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MULTI-ELEMENT GENERALIZED POLYNOMIAL CHAOS FOR
ARBITRARY PROBABILITY MEASURES∗

XIAOLIANG WAN† AND GEORGE EM KARNIADAKIS†

Abstract. We develop a multi-element generalized polynomial chaos (ME-gPC) method for
arbitrary probability measures and apply it to solve ordinary and partial differential equations with
stochastic inputs. Given a stochastic input with an arbitrary probability measure, its random space is
decomposed into smaller elements. Subsequently, in each element a new random variable with respect
to a conditional probability density function (PDF) is defined, and a set of orthogonal polynomials
in terms of this random variable is constructed numerically. Then, the generalized polynomial chaos
(gPC) method is implemented element-by-element. Numerical experiments show that the cost for
the construction of orthogonal polynomials is negligible compared to the total time cost. Efficiency
and convergence of ME-gPC are studied numerically by considering some commonly used random
variables. ME-gPC provides an efficient and flexible approach to solving differential equations with
random inputs, especially for problems related to long-term integration, large perturbation, and
stochastic discontinuities.
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1. Introduction. Polynomial chaos (PC) has been used extensively recently to
model uncertainty in physical applications. It originated from homogenous chaos first
defined by Wiener as the span of Hermite polynomial functionals of a Gaussian pro-
cess [31]. Other names, such as Wiener-chaos and Hermite-chaos, are also used in
literature. Ghanem and Spanos first combined Hermite-chaos with a finite element
method to model uncertainty in solid mechanics [14, 12, 13]. A more general exten-
sion, termed generalized polynomial chaos (gPC), was proposed in [32] by Xiu and
Karniadakis based on the correspondence between the probability density functions
(PDFs) of certain random variables and the weight functions of orthogonal polyno-
mials of the Askey scheme. The family of gPC includes Hermite-chaos as a subset
and supplies optimal bases for stochastic processes represented by random variables
of commonly used distributions, such as uniform distribution and Beta distribution.
In [18, 19], PC was combined with wavelets to deal with discontinuities for uniform
random inputs for which standard PC or gPC fails to converge.

To solve differential equations with stochastic inputs following the procedure es-
tablished by Ghanem and Spanos, the random solution is expanded spectrally by
PC, and a Galerkin projection scheme is subsequently used to transform the origi-
nal stochastic problem into a deterministic one with a larger dimensional parameter
[14, 32, 7, 21, 20]. On the other hand, Deb, Babus̆ka, and Oden have proposed
employing finite elements in the random space to approximate the stochastic depen-
dence of the solution [4]; this approach also reduces a stochastic differential equation
to a high-dimensional deterministic one. This method was later studied theoretically
within the framework of a deterministic finite element method in [1]. Since a finite
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element method is generally used to solve the obtained deterministic PDE system, the
above methods are called stochastic Galerkin finite element methods in [1], while the
scheme in [14, 32] is classified as the p× h version and the scheme in [4] as the k × h
version, where p denotes the polynomial order of PC, k the element size in the random
space, and h the element size in the physical space. Both schemes use finite elements
in the physical space. The p × h version relies on the spectral representation in the
entire random space by PC, while the k × h version is based on the discretization
of the random space using the same basis as the deterministic finite element method
to approximate the random field locally. For simplicity, here we refer to the scheme
in [14, 32] as a PC method of p-version and the scheme in [4] as a k-version. Both
the concepts and the terminology introduced here share similarities with those of the
spectral/hp element method for deterministic problems [17, 25].

In this work, we present a multi-element generalized polynomial chaos (ME-gPC)
method, which can deal with stochastic processes represented by random variables of
arbitrary distributions and achieve kp-convergence in the random space. In the ME-
gPC method, we discretize the random space and use a spectral expansion locally
to represent the desired random field. However, the PC basis is, in general, not
orthogonal in a random element since the PDF is also discretized simultaneously. The
only exception is the uniform distribution which has been considered so far in previous
works [14, 4, 32, 28]. To overcome this difficulty, we reconstruct the orthogonal
basis numerically in each random element. From the practical standpoint, it is more
effective to employ a relatively low polynomial order (p = 5 to p = 8) for the ME-gPC
method. Thus, we can do this reconstruction on-the-fly with high accuracy for most
continuous or discrete arbitrary probability measures.

In certain nonlinear stochastic differential equations, random inputs can give rise
to singularities as discussed in [18, 19] or the Kraichnan–Orszag problem [24], where
the gPC method may converge very slowly or even fail to converge. By noting that
singularities usually occur at a lower-dimensional manifold in the random space for
such problems, we aim to “capture” the singular region by random elements related
to a very small probability measure, and implement the gPC method in the regular
region. Hence, the error in the singular region will be dominated by the size (k-
convergence) of the random elements, while the error in the regular region decreases
fast (p-convergence)—possibly exponentially fast. To reduce the total computational
cost, we also present a criterion to implement the decomposition of random space
adaptively.

2. Multi-element generalized polynomial chaos (ME-gPC) method.

2.1. Overview. The original PC was first proposed by Wiener [31]. It employs
the Hermite polynomials in terms of Gaussian random variables as the trial basis
to expand stochastic processes in the random space. According to the theorem by
Cameron and Martin [3] such expansion converges for any second-order processes
in the L2 sense. gPC was proposed in [33] and employs more types of orthogonal
polynomials from the Askey family. It is a generalization of the original Wiener’s
Hermite-chaos and can deal with non-Gaussian random inputs more efficiently.

Let (Ω,F , P ) be a probability space, where Ω is the sample space, F is the σ-
algebra of subsets of Ω, and P is a probability measure. Let

ξ = (ξ1, . . . , ξd) : (Ω,F) → (Rd,Bd)(2.1)

be an R
d-valued continuous random variable, where d ∈ N and Bd is the σ-algebra of

Borel subsets of R
d. A general second-order random process R(ω) ∈ L2(Ω,F , P ) can
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be expressed by gPC as

R(ω) =

∞∑
i=0

âiΦi(ξ(ω)),(2.2)

where ω is the random event and Φi(ξ(ω)) denotes the gPC basis of degree p in terms
of the random variable ξ. The family {Φi} is an orthogonal basis in L2(Ω,F , P ) with
orthogonality relation

E[ΦiΦj ] = E[Φ2
i ]δij ,(2.3)

where δij is the Kronecker delta and E denotes the expectation with respect to the
probability measure dP (ω) = f(ξ(ω))dω. The index in (2.2) and d ∈ N are, in general,
infinite. In practice, both limits will be truncated at a certain level. For example,
the dimension d of the stochastic input is usually determined by the Karhunen–Loeve
(K-L) expansion based on the decay rate of eigenvalues [14].

For a certain random variable ξ, the orthogonal gPC basis {Φi} can be chosen
in such a way that its weight function has the same form as the PDF f(ξ) of ξ. The
corresponding types of classical orthogonal polynomials {Φi} and their associated
random variable ξ can be found in [32]. In this paper we generalize the idea of gPC
and construct numerically the orthogonal polynomials with respect to an arbitrary
probability measure.

2.2. ME-gPC formulation. We next present the scheme of an adaptive ME-
gPC method, which consists of the decomposition of random space, the construction
of orthogonal polynomials, and an adaptive procedure.

