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Abstract

We formulate a Multi-Element generalized Polynomial Chaos (ME-gPC) method to deal with long-term integration

and discontinuities in stochastic differential equations. We first present this method for Legendre-chaos corresponding

to uniform random inputs, and subsequently we generalize it to other random inputs. The main idea of ME-gPC is to

decompose the space of random inputs when the relative error in variance becomes greater than a threshold value. In

each subdomain or random element, we then employ a generalized polynomial chaos expansion. We develop a criterion

to perform such a decomposition adaptively, and demonstrate its effectiveness for ODEs, including the Kraichnan–

Orszag three-mode problem, as well as advection–diffusion problems. The new method is similar to spectral element

method for deterministic problems but with h–p discretization of the random space.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Polynomial chaos is a non-statistical approach to represent randomness and is based on the homoge-

neous chaos theory of Wiener [1]. In its original form a spectral expansion was employed based on the Her-

mite orthogonal polynomials in terms of Gaussian random variables. This expansion was applied by
Ghanem et al. [2,3] to various problems in mechanics. A broader framework, called ‘‘generalized Polyno-

mial Chaos (gPC)’’, was introduced in [4,5]. This extension includes a family of orthogonal polynomials

(the so-called Askey scheme) from which the trial basis is selected, and can represent non-Gaussian pro-

cesses more efficiently; it includes the classical Hermite polynomial chaos as a subset. For example, uniform
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.03.023

* Corresponding author. Tel.: +1 401 863 1217; fax: +1 401 863 3369.

E-mail addresses: xlwan@dam.brown.edu (X. Wan), gk@dam.brown.edu (G.E. Karniadakis).

mailto:xlwan@dam.brown.edu
mailto:gk@dam.brown.edu


618 X. Wan, G.E. Karniadakis / Journal of Computational Physics 209 (2005) 617–642
distributions are represented by Legendre polynomial functionals, exponential distributions by Laguerre

polynomial functionals, etc. The method includes also discrete distributions with corresponding discrete

eigenfunctions as trial basis; e.g., Poisson distributions are represented by Charlier polynomial functionals.

More specifically, stochastic ordinary differential equations (ODEs) were considered in [4] and gPC was

shown to exhibit exponential convergence in approximating stochastic solutions at finite (early) times.
However, the absolute error may increase gradually in time and become unacceptably large for long-term

integration. Increasing the polynomial order adaptively can somewhat alleviate this problem, however, the

stochastic solution may become increasingly complicated, which may give rise to serious computational dif-

ficulties. For example, if the stochastic solutions are periodic with random frequencies, gPC will lose its

effectiveness rapidly due to the amplified phase shift with time. The same is true for time-dependent simu-

lations of fluid flows, which are the problems considered in [5]. In addition, for discontinuous dependence

of the solution on the input random data, gPC may converge slowly or fail to converge even in short-time

integration. This situation represents essentially a discontinuity of the approximated solution in random
space, for which global solutions converge slowly. Therefore, more efficient and robust schemes are needed

to enhance the performance of generalized as well as the original polynomial chaos. To this end, a new

method, termed the Wiener–Haar method, was developed in [6,7] based on wavelets; its primary aim

was to address problems related to the aforementioned discontinuities in random space.

In this paper, we develop a simple but effective scheme based on gPC, i.e., we maintain a spectral poly-

nomial trial basis. It is motivated by two observations:

(1) gPC is more efficient for relatively small degree of random perturbation, and
(2) most of the statistics we are interested in, such as mean and variance, are defined as integrations

involving the probability density function (PDF).

To this end, we decompose the space of random inputs into small elements. Subsequently, in each element

we generate a new random variable and apply gPC again. Since the degree of perturbation in each element

is reduced proportionally to the size of random elements, we can maintain a relative low polynomial order

for gPC in each element. This multi-element gPC method (ME-gPC) can achieve h–p convergence (as in

spectral elements for spatial discretization), where h is determined by the size of random elements and p

is the polynomial chaos order. The concept of h-convergence used in this work is similar to that in [8], where

the basis of the standard finite element method is employed. In ME-gPC, orthogonal basis (Legendre-

chaos) is used in each random element for efficiency. By extension, we can say that in [6,7] the concept

of h-convergence is also used with h representing the number of resolution levels of wavelets. From the

implementation standpoint, the simplicity of ME-gPC is particularly attractive; for example, we do not

have to change the existing gPC solver except for a subroutine for the decomposition of random space.

As we shall see in this paper, however, the results are dramatically improved compared to global gPC

expansions.
This paper is organized in the following way. In the next section, we recall the basic concepts and prop-

erties of gPC. Then, we introduce the ME-gPC algorithm and the criterion of the decomposition of random

space in Section 3. In Section 4, we study the properties of ME-gPC numerically for several typical ODE

and PDE problems, including the open Kraichnan–Orszag three-mode problem. A summary is included in

Section 5.
2. Generalized polynomial chaos

The original polynomial chaos formulation was proposed by Wiener [1]. It employs Hermite polynomi-

als in terms of Gaussian random variables as the trial basis to represent stochastic processes. According to
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the theorem of Cameron and Martin [9] such expansions converge for any second-order processes in the L2

sense. The gPC extension was proposed in [5] and employs more types of orthogonal polynomials from the

Askey scheme. It is a generalization of the Wiener�s Hermite-chaos and can deal with non-Gaussian ran-

dom inputs more efficiently.

Let ðX;F; PÞ be a complete probability space, where X is the sample space, F is the r-algebra of subsets
of X, and P is a probability measure. A general second-order random process X ðxÞ 2 L2ðX;F; P Þ can be

expressed by gPC as
X ðxÞ ¼
X1
i¼0

âiUiðnðxÞÞ; ð1Þ
where x is the random event and Ui(n(x)) are polynomial functionals of degree p in terms of the multi-

dimensional random variable n = (n1, . . . ,nd). The family {Ui} is an orthogonal basis in L2ðX;F; P Þ with

orthogonality relation
hUi;Uji ¼ hU2
i idij; ð2Þ
where dij is the Kronecker delta, and ÆÆ, Ææ denote the ensemble average. Here, the ensemble average can be

defined as the inner product in the Hilbert space in terms of the random vector n,
hf ðnÞ; gðnÞi ¼
Z

f ðnÞgðnÞwðnÞdn ð3Þ
or
hf ðnÞ; gðnÞi ¼
X
n

f ðnÞgðnÞwðnÞ ð4Þ
in the discrete case, where w(n) denotes the weight function.

