of the interface between two random ele-
ments is zero and most statistics we are interested in are defined as a Lebesgue integration.
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In the decomposition of random space, the PDF of Y is decomposed simultaneously, which implies that the original gPC
basis will, in general, lose local orthogonality in random elements. The only exception is the Legendre-chaos for the uni-
form distribution [19]. For other distributions, orthogonal polynomials with respect to the PDF of local random variable
Yk can be constructed numerically. Given an arbitrary PDF, the Stieltjes procedure and the Lanczos algorithm [21] can be
used to construct the following orthogonal system

piþ1ðtÞ ¼ ðt � aiÞpiðtÞ � bipi�1ðtÞ; i ¼ 0; 1; . . . ;

p0ðtÞ ¼ 1; p�1ðtÞ ¼ 0;
ð12Þ

where {pi(t)} is a set of (monic) orthogonal polynomials,

piðtÞ ¼ ti þ lower-degree terms, i ¼ 0; 1; . . . ð13Þ
and the coefficients ai and bi are uniquely determined by a positive (probability) measure. The orthogonal system {pi(Yk)}
will serve as a local gPC basis.

In ME-gPC, relative low polynomial orders (5–8) are preferred locally; thus, the numerical re-construction can be imple-
mented efficiently and accurately [20]. Numerical experiments show that the cost of maintaining local orthogonality is neg-
ligible compared to the cost of a standard Galerkin gPC solver.

3. Long-term integration of gPC and ME-gPC

In this section we study the long-term behavior of gPC and ME-gPC analytically using the following one-dimensional
stochastic advection equation

ou
ot
þ V ðnÞ ou

ox
¼ 0 ð14Þ

subject to the initial condition

uðxÞ ¼ u0ðx; nÞ; ð15Þ
where n is a one-dimensional uniform random variable defined on [�1,1] and V ðnÞ 2 L2ðX;F; P Þ. In particular, we assume
that

V ðnÞ ¼ �vþ rn; u0ðx; nÞ ¼ sin npð1þ xÞ; x 2 ½�1; 1�; ð16Þ
where r is a constant, �v is the mean of transport velocity and n 2 N. It is easy to obtain the exact solution for this case as

uðx; t; nÞ ¼ sin npð1þ x� ð�vþ rnÞtÞ; ð17Þ
which shows that the frequency of this stochastic process is random.

3.1. Error estimates for gPC

Let {Pi(n)} denote the orthogonal basis of Legendre-chaos and PM denote the projection operator as

PM uðx; t; nÞ ¼
XM

i¼0

uiðx; tÞP iðnÞ; ð18Þ

where

uiðx; tÞ ¼
1

hP 2
i ðnÞi

Z 1

�1

uðx; t; nÞP iðnÞ
1

2
dn. ð19Þ

We study the convergence of PM uðx; t; nÞ since it can demonstrate the main properties of numerical convergence.

Theorem 1. Let �M denote the error of the second-order moment of PM u. Given time t and polynomial order M, �M can be

bounded as

�M 6 CðMÞ q2Mþ2
M

1� q2
M

; ð20Þ

where C(M) is a constant depending on M and

qM ¼
rnpet

2M þ 2
< 1. ð21Þ

Here e is the base of natural logarithm.
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Proof. According to the following formula in [22]

sin cpðzþ aÞ ¼ 1ffiffiffiffiffi
2c
p

X1
i¼0

ð2iþ 1ÞJ iþ1=2ðcpÞ sin cpaþ 1

2
ip

� �
P iðzÞ; ð22Þ

we obtain the polynomial chaos expansion of the exact solution (17) as

u ¼ � 1ffiffiffiffiffiffiffiffiffi
2nrt
p

X1
i¼0

ð2iþ 1ÞJ iþ1=2ðrnptÞ sin npð�vt � x� 1Þ þ 1

2
ip

� �
P iðnÞ; ð23Þ

where Ji+1/2 are Bessel functions of the first kind. Using the orthogonality of Legendre polynomials, we obtain