2.2.1. Decomposition of random space. We assume that ξ is a random vari-
able defined on B = ×d

i=1[ai, bi], where ai and bi are finite or infinite in R and the
components of ξ are independent identically-distributed (i.i.d.) random variables. We
define a decomposition D of B as

D =

⎧⎨
⎩

Bk = [ak,1, bk,1) × [ak,2, bk,2) × · · · × [ak,d, bk,d],

B =
⋃N

k=1 Bk,
Bk1

⋂
Bk2 = ∅ if k1 �= k2,

(2.4)

where k, k1, k2 = 1, 2, . . . , N . Based on the decomposition D, we define the following
indicator random variables:

IBk
=

{
1 if ξ ∈ Bk,
0 otherwise.

k = 1, 2, . . . , N.(2.5)

Thus, Ω = ∪N
k=1I

−1
Bk

(1) is a decomposition of the sample space Ω, where

I−1
Bi

(1) ∩ I−1
Bj

(1) = ∅ for i �= j.(2.6)

Given any point q = (q1, q2, . . . , qd), we use ξ ≤ q to denote ξi ≤ qi for i = 1, 2, . . . , d.
According to the law of total probability, we can obtain

Pr(ξ ≤ q) =
N∑

k=1

Pr(ξ ≤ q|IBk
= 1) Pr(IBk

= 1).(2.7)
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Using Bayes’s rule, (2.7) implies that we can define a new random variable ξk :
I−1
Bk

(1) 	→ Bk on the probability space (I−1
Bk

(1),F ∩ I−1
Bk

(1), P (·|IBk
= 1)) subject to a

conditional PDF

f̂k(ξk|IBk
= 1) =

f(ξk)

Pr(IBk
= 1)

(2.8)

in each random element Bk, where Pr(IBk
= 1) > 0.

Let u(x, t; ξ) ∈ L2(Ω,F , P ) denote a second-order space-time related random
field. For simplicity, we may drop x and t.

Proposition 2.1. Let PMu(ξ) denote the Galerkin projection of u(ξ) onto the
polynomial chaos basis {Φi(ξ)} up to polynomial order M , i = 1, 2, . . . ,M . If PMu(ξ)
converges to u(ξ) in the L2 sense with respect to the PDF f(ξ), then PMu(ξk) con-

verges to u(ξk) in the L2 sense with respect to the conditional PDF f̂k(ξk|IBk
= 1),

k = 1, 2, . . . , N .

Proof. According to the assumption, we know that

E[(u(ξ) − PMu(ξ))2] =

∫
B

(u(ξ) − PMu(ξ))2f(ξ)dξ → 0 as M → ∞.

By noting

E[(u(ξ) − PMu(ξ))2] =

N∑
k=1

Pr(IBk
= 1)

∫
Bk

(u(ξk) − PMu(ξk))
2f̂k(ξk|IBk

= 1)dξk,

(2.9)

we obtain ∫
Bk

(u(ξk) − PMu(ξk))
2f̂k(ξk|IBk

= 1)dξk → 0 as M → ∞,

since both Pr(IBk
= 1) and the integrand on the right-hand side of (2.9) are positive

for k = 1, 2, . . . , N .

To this end, we know that there exists a local polynomial approximation for
each random element Bk, which converges in the L2 sense with respect to the local
conditional PDF. For the orthogonal basis {Φi(ξ)} on the entire random space, u(ξ)−
PMu(ξ) is orthogonal to the space V (M, ξ) := span{Φi(ξ) : i ≤ M}. We note here
that although PMu(ξk) converges to u(ξk) in the L2 sense within random element
Bk, u(ξk) − PMu(ξk) is not orthogonal to the space V (M, ξk) with respect to the

conditional PDF f̂k(·|IBk
= 1), since the orthogonality E[ΦiΦj ] = δij is, in general,

valid only on the entire random space of ξ with respect to the PDF f(ξ). Due to
the efficiency of orthogonal polynomials in representing stochastic processes, we will
reconstruct the local polynomial chaos modes numerically to make them mutually
orthogonal with respect to the local conditional PDF f̂(ξk|IBk

= 1). According to
[26, theorem 2.1.1], such an orthogonal polynomial system {Φk,i(ξk)} always exists.
Since in each random element we perform a spectral expansion as in gPC, we call this
method “multi-element generalized polynomial chaos” (ME-gPC).

To approximate a random field u(ξ) using ME-gPC, we expand the random field
spectrally in each element Bk, then reconstruct the entire random field by the following
proposition.
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Proposition 2.2. Let ûk(ξk) be the local polynomial chaos expansion in element
Bk. The approximation on the entire random field can be defined as

ur(ξ) =

N∑
k=1

ûk(ξ)IBk
=

N∑
k=1

M∑
j=0

ûk,jΦk,j(ξ)IBk
,(2.10)

which converges to u(ξ) in the L2 sense; in other words,∫
B

(ur(ξ) − u(ξ))2f(ξ)dξ → 0 as M → ∞.(2.11)

Proof. It is easy to see that∫
B

(ur(ξ) − u(ξ))2f(ξ)dξ

=

N∑
k=1

Pr(IBk
= 1)

∫
Bk

(ur(ξk) − u(ξk))
2f̂k(ξk|IBk

= 1)dξk.

Since ur(ξk) = ûk(ξk) and the spectral expansion ûk(ξk) converges locally in the L2

sense with respect to f̂(ξk|IBk
= 1), it is clear that the right-hand side of the above

equation goes to zero as M → ∞. The conclusion follows immediately.
By Bayes’s rule and the law of total probability, any statistics can be obtained as

∫
B

g (u(ξ)) f(ξ)dξ ≈
N∑

k=1

Pr(IBk
= 1)

∫
Bk

g (ûk(ξk)) f̂k(ξk|IBk
= 1)dξk,(2.12)

where g(·) ∈ L1(Ω,F , P ) is a functional of random field u(ξ).
In the appendix, we demonstrate for the interested reader some details on how to

solve PDEs with stochastic coefficients using ME-gPC.

2.2.2. Construction of orthogonal polynomials. We next discuss the nu-
merical construction of orthogonal polynomials with respect to a conditional PDF
f̂k(·|IBk

= 1). For simplicity, here we discuss only the construction of one-dimensional
orthogonal polynomials, since the high-dimensional basis can be obtained using tensor
products of one-dimensional basis.

It is a distinctive feature of orthogonal polynomials, compared to other orthogonal
systems, that they satisfy a three-term recurrence relation,

πi+1(τ) = (τ − αi)πi(τ) − βiπi−1(τ), i = 0, 1, . . . ,

π0(τ) = 1, π−1(τ) = 0,(2.13)

where {πi(τ)} is a set of (monic) orthogonal polynomials,

πi(τ) = τ i + lower-degree terms, i = 0, 1, . . . ,(2.14)

and the coefficients αi and βi are uniquely determined by a positive measure, which
corresponds to a probability measure in the construction we propose herein.

For a continuous measure m(τ) there are two classical methods to compute the
recurrence coefficients αi and βi: the Stieltjes procedure and the modified Chebyshev
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algorithm [8]. The Stieltjes procedure uses the fact that the coefficients αi and βi can
be expressed by the following simple formulas:

αi =
(τπi, πi)

(πi, πi)
, i = 0, 1, 2, . . .(2.15)

and

β0 = (π0, π0), βi =
(πi, πi)

(πi−1, πi−1)
, i = 1, 2, . . . ,(2.16)

where (·, ·) denotes the inner product in terms of the measure m(τ). The above
two formulas together with the recurrence relation (2.13) can be used to calculate
recursively as many coefficients αi and βi as desired.

The modified Chebyshev algorithm is a generalization of the Chebyshev algorithm
[8]. The Chebyshev algorithm relies on the fact that the first n pairs of recurrence
coefficients αi and βi, i = 0, 1, . . . , n− 1, can be uniquely determined by the first 2n
moments μi:

μi =

∫
B

τ idm(τ), i = 0, 1, . . . , 2n− 1.(2.17)

Analytical formulas are known which express αi and βi in terms of Hankel determi-
nants in these moments. However, this algorithm is not reliable for a big n due to
the increasing sensitivity of these formulas to small errors. The modified Chebyshev
algorithm replaces the power τ i with a properly chosen polynomial hi(τ) of degree i:

νi =

∫
B

hi(τ)dm(τ), i = 0, 1, . . . , 2n− 1.(2.18)

Generally, we can assume that hi(τ) are monic orthogonal polynomials satisfying a
three-term relation

hi+1(τ) = (τ − α̂i)hi(τ) − β̂ihi−1(τ), i = 0, 1, . . . ,

h0(τ) = 1, h−1(τ) = 0.(2.19)

Using the 2n modified moments in (2.18) and the 2n − 1 pairs of recurrence coeffi-

cients α̂i and β̂i, i = 0, 1, . . . , 2n− 2, in (2.19), the first n desired pairs of recurrence
coefficients αi and βi, i = 0, 1, . . . , n− 1, can be generated [8].

