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We develop a multi-element probabilistic collocation method (ME-PCM) for arbitrary 
discrete probability measures with finite moments and apply it to solve partial differential 
equations with random parameters. The method is based on numerical construction of 
orthogonal polynomial bases in terms of a discrete probability measure. To this end, we 
compare the accuracy and efficiency of five different constructions. We develop an adaptive 
procedure for decomposition of the parametric space using the local variance criterion. We 
then couple the ME-PCM with sparse grids to study the Korteweg–de Vries (KdV) equation 
subject to random excitation, where the random parameters are associated with either a 
discrete or a continuous probability measure. Numerical experiments demonstrate that the 
proposed algorithms lead to high accuracy and efficiency for hybrid (discrete–continuous) 
random inputs.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Stochastic partial differential equations (SPDEs) are widely used for stochastic modeling in diverse applications from 
physics, to engineering, biology and many other fields. In this paper, we concentrate on parametric uncertainty associated 
with arbitrary discrete probability measures with finite moments, where the source of uncertainty includes random coeffi-
cients, and stochastic forcing. In many cases, the random parameters are only observed at discrete values, which implies 
that a discrete probability measure is more appropriate from the modeling point of view. More generally, random pro-
cesses with jumps are of fundamental importance in stochastic modeling, e.g., stochastic-volatility jump-diffusion models 
in finance [29], stochastic simulation algorithms for modeling diffusion, reaction and taxis in biology [7], fluid models with 
jumps [25], quantum-jump models in physics [6], etc.

In this work we extend the multi-element probabilistic collocation method (ME-PCM) [12] to deal with discrete prob-
ability measures. The ME-PCM decomposes the parametric space [26] and implements generalized polynomial chaos (gPC) 
element-wise using the collocation approach [28], such that both h- and p-convergence can be obtained. In particular, we 
follow the gPC correspondence principle, where orthogonal polynomials with respect to the discrete measure are generated 
to improve efficiency [28]. We first evaluate the accuracy and efficiency of different methods for numerical construction of 
gPC bases by performing systematic tests on functions from the GENZ suite [15]. We then couple ME-PCM with sparse grids 
and develop an adaptive procedure using the local variance criterion [12]. The developed algorithms are applied to KdV 
equation [19] subject to stochastic excitation.
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The paper is organized as follows. The methods of generating orthogonal polynomial bases with respect to discrete mea-
sures are presented in Section 2 followed by a discussion about the error of numerical integration in Section 3. Numerical 
solutions of the stochastic reaction equation and KdV equation, including adaptive procedures, are explained in Section 4, 
and in Section 5 we summarize the work. In the appendices, we provide more details about the deterministic KdV equation 
solver, and the adaptive procedure.

2. Generation of orthogonal polynomials for discrete measures

Let μ be a positive measure with infinite support S(μ) ⊂ R and finite moments at all orders, i.e.,∫
S

ξnμ(dξ) < ∞, ∀n ∈N0, (1)

where N0 = {0, 1, 2, ...}, and it is defined as a Riemann–Stieltjes integral. There exists one unique [14] set of orthogonal 
monic polynomials {Pi}∞i=0 with respect to the measure μ such that∫

S

P i(ξ)P j(ξ)μ(dξ) = δi jγ
−2
i , i = 0,1,2, . . . , (2)

where γi �= 0 are constants. In particular, the orthogonal polynomials satisfy a three-term recurrence relation [5,9]

Pi+1(ξ) = (ξ − αi)Pi(ξ) − βi P i−1(ξ), i = 0,1,2, . . . (3)

The uniqueness of the set of orthogonal polynomials with respect to μ can be also derived by constructing such set of 
polynomials starting from P0(ξ) = 1. We typically choose P−1(ξ) = 0 and β0 to be a constant. Then the full set of orthogonal 
polynomials is completely determined by the coefficients αi and βi .

If the support S(μ) is a finite set with data points {τ1, ..., τN }, i.e., μ is a discrete measure defined as

μ =
N∑

i=1

λiδτi , λi > 0, (4)

the corresponding orthogonality condition is finite, up to order N − 1 [11,14], i.e.,∫
S

P 2
i (ξ)μ(dξ) = 0, i ≥ N, (5)

where δτi indicates the empirical measure at τi , although by the recurrence relation (3) we can generate polynomials at any 
order greater than N − 1. Furthermore, one way to test whether the coefficients αi are well approximated is to check the 
following relation [10,11]

N−1∑
i=0

αi =
N∑

i=1

τi . (6)

One can prove that the coefficient of ξ N−1 in P N(ξ) is − 
∑N−1

i=0 αi , and P N(ξ) = (ξ − τ1)...(ξ − τN ), therefore Eq. (6)
holds [11].

We subsequently examine five different approaches of generating orthogonal polynomials for a discrete measure and 
point out the pros and cons of each method. In Nowak method, the coefficients of the polynomials are directly derived from 
solving a linear system; in the other four methods, we generate coefficients αi and βi by four different numerical methods, 
and the coefficients of polynomials are derived from the recurrence relation in Eq. (3).

2.1. Nowak method [22]

Define the k-th order moment as

mk =
∫
S

ξkμ(dξ), k = 0,1, ...,2d − 1. (7)

The coefficients of the d-th order polynomial Pd(ξ) = ∑d
i=0 aiξ

i are determined by the following linear system
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⎛
⎜⎜⎜⎝

m0 m1 . . . md
m1 m2 . . . md+1
. . . . . . . . . . . .

md−1 md . . . m2d−1
0 0 . . . 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a0
a1
. . .

ad−1
ad

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
. . .

0
1

⎞
⎟⎟⎟⎠ , (8)

where the (d + 1) by (d + 1) Vandermonde matrix needs to be inverted.
Although this method is straightforward to implement, it is well known that the matrix may be ill conditioned when d

is very large.
The total computational complexity for solving the linear system in Eq. (8) is O(d2) to generate Pd(ξ).1

2.2. Stieltjes method [14]

Stieltjes method is based on the following formulas of the coefficients αi and βi

αi =
∫

S ξ P 2
i (ξ)μ(dξ)∫

S P 2
i (ξ)μ(dξ)

, βi =
∫

S ξ P 2
i (ξ)μ(dξ)∫

S P 2
i−1(ξ)μ(dξ)

, i = 0,1, ..,d − 1. (9)

For a discrete measure, the Stieltjes method is quite stable [14,13]. When the discrete measure has a finite number of 
elements in its support (N), the above formulas are exact. However, if we use Stieltjes method on a discrete measure with 
infinite support, i.e. Poisson distribution, we approximate the measure by a discrete measure with finite number of points; 
therefore, each time when we iterate for αi and βi , the error accumulates by neglecting the points with less weights. In 
that case, αi and βi may suffer from inaccuracy when i is close to N [14].