For a certain random vector n, the gPC basis {Ui} can be selected in such a way that its weight function

has the same form as the probability distribution function of n. The corresponding type of polynomials {Ui}
and their associated random variable n can be found in [4].
3. Multi-element generalized polynomial chaos

In this section, we develop the scheme of Multi-Element generalized Polynomial Chaos (ME-gPC) to

maintain the high accuracy of gPC for long-term integration and to resolve effectively discontinuities in ran-

dom space.

3.1. Decomposition of random space

Let n ¼ ðn1ðxÞ; n2ðxÞ; . . . ; ndðxÞÞ: X 7! Rd denote a d-dimensional random vector defined on the prob-

ability space ðX;F; P Þ, where ni are identical independent distributed (IID) random variables. Here we as-

sume that ni are also uniform random variables defined as ni :X ´ [�1,1] with a constant PDF fi ¼ 1
2
.

Let D be a decomposition of B with N non-overlapping elements
D ¼

Bk ¼ ½ak1; bk1Þ � ½ak2; bk2Þ � � � � � ½akd ; bkd �;

B ¼
SN
k
Bk;

B
T
B ¼ ; if k 6¼ k ;

8>>><
>>>:

ð5Þ
k1 k2 1 2
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where k,k1,k2 = 1,2, . . . ,N. We define an indicator random variable for each random element as
zk ¼
1 if n 2 Bk;

0 otherwise.

�
ð6Þ
It is easy to see that X ¼
SN

k¼1z
�1
k ð1Þ and z�1

i ð1Þ \ z�1
j ð1Þ ¼ ; when i 6¼ j. Thus,

SN
k¼1z

�1
k ð1Þ is a decomposi-

tion of the sample space X. Then, in each random element we define the following local random vector as
fk ¼ ðfk1; f
k
2; . . . ; f

k
dÞ: z�1

k ð1Þ7!Bk ð7Þ

subject to a conditional PDF
ffk ¼
1

2d Prðzk ¼ 1Þ
; k ¼ 1; 2; . . . ;N ; ð8Þ
where
Prðzk ¼ 1Þ ¼
Yd
i¼1

bki � aki
2

. ð9Þ
Note that Pr(zk = 1) > 0. Subsequently, we map fk to a new random vector defined in [�1,1]d,
nk ¼ gkðfkÞ ¼ nk1; n
k
2; . . . ; n

k
d

� �
: z�1

k ð1Þ7!½�1; 1�d ð10Þ
with a constant PDF f k ¼ ð1
2
Þd , where
gkðfkÞ: fki ¼
bki � aki

2
nki þ

bki þ aki
2

; i ¼ 1; 2; . . . ; d. ð11Þ
To this end, we present a decomposition of the random space of n. Given a system of differential equations

with random inputs n, the output u(n) is also measurable on the probability space ðX;F; P Þ. Thus, we can
express u(n) in each random element using fk subject to a conditional PDF, which implies that we can first

approximate u(n) locally by fk on the probability space ðz�1
k ð1Þ;F \ z�1

k ð1Þ; P ð� j z�1
k ð1ÞÞÞ, then combine all

the information from each random element to get u(n) in the whole random space. Since most of the sta-

tistics are integrations with respect to the PDF, we do not have to guarantee the absolute continuity in

terms of n between random elements. In other words, the following restriction:
uB1
ðnÞ ¼ uB2

ðnÞ; n 2 �B1 \ �B2; ð12Þ
where �B1 and �B2 indicate the closure of two adjacent random elements, respectively, is not required as in

the deterministic problems since the measure of the interface is zero. Thus, in random element k we can

use gPC locally to solve the system of differential equations with random inputs fk instead of n. According
to the theorem of Cameron and Martin [9], gPC will converge to u(fk) in the L2 sense. Hence, we decompose

the original problem to N independent problems in N random elements.

In practice we implement gPC according to nk instead of fk to take advantage of the Legendre-chaos.

After we obtain the approximation ûkðnkÞ; k ¼ 1; 2; . . . ;N ; of a random field, we can reconstruct the

mth moment of u(n) on the entire random domain by the Bayes� theorem and the law of total probability

[10]
lmðuðnÞÞ ¼
Z
B
umðnÞ 1

2

� �d

dn �
XN
k¼1

Prðzk ¼ 1Þ
Z
½�1;1�d

ûmk ðn
kÞ 1

2

� �d

dnk. ð13Þ
Since we consider second-order processes in this work, m = 1,2. For convenience, we use Jk to denote

Pr(zk = 1) in the presentation below.
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3.2. Accuracy

Theorem 1. Suppose n is a random vector defined on [�1,1]d with IID uniform components. If the random

space of n is decomposed into N disjoint elements with each element k described by a new uniform random

vector nk (see Eq. (10)), the mth (m = 1,2) moment of random field uðnÞ 2 L2ðX;F; P Þ can be approximated by

ûkðnkÞ; k ¼ 1; 2; . . . ;N ; with a L2 error
� ¼
XN
k¼1

�2kJ k

 !1=2

; ð14Þ
where �k is the local L2 error of the mth moment in random element k, Jk ¼ Prðzk ¼ 1Þ and ûkðnkÞ is obtained
from gPC.
Proof. Let ûðnÞ be the approximate random field. We first assume that the mth moment of ûðnÞ takes the
form
ûmðnÞ ¼
XN
k¼1

ûmk ðgkðnÞÞzk; ð15Þ
since B ¼ [N
i¼1Bi; fi 2 Bi and n 2 B (see Eqs. (7) and (11)). Then,
�2 ¼
Z
B

umðnÞ �
XN
k¼1

ûmk ðgk nÞð Þzk

 !2

1

2

� �d

dn ¼
XN
k¼1

Prðn 2 BkÞ
Z
Bk

umðfkÞ � ûmk ðgkðf
kÞÞ

� �2
ffkdf

k

¼
XN
k¼1

Prðn 2 BkÞ
Z
½�1;1�d

umðg�1
k ðnkÞÞ � ûmk ðn

kÞ
� �2 1

2

� �d

dnk ¼
XN
k¼1

�2kJ k.
For the second step, we employ the Bayes� theorem and the law of total probability [10]. If gPC is employed

to approximate uðg�1
k ðnkÞÞ, �k goes to zero according to the theorem given by Cameron and Martin [9].