For a discrete measure

dmM (τ) =

M∑
i=1

wiδ(τ − τi)dτ, i = 0, 1, . . . ,M(2.20)

with δ being the Dirac delta function, we have another choice: the Lanczos algorithm
[2, 8]. Given (2.20), there exists an orthogonal matrix Q(M+1)×(M+1) with the first
column being [1, 0, . . . , 0]T ∈ R

(M+1)×1 such that

QTAMQ = JM ,(2.21)

where

AM =

⎡
⎢⎢⎢⎢⎢⎣

1
√
w1

√
w2 · · · √

wM√
w1 τ1 0 · · · 0√
w2 0 τ2 · · · 0
...

...
...

...
...√

wM 0 0 · · · τM

⎤
⎥⎥⎥⎥⎥⎦ ,(2.22)
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and JM is the Jacobian matrix

JM =

⎡
⎢⎢⎢⎢⎢⎣

1
√
β0 0 · · · 0√

β0 α0

√
β1 · · · 0

0
√
β1 α1 · · · 0

...
...

...
...

...
0 0 0 · · · αM−1

⎤
⎥⎥⎥⎥⎥⎦ .(2.23)

The above algorithms were presented in [8], and a Fortran package based on these
algorithms was proposed in [9]. To implement the Stieltjes procedure and the modified
Chebyshev algorithm we need to evaluate the inner product with high precision. In
practice, we usually employ a Gauss-type quadrature rule. Such a quadrature rule
can be regarded as a discrete measure that yields the corresponding discrete versions
of these two methods [8]. The stability of the Stieltjes procedure is not completely
clear. One interesting aspect about this procedure is that it is reliable in many cases
where a discretization for the inner product of a continuous measure is employed,
while it breaks down in some cases where the measure itself is discrete. In [6], the
Stieltjes procedure for discrete measures is discussed and improved. The stability of
the modified Chebyshev algorithm is determined by the condition of the map from
the 2n modified moments to the n pairs of recurrence coefficients. Such a condition
was studied in [8, 5]. The Lanczos algorithm has good stability properties but it may
be considerably slower than the Stieltjes procedure. In this work, we use the Stieltjes
procedure and the Lanczos algorithm.

It can be seen that the basic operation in the above procedures is the inner
product with respect to a given measure m(τ). Since an explicit formula is generally
unavailable, we discretize the inner product using an appropriate quadrature rule.
We know that an n-point Gauss-type quadrature rule can reach the highest algebraic
accuracy of order 2n − 1. However, such quadrature points and the corresponding
weights are not in general explicitly known. In this work, we use the interpolatory
quadrature rule [23] relative to the Legendre weight function on [−1, 1]. An n-point
interpolatory quadrature rule has an algebraic precision n − 1. Compared to the
Gauss–Legendre quadrature rule, the advantage of the interpolatory quadrature rule is
that the nodes and weights are explicitly known; thus the expensive Newton–Raphson
iterations are avoided.

Using the Stieltjes procedure or the Lanczos algorithm, the recurrence coefficients
αi and βi are computed iteratively using the following stopping criterion [8]:

|βs
i − βs−1

i | ≤ εβs
i , i = 0, 1, . . . , n− 1,(2.24)

where s is the iteration step and ε is the relative error.
If a measure m(τ) is given and orthogonal polynomials up to pth order are needed,

we first compute the recurrence coefficients αi and βi, i = 0, 1, . . . , p − 1. Once the
recurrence coefficients are obtained, the orthogonal polynomials are uniquely deter-
mined. From the recurrence coefficients, the Gauss-type quadrature points and the
corresponding integration weights can be efficiently derived [9].

It is well known that the gPC method usually relies on a three-dimensional table
E[πlπmπn] for the Galerkin projection [14]. Here we use the notation E[·] freely to
denote the ensemble average with respect to a given measure m(τ) since m(τ) can
be regarded as a probability measure in this work. If the recurrence coefficients are
obtained—in other words, the orthogonal polynomials are uniquely determined—we
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can use any numerical integration formula to calculate the table E[πlπmπn]. Here we
consider the quadrature rule. We know that for the measure m(τ) there exists, for
each M ∈ N, a quadrature rule

∫
B

f(τ)dσ(τ) =

M∑
i=1

wif(τi) + RM (f),(2.25)

where RM (f) = 0 if f is a polynomial of degree ≤ 2M−c. The value of c is determined
by the type of quadrature used, which can be either classical Gauss (c = 1), Gauss–
Radau (c = 2), or Gauss–Lobatto (c = 3). If we do not consider the numerical
accuracy of the recurrence coefficients, we need

M =

⌈
3p + c

2

⌉
(2.26)

quadrature points to get the three-term integration E[πlπmπn] with zero error, where
∗� denotes the smallest integer no less than ∗. Thus, we need to compute all the
recurrence coefficients αi and βi with i ≤ M − 1 although we employ polynomials
only up to order p.

2.2.3. An adaptive procedure. Adaptivity is necessary for many cases, such
as problems related to long-term integration or discontinuity. In this work we present a
heuristic adaptivity criterion based on the relative local errors similar to the adaptivity
criteria employed in the spectral element method for deterministic problems [22, 15].

We assume that the gPC expansion of a random field in element k is

ûk(ξk) =

Np∑
j=0

ûk,jΦk,j(ξk),(2.27)

where p is the highest order of PC and Np denotes the total number of basis modes
given by

Np =
(p + d)!

p!d!
− 1,(2.28)

where d is the dimension of ξk. From the orthogonality of gPC we can easily obtain
the local variance given by PC with order p:

σ2
k,p =

Np∑
j=1

û2
k,jE[Φ2

k,j ].(2.29)

The approximate global mean ū and variance σ̄2 can be expressed as

ū =

N∑
k=1

ûk,0 Pr(IBk
= 1), σ̄2 =

N∑
k=1

[
σ2
k,p + (ûk,0 − ū)

2
]
Pr(IBk

= 1).(2.30)

Compared to the error of variance, the error of mean is usually much smaller in the
gPC method. Thus, we can express the exact global variance as

σ2 ≈ σ̄2 +

N∑
k=1

γk Pr(IBk
= 1),(2.31)
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where γk denotes the error of local variance. We define the decay rate of relative error
of PC in each element as follows:

ηk =

∑Np

i=Np−1+1 û
2
k,iE[Φ2

k,i]

σ2
k,p

.(2.32)

Based on ηk and the scaled parameter Pr(IBk
= 1), we implement k-type refinement, in

other words, decompose the current random element into smaller ones, if the criterion

ηγk Pr(IBk
= 1) ≥ θ1, 0 < γ < 1,(2.33)

is satisfied, where γ and θ1 are prescribed constants. A discussion about γ and θ1 can
be found in [28] for random inputs with uniform distributions.