The computational complexity for integral evaluation in Eq. (9) is of the order O(N).

2.3. Fischer method [10,11]

Fischer proposed a procedure for generating the coefficients αi and βi by adding data points one-by-one [10,11]. Assume 
that the coefficients αi and βi are known for the discrete measure μ = ∑N

i=1 λiδτi . Then, if we add another data point τ
to the discrete measure μ and define a new discrete measure ν = μ + λδτ , λ being the weight of the newly added data 
point τ , the following relations hold:

αν
i = αi + λ

γ 2
i P i(τ )Pi+1(τ )

1 + λ
∑i

j=0 γ 2
j P 2

j (τ )
− λ

γ 2
i−1 Pi(τ )Pi−1(τ )

1 + λ
∑i−1

j=0 γ 2
j P 2

j (τ )
, (10)

βν
i = βi

[1 + λ
∑i−2

j=0 γ 2
j P 2

j (τ )][1 + λ
∑i

j=0 γ 2
j P 2

j (τ )]
[1 + λ

∑i−1
j=0 γ 2

j P 2
j (τ )]2

(11)

for i < N , and

αν
N = τ − λ

γ 2
N−1 P N(τ )P N−1(τ )

1 + λ
∑N−1

j=0 γ 2
j P 2

j (τ )
, (12)

βν
N = λγ 2

N−1 P 2
N(τ )[1 + λ

∑N−2
j=0 γ 2

j P 2
j (τ )]

[1 + λ
∑N−1

j=0 γ 2
j P 2

j (τ )]2
, (13)

where αν
i and βν

i indicate the coefficients in the three-term recurrence formula (3) for the measure ν . The numerical 
stability of this algorithm depends on the stability of the recurrence relations above, and on the sequence of data points 
added [11]. For example, the data points can be in either ascending or descending order. Fischer’s method basically modifies 
the available coefficients αi and βi using the information induced by the new data point. Thus, this approach is very practical 
when an empirical distribution for stochastic inputs is altered by an additional possible value. For example, let us consider 
that we have already generated d probability collocation points with respect to the given discrete measure with N data 
points, and we want to add another data point into the discrete measure to generate d new probability collocation points 
with respect to the new measure. Using the Nowak method, we will need to reconstruct the moment matrix and invert the 
matrix again with N + 1 data points; however by Fischer’s method, we will only need to update 2d values of αi and βi by 
adding this new data point, which is more convenient.

We generate a new sequence of {αi, βi} by adding a new data point into the measure, therefore the computational 
complexity for calculating the coefficients {γ 2

i , i = 0, .., d} for N times is O(N2).

1 Here we notice that the Vandermonde matrix is in a Toeplitz matrix form. Therefore the computational complexity of solving this linear system is 
O(d2) [16,24].
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2.4. Modified Chebyshev method [14]

Compared to the Chebyshev method [14], the modified Chebyshev method computes moments in a different way. Define 
the quantities:

μi, j =
∫
S

P i(ξ)ξ jμ(dξ), i, j = 0,1,2, ... (14)

Then, the coefficients αi and βi satisfy:

α0 = μ0,1

μ0,0
, β0 = μ0,0, αi = μi,i+1

μi,i
− μi−1,i

μi−1,i−1
, βi = μi,i

μi−1,i−1
. (15)

Note that due to the orthogonality, μi, j = 0 when i > j. Starting from the moments μ j , μi, j can be computed recursively 
as

μi, j = μi−1, j+1 − αi−1μi−1, j − βi−1μi−2, j, (16)

with

μ−1,0 = 0, μ0, j = μ j, (17)

where j = i, i + 1, ..., 2d − i − 1.
However, this method suffers from the same effects of ill-conditioning as the Nowak method [22] does, because they both 

rely on calculating moments. To stabilize the algorithm we introduce another way of defining moments by polynomials:

μ̂i, j =
∫
S

P i(ξ)p j(ξ)μ(dξ), (18)

where {pi(ξ)} is chosen to be a set of orthogonal polynomials, e.g., Legendre polynomials. Define

νi =
∫
S

pi(ξ)μ(dξ). (19)

Since {pi(ξ)}∞i=0 is not a set of orthogonal polynomials with respect to the measure μ(dξ), νi is, in general, not equal to 
zero. For all the following numerical experiments we used the Legendre polynomials for {pi(ξ)}∞i=0.2 Let α̂i and β̂i be the 
coefficients in the three-term recurrence formula associated with the set {pi} of orthogonal polynomials.

Then, we initialize the process of building up the coefficients as

μ̂−1, j = 0, j = 1,2, ...,2d − 2,

μ̂0, j = ν j, j = 0,2, ...,2d − 1,

α0 = α̂0 + ν1

ν0
, β0 = ν0,

and compute the following coefficients:

μ̂i, j = μ̂i−1, j+1 − (αi−1 − α̂ j)μ̂i−1, j − βi−1μ̂i−2, j + β̂ jμ̂i−1, j−1, (20)

where j = i, i + 1, ..., 2d − i − 1. The coefficients αi and βi can be obtained as

αi = α̂i + μ̂i,i+1

μ̂i,i
− μ̂i−1,i

μ̂i−1,i−1
, βi = μ̂i,i

μ̂i−1,i−1
. (21)

Based on the modified moments, the ill-conditioning issue related to moments can be improved, although such an issue can 
still be severe especially when we consider orthogonality on infinite intervals.

The computational complexity for generating μi, j and νi is O(N).

2 Legendre polynomials {pi(ξ)}∞i=0 are defined on [−1, 1], therefore in implementation of the Modified Chebyshev method, we scale the measure onto 
[−1, 1] first.
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2.5. Lanczos method [4]

The idea of Lanczos method is to tridiagonalize a matrix to obtain the coefficients of the recurrence relation α j and β j . 
Suppose the discrete measure is μ = ∑N

i=1 λiδτi , λi > 0. With weights λi and τi in the expression of the measure μ, the 
first step of this method is to construct a matrix:⎛

⎜⎜⎜⎜⎝
1

√
λ1

√
λ2 . . .