hu2ðx; t; nÞi ¼ 1

2nrt

X1
i¼0

ð2iþ 1ÞJ 2
iþ1=2ðrnptÞ sin2 npð�vt � x� 1Þ þ 1

2
ip

� �
; ð24Þ

where hPi(n)Pj(n)i = dij/(2i + 1) is employed. Then �M can be expressed as

�M � hu2i � hðPM uÞ2i ¼ 1

2nrt

X1
i¼Mþ1

ð2iþ 1ÞJ 2
iþ1=2ðrnptÞ sin2 npð�vt � x� 1Þ þ 1

2
ip

� �
. ð25Þ

It is known (see [23]) thatffiffiffiffiffiffiffiffiffiffiffiffi
p

2rnpt

r
J iþ1=2ðrnptÞ ¼ ðrnptÞi

2iþ1i!

Z p

0

cosððrnptÞ cosðhÞÞ sin2iþ1 hdh. ð26Þ

By substituting Eq. (26) into Eq. (25), �M can be approximated as

�M ¼
X1

i¼Mþ1

ð2iþ 1ÞðrnptÞ2i

22iþ2ði!Þ2
Ai sin2 npð�vt � x� 1Þ þ 1

2
ip

� �
;

where

Ai ¼
Z p

0

cosðrnpt cosðhÞÞ sin2iþ1 hdh

� �2

.

Using Stirling’s formula [23] for the factorial i!, we obtain that

�M �
X1

i¼Mþ1

ð2iþ 1ÞðrnpteÞ2i

8pið2iÞ2i Ai sin2 npð�vt � x� 1Þ þ 1

2
ip

� �
;

where e is the base of natural logarithm. For a fixed time t, the error �M can be bounded as

�M 6 C1

X1
i¼Mþ1

ð2M þ 3ÞðrnpetÞ2i

8pðM þ 1Þð2M þ 2Þ2i ¼ C1

ð2M þ 3Þq2Mþ2
M

8pðM þ 1Þð1� q2
MÞ
;

where C1 is a constant and qM = rnpet/(2M + 2). Here the condition qM < 1 is assumed for the convergence of summation.
We subsequently check the constant C1. Since sinh P 0 in h 2 [0,p], we obtain that

A1=2
i 6

Z p

0

sin2iþ1 hdh.

Let Bi ¼
R p

0
sin2iþ1 hdh. Using sin2h + cos2h = 1, the following relationship can be obtained

Bi ¼
Z p

0

sin2i�1 hdh�
Z p

0

sin2i�1 h cos2 hdh ¼ Bi�1 �
Z p

0

sin2i�1 h cos2 hdh.

Since the second term on the right-hand side is positive, we know that the sequence {Bi} is decreasing. Thus, we can bound
Ai as

Ai 6 B2
i 6 B2

Mþ1; i P ðM þ 1Þ.

Let C1 ¼ B2
Mþ1 and C(M) = C1(2M + 3)/8p(M + 1), then the conclusion follows immediately. h

In Theorem 1, qM < 1 is assumed for the convergence of summation in �M. For a general case we have the following
corollary:
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Corollary 2. Given time t and polynomial order M, �M can be bounded as

�M 6
1

2rt

XM̂

i¼Mþ1

ð2iþ 1ÞJ 2
iþ1=2ðrnptÞ þ Cð bM Þ q2M̂þ2

M̂

1� q2
M̂

; ð27Þ

where qM̂ is a function of bM defined as in Eq. (21) and qM̂ < 1.
3.2. Error estimates for ME-gPC

Let bPM denote the projection of u(x, t;n) onto the basis of ME-gPC.