The error of the variance should decrease exponentially (for continuous random
inputs) given sufficient smoothness of the solutions; furthermore, the error of ûk,0 is
usually much smaller than the error of local variance. Thus, we can use ηk as an
indicator of the true error for any orthogonal chaos basis, and the criterion (2.33)
is a general one. For high-dimensional random inputs, we can choose the most sen-
sitive random dimensions for refinement. We define the sensitivity for each random
dimension as

ri =
(ûi,p)

2
E[Φ2

i,p]∑Np

j=Np−1+1 û
2
jE[Φ2

j ]
, i = 1, 2, . . . , d,(2.34)

where we drop the subscript k for clarity and the subscript ∗i,p denotes the one-
dimensional mode of ξi with polynomial order p. Let us consider a d-dimensional
mode φ(j1,j2,...,jd)(ξ) = φj1(ξ1)φj2(ξ2) · · ·φjd(ξd) with

∑d
n=1 jn ≤ p, which is a tensor

product of one-dimensional modes φjn(ξn), n = 1, 2, . . . , d. The subscript ∗i,p means
that φi,p(ξ) = φp(ξi), i = 1, 2, . . . , d. All random dimensions which satisfy

ri ≥ θ2 · max
j=1,...,d

rj , 0 < θ2 < 1, i = 1, 2, . . . , d(2.35)

will be split into two equal random elements in the next time step while all other
random dimensions will remain unchanged. Hence, we can reduce the total element
number while gaining efficiency.

2.2.4. Implementation. Next we discuss issues related to the numerical im-
plementation. Based on the decomposition of random space, it is straightforward to
reconstruct orthogonal polynomials with respect to the conditional PDFs of the local
random variables ξk. However, such a procedure is not robust in practice because
(πi, πi) may decay fast and cause a potential problem of overflow or underflow in the
computer.

Proposition 2.3. For any orthogonal polynomials defined on [a, b], where a and
b are positive, we have

(πi+1, πi+1) ≤ (b− a)2(πi, πi).(2.36)

Proof. From (2.15), we can obtain that a ≤ αi ≤ b. Using (2.13) and the Cauchy–
Schwarz inequality, we know that

(πi+1, πi+1) = ((τ − αi)πi, πi+1) ≤ ((τ − αi)πi, (τ − αi)πi)
1/2(πi+1, πi+1)

1/2,(2.37)
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which yields that

(πi+1, πi+1) ≤ ((τ − αi)πi, (τ − αi)πi).(2.38)

The proof concludes by noting that a ≤ αi ≤ b.
Thus, if the element is small, the L2 norm of πi will lead to underflow quickly.

In practice, we rescale the random elements with finite boundaries by the following
linear transformation:

ξk,i =
bk,i − ak,i

2
Yk,i +

bk,i + ak,i
2

,(2.39)

where we map the random variable ξk defined in element k to a random variable Y k

defined in [−1, 1]d. The PDF of Y k can be obtained as

f̄(yk) = det

∣∣∣∣ ∂ξk

∂yk

∣∣∣∣ f̂(ξk(yk)) =
f(ξk(yk))

Pr(IBk
= 1)

d∏
i=1

bk,i − ak,i
2

.(2.40)

Compared to ξk, Y k are much more tractable for the numerical construction of or-
thogonal polynomials as demonstrated in section 3.1.1. After such a transformation is
employed, we can apply the ME-gPC scheme with respect to the new random variable
Y k instead of the random variable ξk. Note that such a mapping is usually unneces-
sary for random elements with at least one infinite boundary because these elements
can be related to a small probability Pr(IBk

= 1).
We now summarize the overall ME-gPC algorithm.
Algorithm 2.1 (ME-gPC).

–Step 1: build a stochastic ODE system by gPC
–Step 2: perform the decomposition of random space adaptively
– time step i: from 1 to M
– loop all the random elements
– if ηγk Pr(IBk

= 1) ≥ θ1 in element k, then
– if rn ≥ θ2 · maxj=1,...,d rj, then
– split random dimension ξn into two equal ones ξn,1 and ξn,2
– map ξn,1 and ξn,2 to Yn,1 and Yn,2 defined on [−1, 1]
– construct one-dimensional orthogonal polynomials for Yn,1 and Yn,2

– end if
– construct d-dimensional orthogonal polynomials using tensor products
– map information to children elements
– end if
– update the information by the gPC method
– end element loop
– end time step
–Step 3: postprocessing stage

Remark 2.1 (C0 continuity in random space). In the ME-gPC scheme, we deal
with the stochastic problem locally without considering the interface between two
random elements; in other words, we split the original problem into N independent
ones. The reason is that all the statistics are in Lq sense, which means that the
statistics are determined by up to qth moments of the desired random field. Thus,
the continuity

uB1(ξ) = uB2(ξ), ξ ∈ B̄1 ∩ B̄2,(2.41)
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where B̄1 and B̄2 indicate the closure of two adjacent random elements, respectively,
is not required since the measure of the interface is zero.

Remark 2.2 (construction cost of πi). In practice, the K-L decomposition related
to a random variable ξ is often used to reduce the dimensionality of colored noise.
Since all the components of ξ are assumed to have identical distributions, we can
maintain a table for one-dimensional orthogonal polynomials which have already been
constructed. When the decomposition of random space is activated, we first look up
the table to check if the edges of new random elements are in the table or not and
construct orthogonal polynomials only for the missing edges. This way, the time
cost for construction of orthogonal polynomials is almost independent of the random
dimension.

Remark 2.3 (complexity of ME-gPC). In Algorithm 2.1, we decompose a stochas-
tic problem into N independent ones, since C0 continuity is unnecessary in random
space. Thus, if polynomials of the same order are used in both gPC and ME-gPC,
the cost of ME-gPC will increase linearly by a factor N compared to the cost of gPC,
since the cost of numerical orthogonal polynomials is negligible as demonstrated in
section 3.1.4.

3. Numerical results.

3.1. Construction of orthogonal polynomials. We first discuss the construc-
tion of orthogonal polynomials for random variables with some commonly used dis-
tributions. Due to the nice properties of uniform distribution, the orthogonality of
Legendre-chaos can be naturally inherited in the decomposition of random space,
which means that the polynomial construction is unnecessary for the uniform distri-
bution. Here we focus on the Beta and Gaussian distributions, for which we need the
on-the-fly polynomial construction.

3.1.1. Problem of overflow and underflow. We consider a random variable
defined in [−1, 1] with the following Beta distribution:

f(x) =
(1 − x)α(1 + x)β

2α+β+1B(α + 1, β + 1)
, −1 ≤ x ≤ 1.(3.1)

In a random element [0, 0.001], we define a random variable X with a conditional
PDF

f̂(x) =
f(x)∫ 0.001

0
f(x)dx

,(3.2)

and map X to another random variable Y defined in [−1, 1] with a PDF

f̄(y) =
0.0005f(x(y))∫ 0.001

0
f(x)dx

,(3.3)

where

x(y) = 0.0005y + 0.0005.(3.4)

Here we let α = 1 and β = 4. In Figure 3.1, we show the orthogonal polynomials for
random variable X from first order up to fourth order. We can see that the maximum
values of these polynomials decrease very quickly approaching the machine accuracy.
In Figure 3.2, the corresponding orthogonal polynomials for random variable Y are
shown. It can be seen that their shapes are the same as those of the orthogonal
polynomials for X but are well scaled.
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Fig. 3.1. Orthogonal polynomials for random variable X, π1 to π4.
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3.1.2. Orthogonal polynomials for Beta distribution. From the ME-gPC
scheme, we know that the orthogonal basis in each random element depends on a
particular part of the PDF of the random inputs. We now demonstrate such a depen-
dence using a Beta-type random variable X with α = 1 and β = 4. For simplicity, we
consider only two random elements: [−1, 0] and [0, 1]. We define a random variable
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Right: orthogonal polynomials for Yl.
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Right: orthogonal polynomials for Yr.