√
λN√

λ1 τ1 0 . . . 0√
λ2 0 τ2 . . . 0

. . . . . . . . . . . . . . .√
λN 0 0 . . . τN

⎞
⎟⎟⎟⎟⎠ . (22)

After we triagonalize it by the Lanczos algorithm, which is a process that reduces a symmetric matrix into a tridiagonal 
form with unitary transformations [16], we can obtain:⎛

⎜⎜⎜⎝
1

√
β0 0 . . . 0√

β0 α0
√

β1 . . . 0
0

√
β1 α1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . αN−1

⎞
⎟⎟⎟⎠ , (23)

where the non-zero entries correspond to the coefficients αi and βi . Lanczos method is motivated by the interest in the 
inverse Sturm–Liouville problem: given some information on the eigenvalues of the matrix with a highly structured form, or 
some of its principal sub-matrices, this method is able to generate a symmetric matrix, either Jacobi or banded, in a finite 
number of steps. It is easy to program but can be considerably slow [4].

The computational complexity for the unitary transformation is O(N2).

2.6. Gaussian quadrature rule associated with μ

Here we describe how to utilize the above five methods to perform integration over a discrete measure numerically, 
using the Gaussian quadrature rule [17] associated with μ.

We consider integrals of the form∫
S

f (ξ)μ(dξ) < ∞. (24)

With respect to μ, we generate the μ-orthogonal polynomials up to order d (d ≤ N − 1), denoted as {Pi(ξ)}d
i=0, by one of 

the five methods in Sections 2.1–2.5. We calculated the zeros {ξi}d
i=1 from Pd(ξ) = adξ

d + ad−1ξ
d−1 + ... + a0, as Gaussian 

quadrature points, and Gaussian quadrature weights {wi}d
i=1 by

wi = ad

ad−1

∫
S μ(dξ)Pd−1(ξ)2

P ′
d(ξi)Pd−1(ξi)

. (25)

Therefore, numerically the integral is approximated by

∫
S

f (ξ)μ(dξ) ≈
d∑

i=1

f (ξi)wi . (26)

In the case when zeros for polynomial Pd(ξ) do not have explicit formulas, Newton–Raphson is used [3,30], with a 
specified tolerance as 10−16 (in double precision). In order to ensure that at each search we find a new root, the polynomial 
deflation method [18] is applied, where the searched roots are factored out of the initial polynomial once they have been 
determined. All the calculations are done with double precision in this paper.

2.7. Orthogonality tests

To investigate the stability of the five methods, we perform an orthogonality test, where the orthogonality is defined as:

orth(i) = 1

i

i−1∑
j=0

| ∫S P i(ξ)P j(ξ)μ(dξ)|√∫
S P 2

j (ξ)μ(dξ)
∫

S P 2
i (x)μ(dξ)

, i ≤ N − 1, (27)



96 M. Zheng et al. / Applied Numerical Mathematics 90 (2015) 91–110
Fig. 1. Orthogonality defined in (27) with respect to the polynomial order i up to 20 with distribution defined in (28) (n = 20, p = 1/2) (left) and i up to 
100 with (n = 100, p = 1/2) (right).

for the set {P j(ξ)}i
j=0 of orthogonal polynomials constructed numerically. Note that 

∫
S P i(ξ)P j(ξ)μ(dξ) �= 0, 0 ≤ j < i, 

for orthogonal polynomials constructed numerically due to round-off errors, although they should be orthogonal theoreti-
cally.

We compare the numerical orthogonality given by the aforementioned five methods in Fig. 1 for the following distribu-
tion3:

f (k;n, p) = P

(
ξ = 2k

n
− 1

)
= n!

k!(n − k)! pk(1 − p)n−k, k = 0,1,2, ...,n. (28)

We see that Stieltjes, Modified Chebyshev, and Lanczos methods preserve the best numerical orthogonality when the 
polynomial order i is close to N . We notice that when N is large, the numerical orthogonality is preserved up to the 
order of 70, indicating the robustness of these three methods. The Nowak method exhibits the worst numerical orthog-
onality among the five methods, due to the ill-conditioning nature of the matrix in Eq. (8). The Fischer method exhibits 
better numerical orthogonality when the number of data points N in the discrete measure is small. The numerical orthog-
onality is lost when N is large, which serves as a motivation to use ME-PCM instead of PCM for numerical integration 
over discrete measures. Our results suggest that we shall use Stieltjes, Modified Chebyshev, and Lanczos methods for more 
accuracy.

We also compare the cost by tracking the CPU time to evaluate (27) in Fig. 2: for a fixed polynomial order i, we track the 
CPU time with respect to N , the number of points in the discrete measure defined in (28); for a fixed N , we track the CPU 
time with respect to i. We observe that the Stieltjes method has the least computational cost while the Fischer method has 
the largest computational cost. Asymptotically, we observe that the computational complexity to evaluate (27) is O(i2) for 
Nowak method, O(N) for the Stieltjes method, O(N2) for the Fischer method, O(N) for the Modified Chebyshev method, 
and O(N2) for the Lanczos method.

To conclude we recommend Stieltjes method as the most accurate and efficient in generating orthogonal polynomials 
with respect to discrete measures, especially when higher orders are required. However, for generating polynomials at 
lower orders (for ME-PCM), the five methods are equally effective.

We noticed from Figs. 1 and 2 that the Stieltjes method exhibits the most accuracy and efficiency in generating orthog-
onal polynomials with respect to a discrete measure μ. Therefore, here we investigate the minimum polynomial order i
(i ≤ N − 1) that the orthogonality orth(i) defined in Eq. (27) of the Stieltjes method is larger than a threshold ε . In Fig. 3, 
we perform this test on the distribution given by (28) with different parameters for n (n ≥ i). The highest polynomial order 
i for polynomial chaos shall be less than the minimum i that orth(i) exceeds a certain desired ε , for practical computations. 
The cost for numerical orthogonality is, in general, negligible compared to the cost for solving a stochastic problem by either 
Galerkin or collocation approaches. Hence, we can pay more attention on the accuracy, rather than the cost, of these five 
methods.

3 We rescale the support for Binomial distribution with parameters (n, p), {0, .., n}, onto [−1, 1].
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Fig. 2. CPU time (in seconds) on Intel (R) Core(TM) i5-3470 CPU @ 3.20 GHz in Matlab to evaluate orthogonality in (27) at the order i = 4 for distribution 
defined in (28) with parameter n and p = 1/2 (left). CPU time to evaluate orthogonality in (27) at the order i for distribution defined in (28) with parameter 
n = 100 and p = 1/2 (right).

