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Stochastic spectral methods are numerical techniques for approximating solutions to par-
tial differential equations with random parameters. In this work, we present and examine
the multi-element probabilistic collocation method (ME-PCM), which is a generalized form
of the probabilistic collocation method. In the ME-PCM, the parametric space is discretized
and a collocation/cubature grid is prescribed on each element. Both full and sparse tensor
product grids based on Gauss and Clenshaw-Curtis quadrature rules are considered. We
prove analytically and observe in numerical tests that as the parameter space mesh is
refined, the convergence rate of the solution depends on the quadrature rule of each
element only through its degree of exactness. In addition, the L2 error of the tensor product
interpolant is examined and an adaptivity algorithm is provided. Numerical examples
demonstrating adaptive ME-PCM are shown, including low-regularity problems and
long-time integration. We test the ME-PCM on two-dimensional Navier-Stokes examples
and a stochastic diffusion problem with various random input distributions and up to 50
dimensions. While the convergence rate of ME-PCM deteriorates in 50 dimensions, the
error in the mean and variance is two orders of magnitude lower than the error obtained
with the Monte Carlo method using only a small number of samples (e.g., 100). The
computational cost of ME-PCM is found to be favorable when compared to the cost of
other methods including stochastic Galerkin, Monte Carlo and quasi-random sequence
methods.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Problems with parametric uncertainty arise in various applications from engineering, biology, and many other fields. This
uncertainty may be due to either the random nature of the quantity being modeled or a lack of information about the true
value of the parameter. In this paper we concentrate on a class of methods designed to calculate the moment statistics of
solutions to PDE/ODE systems with parametric uncertainty. Our work builds heavily upon previous contributions to the
field of stochastic numerical methods, which include the generalized polynomial chaos method (gPC), multi-element gener-
alized polynomial chaos method (ME-gPC), probabilistic collocation method (PCM), and many other variants (see, e.g., [1–13]
and references therein).

Calculation of moment statistics can essentially be described as a high-dimensional integration problem, where the
dimensionality refers to the cardinality of random dimensions. For this reason, problems with large random dimension suffer
from the same computational challenges in this field as in the field of high-dimensional numerical integration. Advances
such as the use of sparse grid techniques ([2,14,15]) for numerical integration have greatly alleviated this problem, but such
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techniques rely upon the essential regularity of the solution in parameter space. Thus, systems with discontinuous
dependence on random parameters cause difficulties for the convergence of these methods. As a result, these problems still
require prohibitively large computational resources. It is worthwhile noting that currently for problems with very large
dimension (P100), traditional Monte Carlo (MC) methods are more attractive than any method in this class because of their
favorable scaling with increasing dimension. In this work, however, we restrict ourselves to problems of moderate dimen-
sion, where large improvements in cost can be made relative to the cost of MC.

As mentioned before, many variations have been introduced to improve the efficiency of stochastic numerical methods
including sparse grid collocation, anisotropic sparse grid collocation [16], as well as sparse polynomial bases [9] and wavelet
expansions [17] for the Galerkin formulation. A multi-element formulation for the stochastic Galerkin method was proposed
in [1]. This method was then generalized in [18] to deal with arbitrary probability distributions with the numerical construc-
tion of generalized polynomial chaos bases on the fly. This approach, called the multi-element generalized polynomial chaos
(ME-gPC) method was found to effectively deal with problems exhibiting low regularity in parametric space as well as for
long-time integration [18]. However, as with most Galerkin methods, high random dimension often necessitates a prohib-
itively large number of basis functions in nonlinear problems. In addition, the ME-gPC method requires derivation of a new
numerical scheme and solver to deal with nonlinear problems.

In this paper we introduce a multi-element probabilistic collocation method (ME-PCM) which is an extension of the prob-
abilistic collocation method, which was first introduced in [11], and later explored in [3,12]. The method we propose offers
the advantages of domain decomposition in parametric space, similar to the ME-gPC method, and also the computational ease
of sampling-based methods. In particular, we note that using the ME-PCM requires only a wrapper around a deterministic
solver of the ODE/PDE for each sample calculation. Thus, nonlinear problems are significantly easier to compute using the
ME-PCM instead of the ME-gPC method. We are interested in setting the theoretical foundations of the method and in
answering some practical questions about the usage of the ME-PCM. Specifically, we would like to study how the choice
of an integration/approximation rule in each element affects the h-convergence rate of the solution (here, h-convergence re-
fers to the refinement of elements in the parametric space). We are also interested in analyzing how this method compares
to pre�existing methods in terms of computational cost for difficult problems with low regularity in parametric space, and
how well it fares in long-time integration problems.

In Section 2 the general framework and model problem are discussed. As the reader will see, most of the error analysis is
confined within the context of the stochastic diffusion problem which is presented as an example in this section. However,
many non-elliptic problems are addressed in the examples section, so a fairly general model problem formulation is main-
tained here to discuss the method. Also in this section we will introduce assumptions on the random input that are essential
for ME-PCM as well as for the other methods we have discussed so far. In Section 3 ME-PCM is introduced, with two options
presented for the choice of an integration/approximation rule in each element. Section 4 contains error analysis of ME-PCM
and is divided into two main parts. The first of these addresses the error in moments of the solution or numerical integration
error. Here, we show that the choice of integration rule affects the convergence rate only through its degree of polynomial
exactness. In the second part we investigate the L2 error of the ME-PCM approximant by building upon the previously pub-
lished error analysis for the PCM method in [12] and [15]. In Section 5, numerical examples using ME-PCM for various prob-
lems are shown. We numerically verify the findings in Section 4 regarding the h-convergence rate of moment errors using
simple numerical integration examples, ODEs and some two dimensional Navier-Stokes problems. We investigate the effec-
tiveness of the adaptive ME-PCM on a problem with low regularity in parametric space space and make some comparison
studies of computational costs with other methods. In the last example we solve a 50-dimensional stochastic diffusion prob-
lem with the ME-PCM and study the h-convergence of the method using an a priori adapted mesh. Finally, in the appendices
we include details of the proofs of theorems presented in the main text as well as a short review of material on sparse grids
and on adaptivity criteria.
2. Formulation

Let ðX;F ; PÞ be a complete probability space, where X is the space of events, F � 2X is the r-algebra of sets in X, and P is
the probability measure. Also, define D to be a subset of Rdðd 2 f1;2;3gÞwith boundary oD. Let L and B be operators on D and
oD, respectively, where Lmay depend upon x 2 X. In this work we consider the following problem: find u : X� D! R such
that P-almost everywhere (a.e.) in X the following equation holds:
Lðx;x; uÞ ¼ f ðx;xÞ; x 2 D;

Bðx; uÞ ¼ gðxÞ; x 2 oD:

�
ð1Þ
We assume that the boundary has sufficient regularity and that f and g are imposed so that the problem is well-posed P-a.e.
We also assume that for P-a.e. x 2 X, the solution uð�;xÞ takes values in a Banach space,WðDÞ, of functions over the physical
domain taking values in R. The main goal of the ME-PCM, like other methods of its class, is to approximate the moment sta-
tistics of the solution of this problem.