Xl in [−1, 0] with a conditional PDF

fl(xl) =
f(xl)∫ 0

−1
f(x)dx

(3.5)

and another random variable Xr in [0, 1] with a conditional PDF

fr(xr) =
f(xr)∫ 1

0
f(x)dx

,(3.6)

where f(x) is the PDF of X. Due to the potential problem of overflow (underflow),
we will not construct the orthogonal basis according to the above two conditional
PDFs, but first map Xl and Xr to Yl and Yr, respectively, using the transformation

Xl =
1

2
Yl −

1

2
, Yr =

1

2
Yr +

1

2
,(3.7)

and then construct orthogonal polynomials in terms of Yl and Yr. In Figures 3.3 and
3.4, we show the PDFs of Yl and Yr on the left and the corresponding orthogonal
polynomials on the right. It is clear that these two sets of orthogonal polynomials are
quite different due to their different weight functions (i.e., local PDFs).
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3.1.3. Orthogonal polynomials for Gaussian distribution. Some random
distributions, e.g., Gaussian distribution and Gamma distribution, have long tails.
Next, we demonstrate the decomposition of random space and the corresponding
orthogonal polynomials for this type of random variable. Given a Gaussian random
variable X ∼ N(0, 1), we decompose the random space into three random elements
(−∞,−a], [−a, a], and [a,+∞), where a is a positive constant. In the middle element
[−a, a], we define a random variable Xm with a conditional PDF

fm(xm) =
e−

1
2x

2
m∫ a

−a
e−

1
2x

2
dx

.(3.8)

In one of the tail elements, say, [a,+∞), we define a random variable X∞ with a
conditional PDF

f∞(x∞) =
e−

1
2x

2
∞∫∞

a
e−

1
2x

2
dx

.(3.9)

We choose a in such a way that Pr(X ≥ a) < ε, where ε is a small positive constant.
From (2.31), we know that the error contribution of tail elements can be effectively
weakened by the small value of Pr(X ≥ a); thus we usually do not decompose the tail
elements in applications, but rather the middle element [−a, a]. Furthermore, there is
no overflow or underflow problem for the tail elements due to the infinite boundary.
Here we take a = 5, which yields Pr(X ≥ 5) = 2.87×10−7. In Figure 3.5, we show the
PDF of the rescaled random variable Ym = Xm/a on the left and the corresponding
orthogonal polynomial basis on the right. The orthogonal polynomials have similar
shapes with Hermite polynomials; however, they are bounded now. In Figure 3.6, the
conditional PDF of X∞ is shown on the left and the corresponding orthogonal basis
on the right. Due to the infinite boundary the orthogonal polynomials look almost
like Laguerre polynomials.
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Fig. 3.5. Left: PDF of random variable Ym induced by Gaussian distribution. Right: orthogonal
polynomials for Ym.

3.1.4. Efficiency of the solver for numerical orthogonal polynomials. It
is clear that the ME-gPC method relies heavily on the numerical orthogonal poly-
nomials. We now test the solver for the recurrence coefficients, quadrature points,
and integration weights. Due to the absence of explicit formulas, we use the following
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example. Given a weight function w(x) defined in [a, b], we decompose [a, b] into small
elements and construct numerical orthogonal polynomials in these elements. Then we
map a simple function g(x) = c1x

p + c2 onto such elements numerically and com-
pute the errors on the quadrature points in each element. In the kth element [ak, bk],
g(x) = c1x

p + c2 should have the form

gk(τ) = c1

(
bk − ak

2
τ +

bk + ak
2

)p

+ c2,(3.10)

since all the orthogonal polynomials in element k are defined in [−1, 1]. Expressed by
the numerical orthogonal polynomials, gk(τ) has another form:

ĝk(τ) =

p∑
i=0

νk,iπk,i(τ),(3.11)

where the coefficients νk,i can be obtained by the inner product

νk,i = (gk(τ), πk,i)/(πk,i, πk,i).(3.12)

Next, we define the L∞ error on the quadrature points over all the elements

εmax = max

∣∣∣∣gk(τj) − ĝk(τj)

gk(τj)

∣∣∣∣ , k = 1, 2, . . . , N, j = 1, 2, . . . , n,(3.13)

where N is the number of elements and n is the number of quadrature points in each
element. In Table 3.1, we show εmax and the time cost for different uniform meshes.
We record the time used for the computation of recurrence coefficients, quadrature
points, integration weights, and the table E[πk,iπk,jπk,m], which represents the to-
tal set-up requirement for the standard Galerkin gPC method. We can see that the
biggest error εmax occurs in a one-element mesh. As the number of elements increases,
εmax is almost of the same order as the relative error of recurrence coefficients, which
implies that the numerical polynomials can achieve good orthogonality and high accu-
racy. Furthermore, numerical experiments show that the time cost for the numerical
polynomials is very small. For example, 105 sets of orthogonal polynomials up to
10th order can be computed within less than one-and-a-half minutes on a 1.5GHz
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Table 3.1

Error εmax and time cost for a uniform mesh with N elements. p = 10 and g(x) = x10 + 1.
The relative error for the recurrence coefficients was set to be 10−13. α = 1 and β = 4 for Beta
distribution. The middle element [−6, 6] was used for Gaussian distribution. The computations
were performed on a 1.5GHz AMD CPU.

Beta distribution Gaussian distribution
N Error Time (sec) Error Time (sec)
1 7.98e-11 <0.01 1.50e-10 <0.01
2 2.58e-12 <0.01 4.94e-11 <0.01
4 2.38e-13 <0.01 1.53e-11 <0.01
6 4.58e-13 <0.01 4.66e-13 <0.01
8 3.53e-13 <0.01 3.60e-13 <0.01
10 7.45e-13 0.01 1.10e-12 0.01

102 9.45e-13 0.08 8.28e-13 0.08

103 1.00e-12 0.79 9.37e-13 0.84

104 3.69e-12 7.92 4.51e-13 7.87

105 9.28e-13 76.43 4.09e-13 78.74

AMD CPU. In practice, we do not need so many elements and the time cost for the
construction of orthogonal polynomials actually can be ignored compared to the time
used by the gPC solver.

3.2. Accuracy and convergence of ME-gPC. We next show the accuracy
and convergence of ME-gPC by several numerical examples. We use a simple stochas-
tic ODE model to demonstrate the kp-convergence of the ME-gPC method and the
Kraichnan–Orszag problem to show how to deal with discontinuities introduced by
random inputs using the adaptive ME-gPC method.

3.2.1. Basic stochastic ODE model. We consider the performance of the
ME-gPC method for the following simple ODE equation studied with the original
gPC in [32]:

du

dt
= −λh(ζ(ω))u, u(0;ω) = u0,(3.14)

where ζ(ω) is a random variable, h is a function of ζ(ω), and λ is constant. The exact
solution can be easily found as

u(t;ω) = u0e
−λh(ζ(ω))t.(3.15)

Using ME-gPC with uniform meshes, we study the following two cases:
(i) ζ is a Beta-type random variable. α = 1, β = 4, and h(ζ(ω)) = ζ(ω).
(ii) ζ is a Gaussian random variable. h(ζ(ω)) = ζ(ω).

In Figure 3.7, we show the convergence of ME-gPC at t = 5 for case (i) with p-
convergence on the left and k-convergence on the right. It can be seen that ME-
gPC exhibits exponential convergence while the index of algebraic convergence goes
asymptotically to a constant. The convergence of the ME-gPC method at t = 5
for case (ii) is shown in Figure 3.8. Note here for the Gaussian random variable we
start with a three-element mesh: (−∞,−6], [−6, 6], and [6,+∞). We refine only
the middle element [−6, 6] because the error contribution of the tail elements is very
small compared with that of the middle element. We can see that the error curve
of such a three-element mesh matches exactly with that given by the Hermite-chaos.
The plot of p-convergence also shows that the four-element mesh works better than
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Fig. 3.8. Convergence of ME-gPC for the simple ODE with ζ being a Gaussian random variable.
λ = 0.1. Left: p-convergence. Right: k-convergence.

the five-element mesh when p < 3. The behavior of (3.14) may be very different if
ζ(ω) is located in different random elements, which gives rise to a nonuniform error
distribution in each element. For instance, when p = 2, ζ(ω) < 0 in element [−6, 0]
and the error of local variance is ε[−6,0] = 5.06 × 10−3; ζ(ω) > 0 in element [0, 6] and
ε[0,6] = 2.48 × 10−3.