Since
PN

k¼1Jk ¼ 1, � also goes to zero. Note here that although we approximate the random field locally

we can rebuild the global random field by Eq. (15). h

Note that
PN

k¼1Jk ¼ 1. Thus �2 is a weighted mean of �2k ; k ¼ 1; 2; . . . ;N . From the transform (11) we can

see that the degree of random perturbation for each dimension of nk is scaled down from O(1) to Oðb
k
i �aki
2

Þ.
This means that the decomposition of random space can effectively decrease the degree of randomness.

Thus, for the same polynomial order any �k would be smaller than the error given by gPC on the entire

random space without the decomposition of random space.

In [8] error estimates were derived for the mean and the variance for a similar decomposition of random

space in the framework of deterministic finite element method, as follows:
j�u� �̂uj 6 C1ðpÞOðh2ðpþ1ÞÞ; jr2 � r̂2j 6 C2ðpÞOðh2ðpþ1ÞÞ; ð16Þ

where the element size h � N�1 in our case and p is the polynomial order. In [8], the same basis as the deter-

ministic finite element is employed to approximate the random field, where the accuracy mainly relies on the
decomposition of random space. In ME-gPC, we employ Legendre-chaos locally to take advantage of

orthogonality and related efficiencies.

Let us now return to the two specific problem we aim to address in this paper: discontinuity and long-

term integration. If a discontinuity exists in random space, then gPC may converge very slowly or give rise

to O(1) error. However, ME-gPC can overcome this difficulty. Let us assume that the discontinuity occurs

in the random element k. From Eq. (14) we can see that the error contribution of element k is �2kJ k, which is
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determined by the local approximation error in element k and the factor Jk together. So the error contri-

bution can be decreased by the factor Jk (dictated by the element size) even if the local approximation error

is big. Thus, we can maintain a high accuracy on the entire random domain by using bigger elements for the

smooth part (p-type convergence) and smaller elements for the discontinuous part (h-type convergence). To

control the error in long-term integration problems, one choice is to increase the polynomial order adap-
tively. However, the stochastic system will become bigger, which may lead to a complicated system of

deterministic differential equations with all stochastic modes coupled together, especially in problems with

high-order nonlinearity. In ME-gPC, we can use a relative low polynomial order in each random element

since the local degree of perturbation has been scaled down; thus, the complexity is effectively controlled. In

practice, the polynomial order cannot be increased arbitrarily high, which means that the range of appli-

cation of gPC is indeed limited. It is obvious that such a range can be effectively extended by the decom-

position of random space.

3.3. Adaptive criterion

Let us assume that the gPC expansion of random field in element k is
ûkðnkÞ ¼
XNp

i¼0

ûk;iUiðnkÞ; ð17Þ
where p is the highest order of polynomial chaos and Np denotes the total number of basis modes given by
Np ¼
ðp þ dÞ!
p!d!

� 1. ð18Þ
The approximate global mean can be expressed as
�u ¼
XN
k¼1

ûk;0Jk. ð19Þ
From the orthogonality of gPC we can obtain the local variance approximated by polynomial chaos with

order p
r2
k;p ¼

XNp

i¼1

û2k;ihU2
i i; ð20Þ
and the approximate global variance
�r2 ¼
XN
k¼1

½r2
k;p þ ðûk;0 � �uÞ2�Jk. ð21Þ
Let ck be the error of the term r2
k;p þ ðûk;0 � �uÞ2. We obtain the exact global variance as
r2 ¼ �r2 þ
XN
k¼1

ckJ k; . ð22Þ
We define the local decay rate of relative error of the gPC approximation in each element as follows:
gk ¼
PNp

i¼Np�1þ1û
2
k;ihU2

i i
r2
k;p

. ð23Þ
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For h-type refinement, we consider two factors: the decay rate of the relative error gk in each element and

the factor Jk. We will split a random element into two equal parts when the following condition is satisfied
gakJ k P h1; 0 < a < 1; ð24Þ

where a is a prescribed constant.

When the random elements become smaller (i.e., Jk becomes smaller), the value of gk satisfying the cri-

terion will be bigger. Thus, the criterion relaxes the restriction on the accuracy of the local variance for

smaller elements since the error contribution of small random elements will be dictated by their size. From

Eq. (22) we can see that to achieve a certain level of accuracy, say b, we need
PN

k¼1ckJ k=r2 � OðbÞ. How-

ever, it is difficult to estimate such a global error since it is related to both h-type convergence and p-type

convergence. By noting the hierarchical structure of orthogonal polynomial chaos basis, we replace ck/r
2

with gk and use gkJk as an indicator of the error contribution of each element in this work.

There are two reasons to use the power of gk with respect to a in the criterion:

(1) The decomposition of random space would terminate when Jk � h1. From the criterion, we can see

that gk must satisfy gk P (h1/Jk)
1/a to trigger the decomposition of random space. If Jk < h1, gk must

be greater than 1 and increase quickly as Jk becomes smaller further by noting that both h1/Jk and 1/a
are greater than 1. It is, in general, hard to reach such a large gk in practice, even for problems involv-

ing stochastic discontinuities. Thus, h1 acts as a limit of the size of random elements. In this paper, we

usually set a to be 1/2.