In order to apply the methods that will be discussed later, the random dependence of operators L and f must satisfy a few
important properties. The first requirement, commonly known as a ‘‘finite dimensional noise assumption” [3,12], is that the
random input can be represented with a finite-dimensional probability space. More specifically, the random input can be
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represented by a finite set of random variables fY1ðxÞ;Y2ðxÞ; . . . ;YNðxÞg, with a known joint density function q. With this
assumption on the random input, the problem (1) can be restated as follows. Find u : X� D! R such that
Lðx;Y1ðxÞ;Y2ðxÞ; . . . ; YNðxÞ; uÞ ¼ f ðx; Y1ðxÞ; Y2ðxÞ; . . . ;YNðxÞÞ
holds 8x 2 D and for P-a.e. x 2 X, with corresponding boundary conditions. Using the Doob-Dynkin lemma [19] we can as-
sert that the solution uðx;xÞ can be written as uðx;YðxÞÞwith Y ¼ ðY1;Y2; . . . ;YNÞ. Then, the problem may be recast from the
space X into the target space of the N random variables. Let y ¼ ðy1; y2; . . . ; yNÞ 2 C �

QN
j¼1Cj, where Cj is the image of YjðXÞ

for j ¼ 1; . . . ;N. Let qðyÞ be the probability density function (PDF) of Y . The problem can be restated: find u : C� D! R such
that q-almost everywhere for y 2 C the following equation holds:
Lðx; y; uÞ ¼ f ðx; yÞ; x 2 D;

Bðx;uÞ ¼ gðxÞ; x 2 oD:

�
ð2Þ
Thus, the original problem (1) is recast as a fully deterministic problem in Eq. (2). It is sometimes useful to think of the
solution u as a function on C, taking values in a proper Banach space WðDÞ. In this case we would denote uðyÞ to be the
Banach-valued solution to the problem for a particular y 2 C. Although numerical examples will be shown later in Section
5 for various differential operators L, most of the error analysis presented in Section 4 will be confined to the following
prototype elliptic problem.

2.1. A model problem: elliptic problem with stochastic input

We consider the following stochastic linear boundary value problem: find a stochastic function, u : X� D! R, such that
the following equation holds P-a.e:
�r � ðaðx; xÞruðx;xÞÞ ¼ f ðxÞ in D;

uðx;xÞ ¼ 0 on oD;

�
ð3Þ
where f ðxÞ is assumed to be deterministic for simplicity and aðx;xÞ is a second-order random process satisfying the follow-
ing assumption:

Assumption 1. Let aðx;xÞ 2 L1ðD; XÞ be strictly positive with lower and upper bounds amin and amax, respectively,
0 < amin < amax and Pðaðx;xÞ 2 ½amin; amax�;8x 2 DÞ ¼ 1:
Under this assumption, the problem has a unique solution u such that uð�;xÞ takes realizations in the space
WðDÞ ¼ H1

0ðDÞ, P-a.e. in X. We can approximate aðx;xÞ using a truncated Karhunen–Loève (K–L) expansion:
aNðx;xÞ ¼ E½a�ðxÞ þ
XN

j¼1

ffiffiffiffi
kj

p
/jðxÞYjðxÞ; ð4Þ
where fYjgN
j¼1 are mutually uncorrelated random variables with zero mean and unit variance [7,8,20]. The eigenpairs

fkj;/jg
N
j¼1 satisfy
Z

D
Raaðx; yÞ/iðxÞdx ¼ ki/iðyÞ; ð5Þ
where Raa is the covariance kernel of a. The use of this truncated approximation for aðx;xÞ guarantees that the finite dimen-
sional noise assumption is satisfied. For simplicity we make the additional assumption that Yi are independent so that the
density function qðyÞ ¼

QN
j¼1qjðyjÞ, where qj is the density function of each Yj.

3. ME-PCM method

In this section we describe the multi-element probabilistic collocation method (ME-PCM). The main idea of ME-PCM is to
discretize the space C (which is assumed to be bounded) into non-overlapping elements and perform the standard proba-
bilistic collocation method on each element. This yields approximate local moment statistics in each element, which can
then be assembled to obtain global statistics. Key considerations arising in practice include finding suitable mesh discreti-
zations, choice of collocation points, and adaptive mesh refinement. In the interest of uniformity, we adopt many of the same
notations used in the works of [12] and [15] on the probabilistic collocation method in our description of the ME-PCM
extension.

3.1. Spatial discretization

The method involves first discretizing the problem (2) in the physical space D using a standard finite or spectral element
solver to obtain the deterministic semidiscrete solution. Let us define WkðDÞ to be a standard solution subspace of WðDÞ
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(e.g., finite/spectral element space), containing piecewise polynomials defined on regular mesh T k;D of D with maximum
mesh spacing parameter k. Define the deterministic semidiscrete solution ukðyÞ � pkuðyÞ 2 WkðDÞ to be the finite/spectral
element ([21,22]) approximate solution of the deterministic problem (2) for each y 2 C, where pk is the finite/spectral ele-
ment projection operator. Thus, uk : C!WkðDÞ. We assume that the discretization in physical space satisfies the usual con-
vergence property:
kuðyÞ � ukðyÞkWðDÞ 6 CðuðyÞ; lÞkl
; 8y 2 C; ð6Þ
where l is a positive number dependent on the regularity of uðyÞ in D. In the case of the example problem (3), we have:
kuðyÞ � ukðyÞkH1
0ðDÞ
6 CklkuðyÞkHlþ1ðDÞ; 8y 2 C: ð7Þ
3.2. Stochastic discretization

The next step is to discretize the parametric space C into a nonoverlapping mesh of open hypercubes. We begin by defin-
ing fBigNe

i¼1 to be a finite collection of open subsets of C such that
SNe

i¼1Bi ¼ C and Bi \ Bj ¼ ;whenever i 6¼ j. We will assume for
simplicity that the Bi are rectangular (i.e., Bi ¼

QN
j¼1Bi

j, where Bi
j � Cj). These sets will be referred to as ‘elements’ of a mesh on

the parametric space C, and thus Ne refers to the number of elements in a particular mesh discretization. Let us denote a
particular mesh discretization of C as T h;C, where h refers to the maximum mesh spacing parameter. Once a mesh is pre-
scribed, a set of collocation points fqi

jg
r
j¼1 is prescribed in each element Bi, where r refers to the number of points used. These

points are usually chosen to coincide with the points of an cubature rule on Bi with integration weights fwi
jg

r
j¼1. In this work,

we consider full tensor products of Gauss quadrature points and sparse grids (see Sections A.1 and A.1.1 the appendix for
details).

The semidiscrete solution uk is then collocated on the set of points
SNe

i¼1

Sr
j¼1fqi

jg. In other words, at each of these points qi
j

we find the finite/spectral element solution of the deterministic problem:
Lðx;qi
j; uÞ ¼ f ðx; qi

jÞ; x 2 D

Bðx;uÞ ¼ gðxÞ; x 2 oD:

(
ð8Þ
This approximate solution is denoted by ukð�;qi
jÞ : C7!WkðDÞ. We are then interested in constructing a fully discrete approx-

imant IBi ukðx; yÞ using the set of solutions fukð�;qi
jÞg

r
j¼1 over each element Bi. For example, the operator IBi can be chosen to

be the tensor product Lagrangian interpolant, i.e.,
IBi ukðx; yÞ � Lp
Bi ukðx; yÞ ¼

Xr

j¼1

ukðx; qi
jÞl

i
jðyÞ; ð9Þ
where li
jðyÞ is the Lagrange polynomial corresponding to the point qi

j and p determines the degree of the interpolant in each
dimension. The operator Lp

Bi is defined and described in more depth in the appendix, Section A.1.
Another choice for the operator IBi is the isotropic Smolyak sparse grid operator SBi ðsÞ, which was introduced in [23] by

Smolyak. Here, the sparseness parameter s controls the order of the approximant. The construction and details of this operator
are also given in the appendix, Section A.1.1.