Fig. 3. Minimum polynomial order i (vertical axis) such that orth(i) defined in (27) is greater than a threshold value ε (here ε = 1E–8, 1E–10, 1E–13), for 
distribution defined in (28) with p = 1/10. Orthogonal polynomials are generated by the Stieltjes method.

3. Discussion about the error of numerical integration

3.1. Theorem of numerical integration on discrete measure

In [12], the h-convergence rate of ME-PCM [18] for numerical integration in terms of continuous measures was estab-
lished with respect to the degree of exactness given by the quadrature rule.

Let us first define the Sobolev space W m+1,p(Γ ) to be the set of all functions f ∈ Lp(Γ ) such that for every multi-index 
γ with |γ | ≤ m + 1, the weak partial derivative Dγ f belongs to Lp(Γ ) [1,8], i.e.

W m+1,p(Γ ) = {
f ∈ Lp(Γ ) : Dγ f ∈ Lp(Γ ),∀|γ | ≤ m + 1

}
. (29)

Here Γ is an open set in Rn and 1 ≤ p ≤ +∞. The natural number m + 1 is called the order of the Sobolev space 
W m+1,p(Γ ). Here the Sobolev space W m+1,∞(A) in the following theorem is defined for functions f : A → R subject 
to the norm:

‖ f ‖m+1,∞,A = max|γ |≤m+1
ess sup

ξ∈A

∣∣Dγ f (ξ)
∣∣,

and the seminorm is defined as:
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| f |m+1,∞,A = max|γ |=m+1
ess sup

ξ∈A

∣∣Dγ f (ξ)
∣∣,

where A ⊂R
n , γ ∈N

n
0, |γ | = γ1 + . . . + γn and m + 1 ∈N0.

We first consider a one-dimensional discrete measure μ = ∑N
i=1 λiδτi , where N is a finite number. For simplicity and 

without loss of generality, we assume that {τi}N
i=1 ⊂ (0, 1). Otherwise, we can use a linear mapping to map (min{τi}N

i=1 −
c, max{τi}N

i=1 + c) to (0, 1) with c being a arbitrarily small positive number. We then construct the approximation of the 
Dirac measure as

με =
N∑

i=1

λiη
ε
τi
, (30)

where ε is a small positive number and ηε
τi

is defined as

ηε
τi

=
{

1
ε if |ξ − τi| < ε/2,

0 otherwise.
(31)

First of all, ηε
τi

defines a continuous measure in (0, 1) with a finite number of discontinuous points, where a uniform 
distribution is taken on the interval (τi − ε/2, τi + ε/2). Second, ηε

τi
converges to δτi in the weak sense, i.e.,

lim
ε→0+

1∫
0

g(ξ)ηε
τi
(dξ) =

1∫
0

g(ξ)δτi (dξ), (32)

for all bounded continuous functions g(ξ). We write that

lim
ε→0+ ηε

τi
= δτi . (33)

It is seen that when ε is small enough, the intervals (τi − ε/2, τi + ε/2) can be mutually disjoint for i = 1, . . . , N . Due to 
the linearity, we have

lim
ε→0+ με = μ, (34)

and the convergence is defined in the weak sense as before. Then, με is also a continuous measure with a finite number of 
discontinuous points.

Remark 1. The choice for ηε
τi

is not unique. Another choice is

ηε
τi

= 1

ε
η

(
ξ − τi

ε

)
, η(ξ) =

{
e
− 1

1−|ξ |2 if |ξ | < 1,

0 otherwise.
(35)

Such a choice is smooth. When ε is small enough, the domains defined by | ξ−τi
ε | < 1 are also mutually disjoint.

We then have the following proposition.

Proposition 1. For the continuous measure με , we let αi,ε and βi,ε indicate the coefficients in the three-term recurrence formula (3), 
which is valid for both continuous and discrete measures. For the discrete measure μ, we let αi and βi indicate the coefficients in the 
three-term recurrence formula. We then have

lim
ε→0+ αi,ε = αi, lim

ε→0+ βi,ε = βi . (36)

In other words, the monic orthogonal polynomials defined by με will converge to those defined by μ, i.e

lim
ε→0+ Pi,ε(ξ) = Pi(ξ), (37)

where Pi,ε and Pi are monic polynomials of order i corresponding to με and μ, respectively.

Proof. The coefficients αi,ε and βi,ε are given by the formula, see Eq. (9),

αi,ε = (ξ Pi,ε, Pi,ε)με

(Pi,ε, Pi,ε)με

, i = 0,1,2, . . . , (38)

βi,ε = (Pi,ε, Pi,ε)με

(P , P )
, i = 1,2, . . . , (39)
i−1,ε i−1,ε με
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where (·, ·)με indicates the inner product with respect to με . Correspondingly, we have

αi = (ξ Pi, Pi)μ

(Pi, Pi)μ
, i = 0,1,2, . . . , (40)

βi = (Pi, Pi)μ

(Pi−1,i−1)μ
, i = 1,2, . . . . (41)

By definition,

β0,ε = (1,1)με = 1, β0 = (1,1)μ = 1.

The argument is based on induction. We assume that Eq. (37) is true for k = i and k = i − 1. When i = 0, this is trivial. 
To show that Eq. (37) holds for k = i + 1, we only need to prove Eq. (36) for k = i based on the observation that Pi+1,ε =
(ξ − αi,ε)Pi,ε − βi,ε Pi−1,ε . We now show that all inner products in Eqs. (38) and (39) converges to the corresponding inner 
products in Eqs. (40) and (41) as ε → 0+ . We here only consider (Pi,ε, Pi,ε)με and other inner products can be dealt with 
in a similar way. We have

(Pi,ε, Pi,ε)με = (Pi, Pi)με + 2(Pi, Pi,ε − Pi)με + (Pi,ε − Pi, Pi,ε − Pi)με

We then have (Pi, Pi)με → (Pi, Pi)μ due to the definition of με . The second term on the right-hand side can be bounded 
as ∣∣(Pi, Pi,ε − Pi)με

∣∣ ≤ ess sup
ξ

Pi ess sup
ξ

(Pi,ε − Pi)(1,1)με .

According to the assumption that Pi,ε → Pi , the right-hand side of the above inequality goes to zero. Similarly, (Pi,ε −
Pi, Pi,ε − Pi)με goes to zero. We then have (Pi,ε, Pi,ε)με → (Pi, Pi)μ . The conclusion is then achieved by induction. �
Remark 2. Since as ε → 0+ , the orthogonal polynomials defined by με will converge to those defined by μ. The (Gauss) 
quadrature points and weights defined by με should also converge to those defined by μ.