(2) In stochastic discontinuity problems the largest error contribution is gkJk � O(Jk) � O(h1) because the
relative error gk could be almost O(1) in the elements containing discontinuities. For such a case, we

have to keep the error contribution of O(h1) because it is the best that gPC can do; however, we can

eliminate the error contribution of random elements without discontinuities. Note that

gkJ k � Oðg1�a
k h1Þ, where h1 is weighted by g1�a

k . Thus, in random elements without discontinuities

the error contribution will be much smaller than h1 since gk < 1 in these elements. Finally, the total

error contribution
PN

k¼1gkJ k would be O(mJk) � O(mh1), where m is the number of random elements

with O(h1) error contribution. So, g1�a
k works as a filter and h1 also acts as an accuracy threshold

besides the aforementioned limit of element size.

Furthermore, we use another threshold parameter h2 to choose the most sensitive random dimension. We

define the sensitivity of each random dimension as
ri ¼
ûi;p
� �2hU2

i;piPNp

j¼Np�1þ1 û
2
j hU2

j i
; i ¼ 1; 2; . . . ; d; ð25Þ
where we drop the subscript k for clarity and the subscript Æi,p denotes the mode consisting only of random

dimension ni with polynomial order p. All random dimensions which satisfy
ri P h2 � max
j¼1;...;d

rj; 0 < h2 < 1; i ¼ 1; 2; . . . ; d; ð26Þ
will be split into two equal random elements in the next time step while all other random dimensions will

remain unchanged. Hence, we can reduce the total element number while gaining efficiency. Considering
that h-type refinement is efficient in practice, we only present results given by h-type refinement in this work.

For some cases, say stochastic discontinuity problems, h-type refinement may be the most effective choice

since p-type convergence may not be maintained anymore. This is, of course, not surprising given what we

know for deterministic problems [11].
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3.4. Numerical implementation

When h-type refinement is needed, we have to map the random field from one mesh of elements to a new

mesh of elements. Suppose that the gPC expansion of the current random field is
ûðn̂Þ ¼
XNP

i¼0

ûiUiðn̂Þ; ð27Þ
then we assume that the gPC expansion in the next level takes the following form:
~uð~nÞ ¼ ~u g n̂
� �� �

¼
XNp

i¼0

~uiUið~nÞ; ð28Þ
where ~n 2 ½�1; 1�d . To determine the (Np+1) coefficients ~ui, we choose (Np + 1) points ~ni; i ¼ 0; 1; . . . ;Np;
which are the uniform grid points in [�1,1]d and solve the following linear system:
U00 U10 � � � UNp0

U01 U11 � � � UNp1

..

. ..
. ..

. ..
.

U0Np U1Np � � � UNpNp

2
666664

3
777775

~u0
~u1

..

.

~up

2
66664

3
77775 ¼

PNp

i¼0

ûiUi g�1 ~n0
� �� �

PNp

i¼0

ûiUi g�1 ~n1
� �� �

..

.

PNp

i¼0

ûiUi g�1 ~nNp

� �� �

2
666666666664

3
777777777775
; ð29Þ
where Uij ¼ Uið~njÞ. We rewrite the above equation in matrix form as
A~u ¼ û. ð30Þ
Due to the hierarchical structure of the basis, A�1 exists for any (Np + 1) distinct points in [�1,1]d. When h-

type refinement is implemented we divide the random space of a certain random dimension n̂i into two

equal parts. For example, if n̂i corresponds to element ½â; b̂� in the original random space [�1,1], the ele-

ments ½â; âþb̂
2
� and ½âþb̂

2
; b̂� will be generated in the next level. However, due to the linearity of transforma-

tion, we do not have to perform such a map from the original random space, as we can just separate
the random space of n̂i, which is [�1,1], to [�1,0] and [0,1]. Therefore, the matrix A will be the same

for every h-type refinement, and we only need to compute A�1 once and store it for future use. When refine-

ment is needed, we can obtain ~u easily by a matrix–vector multiplication
~u ¼ A�1û. ð31Þ
For a relatively small polynomial order (p 6 10), the mapping cost is small.

Now we summarize the ME-gPC algorithm.

Algorithm 1

Step 1: construct a stochastic ODE/PDE system by gPC

Step 2: perform the decomposition of random space adaptively

time step i: from 1 to N

loop over all random elements

if gaJk P h1, then
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if rn P h2 Æmaxj = 1, . . . , drj, then

split random dimension nn into two equal ones and generate

local random variables nn,1 and nn,2
end if

end if
map information to the children random elements

update the information of new elements by gPC

end loop

end time step

Step 3: postprocessing stage
3.5. Generalization

Let f be a general (i.e., non-uniform) random vector, whose components are IID random variables. Let f
denote any component of f. We can approximate it by Legendre-chaos in the form
f ¼
XNp

i¼0

aiUiðnÞ; ð32Þ
where n is a uniform random variable. The procedure for such an approximation can be found in [4]. Note

here that we need d IID uniform random variables to approximate all components of f. By expressing

everything in terms of the Legendre-chaos, then we can employ ME-gPC in terms of n.

Another choice is to first decompose the random space of f. Assume that u(f) is a random field of f, then
the mth moment of u(f) is
lmðuÞ ¼
Z
B
umðfÞhðfÞdf; ð33Þ
where h(f) is the PDF. Suppose that we have decomposed the random space of f to elements Bi,

i = 1,2, . . . ,N. The above equation can be rewritten as
lmðuÞ ¼
XN
i¼1

Z
Bi

viumðfÞ
hðfÞ
vi

df; ð34Þ
where vi ¼
R
Bi
hðfÞdf. We can then express h(f)/vi as a conditional PDF of f in Bi,
�hðf jBiÞ ¼
hðfÞ
vi

. ð35Þ
Then, the mth moment of u(f) can be expressed in the following form:
lmðuÞ ¼
XN
i¼1

vi

Z
Bi

umðfÞ�hðf jBiÞdf. ð36Þ
Now we can employ the first choice to approximate the conditional PDF �hðf jBiÞ by uniform random vari-

ables n. Since we approximate �hðf jBiÞ only in a subspace of f, we may use a smaller number of Legendre-

chaos modes for a desired level of accuracy.