From (2.31), we know that the error of global variance is of O((ε[−6,0] + ε[0,6])/2),
where we neglect the error contribution of the tail elements. For a five-element mesh
the error contribution comes mainly from element [−2, 2] in which Pr(I[−2,2] = 1) =
0.95. Thus, the error of global variance is of O(ε[−2,2]), where ε[−2,2] = 5.39×10−3. It
can be seen that ε[−2,2] > (ε[−6,0] + ε[0,6])/2, which corresponds to the behavior of p-
convergence and k-convergence in Figure 3.8. As the polynomial order p or the number
N of the random elements increases, p-convergence or k-convergence will be dominant
and such a phenomenon will disappear. In Table 3.2, we present the estimated indices
of algebraic convergence for both case (i) and case (ii). It can be seen that for both
mean and variance the index of algebraic convergence is close to −2(p + 1), which is
consistent with the error estimate given in [4]. From the theory of the deterministic
finite element method [4], it can be shown that the index of algebraic convergence
will go to −2(p+1) for any PDF. When computing the recurrence coefficients αi and
βi iteratively, a relative error 10−13 is imposed for both case (i) and case (ii). From
the plots of p-convergence, it can be seen that the maximum accuracy ME-gPC can
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Table 3.2

The indices of algebraic convergence of the basic stochastic ODE model. The algebraic indices
are computed by the errors given by N = 14 and N = 15. t = 5.

Beta distribution (case (i)) Gaussian distribution (case (ii))
Mean Variance Mean Variance

p = 1 -3.95 -3.84 -3.90 -3.88
p = 2 -5.96 -5.87 -5.91 -5.90
p = 3 -7.96 -7.88 -7.59 -7.90

Table 3.3

A comparison between gPC, ME-gPC, and the standard Monte Carlo method for a fixed cost
denoted by the number of floating point operations n. Beta distribution (case (i)) is considered and
normalized errors are used. The first row with N = 1 corresponds to the gPC results.

λ = 1.0 λ = 1.5
n = 200 Error (mean) Error (var) Error (mean) Error (var)
N = 1, p = 9 4.27e-12 7.84e-7 6.67e-9 1.95e-4
N = 4, p = 4 2.84e-9 1.49e-6 1.20e-7 3.98e-5
N = 25, p = 1 5.88e-6 9.91e-5 2.95e-5 4.59e-4
N = 100, p = 0 4.16e-4 1.73e-3 9.36e-4 3.76e-3
Monte Carlo 2.75e-1 5.13e-1 2.77e-1 8.31e-1

achieve is of O(10−13), which implies that the constructed orthogonal polynomials are
very accurate.

An obvious question that arises here is how well the kp-convergence of ME-gPC
compares with the k-convergence or p-convergence. The answer is very dependent on
the problem under consideration, since the properties of the solution, such as smooth-
ness, may be significantly different. Given enough smoothness in the random space
and a fixed time cost, p-convergence is usually a better choice than k-convergence
or kp-convergence; however, kp-converge can be better than p-convergence for many
cases. In the following we will measure computational complexity through n that
indicates the number of operations. Using a standard gPC procedure with a Galerkin
projection, we obtain the following deterministic equations for the coefficients of the
polynomial chaos expansion of u(ζ):

dui

dt
=

1

E[Φ2
i (ζ)]

ph∑
j=0

p∑
k=0

hjukE[Φi(ζ)Φj(ζ)Φk(ζ)], i = 0, 1, . . . , p,

where ph and p indicate the highest polynomial orders of polynomial chaos expansions
for h(ζ) and u(ζ), respectively. Then we can use n = N(ph+1)(p+1)2 to measure the
cost of ME-gPC, which is proportional to the number of operations of each time step
if the Runge–Kutta method is employed for the integration in time. In Table 3.3 we
present the accuracy of ME-gPC for different k and p while the cost is fixed (n = 200).
We note that ph = 1. It can be seen that p-convergence is superior for the case λ = 1.0.
However, for a larger perturbation λ = 1.5, the ME-gPC with N = p = 4 achieves a
better accuracy of the variance than gPC. This implies that for a large perturbation
the kp-convergence of ME-gPC can enhance the accuracy and efficiency significantly.
From (2.39), it can be seen that the degree of perturbation is reduced in ME-gPC
from O(λ) to O( bi−ai

2 λ). Due to the fast (exponential) convergence of local gPC in
each random element Bk, the overall performance of ME-gPC can be more efficient
than that of gPC. We also expect that ME-gPC should be more robust than gPC for
a large perturbation due to the decomposition of the random space. Furthermore, if
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the solution is not smooth in the random space, the p-convergence may be destroyed
and we need to resort to the (adaptive) kp-convergence, as demonstrated in the next
section.

3.2.2. Kraichnan–Orszag (K-O) problem (stochastic discontinuity). It
is well known that gPC fails for the K-O problem [24]. The K-O problem with
uniform random inputs was studied in [28]. We now reconsider this problem with
random inputs of Beta and Gaussian distributions. The transformed K-O problem
can be expressed as [28]

dy1

dt
= y1y3,

dy2

dt
= −y2y3,

dy3

dt
= −y2

1 + y2
2(3.16)

subject to initial conditions

y1(0) = y1(0;ω), y2(0) = y2(0;ω), y3(0) = y3(0;ω).(3.17)

The deterministic solutions of this problem are periodic, and the period will go to
infinity if the initial points are located at the planes y1 = 0 and y2 = 0. It was shown
in [28] that gPC fails if the initial random inputs can pass through these two planes.
We study the following three different kinds of initial conditions:

(i) y1(0) = 1, y2(0) = 0.1ξ1, and y3(0) = 0;
(ii) y1(0) = 1, y2(0) = 0.1ξ1, and y3(0) = 0.1ξ2;
(iii) y1(0) = cξ1, y2(0) = cξ2, and y3(0) = cξ3,

where c is constant and ξi are random variables of Beta or Gaussian distribution.
For all three cases, the relative error of recurrence coefficients αi and βi is set to

be 10−12. For case (i) we show the convergence of adaptive ME-gPC in Tables 3.4
and 3.5, where ξ1 is of Beta distribution and Gaussian distribution, respectively. It
can be seen that ME-gPC converges as θ1 decreases. For all the cases in Tables 3.4
and 3.5, we have recorded the time used for the construction of orthogonal PC, which
is less than 0.15% of the time used by the ME-gPC solver. Thus, the cost of the
polynomial construction can be ignored compared with the total cost. In Figure 3.9,
we show the adaptive meshes for Beta distribution and Gaussian distribution. Due
to the symmetry of distribution, the mesh for Gaussian distribution is symmetric in
contrast to the unsymmetric one for Beta distribution with α = 1 and β = 4. From the
adaptive criterion (2.33), we know that the element size is controlled by two factors:
the relative error ηk and Pr(IBk

= 1). We can see that around the discontinuity
region (ξ1 = 0) the mesh is refined because the error of gPC goes to O(1), and
the mesh is coarser where Pr(IBk

= 1) is smaller. For the Gaussian distribution
we refine only the middle element [−6, 6] as before. In Figure 3.10 we show the
speedup of ME-gPC for case (i) compared to the Monte Carlo (MC) method; n is
defined as the number of operations. If the data in Figure 3.10 are approximated
by a first-order polynomial in a least-squares sense, the accuracy of ME-gPC can be
obtained as O(n−3.23), O(n−3.85), and O(n−5.55), corresponding to p = 3, p = 4, and
p = 5, respectively, for Beta distribution and O(n−3.07), O(n−5.16), and O(n−6.33)
for Gaussian distribution. It can be seen that the adaptive ME-gPC converges much
faster than the Monte Carlo method and the speedup increases with the polynomial
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Table 3.4

Maximum normalized errors of the variance of y1, y2, and y3 at t = 20 for case (i) of the
K-O problem. α = 1/2 and ξ1 is of Beta distribution with α = 1 and β = 4. (The results given by
ME-gPC with θ1 = 10−7 and polynomial order p = 7 are used as exact solutions.)