Theorem 3. Given a decomposition of random space of n with element length Lk = bk � ak, k = 1,2, . . . ,N, the error �̂M of the

second-order moment of bPM u can be bounded as

�̂M 6 CðMÞ
XN

k¼1

q2Mþ2
k;M

1� q2
k;M

PrðIBk ¼ 1Þ; ð28Þ

where C(M) is a constant depending on M and

qk;M ¼
rnpeLkt

2ð2M þ 2Þ < 1. ð29Þ

Proof. According to Eq. (10), we know that bPM can be expressed as

bPM ¼
XN

k¼1

bPk;M IBk ; ð30Þ

where bPk;M is a local projection operator defined as

bPk;M uðx; t; nÞ ¼ PM u x; t;
bk � ak

2
nþ bk þ ak

2

� �
. ð31Þ

Then, the second-order moment can be expressed as

hð bPM uðx; t; nÞÞ2i ¼
XN

k¼1

bPk;M uðx; t; nÞIBk

 !2* +
¼
XN

k¼1

hð bPk;M uðx; t; nÞÞ2iPrðIBk ¼ 1Þ. ð32Þ

Thus, �̂M takes the following form

�̂M ¼
XN

k¼1

�̂k;M PrðIBk ¼ 1Þ; ð33Þ

where �̂k;M is the error of the second-order moment of bPk;M uðx; t; nÞ. We now check the behavior of �̂k;M . Given a random
element Bk = [ak,bk], the local problem in ME-gPC is to find the solution of the following transformed equation

ou
ot
þ �vþ r

bk � ak

2
nk þ

bk þ ak

2

� �� �
ou
ox
¼ 0;

where nk is the local uniform random variable defined on [�1,1]. The exact solution of above equation is

uðx; t; nkÞ ¼ sin np 1þ x� �vþ r
bk � ak

2
nk þ

bk þ ak

2

� �� �
t

� �
.

Using a similar procedure as in Section 3.1, we can bound �̂k;M as

�̂k;M 6
CðMÞq2Mþ2

k;M

1� q2
k;M

;

where

qk;M ¼
rnpeðbk � akÞt

2ð2M þ 2Þ < 1.

Using Eq. (33), the conclusion follows immediately. h
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3.3. Relation between �M and �̂M

From Theorem 1, we can see that qM increases linearly in terms of time t, which implies that gPC will lose p-convergence
after a finite time. To keep a certain accuracy, the polynomial order of gPC must increase with time. Let

d ¼ CðMÞ
1� q2

M

q2Mþ2
M ; ð34Þ

where d denotes a desired accuracy. By solving such an equation we obtain that

t ¼ 1

rnpe

dð1� q2
MÞ

CðMÞ

� �1=ð2Mþ2Þ

ð2M þ 2Þ. ð35Þ

Since ½dð1� q2
MÞ=CðMÞ�1=ð2Mþ2Þ ! 1 when M!1, we obtain that

t � 2M þ 2

rnpe
; ð36Þ

which is a linear relation. It is instructive to define the increasing speed of polynomial order as

dM
dt
� rnpe

2
; ð37Þ

which shows that to maintain an accuracy d the polynomial order must increase at a speed rnpe/2; we note that n/2 is the
wave number in the initial condition. We can see that the speed is proportional to the wave number and the degree of per-
turbation, which implies that gPC will quickly fail to converge for a problem with a large perturbation or wave number if a
random frequency in time is involved.

Theorem 4. To maintain a certain accuracy of the second-order moment of PM u, the polynomial order of gPC must increase

with time and the following relation is satisfied

M � 1
2
rnpet � 1. ð38Þ

We assume that a uniform mesh is employed and p-convergence is maintained, in other words, qM < 1 and qk,M < 1 with
k = 1,2, . . . ,N. Thus, we have

�̂M ¼ CðMÞ q̂2Mþ2
M

1� q̂2
M

. ð39Þ

The ratio of �̂M and �M, for a fixed time t and polynomial order M, is

�̂M

�M
¼ 1

N

� �2Mþ2
1� q2

M

1� ð1
N Þ

2q2
M

� 1

N

� �2Mþ2

; ð40Þ

which is consistent with the k-convergence (� / N�2(M+1)) of ME-gPC (see [13,14,19,20]). Let us consider that gPC and
ME-gPC of polynomial order M reach accuracy of the same order. To satisfy this, we need to have

qM ¼ q̂M ; ð41Þ
which yields

t̂M ¼ NtM ; ð42Þ
where t̂M and tM denote time for ME-gPC and gPC, respectively.