Finally, another choice is to construct orthogonal polynomials on-the-fly for arbitrary PDFs. This con-
struction is under development (see [12]).
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4. Numerical results

In this section, we first demonstrate the convergence of ME-gPC for an algebraic equation and a simple

ODE. Next, we focus on issues related to discontinuities in random space and study the Kraichnan–Orszag

problem. Subsequently, we present numerical results for the stochastic advection–diffusion equation.
Finally, we demonstrate the h-type convergence of the decomposition of random space for the approxima-

tion of general random inputs.

4.1. A simple algebraic equation

We first revisit the following stochastic algebraic equation considered in [8]
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cu ¼ 1; ð37Þ

where c is a positive uniform random variable in [a,b].

In Fig. 1, the h-type convergence is shown, with the mean on the left and variance on the right. Here

we set a = 2 and b = 3. By a least-squares fit of the data, we obtain that the index of algebraic conver-

gence is 2(p + 1) for both the mean and the variance, which is consistent with the theoretical estimates

given in [8].

4.2. One-dimensional ODE

In this section we study the performance of ME-gPC for the following simple ODE equation studied

with the original gPC in [4]
du
dt

¼ �jðxÞu; uð0;xÞ ¼ u0; ð38Þ
where j(x) � U(�1,1). The exact solution can be easily found as
uðt;xÞ ¼ u0e�jðxÞt. ð39Þ
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Fig. 1. h-type convergence for the algebraic equation. (left) Mean; (right) variance.
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In Fig. 2, we show the exponential convergence of ME-gPC for different meshes. We can see that for greater
number of equidistant random elements, not only is the error smaller, but the rate of convergence is much

sharper. We show the algebraic convergence of ME-gPC in terms of element number N in Fig. 3. For this

problem, the algebraic index of convergence is 2(p + 1) for both mean and variance, which means

� � O(N�2(p+1)). We have obtained a large algebraic index of convergence, which implies that random ele-

ments can influence the accuracy dramatically. In Fig. 4, the error evolution of gPC and ME-gPC is shown

for two different levels of accuracy. Because the accuracy of exact solutions is set to be 10�10, there is some

oscillation at the beginning of the curves. It can be seen that when the error of gPC becomes big enough, h1
can trigger the decomposition of random space and the accuracy can then be improved significantly. In Fig.
5, we show how the number of random elements increases adaptively. Note here that the mesh can be non-

uniform, because we only decompose the random elements in which the criterion is satisfied.
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4.3. The Kraichnan–Orszag three-mode problem

It is well known that polynomial chaos fails in a short time for the so-called Kraichnan–Orszag three-

mode problem [13]. In this section we first explain why this happens and subsequently we apply ME-gPC to

effectively resolve this 40-year old open problem.

4.3.1. Why gPC fails

The Kraichnan–Orszag problem [13] is a nonlinear three-dimensional stochastic ODE system:
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dx1
dt

¼ x2x3;

dx2
dt

¼ x1x3;

dx3
dt

¼ �2x1x2;

ð40Þ
subject to stochastic initial conditions
x1ð0Þ ¼ x1ð0;xÞ; x2ð0Þ ¼ x2ð0;xÞ; x3ð0Þ ¼ x3ð0;xÞ. ð41Þ

We first check the deterministic solutions of Eq. (40). Given different initial conditions, deterministic solu-

tions can be basically separated into four different groups gi, i = 1,2,3,4, which are shown in Fig. 6. All

these four groups of solutions are periodic. If the initial conditions are located on the planes x1 = x2 and
x1 = �x2, the corresponding solutions would stay on these two planes forever due to two fixed points

ð0; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x21ð0Þ þ x23ð0Þ

p
Þ and ð0; 0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x21ð0Þ þ x23ð0Þ

p
Þ. By considering the properties of elliptic functions

[14], we can obtain the analytic solutions of each group. Here we only give the analytic form of group g1:
x1 ¼ P cn½qðt � t0Þ�; x2 ¼ Qdn½qðt � t0Þ�; x3 ¼ �R sn½qðt � t0Þ�; ð42Þ

where cn[Æ], sn[Æ] and dn[Æ] are Jacobi�s elliptic functions and P, Q, R, q and t0 are constants to be deter-

mined. We now substitute Eq. (42) into Eq. (40) to obtain
Pq ¼ QR; Qk2q ¼ PR; Rq ¼ 2PQ; ð43Þ

where k is the modulus of elliptic functions. Since we have three initial conditions
P cn½qðt � t0Þ� ¼ x1ð0;xÞ;
Qdn½qðt � t0Þ� ¼ x2ð0;xÞ;
� R sn½qðt � t0Þ� ¼ x3ð0;xÞ;

ð44Þ
we have six equations with six unknowns P, Q, R, k, q and t0. Thus, we have obtained the exact general

solution of the Kraichnan–Orszag problem.
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We now consider the following initial conditions:
Fig.
x1ð0Þ ¼ aþ 0.01n; x2ð0Þ ¼ 1.0; x3ð0Þ ¼ 1.0; ð45Þ

where n is a uniform random variable and a is a constant. By solving Eqs. (43) and (44), we can determine
the unknowns as
P 2 ¼ f 2ðnÞ þ 1

2
; Q2 ¼ 3

2
; R2 ¼ 2f 2ðnÞ þ 1;

p2 ¼ 3; k2 ¼ 2

3
f 2ðnÞ þ 1

3
; t0 ¼ �dn�1 1

Q

	 
�
p;

ð46Þ
where f(n) = a + 0.01n.
Next we examine the Fourier expansions of Jacobi�s functions:
sn½u� ¼ 2p
kK

q1=2 sin z
1� q

þ q3=2 sin 3z
1� q3

þ q5=2 sin 5z
1� q5

þ � � �
	 


;

cn½u� ¼ 2p
kK

q1=2 cos z
1þ q

þ q3=2 cos 3z
1þ q3

þ q5=2 cos 5z
1þ q5

þ � � �
	 


;

dn½u� ¼ p
2K

þ 2p
K

q cos 2z
1þ q2

þ q2 cos 4z
1þ q4

þ q3 cos 6z
1þ q6

þ � � �
	 


;

ð47Þ
where q = q(n), K = K(n) and z = z(n, t). First, we can see that the frequency depends on the random vari-

able n. It is well known that this will reduce the effectiveness of gPC as the initial phase difference will be

amplified very fast as time increases. In Fig. 7, we show how the period of x1 change as x1(0) ! 1. We can

see that the period of x1 will increase to infinity as x1(0) goes to 1. Note here that if x1(0) = 1, the initial

point (1,1,1) would be on the plane x1 = x2. Second, if q goes to 1, it is clear that we need more and more
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terms for the expansion of sn[u], which means that the order of polynomial chaos must increase correspond-

ingly to resolve the solution.