θ1 = 10−2 θ1 = 10−3 θ1 = 10−4 θ1 = 10−5

N Error N Error N Error N Error
p = 3 24 2.98e-2 77 1.85e-3 236 3.61e-5 704 1.18e-6
p = 4 21 1.54e-2 45 1.05e-3 93 3.21e-4 209 4.62e-6
p = 5 16 6.25e-2 34 3.30e-3 57 1.50e-4 104 2.56e-6

Table 3.5

Maximum normalized errors of the variance of y1, y2, and y3 at t = 20 for case (i) of the K-O
problem. α = 1/2 and ξ1 is of normal distribution. (The results given by ME-gPC with θ1 = 10−7

and polynomial order p = 7 are used as exact solutions.)

θ1 = 10−2 θ1 = 10−3 θ1 = 10−4 θ1 = 10−5

N Error N Error N Error N Error
p = 3 38 2.79e-2 98 2.21e-3 292 6.58e-5 878 1.40e-6
p = 4 32 4.02e-2 62 9.07e-3 128 4.34e-4 282 1.46e-6
p = 5 28 4.63e-2 42 3.28e-3 78 6.46e-5 138 2.61e-6
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Fig. 3.12. Speedup for case (ii) of the K-O problem at t = 10. Left: Beta distribution with
α = 1 and β = 4. Right: Gaussian distribution.

order. However, since the error of gPC increases with time, the above speedups will
decrease with time. The long-term behavior of gPC and ME-gPC was studied in [29].

In Figure 3.11, we show the adaptive meshes of case (ii) for Beta and Gaussian
distributions. Since the discontinuity occurs at the line ξ1 = 0 in the random space
for this case, it can be seen that the meshes are well refined along the line ξ1 = 0. It is
not surprising that the random elements are bigger where the PDF is smaller because
Pr(IBk

= 1) is relatively smaller in these elements. In Figure 3.12, the speedup for
case (ii) is shown. We can see that the Monte Carlo method is competitive for low
accuracy and ME-gPC can achieve a good speedup for high accuracy.

In Figure 3.13, the evolution of y1 in case (iii) is shown. We take c = 1 for the Beta
distribution and 0.3 for the Gaussian distribution. For the purpose of comparison, we
include the results of gPC. For both cases, gPC with p = 3 begins to fail at t ≈ 1.
Since increasing polynomial order does not improve gPC [28], the results of gPC
with a higher order are not shown. ME-gPC can maintain convergence by increasing
random elements adaptively. However, for a comparable accuracy of O(10−3), the
Monte Carlo method is about twice as fast as ME-gPC for the Beta distribution and
about four times as fast as ME-gPC for the Gaussian distribution. This is mainly due
to two factors. First, the discontinuity for case (iii) is strong because the discontinuity
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region consists of two planes: ξ1 = 0 and ξ2 = 0. Second, the cost of gPC increases
very quickly with the random dimension. Since ME-gPC is a dimension dependent
method, its efficiency decreases as the random dimension increases. The Monte Carlo
method is still a better choice for obtaining a moderate accuracy for high-dimensional
cases unless a high accuracy is really required.

3.2.3. ME-gPC for PDEs: Heat transfer in a grooved channel. Next, we
demonstrate the use of ME-gPC to engineering applications, by simulating the heat
transfer enhancement in a two-dimensional grooved channel subjected to stochastic
excitation. The phenomenon of heat transfer enhancement in a grooved channel
has been widely studied numerically and experimentally (see [11, 16] and references
therein). The geometry to be considered is depicted in Figure 3.14. We use exactly
the same geometry as in [11], which corresponds to L = 6.6666, l = 2.2222, and
a = 1.1111.

The flow is assumed to be fully developed in the x (flow) direction. For the
velocity field we have the incompressible Navier–Stokes equations

∂v

∂t
+ (v · ∇)v = −∇Π + ν∇2v,(3.18a)

∇ · v = 0,(3.18b)

where v(x, t;ω) is the stochastic velocity, Π is the pressure, and ν is the kinematic
viscosity. The fully developed boundary conditions for the velocity are

v(x, t;ω) = 0 on ∂D,(3.19a)

v(x + L, y, t;ω) = v(x, y, t;ω),(3.19b)

corresponding to no-slip and periodicity, respectively. The uncertainty is introduced
by the following imposed flow-rate condition:

Q(t;ω) =

∫ ∂DT

∂DB

u(x, y, t;ω)dy =
4

3
(1 + 0.2ξH(ω) sin 2πΩF t),(3.20)
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where ξH(ω) is a random variable and ΩF is a prescribed frequency. Due to the
periodic boundary condition for the velocity, we require

Π(x, t;ω) = −h(t;ω)x + Π̃(x, t;ω),(3.21a)

Π̃(x, y, t;ω) = Π̃(x + L, y, t;ω)(3.21b)

for the pressure; otherwise, a trivial solution for the velocity will be obtained. The
convection equation for the temperature T (x, t) is given as

∂T

∂t
+ (v · ∇)T = αt∇2T,(3.22)

where αt is the assumed constant thermal diffusivity. For the temperature boundary
conditions on the top and bottom walls we have

κ∇T · n = 0 on ∂DT ,(3.23a)

κ∇T · n = 1 on ∂DB ,(3.23b)

where κ is the thermal conductivity of the fluid and n refers to the outward normal
on the boundary. As for the inlet and outlet thermal boundary conditions, we first
subtract a linear term from T and use a periodic boundary condition for the other
contribution

T (x, t;ω) = θ(x, t;ω) + φ(ω)x,(3.24a)

θ(x, y, t;ω) = θ(x + L, y, t;ω),(3.24b)

where the coefficient φ(ω) can be determined by the global energy balance [10]. The
numerical schemes for the aforementioned equations, which can be found in [27], are
based on the deterministic splitting schemes for the Navier–Stokes equations [17, 10].

In this work we demonstrate only the k-convergence of ME-gPC by the compu-
tation of an averaged global Nusselt number. Using the same notation as in [11], we
define a Nusselt number Nu as

Nu = L

(
1 +

2a

L

)2
/∫ L+2a

0

〈θ − θb〉ds|∂DB
,(3.25)
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Table 3.6

k-convergence of the ME-gPC method in terms of the variance of the Nusselt number in a
grooved channel. Uniform meshes are used in the random space. The reference variance of the
Nusselt number is 0.0394, which is given by the ME-gPC method with N = 10 and p = 6.

gPC Variance Δvar ME-gPC Variance Δvar

p = 1, np = 2 0.0719 8.26e-1 N = 1, p = 1, np = 2 0.0719 8.26e-1
p = 3, np = 4 0.0617 5.67e-1 N = 3, p = 1, np = 6 0.0325 1.75e-1
p = 5, np = 6 0.0435 1.06e-1 N = 5, p = 1, np = 10 0.0355 9.84e-2
p = 7, np = 8 0.0430 8.41e-2 N = 7, p = 1, np = 14 0.0402 4.82e-3

where θb is a reference temperature taken to be the mixed-mean temperature at x = 0,

θb =

〈
3

4

∫ 1

−1

u(x = 0, y, t;ω)θ(x = 0, y, t;ω)dy

〉
,(3.26)

and 〈·〉 refers to the time average over one period of the flow, t < t′ < +Ω−1
F .