We then recall the following theorem for continuous measures.

Theorem 1. (See [12].) Suppose f ∈ W m+1,∞(Γ ) with Γ = (0, 1)n, and {Bi}Ne
i=1 is a non-overlapping mesh of Γ . Let h indicate the 

maximum side length of each element and QΓ
m a quadrature rule with degree of exactness m in domain Γ . (In other words Qm exactly 

integrates polynomials up to order m.) Let QA
m be the quadrature rule in subset A ⊂ Γ , corresponding to QΓ

m through an affine linear 
mapping. We define a linear functional on W m+1,∞(A):

E A(g) ≡
∫
A

g(ξ)μ(dξ) −QA
m(g), (42)

whose norm in the dual space of W m+1,∞(A) is defined as

‖E A‖m+1,∞,A = sup
‖g‖m+1,∞,A≤1

∣∣E A(g)
∣∣. (43)

Then, the following error estimate holds:∣∣∣∣∣
∫
Γ

f (ξ)μ(dξ) −
Ne∑

i=1

QBi

m f

∣∣∣∣∣ ≤ Chm+1‖EΓ ‖m+1,∞,Γ | f |m+1,∞,Γ (44)

where C is a constant and ‖EΓ ‖m+1,∞,Γ refers to the norm in the dual space of W m+1,∞(Γ ), which is defined in Eq. (43).

For discrete measures, we have the following theorem.

Theorem 2. Suppose the function f satisfies all assumptions required by Theorem 1. We add the following three assumptions for dis-
crete measures: 1) The measure μ can be expressed as a product of n one-dimensional discrete measures, i.e., we consider n independent 
discrete random variables; 2) The quadrature rule QA

m can be generated from the quadrature rules given by the n one-dimensional dis-
crete measures by the tensor product; 3) The number of all the possible values for the discrete measure μ is finite and they are located 
within Γ . We then have∣∣∣∣∣

∫
Γ

f (ξ)μ(dξ) −
Ne∑

i=1

QBi

m f

∣∣∣∣∣ ≤ C N−m−1
es ‖EΓ ‖m+1,∞,Γ | f |m+1,∞,Γ , (45)

where Nes indicates the number of integration elements for each random variable.
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Proof. The argument is based on Theorem 1 and the approximation με of μ. Since we assume that μ is given by n
independent discrete random variables, we can define a continuous approximation (see Eq. (30)) for each one-dimensional 
discrete measure and με can be naturally chosen as the product of these n continuous one-dimensional measures.

We then consider∣∣∣∣∣
∫
Γ

f (ξ)μ(dξ) −
Ne∑

i=1

QBi

m f

∣∣∣∣∣ ≤
∣∣∣∣
∫
Γ

f (ξ)μ(dξ) −
∫
Γ

f (ξ)με(dξ)

∣∣∣∣
+

∣∣∣∣∣
∫
Γ

f (ξ)με(dξ) −
Ne∑

i=1

Qε,Bi

m f

∣∣∣∣∣
+

∣∣∣∣∣
Ne∑

i=1

Qε,Bi

m f −
Ne∑

i=1

QBi

m f

∣∣∣∣∣,
where Qε,Bi

m defines the corresponding quadrature rule for the continuous measure με . Since we assume that the quadrature 
rules Qε,Bi

m and QBi
m can be constructed by n one-dimensional quadrature rules, Qε,Bi

m should converge to Q Bi
m as ε goes to 

zero based on Proposition 1 and the fact that the construction procedure for Qε,Bi
m and QBi

m to have a degree of exactness 
m is measure independent. For the second term on the right-hand side, Theorem 1 can be applied with a well-defined h
because we assume that all possible values for μ are located within Γ , otherwise, this assumption can be achieved by a 
linear mapping. We then have∣∣∣∣∣

∫
Γ

f (ξ)με(dξ) −
Ne∑

i=1

Qε,Bi

m f

∣∣∣∣∣ ≤ Chm+1
∥∥Eε

Γ

∥∥
m+1,∞,Γ

| f |m+1,∞,Γ , (46)

where Eε
Γ is a linear functional defined with respect to με . We then let ε → 0+ . In the error bound given by Eq. (46), only 

‖Eε
Γ ‖m+1,∞,Γ is associated with με . According to its definition and noting that Qε,A

m →QA
m ,

lim
ε→0

Eε
A(g) = lim

ε→0

(∫
A

g(ξ)με(dξ) −Qε,A
m (g)

)
= E A(g),

which is a linear functional with respect to μ. Since με → μ and Qε,Bi
m →QBi

m , the first and third term will go to zero. How-
ever, since we are working with discrete measures, it is not convenient to use the element size. Instead we use the number 
of elements since h ∝ N−1

es , where Nes indicates the number of elements per side. Then the conclusion is reached. �
Remark 3. The h-convergence rate of ME-PCM for discrete measures takes the form O(N−(m+1)

es ). If we employ Gauss quadra-
ture rule with d points, the degree of exactness is m = 2d − 1, which corresponds to a h-convergence rate N−2d

es .

Remark 4. The extra assumptions in Theorem 2 are actually quite practical. In applications, we often consider i.i.d. random 
variables and the commonly used quadrature rules for high-dimensional cases, such as tensor-product rule and sparse grids, 
are obtained from one-dimensional quadrature rules.

3.2. Testing numerical integration with one RV

We now verify the h-convergence rate numerically. We employ the Lanczos method [4] to generate the Gauss quadrature 
points. We then approximate integrals of GENZ functions [15] with respect to the binomial distribution Bino(n = 120, p =
1/2) using ME-PCM. We consider the following one-dimensional GENZ functions:

• GENZ1 function deals with oscillatory integrands:

f1(ξ) = cos(2π w + cξ), (47)

• GENZ4 function deals with Gaussian-like integrands:

f4(ξ) = exp
(−c2(ξ − w)2), (48)

where c and w are constants. Note that both GENZ1 and GENZ4 functions are smooth. In this section, we consider the 
absolute error defined as | ∫S f (ξ)μ(dξ) − ∑d

i=1 f (ξi)wi |, where {ξi} and {wi} (i = 1, ..., d) are d Gauss quadrature points 
and weights with respect to μ, explained in Section 2.6.