We now define the global approximant:
~uðx; yÞ ¼
XNe

i¼1

IBi ukðx; yÞIfy2Big 8x 2 D; 8y 2 C
where Iy2A denotes the characteristic function of set A.
We subsequently consider the computation of statistics and define the conditional probability density function in each

element:
giðyÞ ¼ qðyÞR
Bi qðyÞdy

: ð10Þ
We assume that the density function is in tensor product form qðyÞ ¼
QN

j¼1qjðyjÞ, so this property is inherited by the local
density giðyÞ ¼

QN
j¼1gjðyjÞ. The local mean of a function v : D� Bi ! R in an element i is given by:
Ei½vðx; �Þ� ¼ E½vðx; �ÞjYðxÞ 2 Bi� ¼
Z

Bi
vðx; yÞgiðyÞdy:
Using the cubature rule over each element, we can easily compute the approximate local mean of ~u as
Ei
a½~u�ðxÞ ¼

Xr

j¼1

ukðx;qi
jÞwi

j � Ei½~u�ðxÞ:
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Here we use the notation Ei
a to denote the expected value approximation operator using numerical quadrature. Note that Ei

a

is defined through the particular choice of mesh and collocation grids for any given ME-PCM procedure. Finally, the approx-
imate global mean can be assembled from the local means via Bayes’ formula
Ea½~u�ðxÞ �
XNe

i¼1

Ei
a½~u�ðxÞPðYðxÞ 2 BiÞ � E½~u�ðxÞ: ð11Þ
Other statistics can be computed by the same procedure. For example, we can compute the energy norm in physical space of
the MEPCM solution ~u at each collocation point. Then, using quadrature we can compute the mean of the energy norm of the
solution:
Ea½k~ukWðDÞ� �
XNe

i¼1

Xr

j¼1

kukð�; qi
jÞkWðDÞwi

j

 !
PðYðxÞ 2 BiÞ � E½k~ukWðDÞ�: ð12Þ
Recall that r denotes the number of collocation points in each element.

Remark 2. If the PDF qðyÞ is uniform, grids in each element can be obtained by an affine mapping from a reference element.
Otherwise, grids are, in general, element-dependent, since giðyÞ are different in each element when the parametric space C is
decomposed. We refer the reader to [4] for more details on constructing a local GPC bases orthogonal with respect to the
conditional PDF.

Remark 3 Adaptivity. Adaptive mesh refinement is necessary when the solution has low regularity in the parametric space
C. The adaptive procedure developed in [4,18] for the ME-gPC method can be employed directly for ME-PCM. The key idea of
adaptive criterion in [4,18] is to refine an element in the parametric space when the decay of the coefficients in the chaos
expansion is relatively slow, see Section A.4 in the appendix. We note that IBi ukðx; yÞ corresponds to a unique polynomial
chaos expansion and all the local statistics used in the adaptive criterion can be computed easily by the collocation solution.
It is only necessary to project the collocation solution onto the highest modes of the basis to evaluate the adaptivity criterion.
General adaptive formulas for sparse grids have been developed in [24].
4. Error analysis

In this section, we present come convergence results of ME-PCM, in particular, we focus on the model problem (3).

4.1. Moments error

We first examine the relation between h-convergence rate of ME-PCM and the degree of exactness of cubature rules. We
begin by defining two standard norms. For a function f : A! R, we consider the Sobolev space Wm;1ðAÞ with the norm:
kfkm;1;A ¼max
jaj6m

ess supx2AjD
af ðxÞj
and the seminorm:
jf jm;1;A ¼max
jaj¼m

ess supx2AjDaf ðxÞj;
where A � RN , a 2 NN
0 , jaj ¼ a1 þ � � � þ aN and m 2 N0.

In this section we assume that the density function qðyÞ is uniform for convenience in analysis. Then, a general h-conver-
gence rate of ME-PCM is given by the following theorem:

Theorem 4. Suppose f 2Wmþ1;1ðCÞ with C ¼ ð0;1ÞN, and fBigNe
i¼1 is a nonoverlapping mesh of C. Let h indicate the maximum

side length of each element and QC
m a quadrature rule with degree of exactness m in domain C. (In other words Qm exactly

integrates polynomials up to order m). LetQA
m be the quadrature rule in subset A � C, corresponding toQC

m through an affine linear
mapping. We define a linear functional on Wmþ1;1ðAÞ:
EAðgÞ �
Z

A
gðxÞdx�QA

mðgÞ ð13Þ
whose norm is defined as
kEAkk;1;A ¼ sup
kgkk;1;A61

jEAðgÞj: ð14Þ
Then the following error estimate holds:
Z
C

f ðxÞdx�
XNe

i¼1

QBi

mf

�����
����� 6 Chmþ1kECkmþ1;1;Cjf jmþ1;1;C ð15Þ
where C is a constant and kECkmþ1;1;C refers to the norm in the dual space of Wmþ1;1ðCÞ.
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Proof. See Section A.2 in the appendix. h

Remark 5. In Theorem 4, the only information used for the h-convergence rate of ME-PCM is the degree of exactness of
cubature rules. The norm of the error functional kECkmþ1;1;C usually exhibits p-type convergence for polynomial interpola-
tion. Roughly speaking, Theorem 4 shows hp-convergence of the moments error of the ME-PCM.

We subsequently present several examples based on different choices of interpolation rule QC
m and an application to the

stochastic elliptic problem.

Example 1. Tensor-product Gauss grid – Let QC
m signify tensor product integration rule C, based upon one-dimensional

Gauss formulas Uk
j , described in appendix (Section A.1). If we choose nþ 1 points in each dimension, the degree of exactness

is m ¼ 2nþ 1.

We now consider the degree of exactness associated with sparse grids, as described in the appendix (Section A.1.1). In the
sparse quadrature procedure, the sparseness parameter ‘s’ controls the number of points in the grid. A sparseness level equal
to the number of dimensions ðs ¼ NÞ corresponds to the trivial grid consisting of only one point. As s increases, the number of
points and hence the accuracy of the quadrature increases. In the following we state some results from [25] relating the de-
gree of exactness m of sparse quadrature rules to the sparseness parameter s.

Example 2. Smolyak Clenshaw-Curtis grid – Let QC
m be the Clenshaw Curtis Smolyak operator in C of dimension N with

sparseness parameter s, which is described in Section A.1.1. There we choose the number of points for each order to be n1 ¼ 1
and nk ¼ 2k�1 þ 1 for k > 1. With this choice, the degree of exactness of QC

m can be stated as follows [25]: Let r ¼ floorðs=NÞ
and let s ¼ s mod N. Then QC

m has degree of exactness:
mðs;NÞ ¼
2ðs� NÞ þ 1; if s < 4N

2r�1ðN þ 1þ sÞ þ 2N � 1; otherwise:

(
ð16Þ
From [26] we also obtain a bound on the operator norm of the error functional:
kECkmþ1;1;C 6 r�mðs;NÞðlog rÞðN�1Þðmðs;NÞþ1Þ
: ð17Þ
where r denotes the total number points used in the quadrature rule.

Example 3. Smolyak Gauss grid – Let QC
m be the Smolyak-Gauss operator in C of dimension N with sparseness parameter s.

Again we choose n1 ¼ 1 and nk ¼ 2k�1 þ 1 for k > 1. Then, the degree of exactness of QC
m can be stated as follows [25]: Let

r ¼ floorðs=NÞ and let s ¼ s mod N. Then QC
m has degree of exactness:
mðs;NÞ ¼
2ðs� NÞ þ 1; if s 6 3N

2r�1ðN þ 1þ sÞ � 1; otherwise:

(
ð18Þ
An application to stochastic elliptic problem – Let u be the exact solution of the stochastic problem (3) given in Section 2.1 sat-
isfying u 2 H1

0ðDÞ \ H2ðDÞ almost surely. We assume that the coefficient aðx;xÞ is represented by independent uniform ran-
dom variables ðY1; . . . ;YNÞ 2 C and that C is compact in RN (see Eq. (4)). We obtain the following result:

Lemma 6. Using a nonoverlapping mesh of C with maximum side length h and a collocation grid associated with a quadrature rule
with degree of exactness m in each element, define ~u to be the approximate solution given by ME-PCM with a spatial discretization
projection pk satisfying (7) for l ¼ 1. Then the error of the energy norm Eak~ukH1

0ðDÞ
(defined in Eq. (12)) can be bounded as:
EkukH1
0ðDÞ
� Eak~ukH1

0ðDÞ

��� ��� 6 C1kkukH2ðDÞ þ C2hmþ1
; ð19Þ
where the constants C1 and C2 are independent of k and h.