The Reynolds number is defined as Re = 3〈Q(t)〉/4ν, and the Prandtl number as
Pr = ν/α. We take Re = 525 and Pr = 1 in this work. We let ΩF = 0.15 and let ξH
be a random variable of Beta distribution with α = 1 and β = 4.

The convergence of gPC for the Navier–Stokes equation and the advection-diffusion
equation has been studied and verified in [34, 30]. The solution of (3.18) and (3.22)
converges to a steady state. We use the variance obtained by the ME-gPC method
with N = 10, p = 6, and t = 4000 as the reference R∗. We define a relative normalized
error for the variance as

Δvar =

∣∣∣∣R−R∗

R∗

∣∣∣∣ ,(3.27)

where R is the variance given by gPC or ME-gPC. Let np = N(p + 1) indicate the
number of unknowns in the PC expansion. In Table 3.6, we show the k-convergence
of the ME-gPC method. We note that both the mean and the variance obtained
from a low-order ME-gPC are converging to the reference results as the number of
elements N increases, which yields a k-convergence. The decomposition of random
space accelerates the convergence significantly, but at this (relatively low) Reynolds
number we need a slightly larger np for ME-gPC to obtain comparable accuracy with
gPC. However, at higher Reynolds numbers we have larger stochastic perturbations
and ME-gPC is more efficient than gPC; this is consistent with the cost comparison
results of the first example presented earlier. In fact, for large values of the polynomial
order p, gPC yields stochastic solutions that exhibit artificial oscillations at the tails
of the corresponding PDFs; such artifacts are not present with ME-gPC [27]. Finally,
compared to high-order gPC, an important cost advantage of ME-gPC for large-scale
numerical simulations in fluid mechanics is that it can be easily parallelized as the
local problems in each random element are independent.

In Figure 3.15, we show the standard deviation of the temperature at t = 4000.
It can be seen that the standard deviation increases from the channel region to the
groove part of the domain. The local maxima are inside the cavity and close to the top
right corner of the cavity, which reflects the established flow communication between
the groove and the channel. This, in turn, is the reason that gives rise to enhanced
heat transfer [11].
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Fig. 3.15. Standard deviation of T at t = 4000 obtained by ME-gPC with N = 10 and p = 6.

4. Summary. In this paper we present an ME-gPC method for stochastic pro-
cesses represented by random variables of arbitrary distributions. The ME-gPC
method combines the two PC schemes of k-version and p-version by the numeri-
cal reconstruction of orthogonal polynomials, which yields a k× p version. Numerical
experiments show that the numerical reconstruction of high accuracy can be obtained
with negligible cost. Hence, the ME-gPC method inherits the advantages of previ-
ous PC methods and can efficiently achieve kp-convergence for stochastic differential
equations. This is shown by a simple ODE model and a heat transfer problem in
a grooved channel. The application of ME-gPC depends on the smoothness of the
solution in the random space. Due to the fast (exponential) convergence, gPC is
preferred if the p-convergence can be achieved; otherwise, the convergence can be
improved by the kp-convergence of ME-gPC. The adaptive ME-gPC scheme shows a
good performance in convergence for problems related to discontinuities induced by
random inputs because it can weaken the influence of discontinuities by small random
elements and maintain the fast (exponential) convergence of gPC in regular elements,
which is clearly shown by the adaptive meshes for the K-O problem. Thus, the ME-
gPC method is more flexible and efficient than previous polynomial chaos schemes in
many cases.

In [1], the asymptotic numerical complexity of stochastic Galerkin finite element
methods of k×h version and p×h version is compared with the Monte Carlo method.
Note that the comparison is valid only for the optimal case. For some cases, especially
when the random dimension is high and the desired accuracy is moderate, the Monte
Carlo method is still preferred in practice because it is random dimension indepen-
dent while all PC methods including the ME-gPC method depend on the random
dimension. If strong discontinuities exist together with a high random dimension as
shown in case (iii) of section 3.2.2, polynomial chaos methods can lose efficiency fur-
ther or even fail to converge. However, if the required error is sufficiently small, the
PC method, especially the ME-gPC method, will be more efficient than the Monte
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Fig. 4.1. Cost comparison between ME-gPC and the standard Monte Carlo method for fixed
accuracy. Here p is the order of gPC in each element, N is the number of elements and d is the
number of dimensions. The symbol-lines are iso-cost lines.

Carlo method due to the k-p convergence as shown in cases (i) and (ii) of section 3.2.2.
In Figure 4.1, we present a comparison between the k-convergence O(N−2(p+1)) of
ME-gPC and the convergence O(n−1/2) of the standard Monte Carlo method; see [1].
For the same accuracy and different random dimension numbers, the lines show the
cases where the cost of the standard Monte Carlo method is equal to that of ME-gPC.
For a certain random dimension number (denoted by “d”), the region below the line
is where MC is more efficient; the region above the line is where ME-gPC is more
efficient.

In this work we use heuristically the decay rate of relative error of variance as the
indicator for the k-type refinement. A more rigorous a posteriori error estimate is still
needed for the kp-adaptivity. These issues will be addressed in future publications.

Appendix (application of ME-gPC to a stochastic elliptic problem).
Here we briefly elaborate on how to apply ME-gPC to solve differential equations with
stochastic coefficients using the following stochastic linear boundary value problem:
Find a stochastic function, u : D × Ω → R, such that almost surely the following
equation holds:

−∇ · (a(x;ω)∇u(x;ω)) = f(x;ω) on D,

u(x;ω) = 0 on ∂D,(4.1)

where D is an open domain in the physical space with Lipschitz boundaries, a(x;ω)
and f(x;ω) are second-order random processes. We assume 0 < α1 ≤ a(x;ω) ≤
α2 < ∞ almost everywhere on D × Ω. Using the K-L expansion and following the
procedure in [1], we assume that a(x;ω) ≈ a(x; ξ(ω)) and f(x;ω) ≈ f(x; ξ(ω)), where
the same R

d-valued random variable ξ with i.i.d. components is used for both a(x;ω)
and f(x;ω) in their K-L expansions. We note here that the “i.i.d.” assumption is
strong since it is sufficient for the random variables in a K-L expansion to be mutually
uncorrelated.
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In each random element Bk we naturally have the following problem:

−∇ · (a(x; ξk)∇u(x; ξk)) = f(x; ξk) on D,

u(x; ξk) = 0 on ∂D.(4.2)

All previous assumptions on a(x; ξk) and f(x; ξk) are satisfied with respect to a

conditional PDF f̂k(ξk|IBk
= 1). We note that such a system is complete on each

random element Bk.
We define a bilinear form B(·, ·) as

B(u, v) =

∫
Bk

f̂k(ξk|IBk
= 1)

∫
D

a(x; ξk)∇u(x; ξk) · ∇v(x; ξk)dxdξk(4.3)

and a linear form L (·) as

L (v) =

∫
Bk

f̂k(ξk|IBk
= 1)

∫
D

f(x; ξk)v(x; ξk)dxdξk.(4.4)

Due to the assumption on a(x; ξk) the space

W (D,Bk, f̂k) =
{
v(x; ξk)|B(v, v) = ‖v‖2

W < ∞ ∀v ∈ L2(Bk) ⊗H1
0 (D)

}
(4.5)

is a Hilbert space. Using the Lax–Milgram theorem, we can claim that a unique
solution ûk(x; ξk) exists for the problem

B(u, v) = L (v) ∀v ∈ W.(4.6)

To this end, the gPC procedure can be readily employed in each element Bk on
a truncated subspace V r ⊗ V p ⊂ W to solve (4.2) [14, 32], where V r indicates the
local orthogonal basis {Φk,i(ξk)} in the random space and V p denotes the piecewise
polynomial basis in the physical space. Once the local approximation is obtained, the
global approximation can be constructed by Proposition 2.2.

Using a similar procedure ME-gPC can be readily applied to any differential
equations with stochastic coefficients.
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