From Eqs. (45) and (46) we can see that if n is uniform in [�1,1], x1 is uniform in [a � 0.01,a + 0.01] and

the range (non-uniform) of k(n) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ða� 0.01Þ þ 1

3

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ðaþ 0.01Þ þ 1

3

qh i
. Let kr denote the upper bound of

k(n). It is clear that if a ! 0.99, kr ! 1. By the properties of elliptic functions, we know that q ! 1 when

k! 1. Thus, for the same degree of perturbation gPC should work less efficiently when a ! 0.99, because

k(n) will be closer to 1. Now, we investigate four simple cases: a = 0.94, 0.96, 0.98 and 0.99. For simplicity

we only show the results for x1, since the situation is similar for x2 and x3. In Fig. 8 we show how gPC fails

when a ! 0.99. It can be seen that in Fig. 8(a)–(d) the valid range of polynomial chaos with order p = 6

becomes shorter as a increases. If a is strictly less than 0.99 corresponding to q < 1, increasing the polyno-
mial order can efficiently improve the results of polynomial chaos. For the cases (a)–(c), the results of poly-

nomial chaos with order p = 20 agree very well with the results of Monte Carlo with 100,000 realizations.

However, if a = 0.99 is included, the periods of stochastic solutions will change from a finite value to infinity

and increasing the polynomial order hardly improves the results for this case. It is shown in (d) that the
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correct part of the variance given by polynomial chaos with order p = 30 is almost the same with that given

by polynomial chaos with order p = 6. Therefore, it is at the bifurcation point where gPC fails to converge.

In general, if the initial random data does not intersect with the planes x1 = x2 and x1 = �x2, we can

improve the results of polynomial chaos by increasing the polynomial order, otherwise, polynomial chaos

will diverge even after a short time of integration.

4.3.2. One-dimensional random input

Let us first study the random discontinuity of the Kraichnan–Orszag three-mode problem, which is

introduced by one-dimensional random input. For computational convenience and clarity in the presenta-

tion we first perform the following transformation:
y1
y2
y3

2
64

3
75 ¼

ffiffi
2

p

2

ffiffi
2

p

2
0

�
ffiffi
2

p

2

ffiffi
2

p

2
0

0 0 1

2
64

3
75

x1
x2
x3

2
64

3
75. ð48Þ
As a result, we will rotate the deterministic solutions by p/4 around to x3 axis in the phase space. Now the

new system is
dy1
dt

¼ y1y3;

dy2
dt

¼ �y2y3;

dy3
dt

¼ �y21 þ y22;

ð49Þ
subject to initial conditions
y1ð0Þ ¼ y1ð0;xÞ; y2ð0Þ ¼ y2ð0;xÞ; y3ð0Þ ¼ y3ð0;xÞ. ð50Þ

From now on, we will study this problem based on Eq. (49). Note that the discontinuity occurs at the planes

y1 = 0 and y2 = 0 after the transformation. Gaussian random variables are used as random inputs in [13].

Here, we use uniform random variables since the discontinuity can be introduced similarly. Thus, we study

the stochastic response subject to the following random input:
y1ð0;xÞ ¼ 1; y2ð0;xÞ ¼ 0.1nðxÞ; y3ð0;xÞ ¼ 0; ð51Þ

where n � U(�1,1). Since the random initial data y2(0;x) can cross the plane y2 = 0, we know from the

aftermentioned discussion that gPC will fail for this case.

In Fig. 9, we show the evolution of the variance of y1 within the time interval [0,30]. For compar-

ison we include the results given by gPC with polynomial order p = 30. It can be seen that comparing

to the results given by Monte Carlo with 1,000,000 realizations, gPC with polynomial order p = 30 be-
gins to lose accuracy at t � 8 and fails beyond this point while ME-gPC converges as h1 decreases. In

Table 1, we show the maximum normalized error of the variance of y1, y2 and y3 at t = 30 given by

ME-gPC and the corresponding number of random elements. It is seen that when the threshold param-

eter h1 decreases, the accuracy becomes better and we can obtain almost O(h1) error. As we mentioned

before, the reason that errors are usually bigger than h1 is due to the discontinuity which can reduce

the convergence of gPC. It can be seen that for the same polynomial order we need more random ele-

ments to get a better accuracy; on the other hand, for the same h1 increasing the polynomial order can

reduce the number of random elements.
In Fig. 10, we show four adaptive meshes. We can see that around the point n = 0 in random space of n,

where the discontinuity occurs, the random elements are smallest, which means that the discontinuity can



Table 1

Maximum normalized errors of the variance of y1, y2 and y3 at t = 30 with a = 1/2

h1 = 10�2 h1 = 10�3 h1 = 10�4 h1 = 10�5

N Error N Error N Error N Error

p = 3 46 3.10e � 2 106 2.32e � 3 280 1.37e � 4 820 2.87e � 5

p = 4 36 9.90e � 2 74 3.24e � 3 138 3.45e � 4 286 2.31e � 5

p = 5 28 7.24e � 2 44 4.10e � 3 78 2.90e � 4 130 4.35e � 6

The results given by ME-gPC with h1 = 10�7 and polynomial order p = 5 are used as exact solutions.
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be captured by small random elements. In Fig. 11, we show the errors of Monte Carlo and ME-gPC in

terms of computational cost. The error is the L1 error of the variance of y1 in the time interval [8,30], where

gPC fails. To implement gPC, we need to apply Galerkin projection onto the chaos basis, resulting in the

ensemble average ÆUiUjUkæ of three basis modes. Here, we count the operations of ÆUiUjUkæ for ME-gPC in