Proof. Using the triangle inequality,
E kukH1
0ðDÞ

h i
� Ea k~ukH1

0ðDÞ

h i��� ��� 6 E kukH1
0ðDÞ

h i
� E kukkH1

0ðDÞ

h i��� ���þ E kukkH1
0ðDÞ

h i
� Ea k~ukH1

0ðDÞ

h i��� ��� ð20Þ
Note that kukð�; yÞkH1
0ðDÞ
2Wmþ1;1ðCÞ for the problem at hand. Then, it is clear that we can obtain the bound on the second

term from Theorem 4 by noting that
Eak~ukH1
0ðDÞ
¼ 1

volðCÞ
XNe

i¼1

QBi

mkukð�; �ÞkH1
0ðDÞ
(where the norm is taken over the spatial variable and the quadrature acts in the probability space) as well as by noting that
EkukkH1
0ðDÞ
¼ 1

volðCÞ

Z
C
kukð�; yÞkH1

0ðDÞ
dy:
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Then,
jEkukkH1
0ðDÞ
� Eak~ukH1

0ðDÞ
j 6 CkECkmþ1;1;CjukjWmþ1;1ðC;H1

0ðDÞÞ
hmþ1

:

We note that uk has the same regularity as u. Moreover, we know that there exists an analytic extension for u in the para-
metric space [12], which implies that jukjWmþ1;1 is finite. The first term in (20) is a spatial discretization error term and
EkukH1
0ðDÞ
� EkukkH1

0ðDÞ

��� ��� 6 Eku� ukkH1
0ðDÞ
6 E CkkukH2ðDÞ

h i
6 Ck � EkukH2ðDÞ: �
4.2. L2 error of the global approximant

In this section, the error of the global approximant ~u is compared with the exact solution u in the L2ðC; H1
0ðDÞÞ norm:
k~u� ukL2ðC;H1
0ðDÞÞ
6 k~u� ukkL2ðC;H1

0ðDÞÞ
þ kuk � ukL2ðC;H1

0ðDÞÞ
We are interested in the first term, which corresponds to the stochastic discretization error. We assume that the second
term, which corresponds to the deterministic discretization error, is zero.

4.2.1. Tensor product interpolation using Gauss abscissas
We consider the global ME-PCM approximant ~u for a uniform PDF qðyÞ, where the interpolation operator is based on full

tensor product of Gauss–Legendre abscissas (see appendix, Section A.1), i.e., IC ¼ Lp
C, where p ¼ ðp1; . . . ; pNÞ 2 ZN

þ indicates
polynomial order used in each random dimension. We begin by restating a few relevant results from [12], where the same
stochastic elliptic problem is addressed in a one-element formulation. It is proven there that the solution satisfies the fol-
lowing regularity property:

Lemma 7. Regularity property [Babuska et al.] Let C	j ¼
QN

i¼1;i 6¼jCj, and let y	j be an arbitrary element of C	j . For each yj 2 Cj,
there exists aj > 0 such that the solution uðyj; y

	
j ; xÞ as a function of yj, u : Cj ! C0ðC	j ;H

1
0ðDÞÞ admits an analytic extension

uj
aðz; y	j ; xÞ, z 2 C of u, in the region of the complex plane:
RðCj;ajÞ � fz 2 C;distðz;CjÞ 6 ajg: ð21Þ
Moreover, 8z 2 RðCz;ajÞ; kuaðzÞkC0ðC	j ;H1
0ðDÞÞ
6 k, where k is independent of j.

We now state a main result of [12], which provides the error estimate of Lp
Cu.

Lemma 8. [Babuska et al.] Let u be the exact solution of (3). Let p ¼ ðp1; . . . ; pNÞ be a vector in ZN
þ and Lp

C represent the Lagrangian
tensor product interpolation operator using Gauss–Legendre abscissas on C, as defined in Section A.1. Then,
kLp
Cu� ukL2ðC;H1

0ðDÞÞ
6 C

XN

j¼1

expf�rjpjg ð22Þ
where
rj ¼ log
aj

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a2
j

s !" #
; ð23Þ
and the aj are the parameters related to the size of the analyticity domain in Lemma 7.

We note that in Lemmas 7 and 8, uk is replaced by u because uk possesses the same regularity as u. We next consider the
error estimate of ME-PCM. Recall that ~uðx; yÞ ¼

PNe
i¼1ðL

p
Bi ukÞðx; yÞIfy2Big. For convenience, we instead consider the error be-

tween quantities
PNe

i¼1ðL
p
Bi uÞðx; yÞIfy2Big and u. However, we will abuse notation a bit and still refer to the former quantity

as ~u. We now state the result:

Theorem 9. Let u be the exact solution of (3). Let T h;C ¼ fBigNe
i¼1 represent a uniform mesh on C where each element has side

length h ðNe ¼ ð1h Þ
NÞ. Let p ¼ ðp1; . . . ; pNÞ be a vector in ZN

þ and let Lp
C represent the Lagrangian tensor product interpolation

operator using Gauss–Legendre abscissas on C. Let Lp
Bi represent Lp

C affinely mapped to Bi. Then,
k~u� ukL2ðC;H1
0ðDÞÞ
6 C

XN

j¼1

expf�rjðhÞpjg ð24Þ
where
rjðhÞ ¼ log
aj

2h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

a2
j

vuut
0
@

1
A

2
4

3
5: ð25Þ
Proof. See Section A.3 in the appendix. h
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Remark 10. It is easy to see that for fixed p, if we rewrite rjðhÞ as
Fig. 1.
errors w
rjðhÞ ¼ log
1
h
þ log

aj

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

a2
j

vuut
0
@

1
A

2
4

3
5;
we obtain a factor in the error estimate as
expð�pj log
1
h
Þ ¼ hpj ;
which is the desired h-type convergence of ME-PCM for this problem. Alternatively for fixed h, rjðhÞ is a constant and we
obtain p-type convergence through the term
expð�rjðhÞpjÞ:
Remark 11. It is important to note that Lemma 8 and Theorem 9 are not restricted to uniform distribution and can be easily
generalized to other qðyÞ by considering the norm equivalence [12]. Also error estimates of ME-PCM based on other inter-
polation operators [15], e.g., sparse grids, can be obtained following a similar procedure as in the proof of Theorem 9.
5. Numerical examples

5.1. Approximation of GENZ test functions

In this section we will numerically verify the h-convergence rate of ME-PCM stated in the previous section by approxi-
mating the integrals of the following functions defined on ½0;1�2 from the GENZ test suite [27]. Sparse grids based on one-
dimensional Gauss and Clenshaw-Curtis quadrature rules are examined. We use the following functions:
OSCILLATORY : f 1ðx1; x2Þ ¼ cosð2pw1 þ c1x1 þ c2x2Þ
GAUSSIAN : f 4ðx1; x2Þ ¼ expð�c2

1ðx1 �w1Þ2 � c2
2ðx2 �w2Þ2Þ

CONTINUOUS : f 5ðx1; x2Þ ¼ expð�c1jx1 �w1j2 � c2jx2 �w2j2Þ

DISCONTINUOUS : f 6ðx1; x2Þ ¼
0; if x1 > w1 or x2 > w2;

expðc1x1 þ c2x2Þ; otherwise:

�

where w1;w2; c1; c2 are constants.
Fig. 1 shows the approximation error of the OSCILLATORY and GAUSSIAN integrals by sparse grid cubature on uniform

meshes. The number of elements per side Nes corresponds to 1
h where h is the size of each element. The sparseness parameter

is s ¼ 3 in both cases, leading to a degree of exactness of m ¼ 3 for both types of grids. Both of these functions f1; f4 lie in
W4;1ð½0;1�2Þ so the conditions of Theorem 4 hold. From the figure, we see that the convergence rate is indeed
Oðh4Þ ¼ OðN�4

es Þ as predicted, since mþ 1 ¼ 4.
We also consider the CONTINUOUS and DISCONTINUOUS functions ðf5; f6Þ, which do not satisfy the regularity require-

ments needed in the assumptions of Theorem 4. Fig. 2 shows the approximation error for these functions using the same
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sparse grids as in the previous example. Without the proper regularity, it can be seen that the convergence rate is reduced
to approximately order one. Tests were also performed to verify that adapting the mesh to the discontinuities of the
function recovers the optimal convergence rate. Specifically, the mesh is chosen such that the discontinuities fall on the
borders of elements. From the figure it can be seen that under these conditions, the convergence rate indeed returns to
OðN�4

es Þ.
To investigate the constant in the error bound in (15), the integral of functions f1 and f4 are approximated using a Clen-

shaw-Curtis sparse grid with varying sparseness parameter s. The errors are shown in tables in Fig. 3. In the last column, the
absolute error � is normalized by the term
R ¼ r�mðlog rÞðN�1Þðmþ1Þhmþ1j � jmþ1;1;½0;1�2 ; ð26Þ
where r is the total number of points in the quadrature rule. This gives an estimate of the constants in the error bound of
(15).