M. Zheng et al. / Applied Numerical Mathematics 90 (2015) 91–110 101
Fig. 4. Left: GENZ1 functions with different values of c and w; Right: h-convergence of ME-PCM for function GENZ1. Two Gauss quadrature points, d = 2, 
are employed in each element corresponding to a degree m = 3 of exactness. c = 0.1, w = 1, ξ ∼ Bino(120, 1/2). Lanczos method is employed to compute 
the orthogonal polynomials.

Fig. 5. Left: GENZ4 functions with different values of c and w; Right: h-convergence of ME-PCM for function GENZ4. Two Gauss quadrature points, d = 2, 
are employed in each element corresponding to a degree m = 3 of exactness. c = 0.1, w = 1, ξ ∼ Bino(120, 1/2). Lanczos method is employed for numerical 
orthogonality.

In Figs. 4 and 5, we plot the h-convergence behavior of ME-PCM for GENZ1 and GENZ4 functions, respectively. In each 
element, two Gauss quadrature points are employed, corresponding to a degree 3 of exactness, which means that the 
h-convergence rate should be N−4

es . In Figs. 4 and 5, we see that when Nes is large enough, the h-convergence rate of 
ME-PCM approaches the theoretical prediction, demonstrated by the reference straight lines C N−4

es .

3.3. Testing numerical integration with multiple RVs on sparse grids

An interesting question is if the sparse grid approach is as effective for discrete measures as it is for continuous mea-
sures [27], and how that compares to the tensor product grids. Let us denote the sparse grid level by k and the dimension 
by n. Assume that each random dimension is independent. We apply the Smolyak algorithm [23,20,21] to construct sparse 
grids, i.e.,

A(k + n,n) =
∑

k+1≤|i|≤k+n

(−1)k+n−|i|
(

n − 1
k + n − |i|

)(
U i1 ⊗ ... ⊗ U in

)
, (49)

where A(k + n, n) defines a cubature formula with respect to the n-dimensional discrete measure and U i j defines the 
quadrature rule of i-th level for the j-th dimension [27].
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Fig. 6. Non-nested sparse grid points with respect to sparseness parameter k = 3, 4, 5, 6 for random variables ξ1, ξ2 ∼ Bino(10, 1/2), where the one-
dimensional quadrature formula is based on Gauss quadrature rule.

We use Gauss quadrature rule to define U i j , which implies that the grids at different levels are not necessarily nested. 
Two-dimensional non-nested sparse grid points are plotted in Fig. 6, where each dimension has the same discrete measure 
as binomial distribution Bino(10, 1/2). We then use sparse grids to approximate the integration of the following two GENZ 
functions with M RVs [15]:

• GENZ1

f1(ξ1, ξ2, ..., ξM) = cos

(
2π w1 +

M∑
i=1

ciξi

)
(50)

• GENZ4

f4(ξ1, ξ2, ..., ξM) = exp

[
−

M∑
i=1

c2
i (ξi − wi)

2

]
(51)

where ci and wi are constants. We compute E[ f i(ξ1, ξ2, ..., ξM)] under the assumption that {ξi, i = 1, ..., M} are M inde-
pendent identically distributed (i.i.d.) random variables. The absolute errors versus the total number of sparse grid points 
r(k) with k being the sparse grid level, are plotted in Figs. 7 and 8, for two RVs and eight RVs respectively. We see that the 
sparse grids for discrete measures work well for smooth GENZ1 and GENZ4 functions, and the convergence rate is much 
faster than the Monte Carlo simulations with a convergence rate O(r(k)−1/2). In low dimensions, it is known that integration 
on sparse grids converges slower than on tensor product grids [27] for continuous measures based on numerical tests. We 
observe the same trend in Fig. 7 for discrete measures. The error line from the tensor product grid has a slight up bending 
at its tail because the error is near the machine error (1E − 16). In higher dimensions sparse grids are more efficient than 
tensor product grids as in Fig. 8 for discrete measures. In Section 4.2.3, we will obtain the numerical solution of the KdV 
equation with eight RVs, where sparse grids are also more accurate than tensor product grids.
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Fig. 7. Convergence of sparse grids and tensor product grids to approximate E[ f i(ξ1, ξ2)], where ξ1 and ξ2 are two i.i.d. random variables associated with a 
distribution Bino(10, 1/2). Left: f1 is GENZ1; Right: f4 is GENZ4. Orthogonal polynomials are generated by Lanczos method.

Fig. 8. Convergence of sparse grids and tensor product grids to approximate E[ f i(ξ1, ξ2, ..., ξ8)], where ξ1, ..., ξ8 are eight i.i.d. random variables associated 
with a distribution Bino(10, 1/2). Left: f1 is GENZ1; Right: f4 is GENZ4. Orthogonal polynomials are generated by Lanczos method.

4. Application to stochastic reaction equation and KdV equation

For numerical experiments on SPDEs, we choose one method among Nowak, Stieltjes, Fischer, and Lanczos methods to 
generate orthogonal polynomials, in order to calculate the moment statistics by Gaussian quadrature rule associated with 
the discrete measure. Other methods will provide identical results.

4.1. Reaction equation with discrete random coefficients

We first consider the reaction equation with a random coefficient:

dy(t; ξ)

dt
= −ξ y(t; ξ), (52)

with initial condition

y(0; ξ) = y0, (53)

where ξ is a random coefficient. Let us define the error of mean and variance of the solution to be

εmean(t) =
∣∣∣∣EPCM[y(t)] −Eexact[y(t)] ∣∣∣∣, (54)
Eexact[y(t)]



104 M. Zheng et al. / Applied Numerical Mathematics 90 (2015) 91–110
Fig. 9. p-Convergence of PCM with respect to errors defined in Eqs. (54) and (55) for the reaction equation with t = 1, y0 = 1. ξ is associated with negative 
binomial distribution with c = 1

2 and β = 1. Orthogonal polynomials are generated by the Stieltjes method.

and

εvar(t) =
∣∣∣∣VarPCM[y(t)] − Varexact[y(t)]

Varexact[y(t)]
∣∣∣∣. (55)

The exact value of the m-th moment of the solution is:

E
[

ym(t; ξ)
] = E

[(
y0e−ξt)m]

. (56)

The error defined in Eqs. (54) and (55) of solution for Eq. (52) has been considered in the literature by gPC [28]
with Wiener–Askey polynomials [2] with respect to discrete measures. Here instead of using hypergeometric polynomi-
als in the Wiener–Askey scheme, we solve Eq. (52) by PCM with collocation points generated by the Stieltjes method. The 
p-convergence is demonstrated in Fig. 9 for the negative binomial distribution with β = 1, c = 1

2 . We observe spectral con-
vergence by polynomial chaos with orthogonal polynomials generated by the Stieltjes method, and the method is accurate 
up to order 15 here.