order to estimate its cost. For Monte Carlo, the number of realizations is employed in the cost evaluation.
Let n denote the number of operations. If the data in Fig. 11 are approximated by a first-order polynomial

in a least-squares sense, we can obtain accuracy proportional to n�0.49, n�2.25, n�2.99 and n�4.24, respectively,

for Monte Carlo and ME-gPC with polynomial order p = 3, p = 4 and p = 5, respectively. The decay rate

for Monte Carlo is about n�0.5 as expected. Comparing to Monte Carlo, the errors of ME-gPC show a

much greater decay rate in terms of the cost. We can see that the speed-up increases for higher accuracy,

which implies that ME-gPC is an efficient alternative to Monte Carlo for integration where high-order

accuracy is required. In Fig. 12, we show the error contribution of each random element. Here we compare

two criteria with a = 1/2 and a = 1/4. It is seen that the shape of error distribution is like an isosceles
triangle, i.e., a ‘‘Gibbs-like’’ behavior. On the apex of the triangle is the largest error contribution, where

discontinuity occurs. The error contribution decreases quickly away from the discontinuity, since

gkJ k � g1�a
k h1 and gk is much smaller on the smooth part. Because gPC loses accuracy as time increases,

the error contribution of each element will become larger with time and more random elements with relative

errors of O(1) would appear around the discontinuity point. For a smaller a, the error contribution near the

discontinuity decreases much faster.
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4.3.3. Two-dimensional random input

In this section we use ME-gPC to study the Kraichnan–Orszag problem with two-dimensional random

input
y1ð0;xÞ ¼ 1; y2ð0;xÞ ¼ 0.1n1ðxÞ; y3ð0;xÞ ¼ n2ðxÞ; ð52Þ

where n1 and n2 are uniform random variables in [�1,1].

In Fig. 13, we show the evolution of the variance of y1, y2 and y3 and an adaptive two-dimensional mesh.
For comparison we include the result given by gPC with polynomial order p = 10. It can be seen that gPC

with polynomial order p = 10 begins to diverge around t � 4 while ME-gPC with p = 5 Legendre-chaos

shows good convergence to the results given by Monte Carlo with 1,000,000 realizations. From the final

refined mesh, we can see that the results are more sensitive to n1, because n1 can cross the plane y2 = 0 where

the discontinuity occurs. Note here that the discontinuity domain is a line. In Fig. 14, we show the error of

Monte Carlo and ME-gPC in terms of computational cost. Here we regard the results given by ME-gPC

with h1 = 10�6 and p = 5 as exact solutions. From the empirical fit we obtain an accuracy proportional

to n�0.50, n�1.72 and n�2.56, respectively, for Monte Carlo and ME-gPC with p = 3 and p = 5. It is seen that



10
3

10
4

10
5

10
6

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

10
1

log(n)

E
rr

or

ME–gPC: p=3
ME–gPC: p=4
ME–gPC: p=5
Monte Carlo

Fig. 11. Error versus cost of Monte Carlo simulations and ME-gPC with different polynomial orders (based on the L1 error of the

variance of y1 in the time interval [8,30]). Here we only count the average number of operations in one time step.

X. Wan, G.E. Karniadakis / Journal of Computational Physics 209 (2005) 617–642 635
ME-gPC is much faster than Monte Carlo for higher accuracy. Comparing to the 1D case, however, the
decay rate of relative error becomes smaller because both the random dimension and the discontinuity

domain become larger.

4.3.4. Three-dimensional random input

In this section we use ME-gPC to study the Kraichnan–Orszag problem with three-dimensional random

input
y1ð0Þ ¼ n1ðxÞ; y2ð0Þ ¼ n2ðxÞ; y3ð0Þ ¼ n3ðxÞ; ð53Þ

where n1, n2 and n3 are uniform random variables in [�1,1].

In Fig. 15, we show the evolution of variance. Due to the symmetry of y1 and y2 in Eq. (49) and the

symmetry of y1(0) and y2(0) in the random inputs, the variances of y1 and y2 are the same. Here we only

show the results for y1 and y3. It can be seen that gPC diverges around t � 1 and fails subsequently while

ME-gPC shows good convergence as before. For this case, the random space [�1,1]3 of random inputs con-

tains both y1 = 0 and y2 = 0 where discontinuities occur. Comparing to the case with 2D random inputs, the

discontinuity domain is much larger. Thus, it is more difficult to resolve the 3D case. Based on the results
given by ME-gPC with polynomial order 3 and h1 = 10�5, the L1 errors of the variance of y1 in the time

interval [1.5,6] are 0.16% and 0.21%, respectively, for Monte Carlo with 1,000,000 realizations and ME-

gPC with polynomial order p = 3 and h1 = 10�3. Thus, these two errors are comparable. For this case,

the speed-up of ME-gPC is much lower compared to the 2D problem. From the previous results, we know

that this speed-up would increase for higher accuracy, but the increasing speed would be lower comparing

to the 1D and 2D cases. In Fig. 16, we show the evolution of the random elements generated. It can be seen

that to maintain the accuracy, the element number has to increase at a speed about 100 elements per time

unit.
In summary, ME-gPC shows good convergence when solving the Kraichnan–Orszag problem and it can

achieve a desired accuracy at a cost much lower than Monte Carlo. However, ME-gPC loses efficiency for

problems with strong discontinuity and high-dimensional random inputs, because the number of random

elements has to increase fast to maintain a desired accuracy.
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Fig. 12. Error contribution of each random element given by two criteria with different a. h1 = 10�4 and p = 5. (a) a = 1/2, t = 50;

(b) a = 1/2, t = 100; (c) a = 1/4, t = 50; (d) a = 1/4, t = 100.
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4.4. Stochastic advection–diffusion equation

In this section we consider the 2D stochastic advection–diffusion equation first studied in [15] using gPC
o/
ot

ðx; t;xÞ þ uðx;xÞ � r/ ¼ mr2/; ð54Þ
where u(x;x) = (y + a(x),�x � b(x)). For the initial condition
/ðx; 0;xÞ ¼ e�½ðx�x0Þ2þðy�y0Þ2�=2k2 ; ð55Þ

the corresponding exact solution can be found as
/eðx; t;xÞ ¼
k2

k2 þ 2mt
e�ðx̂2þŷ2Þ=2ðk2þ2mtÞ; ð56Þ
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Fig. 13. The Kraichnan–Orszag problem with 2D random inputs. a = 1/2, h1 = 0.1,0.01,0.001 and h2 = 0.1. (a) r2
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where k is a constant and
x̂ ¼ xþ bðxÞ � ðx0 þ bðxÞÞ cos t � ðy0 þ aðxÞÞ sin t;
ŷ ¼ y þ aðxÞ þ ðx0 þ bðxÞÞ sin t � ðy0 þ aðxÞÞ cos t.