It can be seen that by normalizing the error by the factor R, we obtain a constant which depends on the function being
integrated as well as the sparseness parameter.

5.2. ODE examples

Next we examine errors in time-dependent solutions using, first, simple ordinary differential equations (ODEs) and, sec-
ond, a nonlinear system.

5.2.1. Simple ODEs
In this section we investigate the h-convergence rate of ME-PCM for ODEs with uncertain parameters. The collocation grid

in each element is kept fixed as the mesh is uniformly refined. Only ‘smooth’ problems are considered, i.e., problems where
the solution exhibits regularity in the parameter space. The error from the time integration solver (fourth-order Runge–Kut-
ta) is negligible, and thus dominated by the more interesting stochastic semidiscrete error term. We are interested in ver-
ifying the convergence rates for ODEs in both the mean and variance error, while using tensor product grids instead of
the sparse grids investigated in the previous examples. The following equations are investigated:
Case I :
dy
dt
¼ �ðn1 þMÞy

Case II :
dy
dt
¼ �ðn1 þMÞy2

Case III :
dy
dt
¼ �ðn1 þMÞy3

Case IV :
dy
dt
¼ �ðn1 þ n2 þMÞy2
where n1; n2 are i.i.d. random variables distributed uniformly on ½�1;1�. M is chosen to avoid singularities in the solution and
yð0Þ ¼ 1. Exact solutions can be found for all four cases. The error in mean and variance between the numerical solution
using ME-PCM and the exact solution is taken at time T ¼ 5.



Fig. 3. Sparse integration errors � and numerical approximation of constants for the functions f1 (left) and f4 (right) using varying sparseness parameter s.
Recall that s is the sparseness parameter of the grid in each element, m is the degree of exactness, and r is the total number of points used in each element.
Also, Nes is the number of elements per direction.
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In this example a tensor product Gauss–Legendre collocation grid is used over each element. An asymptotic index of alge-
braic convergence, j, is numerically calculated as h decreases. This is shown in Tables 1 and 2 for the mean and variance,
respectively. The results are close to the expected value of j, which is mþ 1 where m is now the degree of exactness for
the Gauss tensor product grids. Furthermore, the same result holds for the variance as well as the mean.

5.2.2. Kraichnan–Orszag problem
The deterministic Kraichnan–Orszag (K–O) three-mode problem is as follows [28]:
Table 1
Numeri

degree

3
5
7

ME-PCM

Table 2
Numeri

degree

3
5
7

ME-PCM
dy1

dt
¼ y1y3

dy2

dt
¼ �y2y3

dy3

dt
¼ �y2

1 þ y2
2

ð27Þ
cally calculated index of algebraic convergence j of the mean solution at time T ¼ 5 for ODE examples I–IV

of exactness m Case I Case II Case III Case IV

�3.95 �3.99 �3.99 �3.93
�5.94 �5.98 �5.98 �5.91
�7.96 �7.91 �7.91 �7.92

is used with a tensor product Gauss–Legendre grid in each element. These results show good agreement with the expected values of j � mþ 1.

cally calculated index of algebraic convergence j of the variance of the solution at time T ¼ 5 for ODE examples I–IV

of exactness m Case I Case II Case III Case IV

�3.95 �3.99 �3.99 �3.96
�5.94 �5.97 �5.97 �5.90
�7.92 �7.97 �7.89 �7.91

is used with a tensor product Gauss–Legendre grid in each element. These results show good agreement with the expected values of j � mþ 1.
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subject to random initial conditions:
Fig. 4.
marker
plane s
y1ð0Þ ¼ y1ð0;xÞ; y2ð0Þ ¼ y2ð0;xÞ; y3ð0Þ ¼ y3ð0;xÞ
The solution exhibits low regularity with respect to the parameter y2ð0Þ. Fig. 4 shows phase plots of solutions to the deter-
ministic problem with varying initial conditions for y2. If y2ð0Þ is negative, the solution is periodic and travels in the region
where y2 is negative. If it is positive, the solution is also periodic but travels in the region where y2 is positive. If it is zero, the
solution is a constant. It is clear from this plot that the frequency of the solution is also dependent on this initial condition.
The temporal discretization here and throughout this section is performed by fourth-order Runge–Kutta integration.

To further explore this, suppose that the initial condition y2ð0;xÞ in the stochastic K–O problem is n, a uniform random
variable on ½�0:1;0:1� and that y1ð0Þ ¼ 1 and y3ð0Þ ¼ 0. The solution y ¼ ðy1; y2; y3Þ is only C0 continuous with respect to the
random parameter n. Fig. 5 shows the solution of the deterministic K–O problem as a function of the parameter y2ð0Þ ranging
from �0:1 to 0:1 at varying times. We can see that the solution is very oscillatory; thus, it requires a large amount of com-
putational time to be solved by existing methods such as ME-gPC, PCM, and gPC. In the following sections, we will investi-
gate the performance of both regular and h-adaptive ME-PCM on this problem for short- and long-time integration.
Computational costs of ME-PCM will be compared to those of other existing methods mentioned above. In addition, a sparse
grid ME-PCM example will be demonstrated for a case where N ¼ 3.

In the following, n1; n2 are i.i.d. random variables distributed uniformly on ½�1;1�. First, we consider a two-dimensional
ðN ¼ 2Þ case of problem in Eq. (27), where y1ð0Þ ¼ n2, y2ð0Þ ¼ 0:1n1, and y3ð0Þ ¼ 0. To illustrate p-convergence of ME-PCM,
we hold Ne constant using a uniform grid of 4 elements on C ¼ ½�1;1� � ½�1;1�. A tensor product of Gauss–Legendre quad-
rature points is used and the number of points is increased between each run. Fig. 6 shows the errors in mean and variance of
y1. The exact solution is taken to be the ME-PCM solution with Ne ¼ 100 elements and r ¼ 100 points in each element.

Next, h-convergence is demonstrated by holding r constant with just one collocation point per element and refining the
mesh uniformly. Here the one-dimensional input used: y2ð0Þ ¼ n1; y1ð0Þ ¼ 1:0; y3ð0Þ ¼ 0:0. Fig. 7 shows the errors in mean
and variance of y1 at time t ¼ 5 as a function of the number of elements used. Note that here at time t ¼ 5 the solution is
still smooth, and we expect the convergence rate defined in the previous section. Hence, we expect the error to decrease
by OðN�1

e Þ as the mesh is refined.
For convergence in long-term integration we demonstrate the h-adaptive version of ME-PCM using the one-dimensional

random input as in the previous example. In Fig. 8 the ME-PCM solution is shown for varying tolerance level h (see Section
A.4 in the appendix). A Gauss–Legendre grid of 3 collocation points in each element is used. As h decreases, the elements split
more frequently; thus the solution does indeed converge to the reference solution which is obtained using a quasi random
Sobol (MC-SOBOL) sequence with 106 iterations. Also plotted on the same graph is an example PCM solution where 30
Gauss–Legendre points are used. The PCM solution and the ME-PCM solution are both shown only until they diverge from
the correct solution.
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Computational cost: Here the computational costs of ME-PCM for the K–O problem are compared to those of existing
methods. Since the solution to this problem has low regularity in the parametric space it represents a ‘worst case scenario’
for all of these methods. First, we consider the two-dimensional K–O problem from the previous section. The error in var-
iance of y1 is considered at final time t ¼ 10. In this section we define the error between two numerically integrated func-
tions gðtjÞ and f ðtjÞ, j ¼ 1; . . . ;nt as:
�L2 ¼
1
nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnt
j¼1ðgðtjÞ � f ðtjÞÞ2

q
1
nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnt
j¼1f ðtjÞ2

q ; ð28Þ
where f is considered to be the reference solution.
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To compare computational costs, an error tolerance is prescribed and the cost for achieving that error level is measured.
The methods examined are: ME-PCM with Clenshaw-Curtis sparse grids, PCM with Clenshaw-Curtis sparse grids, and MC-
SOBOL. For PCM and ME-PCM, the error levels are achieved by increasing the number of points in each element (p-refine-
ment). For ME-PCM we are also able to refine the mesh simultaneously (h-refinement). For MC-SOBOL, the error level is
achieved by increasing the length of the Sobol sequence. Table 3 shows the results of these comparisons. From the results
we can see that the ME-PCM is much faster than either PCM or MC-SOBOL for all error tolerances and that for some error
levels PCM is actually more expensive than MC-SOBOL.