Theorem 5. Suppose that the error, �, of the second-order moment of gPC of order M is maintained in the range t 6 tg. Based

on a uniform mesh with N random elements, ME-gPC of order M can maintain the accuracy O(�) in the range t 6 Ntg. In other

words, ME-gPC can extend the valid integration time of gPC linearly by a factor N.

If the mesh is non-uniform, the aforementioned linearity is still valid; however, the factor will be less than N. We assume
that

SN
k¼1Bk is a decomposition for n of uniform distribution and the length of Bk is an increasing series,

0 < lB1
6 lB2

6 � � � 6 lBN . From the proof of Theorem 3, we know that

�̂M ¼
XN

k¼1

�̂k;M PrðIBk ¼ 1Þ 6 CðMÞ
XN

k¼1

q2Mþ2
k;M

1� q2
k;M

lBk

2
; ð43Þ
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where

qk;M ¼
rnpelBk t

2ð2M þ 2Þ and PrðIBk ¼ 1Þ ¼ lBk

2
.

We define a function

QðzÞ ¼ q2Mþ2
z

1� q2
z

;

where

qz ¼
rnpet
ð2M þ 2Þ z.

It is easy to verify that Q(z) is an increasing function with respect to z. Let zk ¼ lBk=2. We can obtain

Qðz1Þ ¼
XN

k¼1

Qðz1Þzk 6

XN

k¼1

QðzkÞzk 6

XN

k¼1

QðzN Þzk ¼ QðzN Þ;

whereXN

k¼1

zk ¼ 1; 0 < z1 6 z2 6 � � � 6 zN .

To satisfy �M ¼ �̂M , we need

Qðz1Þ 6 Qð1Þ 6 QðzN Þ;
which implies that

2

lBN

tM 6 t̂M 6
2

lB1

tM . ð44Þ
3.4. Other distributions and high-dimensional random inputs

In ME-gPC, the PDF of n will be decomposed simultaneously with the random space; thus, the local orthogonality has
to be maintained numerically. The only exception is the Legendre-chaos [19] due to the nice properties of uniform distri-
bution. It is, in general, difficult to analyze theoretically the convergence for the numerical basis of ME-gPC. In this work,
we compare the performance of gPC and ME-gPC numerically for other distributions.

The k-type convergence was shown theoretically in [14,13] to be

kE½u� � E½uM �kL2ðDÞ 6 Ck2ðMþ1Þ; kE½u2� � E½u2
M �kL2ðDÞ 6 Ck2ðMþ1Þ ð45Þ

using an stochastic elliptic model problem, where C is a constant depending on M, and k denotes the maximum size of
random elements. We note here that D indicates the physical space. It was shown in [19,20] that the index of algebraic
convergence of ME-gPC for the mean and variance goes asymptotically to 2(M + 1) for a uniform mesh, which is consis-
tent with Eq. (45). Note that the error bound (45) is independent of probability measures. Such observations imply that for
any probability measure the following relation (see Eq. (40))

�̂M

�M
� CðMÞ t̂M

NtM

� �2Mþ2

ð46Þ

holds for the solution of Eq. (17), where the constant C depends on the polynomial order M. Here we include the time t

together with the number N of random elements because in the kth random element of ME-gPC the solution takes the form

uðx; t; nkÞ ¼ sin np 1þ x� �vk þ
rt
N

nk

� 	� 	
; ð47Þ

where t and N can be treated together. From Eq. (46) we can see that if we re-scale the time of gPC by the number N, �̂M=�M

will be a constant depending on the polynomial order. However, such a relation will be reached asymptotically because of
the non-uniform random distribution [20].