�

Here we let a(x) = b(x) = 0.1n, where n � U(�1,1). In Fig. 17, we show the convergence of ME-gPC with

equidistant elements, p-type convergence on the left and h-type convergence on the right. We can see that

ME-gPC not only exhibits exponential converge but shows an increasing convergence rate as the number of

elements increases. For h-type convergence, we only show the results of up to four random elements, since

the error decreases quickly. It is seen that the index of algebraic convergence is related to the polynomial

order, where the decay rate corresponding to higher polynomial order is very large. More experiments are

required to estimate the exact convergence rate numerically.
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4.5. Approximation of a Beta-type random variable by Legendre-chaos

Finally, we demonstrate how to generalize ME-gPC to other random variables. We consider a Beta-type

random variable Y of distribution Beða; bÞ; where Beða; bÞ is the conventional definition of Beta distribu-

tion in the domain [0,1]
f ðyÞ ¼ 1

Bðaþ 1; bþ 1Þ y
að1� yÞb; a; b > �1; 0 6 y 6 1. ð57Þ
Here B(Æ, Æ) denotes the Beta function. Let a = 1 and b = 0, then the PDF of Y is
f ðyÞ ¼ 2y. ð58Þ
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Since the uniform random variable used in Legendre-chaos is defined in the domain [�1,1], we introduce a
new random variable X defined in [�1,1] with the transformation Y ¼ 1

2
X þ 1

2
. Thus, the PDF of X is
f ðxÞ ¼ 1þ x
2

. ð59Þ
Let us assume that the random space [�1,1] of X is separated into N equal elements [a,b]. In each element

we define a new random variable Xi, i = 1,2, . . . ,N with a corresponding PDF
fiðxiÞ ¼
1R

½a;b� f ðtÞdt
1þ xi
2

¼ 1þ xi
ð1þ a=2þ b=2Þðb� aÞ . ð60Þ
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Subsequently, we use a uniform random variable s to express Xi. A transformation of variables in proba-

bility space shows that
1

2
ds ¼ fiðxiÞdxi ¼ dF ðxiÞ; ð61Þ
where F is the distribution function of Xi. Thus, we can obtain
1þ s
2

¼ F ðxiÞ. ð62Þ
After inverting the above equation, we obtain
xi ¼ F �1 1þ s
2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a=2þ b=2Þðb� aÞð1þ sÞ þ ð1þ aÞ2

q
� 1. ð63Þ
Then Xi can be expressed by Legendre-chaos as
X i ¼
Xp
j¼0

xi;jUjðsÞ ð64Þ
with
xi;j ¼
1

hU2
j i

Z
½�1;1�

F �1 1þ s
2

� �
UjðsÞ

1

2
ds. ð65Þ
Now each Xi has been approximated by a uniform random variable s; thus, we can implement ME-gPC in

each element when solving a stochastic differential equation with random inputs related to X. Here, we only

check the accuracy of l2ðX Þ ¼ E½X 2�. We compute l2(X) using Eq. (36). In Fig. 18, we show the error of

l2(X) in terms of the element number N. It is seen that an algebraic convergence with index �4 is obtained,

which means that the error is proportional to N�4. This specific value is dictated by the accuracy of the
mapping that we performed and can be improved if higher accuracy is desired. Therefore, the decomposi-

tion of random space can also be used to approximate a general random variable in order to improve
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accuracy. Furthermore, we can use a low-order Legendre-chaos when implementing ME-gPC in each ran-

dom element.
5. Summary

We have extended the gPC framework, first presented in [4,5], to a multi-element formulation (ME-

gPC). The new approach can maintain a desired accuracy by adaptively decomposing the random space

of random inputs when a simple criterion is satisfied. Correspondingly, the efficiency and especially the

effectiveness of gPC is significantly improved.

To investigate the performance of ME-gPC we present several examples including stochastic algebraic,

ordinary and partial differential equations. In particular, we address errors in long-time integration and in

discontinuities in random space. An example with one-dimensional ODE shows that ME-gPC can achieve
h-p type of convergence. The error of long-term integration is efficiently controlled by the criterion we

developed for the adaptive decomposition of random space. Subsequently, we explain why gPC fails for

the classical Kraichnan–Orszag three-mode problem, and study it with ME-gPC for different random in-

puts. The results indicate that ME-gPC can capture accurately the discontinuity by the decomposition of

random space. In particular, the adaptive criterion can be used to select the most sensitive random dimen-

sion, and thus make the decomposition of random space more efficient. A two-dimensional advection–

diffusion equation is also simulated by ME-gPC. The results suggest that ME-gPC could also improve

the efficiency of gPC for stochastic PDEs. More results for stochastic problems of incompressible flow using
the ME-gPC method presented here are included in [12]. Finally, we approximate a random variable of

Beta distribution by Legendre-chaos, thus demonstrating how to deal with general non-uniform random

inputs.

ME-gPC is efficient for stochastic systems, which contain no or small subdomains of discontinuities,

such as the 1D ODE model and the Kraichnan–Orszag problem with 1D or 2D random inputs. However,

its efficiency is reduced significantly by the rapidly increasing number of random elements for problems

with high-dimensional random inputs and large discontinuities, as in the Kraichnan–Orszag problem with

3D random inputs. Such problems require new approaches in constructing appropriate low-dimensional
approximations, as in the work of [16,17].
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