Next, we consider the costs of the h-adaptive formulations of ME-PCM and ME-gPC for the same problem. We note that
for the K–O problem, the solution’s spectrum is continuously growing so that elements are continuously splitting and this
leads to large computational costs. This property makes it suitable for comparing two such h-adaptive methods as it will
accentuate the relative difference between the methods and their weaknesses. For both methods, the error level is achieved
by decreasing h, the adaptivity tolerance. Legendre chaos is used for the basis in the ME-gPC method, and a tensor product
Table 3
Comparison of number of samples required for the 2D K–O problem ðy1ð0Þ ¼ 1; y2ð0Þ ¼ 0:1n1 ; y3ð0Þ ¼ n2Þ for time t 2 ½0;10�

Error level �L2 ME-PCM PCM MC-SOBOL

10�2 36 ðNe ¼ 16; s ¼ 2Þ 321 ðs ¼ 8Þ 100
10�3 320 ðNe ¼ 64; s ¼ 3Þ 3329 ðs ¼ 11Þ 950
10�4 3328 ðNe ¼ 256; s ¼ 4Þ 7169 ðs ¼ 12Þ 9500

For ME-PCM and PCM the sparseness parameter s is provided, and for ME-PCM the number of elements Ne is also provided.
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Gauss–Legendre grid is used in each element for the ME-PCM. The highest polynomial order is 2 for ME-GPC and 3 colloca-
tion points per element are used for ME-PCM. Table 4 shows the results of this comparison. We note that even with extra
projection steps between physical and modal parametric space, ME-PCM outperforms ME-gPC. It is important to note that
the same adaptivity tolerance is required for achieving the prescribed error tolerance for both methods; thus, the difference
in computational costs is due to the actual cost of each method and not a discrepancy in the element splitting frequency.

In Fig. 9 we demonstrate the h-convergence of sparse grid ME-PCM for a three-dimensional K–O problem
ðy1ð0Þ ¼ n1; y2ð0Þ ¼ n2; y3ð0Þ ¼ n3Þ. A sparse Gauss–Legendre grid with 195 points is used in every element and the mesh
is uniformly refined as in previous examples. We also plot the solution obtained from the h-adaptive version of ME-PCM,
using h ¼ 0:0001 and a Gauss–Legendre tensor product grid with 73 points in each element.

5.3. Kovasznay flow

We consider next the problem of steady, laminar flow behind a two-dimensional grid, solved by Kovasznay in 1948 [29].
The exact solution to the Navier-Stokes equations is given by:
Table 4
Compar

Error le

10�2

10�3

10�4
u ¼ 1� ekx cosð2pyÞ; v ¼ k
2p

ekx sinð2pyÞ;
where u; v are velocities in the x and y direction, respectively, and
k ¼ 1
2m
� 1

4m2 þ 4p2
� �1

2

;

Here we model the kinematic viscosity, m, as a random parameter as:
m ¼ m0ð1þ dnÞ; jdj < 1: ð29Þ
The random variable n has Beta distributions Bð1;1Þ and Bð0; 0Þ with support ½�1;1� for the two cases we address, and m0

represents the mean viscosity. Each deterministic problem is performed by a spectral/hp element method using a 32-ele-
ment mesh. The accuracy of the spatial solver is of order 10�10 in the L1 norm.

In the first case n 
 Bð1;1Þ, d ¼ 0:95; m0 ¼ 0:05 and the collocation points are chosen to be Gauss points from the gPC basis
constructed to be orthogonal to the PDF on each element. We use r ¼ 2 points in each element with a degree of exactness
m ¼ 2r � 1 ¼ 3. Since the problem is smooth we expect a convergence rate of OðN�ðmþ1Þ

e Þ ¼ OðN�4
e Þ (note that Ne ¼ Nes here).

In Fig. 10 the L1 errors in mean and variance are plotted as a function of Ne. The numerical results show agreement with the
expected convergence rate of the method.
ison of computational costs (s) for 2D K–O problem ðy1ð0Þ ¼ 1; y2ð0Þ ¼ 0:1n1 ; y3ð0Þ ¼ n2Þ for time t 2 ½0;10�

vel �L2 h-Adaptive ME-PCM h-Adaptive ME-gPC
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Fig. 9. h-Convergence of sparse grid ME-PCM for the 3D K–O problem ðy1ð0Þ ¼ n1, y2ð0Þ ¼ n2, y3ð0Þ ¼ n3Þ.
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We also consider the case where n 
 Bð0; 0Þ which is the same as the uniform distribution on ½�1;1�. In this case d ¼ 0:8
and m0 ¼ 0:05. Here, r ¼ 1 Gauss–Legendre points are used in each element; thus the degree of exactness is m ¼ 1. The ex-
pected convergence rate is then OðN�2

e Þ. Fig. 11 shows the results for this case. For comparison we include ME-gPC results
with the same h-convergence rate (highest order of polynomial is zero). It is seen that ME-gPC provides a better accuracy
for the mean value due to the Galerkin projection.

5.4. Navier-Stokes: noisy flow past a 2D stationary circular cylinder

We also study noisy flow past a 2D stationary cylinder to demonstrate the long-term behavior of the ME-PCM method.
We consider the following inflow boundary conditions:
u ¼ 1þ dn; v ¼ 0;
where d is a constant equal to 0.1 and n is a uniform random variable on ½�
ffiffiffi
3
p

;
ffiffiffi
3
p
�. The Reynolds number based on the mean

velocity is Re ¼ 100.
This problem was studied in [30] using the ME-gPC method. Due to the sensitivity of the vortex shedding frequency to the

inflow noise, high-order polynomial chaos is not efficient for this problem. However, the convergence can be improved by
using multi-element formulations and h-type refinement. Here, we re-visit this problem using the ME-PCM method.

The error evolution of variance of the lift coefficient is shown in Fig. 12. The errors are normalized based on a reference
solution given by ME-PCM with Ne ¼ 20, r ¼ 9. It is observed that the errors given by single-element PCM increase fast to
Oð1Þ. Similar results are shown in [30] for the high-order single-element gPC. This is due to the expanding frequency spec-
trum in the parametric space with respect to n. Thus, the polynomial order or number of collocation points must be increased
rapidly to maintain low errors. ME-PCM effectively slows down the error increase by h-refinement in agreement with the
analysis of [30].
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5.5. Stochastic elliptic problem

We consider the two-dimensional ðD ¼ ½0;1�2Þ elliptic problem with random coefficients from Section 2.1 using the ME-
PCM method. To avoid introducing large errors from physical discretization, we consider a smooth problem in the physical
domain. For simplicity, we use a non-zero force term with homogeneous boundary conditions
Fig. 13.
distribu
f ðxÞ ¼ sinðx1Þ cosðx2Þ and E½a�ðxÞ ¼ 1: ð30Þ
Assume that the random field aðx;xÞ satisfies the Gaussian correlation function: Kðx1; x2Þ ¼ d2 e
�jx1�x2 j

2

A with A being the cor-
relation length and d the standard deviation. Due to the analyticity of the Gaussian kernel, the eigenvalues decay exponen-
tially [8]. The decay rate is determined by the value of the correlation length, where a larger A corresponds to a faster decay
rate.