It is easy to generalize the obtained results to high-dimensional random inputs. Since the high-dimensional basis of gPC
is constructed by tensor products of one-dimensional basis, the error of chaos expansion should be dominated by the sum-
mation of errors of one-dimensional truncation. Thus, the results for the one-dimensional case should be still valid for a
high-dimensional case. For example, if we have d-dimensional uniform random inputs, ME-gPC with Nd uniform elements
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should extend the valid integration time of gPC with the same polynomial order by a factor N. However, in practice, the
degree of perturbation in each random dimension is generally different, and only the random dimensions with large per-
turbations are needed to be refined. Such cases are more difficult to analyze and beyond the scope of this paper.

3.5. Initial conditions

For the initial condition u0(x;n), we intentionally employed functions such as cosine and sine waves, which introduce
‘‘random periodicity’’ in time for a given random transport velocity. Such solutions are often encountered in practice,
e.g., random oscillators and simulations of unsteady turbulent or noisy flows. If the frequency is finite, we know that
the random solution can be expressed by a Fourier transform in the time direction

uðx; t; nÞ ¼
XM=2

n¼�M=2

unðx; nÞein 2p
T ðnÞt; ð48Þ

where T(n) is the random period. It is obvious that Eq. (17) represents the basic properties of each random mode. We note
that gPC can effectively capture the random behavior for some other initial conditions, e.g., u0(x;n) = xn, if the polynomial
order is large enough.

The long-term behavior for aforementioned initial conditions is similar to the spectral expansion of deterministic func-
tions with high wave numbers (see [24]). Since gPC is indeed a spectral expansion in terms of certain random variables and
the time plays a role similar to a wave number in chaos expansion, the order of gPC must increase with time to maintain a
desired accuracy level.

3.6. Numerical results

Next we present some numerical results for �M and �̂M . Let n = 1, �v ¼ 0, r = 1 in Eq. (16). Due to the periodic condition
in physical space, we use a Fourier-collocation method to solve the deterministic PDEs introduced by the Galerkin pro-
jection in the gPC or ME-gPC method. It has been assumed that qM < 1 for the convergence of summation in �M. However,
qM is an increasing function of t, which means that the error �M increases with time and it will reach O(1) values eventually.
In Fig. 1, we present the evolution of the error bounds of gPC and ME-gPC, respectively. It can be seen that the error of
ME-gPC increases at the same speed as that of gPC. However, since ME-gPC is much more accurate than gPC, it takes
longer time for ME-gPC to reach O(1) error. The error �M of eighth-order gPC is O(1) around t = 2. In Fig. 2, �M and the
corresponding numerical errors are shown, where we also plot J 2

iþ1=2ðrnptÞ for comparison. It is known that J 2
iþ1=2ðrnptÞ

decreases exponentially with i when i is much greater than rnpt; otherwise, there is no p-convergence. It can be seen that p-
convergence does not occur until M P 8 (qM < 1) and the rate of convergence is the same as the decreasing rate of
J 2

iþ1=2ðrtpÞ when i!1.
In Fig. 3 we demonstrate Theorem 5 numerically. According to Theorem 5, we know that the error of gPC at time t