4.2. KdV equation with random forcing

We subsequently consider the KdV equation subject to stochastic forcing:

ut + 6uux + uxxx = σξ, x ∈R, (57)

with initial condition:

u(x,0) = a

2
sech2

(√
a

2
(x − x0)

)
, (58)

where a is associated with the speed of the soliton, x0 is the initial position of the soliton, and σ is a constant that scales 
the variance of the random variable (RV) ξ . The m-th moment of the solution is:

E
[
um(x, t; ξ)

] = E

[(
a

2
sech2

(√
a

2

(
x − 3σξt2 − x0 − at

)) + σξt

)m]
. (59)

Derivation of the exact solution and verification of the accuracy of the deterministic solver are presented in Appendix A.
To examine the convergence of ME-PCM, we define the following normalized L2 errors for the mean and the second-

moment as:

l2u1 =
√∫

dx(E[unum(x, t; ξ)] −E[uex(x, t; ξ)])2√∫
dx(E[uex(x, t; ξ)])2

, (60)

l2u2 =
√∫

dx(E[u2
num(x, t; ξ)] −E[u2

ex(x, t; ξ)])2√∫
dx(E[u2

ex(x, t; ξ)])2
, (61)

where unum and uex indicate the numerical and exact solutions, respectively.
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Fig. 10. p-convergence of PCM with respect to errors defined in Eqs. (60) and (61) for the KdV equation with t = 1. a = 1, x0 = −5 and σ = 0.2, with 200
Fourier collocation points on the spatial domain [−30, 30]. Left: ξ ∼ Pois(10); Right: ξ ∼ Bino(n = 5, p = 1/2). aPC stands for arbitrary Polynomial Chaos, 
which is Polynomial Chaos with respect to arbitrary measure. Orthogonal polynomials are generated by Fischer’s method.

Fig. 11. h-convergence of ME-PCM with respect to errors defined in Eqs. (60) and (61) for the KdV equation with t = 1.05, a = 1, x0 = −5, σ = 0.2, 
and ξ ∼ Bino(n = 120, p = 1/2), with 200 Fourier collocation points on the spatial domain [−30, 30], where two collocation points are employed in each 
element. Orthogonal polynomials are generated by the Fischer method (left) and the Stieltjes method (right).

We solve Eq. (57) by PCM with collocation points generated by Fischer’s method. The p-convergence is demonstrated in 
Fig. 10 for distributions Pois(10) and Bino(n = 5, p = 1/2), respectively, with respect to errors defined in Eqs. (60) and (61).
For the h-convergence of ME-PCM we examine the distribution Bino(n = 120, p = 1/2), where each element contains the 
same number of discrete data points. Furthermore, in each element we employ two Gauss quadrature points for the gPC 
approximation. We see in Fig. 11 that the desired h-convergence rate N−4

es is obtained for both Stieltjes and Fischer method. 
We note that all five methods exhibit the same convergence rate and the same error level except the Fischer method, which 
exhibits errors by two orders of magnitude larger. To explain this, we refer to Fig. 1, which shows that if the number of 
points is large, the orthogonality condition in Fischer’s method suffers from the round-off errors.

We now consider the adaptive ME-PCM, where the local variance criterion for adaptivity is employed (see Appendix B
for more details). A five-element adaptive decomposition of the parametric space for the distribution ξ ∼ Pois(40) is given 
in Fig. 12. We see that in the region of small probability, the element size is large while in the region of high probabil-
ity, the element size is much smaller. We then examine the effectiveness of adaptivity. Consider a uniform mesh and an 
adapted one, which have the same number of elements and the same number of collocation points within each element. In 
Fig. 13, we plot the p-convergence behavior of ME-PCM given by the uniform and adapted meshes. We see that although 
both meshes yield exponential convergence, the adapted mesh results in a better accuracy especially when the number of 
elements is relatively small. In other words, for a certain accuracy, the adapted ME-PCM can be more efficient than ME-PCM 
on a uniform mesh.
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Fig. 12. Adapted mesh with five elements with respect to Pois(40) distribution.

Fig. 13. p-convergence of ME-PCM on a uniform mesh and an adapted mesh with respect to errors defined in Eqs. (60) and (61) for the KdV equation with 
t = 1, a = 1, x0 = −5, σ = 0.2, and ξ ∼ Pois(40), with 200 Fourier collocation points on the spatial domain [−30, 30]. Left: Errors of the mean. Right: Errors 
of the second moment. Orthogonal polynomials are generated by the Nowak method.

4.2.1. Stochastic excitation given by two discrete RVs
We now use sparse grids to study the KdV equation subject to stochastic excitation:

ut + 6uux + uxxx = σ1ξ1 + σ2ξ2, x ∈R, (62)

with the same initial condition given by Eq. (58), where ξ1 and ξ2 are two i.i.d. random variables associated with a discrete 
measure.

In Fig. 14, we plot the convergence behavior of sparse grids and tensor product grids for problem (62), where the discrete 
measure is chosen as Bino(10, 1/2). We see that with respect to the total number r(k) collocation points an algebraic-like 
convergence is obtained with the rate slower than tensor product grid with respect to the total number of PCM collocation 
points, in lower dimension, consistent with the results in Fig. 7. Specifically the error line for l2u1 and l2u2 become flat 
mainly due to the fact that the numerical errors from spatial discretization and temporal integration for the deterministic 
KdV equation become dominant when r(k) is relatively large.

4.2.2. Stochastic excitation given by a discrete RV and a continuous RV
We still consider Eq. (62), where we only require the independence between ξ1 and ξ2, and assume that ξ1 ∼

Bino(10, 1/2) is a discrete RV and ξ2 ∼N (0, 1) is a continuous RV.
In Fig. 15, we plot the convergence behavior of sparse grids and tensor product grids for the KdV equation subject to 

hybrid (discrete/continuous) random inputs. Similar phenomena are observed as in the previous case where both RVs are 
discrete. An algebraic-like convergence rate with respect to the total number of grid points is obtained, which is slower than 
convergence from PCM on tensor product grids in lower dimension, in agreement with the results in Fig. 7. This numerical 
example demonstrates that the sparse grids approach can be applied to deal with hybrid (discrete/continuous) random 
inputs when the solution is smooth enough.