Since the Gaussian kernel is analytic, high-order element methods for spatial discretization converge quickly, resulting in
highly accurate numerical solutions for the eigenvalue problem in the Karhunen-Loève expansion. Spectral/hp discretization
with 64 quadrilateral elements is used in the physical space. In each element, a 12th order Jacobi polynomial basis is used to
construct the approximation space. The accuracy is close to the machine accuracy for numerical solutions of both determin-
istic elliptic PDEs and the eigenvalue problem. Therefore, we assume from now on that no substantial errors come from the
physical discretization.

We perform the ME-PCM for this problem using Smolyak Gauss sparse grids in each element of a uniform mesh. We first
verify the relation between the h-convergence rate and the degree of exactness of the quadrature rule. Consider a two-
dimensional random input Y1;Y2 with uniform and Beta distributions, taking values in C ¼ ½�1;1�2. We note here that for
the case where Y1 and Y2 have uniform distribution, the local conditional probability density function is still uniform in each
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tion, d ¼ 0:66; right: Beta(1,1) distribution, d ¼ 0:72.
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direction; however, in the case where Y1 and Y2 have Beta distribution the conditional density function can differ from
dimension to dimension. Due to the symmetry of the tensor-product rule in the Smolyak algorithm, we still expect the h-
convergence rate given in theorem for the Beta distribution case. We use d ¼ 0:72 for Beta(1,1) distribution and d ¼ 0:66
for uniform distribution so that the variance of the input for both cases is equal. The h-convergence behavior is shown in

Fig. 13. It is seen that the h-convergence rate asymptotically approaches O N
�ðmþ1Þ

N
e

� �
¼ O N�ðmþ1Þ

es

� �
for both uniform and Beta

distributions. Note that mð3;2Þ ¼ 3 and mð4;2Þ ¼ 5 for these non-nested sparse grids.
We next study some higher dimensional cases:

(i) N ¼ 4; A ¼ 2:8367936716,
(ii) N ¼ 10; A ¼ 0:4898834872,

(iii) N ¼ 25; A ¼ 0:1121059863,
(iv) N ¼ 50; A ¼ 0:04890758154.

For all these cases the smallest eigenvalue is less than 0.314% of the largest eigenvalue, see Fig. 14. We compute the error
by comparing the solution with a reference solution computed using a highly refined grid in C. The error is computed in the
norm k � kL2ðC;H1

0ðDÞÞ
, where C ¼ ½�1;1�N is the parametric domain.

According to the regularity study in [9], the importance of each random dimension can be roughly estimated by the valueffiffiffiffi
ki
p
k/iðxÞkL1 , where ki and /i are the eigenpairs from the Karhunen-Loève expansion satisfying (5). In [18] it is shown that

refining the random dimension with the largest value of
ffiffiffiffi
ki
p
k/iðxÞkL1 is an efficient adaptivity method. For collocation-type

methods, one straightforward approach to approximate the local errors is to compare the results given by sparse grids at two
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Fig. 14. Eigenvalues given by different correlation lengths.
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different levels. However, due to the big jump between numbers of points at two consecutive sparseness levels the cost for
error estimation could be much larger than solving the original problem. For example, if N ¼ 10 and s ¼ N þ 1, the cost for
error estimation is about 15 times as large as the cost for solving the equation. Thus, here we investigate the h-convergence
of ME-PCM method by building a priori adaptive meshes in the parametric space. More specifically, we use a pre-constructed
mesh where only the dimensions with the largest values of

ffiffiffiffi
ki
p
k/iðxÞkL1 are decomposed.

In Fig. 15 we plot the normalized errors of mean and standard deviation versus the total number rtot ¼ Ner of collocation
points in C for N ¼ 4;10. For both cases the three most important random dimensions have been decomposed in every
parameter space mesh. We refine the mesh by further decomposing elements in only the three most important dimensions.
According to Theorem 4 we expect the theoretical convergence rate O r�ðmþ1Þ=N

tot

� �
¼ O N�ðmþ1Þ=N

e

� �
as the mesh is refined uni-

formly in all directions. For the cases shown in Fig. 15, these expected theoretical convergence rates are O r�1
tot

	 

for N ¼ 4 and

O r�0:4
tot

	 

. However, since we refine in only the most important random dimensions, at low discretization levels we observe

that the h-convergence rate is actually faster than the expected rate. As the mesh is refined further in these three dimensions,
we observe that the h-convergence rate asymptotically approaches the expected theoretical values. This is due to the fact
that the values of

ffiffiffiffi
ki
p
k/iðxÞkL1 for each dimension become more comparable after decomposition of the parametric space.

We note that if the number of random dimensions is of the order Oð10Þ, we can easily obtain an h-convergence rate better
than Monte Carlo methods using sparse grids of relatively low level. For example, the expected asymptotic h-convergence
rate is O r�0:6

tot

	 

and O r�0:8

tot

	 

, for s ¼ N þ 2 and s ¼ N þ 3, respectively, with N ¼ 10.

Note that if the approximated random function is sufficiently regular the h-convergence rate is determined by m and N.
The ME-PCM method will become less efficient for a fixed m as N increases. In Tables 5 and 6, we show the h-convergence for
N ¼ 25;50, where only the six most important dimensions are refined. We note that for moderate error levels, the efficiency
of ME-PCM is far better than that of Monte Carlo since using approximately 100 samples results in a very small error two
orders of magnitude less than the corresponding Monte Carlo error. The overall observed h-convergence rate is O r�0:26

tot

	 

and O r�0:13

tot

	 

for N ¼ 25 and N ¼ 50, respectively, with s ¼ N þ 1, which represents the sparsest nontrivial level of sampling.

It is seen that adaptivity improves the h-convergence rate, since if no adapted meshes are used the expected h-convergence
rate would be O r�0:16

tot

	 

and O r�0:08

tot

	 

for N ¼ 25 and N ¼ 50, respectively, for s ¼ N þ 1. If coupled with a posteriori error esti-

mation [18], the adaptive meshes can be improved further by refining the elements with largest local errors.
In summary, the relation between the degree of exactness and h-refinement is verified for the elliptic problem with ran-

dom coefficients. Using a priori adaptive meshes, the ME-PCM method based on sparse grids of relative low level can be an
Table 5
Errors in mean and standard deviation for elliptic problem with N ¼ 25; comparison of ME-PCM and MC errors for the same amount of work done (number of
points sampled)

# of Sample points ME-PCM mean ME-PCM std MC mean MC std

76 1.72e�4 3.41e�4 3.56e�2 3.62e�2
152 1.29e�4 2.57e�4 2.44e�2 2.44e�2
608 7.55e�5 1.52e�4 1.05e�2 1.08e�2
1216 6.94e�5 1.40e�4 9.90e�3 1.03e�2
4104 5.86e�5 1.19e�4 4.14e�3 4.27e�3
9728 4.67e�5 9.50e�5 1.51e�3 1.56e�3
38912 2.82e�5 5.76e�5 1.11e�3 1.13e�3
58368 2.76e�5 5.64e�5 6.27e�4 6.42e�4

Here, ME-PCM with a sparse grid with parameter s ¼ N þ 1 is used in every element. Mesh refinement is performed in only the six most important
dimensions.