should be almost the same as the error of ME-gPC of the same polynomial order at time Nt for a uniform mesh. For
gPC, we re-scale the time by a factor N while keeping the errors unchanged. It can be seen that the re-scaled error-time
curve of gPC matches very well with the error-time curve of ME-gPC, and it appears that the errors of ME-gPC are always
bounded by the shifted errors of gPC. We note that the random inputs are uniform.
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To examine if the previous results extend to other random distributions, we consider Beta and Gaussian distributions. In
Fig. 4, we plot the errors of gPC and ME-gPC versus time for a Beta distribution Beta(0, 1) while the time for gPC is re-
scaled as before. It is seen that the two curves for gPC and ME-gPC agree with each other very well. We also compare gPC
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and ME-gPC of polynomial order p = 3 in Fig. 5 when n is of Gaussian distribution. For the ME-gPC method, we first
decompose the support of the Gaussian distribution into three random elements: (�1,�6], [�6,6] and [6,1). We subse-
quently decompose the middle element [�6,6] while keeping the tail elements unchanged since Pr(n 2 (�1,�6] or
[6,1)) = 1.97 · 10�9. The influence of tail elements can be observed only in the early stage, which is clearly shown in
the left plot. Starting from t � 0.5, the tail elements will not affect the accuracy any more. Thus, we can drop the tail ele-
ments when we re-scale the error curves of gPC by the element number N due to their negligible error contribution. In the
plot on the left, it can be seen that the error curve re-scaled by factor 2.5 matches the ME-gPC results better than the ele-
ment number N = 4. The reason is that Gaussian distribution is non-uniform. If the middle element is decomposed to four
equidistant ones, we know that Pr(I[�6,3] = 1 or I[3,6] = 1) = 2.7 · 10�3, which implies that the error of ME-gPC is mainly
controlled by elements [�3,0] and [0,3] (see Eq. (33)). Thus the scale factor should be about 2. In the plot on the right, we
can see that for larger element numbers, the re-scaled error curves of gPC agree well with the ME-gPC results, which
implies the relation presented in Theorem 5 will be valid asymptotically for the Gaussian distribution.
4. Application: noisy flow past a stationary circular cylinder

4.1. Random-frequency inflow noise

The aforementioned issues are often encountered in numerical simulations of unsteady noisy flows. We now simulate the
two-dimensional noisy flow past a circular cylinder subject to the following random boundary conditions at the inflow

u ¼ 1þ rY ; v ¼ 0; ð49Þ
where Y is a uniform random variable of zero mean and unit variance and r is a prescribed constant indicating the degree of
perturbation. For each value of Y, there exists a corresponding Reynolds number, which determines a unique vortex shed-
ding frequency. In other words, the shedding frequency in the stochastic simulation is random.

In Fig. 6 the mesh used for the discretization in physical space is shown. Neumann boundary conditions (zero flux) are
employed at the outflow and periodic boundary conditions in the cross-flow direction. The numerical formulation of gPC
for the incompressible Navier–Stokes equations was presented in [25], where spectral/hp element methods were employed
to solve the large deterministic PDE system produced by the Galerkin projection in gPC. The Reynolds number considered
in this work is Re = 100.

We first simulate a deterministic case with r = 0 up to t = 1000 to obtain a fully developed flow and then introduce 10%
noise at the inflow. We plot the instantaneous mean and variance of lift coefficient CL in Fig. 7, and of drag coefficient CD

in Fig. 8. It can be seen that both the mean and variance of CL given by ME-gPC oscillate periodically around a constant
value with a decreasing amplitude after a short transient stage. This agrees with a stochastic model of lift coefficient deve-
loped in [18,26], where CL is modeled by a harmonic signal with a random frequency. Based on such a model, the mean of
CL goes to zero while the variance asymptotes a constant value. Good agreement between gPC and ME-gPC is observed
only in the transient stage, after which gPC begins to diverge. Similar trends are observed for the drag coefficient CD. The
study in previous section shows that the polynomial order of gPC must increase at about a constant rate (see Eq. (38)) to
maintain a certain accuracy if a random frequency is involved. In Fig. 9, we plot the normalized relative errors of the
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variance of the lift coefficient using the results given by ME-gPC with N = 20 and M = 8 as a reference. It can be seen that
the errors of gPC increase quickly to O(1). ME-gPC with N = 20 and p = 6 reaches an error of O(10�2) at t � 135. We note
that errors less than 10�5 are not shown because the output data are truncated after the fifth digit.