M. Zheng et al. / Applied Numerical Mathematics 90 (2015) 91–110 107
Fig. 14. ξ1, ξ2 ∼ Bino(10, 1/2): convergence of sparse grids and tensor product grids with respect to errors defined in Eqs. (60) and (61) for problem (62), 
where t = 1, a = 1, x0 = −5, and σ1 = σ2 = 0.2, with 200 Fourier collocation points on the spatial domain [−30, 30]. Orthogonal polynomials are generated 
by the Lanczos method.

Fig. 15. ξ1 ∼ Bino(10, 1/2) and ξ2 ∼ N (0, 1): convergence of sparse grids and tensor product grids with respect to errors defined in Eqs. (60) and (61) for 
problem (62), where t = 1, a = 1, x0 = −5, and σ1 = σ2 = 0.2, with 200 Fourier collocation points on the spatial domain [−30, 30]. Orthogonal polynomials 
are generated by Lanczos method.

4.2.3. Stochastic excitation given by eight discrete RVs
We finally examine a higher-dimensional case:

ut + 6uux + uxxx =
8∑

i=1

σiξi, x ∈R (63)

with the initial condition given in Eq. (58), where the stochastic excitation is subject to eight i.i.d. discrete RVs of the same 
Binomial distribution Bino(5, 1/2).

We plot the convergence behavior of sparse grids and tensor product grids for problem (63) in Fig. 16. We see that as 
the number of dimensions increases, the rate of algebraic-like convergence from PCM with sparse grids and tensor product 
grids both becomes slower. However, with higher dimensional randomness, the sparse grids outperform the tensor product 
grids in terms of accuracy.

5. Summary

In this work we presented a multi-element probabilistic collocation method (ME-PCM) for discrete measures, where we 
focus on the h-convergence with respect to the number of elements and the convergence behavior of the associated sparse 
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Fig. 16. Convergence of sparse grids and tensor product grids with respect to errors defined in Eqs. (60) and (61) for problem (63), where t = 0.5, a = 0.5, 
x0 = −5, σi = 0.1 and ξi ∼ Bino(5, 1/2), i = 1, 2, ..., 8, with 300 Fourier collocation points on the spatial domain [−50, 50]. Orthogonal polynomials are 
generated by Lanczos method.

grids based on the one-dimensional Gauss quadrature rule. We first compared five methods of constructing orthogonal 
polynomials for discrete measures. From numerical experiments in Section 2.7, we conclude that the Stieltjes, Modified 
Chebyshev, and Lanczos methods generate polynomials that exhibit the best orthogonality among the five methods. For 
computational cost, we conclude that Stieltjes method has the least computational cost in the case that we have examined.

The relation between h-convergence and the degree of exactness given by a certain quadrature rule was discussed for 
ME-PCM with respect to discrete measures. The h-convergence rate O(N−(m+1)

es ) was demonstrated numerically by perform-
ing numerical integration of GENZ functions. For moderate-dimensional discrete random inputs, we have demonstrated that 
non-nested sparse grids based on the Gauss quadrature rule can also be effective. In lower dimensions, PCM on sparse grids 
is less efficient than on tensor product grids in integration of GENZ functions, however in higher dimensions, sparse grids 
are more efficient than tensor product grids. In particular, it appears that the convergence behavior is not sensitive to hybrid 
(discrete/continuous) random inputs.

We have also considered the numerical solution of the reaction equation and the KdV equation subject to stochastic 
excitation. For the one-dimensional discrete random inputs, we have demonstrated the h- and p-convergence of ME-PCM. 
In particular, an adaptive procedure was established using the local variance criterion.

In this work, we focus on the convergence behavior of ME-PCM for arbitrary discrete measures by performing numerical 
experiments on given random variables. In the future, we would like to generalize and apply our algorithms to study 
stochastic problems associated with discrete random processes, such as discrete Levy processes.
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Appendix A. KdV solver

A.1. Derivation of Eq. (59) with stochastic transformation

The exact solution for the m-th moment of solution can be performed by a simple stochastic transformation:

W (t;ω) =
t∫

0

σξdτ = σξt, (A.1)

U (x, t;ω) = u(x, t) − W (t;ω) = u(x, t) − σξt, (A.2)

X = x − 6

t∫
0

W (τ ;ω)dτ = x − 3σξt2, (A.3)

such that
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Fig. 17. Left: exact solution of the KdV equation (A.6) at time t = 0,1. Right: the pointwise error for the soliton at time t = 1.

∂U

∂t
+ 6U

∂U

∂ X
+ ∂3U

∂ X3
= 0, (A.4)

which has an exact solution

U (X, t) = a

2
sech2

(√
a

2
(X − x0 − at)

)
. (A.5)

A.2. Numerical solver for the deterministic KdV equation

On each collocation point for the RV ξ we run a deterministic solver of the KdV equation with the Fourier-collocation 
discretization in physical space, and time splitting scheme like this: we first compute third-order Adams–Bashforth scheme 
for 6uux term and then Crank–Nicolson scheme for uxxx in time. We test the accuracy of the deterministic solver using the 
following problem:

ut + 6uux + uxxx = 1 (A.6)

with the initial condition:

u(x,0) = a

2
sech2

(√
a

2
(x − x0)

)
, (A.7)

where a = 0.3, x0 = −5, and t = 1, and the time step is 1.25 × 10−5. For the spatial discretization, we use 300 Fourier 
collocation points on an interval [−50, 50]. The point-wise numerical error is plotted in Fig. 17.

Appendix B. Local variance criterion

Here we explain the local variance criterion that we adopted for the adaptive ME-PCM. First, let us define the local 
variance. For any RV ξ with a probability measure μ(dξ) on the parametric space ξ ∈ Γ , we consider a decomposition of 
Γ = ⋃Ne

i Bi such that Bi ∩ B j = ∅, ∀i �= j. On the element Bi , we can calculate the local variance σ 2
i with respect to the 

associated conditional measure as μ(dξ)/ 
∫

Bi
μ(dξ). We then consider an adaptive decomposition of the parametric space 

for ME-PCM such that the quantity σ 2
i Pr(ξ ∈ Bi) in each element is nearly uniform. Here for the numerical experiments in 

Fig. 12, we typically minimized the quantity 
∑Ne

i=1 σ 2
i Pr(ξ ∈ Bi). In other words, given a discrete measure and number of 

elements Ne , we try all possible {Bi, i = 1..Ne} to divide Γ until the sum 
∑Ne

i=1 σ 2
i Pr(ξ ∈ Bi) is minimized. We found that 

the size of the element is balanced by the local oscillations and the probability of ξ ∈ Bi (see more details in [12]).
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