In Section 3 we have shown that the error of ME-gPC at a fixed time can be estimated from that of gPC of the same
polynomial order but shifted by a factor N. Here we cannot use this result directly because the decomposition of random
shedding frequencies is not necessarily uniform although the noise at the inflow is uniform. However, we can estimate the
scaling factor from the simulation results for the errors of gPC and ME-gPC of sixth order, which is about 12. Using this
value we know that the error of ME-gPC with N = 20 and M = 8 at tU/D = 150 should be roughly equal to the error of
eighth-order gPC at tU/D = 150/12, which is O(10�3). Thus, ME-gPC with N = 20 and M = 8 can provide accurate results
in the range tU/D 6 150, corresponding to about 20 shedding periods after the transient stage. In contrast, gPC provides
accurate result up to less than two shedding periods.

In Fig. 10 the RMS of vorticity is plotted. The global structure is (approximately) symmetric and the values of RMS of
vorticity are decreasing gradually from the front stagnation point, through the boundary layers, into the wake. This sug-
gests that the vorticity behind the cylinder should contain a harmonic signal A(x,Y)cos(2pfv(Y)t) with random frequencies
fv. The RMS of such a harmonic response will approach

R
Y A2ðx; Y Þf ðY Þ=2dY as t!1, where f(Y) is the PDF of Y. Since

the flux of vorticity decreases in the x direction due to viscous diffusion, the value of A(x,Y) should also decrease in the x

direction. This explains qualitatively why we only observe decreasing RMS values of vorticity in the wake without the von
Karmon vortex street.

4.2. Random-amplitude inflow noise

In this section we consider another noisy boundary condition at the inflow

u ¼ 1þ rn cos 2pfint; v ¼ 0; ð50Þ
where we add a harmonic signal with a random amplitude into the inflow. We use fin = 0.75fs, where fs is the vortex shed-
ding frequency at Re = 100. Let n be a uniform random variable with zero mean and unit variance. We set r to 0.1.
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In Fig. 11 we compare the mean and variance of CL given by gPC and ME-gPC of the same order M = 8, where N = 10
for the ME-gPC. We see that eighth-order gPC can capture all the statistics up to the second-order in the range of
tU/D 6 150 in contrast to the fast divergence of gPC for the random-frequency noise. Numerical experiments show that
for the boundary condition (50) the frequency of CL is not sensitive to the boundary noise, where the vortex shedding fre-
quency at Re = 100 is dominant. Thus, the error of gPC increases much slower than the first case. A similar example is
noisy flow past an oscillating circular cylinder [4], where the frequency is also not sensitive to the noise and thus gPC
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can do a good job. Such observations imply that the presence of random frequencies can cause a significant degradation of
the performance of gPC, and thus employing ME-gPC is necessary for convergent results.

5. Summary

In this work we studied the long-term behavior of gPC and ME-gPC by focusing on problems related to random fre-
quencies. We first analyzed the one-dimensional advection equation with a uniform random transport velocity, for which
the error estimates of gPC and ME-gPC were derived for the Legendre-chaos expansion. Based on the error estimates, we
found that ME-gPC with a uniform mesh in random space can extend the valid integration time of gPC by a factor N,
which is the number of random elements. Subsequently, we extended this relation to other random distributions and ver-
ified it by numerical studies on Beta and Gaussian distributions. We then simulated noisy flow past a stationary circular
cylinder, where two different boundary conditions at the inflow were considered. For the random-frequency noise at the
inflow, the vortex shedding frequency is sensitive to the inflow condition; thus gPC fails to converge at early integration
times but ME-gPC can capture the correct random behavior effectively. For the random-amplitude noise at the inflow,
the shedding frequency is not as sensitive; thus gPC is valid for a relative longer time. This flow problem provides good
support for our analysis in Section 3. Although ME-gPC can improve the performance of gPC for problems related to
random frequencies, it also fails asymptotically. To treat this, one choice is to increase adaptively the number of elements
of ME-gPC to maintain a reasonable accuracy in a desired range of integration time. However, for high-dimensional ran-
dom inputs, the effectiveness of ME-gPC will be weakened since the number of elements may increase fast. Thus, the long-
term behavior of polynomial chaos deserves further study.
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