Table 6
Errors in mean and standard deviation for elliptic problem with N ¼ 50; comparison of ME-PCM and MC errors for the same amount of work done (number of
points sampled)

# of Sample points ME-PCM mean ME-PCM std MC mean MC std

151 4.31e�5 7.92e�5 9.23e�3 9.37e�3
302 3.70e�5 6.92e�5 8.49e�3 8.63e�3
604 3.27e�5 6.16e�5 5.78e�3 5.75e�3
2416 2.65e�5 5.08e�5 3.12e�3 3.11e�3
4832 2.55e�5 4.93e�5 2.48e�3 2.47e�3
19328 2.40e�5 4.66e�5 1.25e�3 1.23e�3
77312 1.83e�5 3.55e�5 5.88e�4 5.86e�4
173952 1.53e�5 3.01e�5 5.11e�4 5.12e�4
309248 1.50e�5 2.96e�5 3.72e�4 3.78e�4

Here, ME-PCM with a sparse grid with parameter s ¼ N þ 1 is used in every element. Mesh refinement is performed in only the six most important
dimensions.
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efficient numerical approach for a moderate number Oð10Þ of random dimensions. A surprising result for high dimensions is
that although the convergence rate of ME-PCM degrades the method produces very good results even for a very small num-
ber of samples, of the order of 100.

6. Summary

In this work we introduced an h-adaptive multi-element formulation of the probabilistic collocation method. Two choices
for collocation point sets were addressed: tensor product and Smolyak sparse grids. It was proven in Section 4 that the h-
convergence rate of ME-PCM moment errors is dependent on the choice of cubature rule only through its degree of exact-
ness, in the case of uniform inputs. We also presented there an L2 error bound for the ME-PCM solution to the stochastic
diffusion problem in (4.2).

The h-convergence rate result was verified in the numerical examples section, for both uniform and nonuniform inputs.
The choice of grid points should be made in a problem-dependent manner; one needs to consider the expected regularity of
the solution, PDF of the inputs, and boundary point issues in order to choose a sufficiently robust and efficient cubature rule
for the problem. In addition, if h-adaptivity is required one must consider the accuracy of projection onto the orthogonal
basis when prescribing the rule.

In the numerical examples section we also demonstrated ME-PCM convergence for the discontinuous stochastic
Kraichnan-Orzag problem. It was shown that for the two-dimensional K–O problem the ME-PCM outperforms PCM
and the quasi Monte Carlo method. We also demonstrated the convergence of the h-adaptive ME-PCM on the one-
and three-dimensional K–O problems, and showed that the computational cost of the h-adaptive ME-PCM is much less
than that of the h-adaptive ME-gPC method. The effectiveness of the ME-PCM in long-term integration was addressed
using the problem of noisy flow past a 2D stationary cylinder. Lastly, convergence was demonstrated for the stochastic
diffusion problem with higher-dimensional inputs and the efficiency of the method was shown to be more favorable
than that of the Monte Carlo method even for 50 dimensions. A surprising result, which we plan to investigate further
in future studies, is the good performance of the adaptive ME-PCM for high-dimensional problems in cases of very coarse
sampling.
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Appendix A

A.1. Tensor product Lagrangian interpolation

The description in this section closely mirrors the description in the work of [12] since it addresses the procedure over out
chosen reference element, C, only. However, we include it here to explicitly define the procedure and notation for the reader.
First define the polynomial space Ppj

ðCjÞ as the span of polynomials of degree at most pj in Cj, for j ¼ 1; . . . ;N. Then define
PpðCÞ to be the span of tensor product polynomials Ppj

ðCjÞ, where p ¼ ðp1; p2; . . . ; pNÞ:
PpðCÞ ¼ spanfPp1
ðC1Þ � � � �PpN

ðCNÞg
In this section we seek an interpolation operator IC which will take ukð�; �Þ to the space PpðCÞ �WkðDÞ. In each dimension
j ¼ 1; . . . ;N consider the set of polynomials on Cj which are orthogonal with respect to some density function qj, and let
q ¼

QN
j¼1qj. Define fqj;ig

pjþ1
i¼1 to be the pj þ 1 roots of the pjth order polynomial of this family. For any coordinate N-tuple of

integer indices ½m1;m2; . . . ;mN� where each index mj 2 ½1; pj þ 1�, a global index may be associated:
m ¼ m1 þ p1ðm2 � 1Þ þ p1p2ðm3 � 1Þ þ � � �
and the associated N-tuple ðq1;m1
; q2;m2

; . . . ; qN;mN
Þ is called qm. Considering all possible vectors ½m1; . . . ;mN� we obtain a set of

points fqmg
r
m¼1 where the total number of points r ¼

QN
j¼1ðpj þ 1Þ.

Now define flj
ig

pjþ1
i¼1 to be the one-dimensional Lagrange polynomial basis for Ppj

ðCjÞ on the abscissas fqj;ig
pjþ1
i¼1 . The N-

dimensional tensor product Lagrange basis on C is then defined to be the set of polynomials lmðyÞ ¼
QN

j¼1lj
mj
ðyjÞ. The N-dimen-

sional Lagrangian interpolant of uk in C is then given by the following:
Lp
CðuÞðyÞ ¼

Xr

m¼1

ukðx; qmÞ � lmðyÞ
Hence, the operator Lp
C takes uk 2 C0ðC;WkðDÞÞ to the space PpðCÞ �WkðDÞ.
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It is also important that the collocation points coincide with the points of a cubature rule in each element with respect to
the weight q. With the tensor product Gaussian abscissas we have that for any continuous v : C! R,
Xr

m¼1

vðqmÞwm �
Z

C
vðyÞqðyÞdy;
where the wm ¼
QN

j¼1wmj
, and wmj

¼
R

Cj
l2
mj
ðyÞqjðyÞdy. In Section 3, Lp

Bi refers to the Lagrangian interpolant Lp
C defined in ele-

ment Bi of the mesh T h;C constructed using roots of polynomials orthogonal with respect to the conditional probability den-
sity function giðyÞ ¼

QN
j¼1gjðyjÞ defined in (10). For more details on the construction of polynomials orthogonal with respect

to the conditional density function, please see [4].

A.1.1. Smolyak sparse grid interpolation
Another choice for the operator IC is the isotropic Smolyak sparse grid operator, which was introduced in [23] by Smol-

yak. This algorithm provides an alternative to the more costly tensor product rule described above. It has previously been
used in other works for stochastic collocation ([2,14,15]). Recently an anisotropic formulation of the Smolyak sparse grid
has been introduced in [16] for the probabilistic collocation method. While we do not use it in this work, this anisotropic
formulation could also be implemented in the ME-PCM. The following closely follows the description of the Smolyak method
in [26,31], and [25] where the interpolation and cubature errors and costs of this method are investigated.

In this section we will assume that C ¼ ½�1;1�N without loss of generality, since the N-dimensional element can always be
mapped to this standard element. We begin by choosing a one-dimensional interpolation formula V i

j suited to the setting in
which we are interested. For functions v : ½�1;1� ! WkðDÞ, define
V i
jðvÞ ¼

Xni

m¼1

vðyi
mÞ � ai

m;
where i 2 N specifies the degree of the interpolation, ni is the number of points used, ai
m 2 Cð½�1;1�Þ, and the fyi

mg
ni
m¼1 are

interpolation abscissas in ½�1;1�. The index j indicates that this interpolation formula is used in the jth dimension. In prac-
tice, we will always use the same formulas in every dimension, but for now we will retain the subscript in order to better
elucidate the Smolyak construction.

This one-dimensional formula could be chosen to be the Lagrangian interpolant on Gaussian abscissas as described above.
In that case,
V i
jðvÞ ¼

Xni

m¼1

vðqj;mÞ � l
j
m;
where the qj;m are the roots of the ðni � 1Þth degree orthogonal polynomial in the jth dimension as described above and
flj

mg
ni
m¼1 are the Lagrange interpolating polynomials through these abscissas. Recall that the orthogonality of the polynomials

generating the abscissas is with respect to the weight qj.
The Clenshaw-Curtis interpolant is another choice for the one-dimensional formula V i

j. In this case, the abscissas fyi
mg

ni
m¼1

would be Clenshaw-Curtis points, which can be found in [25] and the interpolating polynomials ai
m are chosen such that V i

j

reproduces exactly all polynomials of degree less than ni. Please see the references [25,26,31] and others for more detail on
the Clenshaw-Curtis interpolant.

The one-dimensional interpolant serves as a building block for the Smolyak formula, as we will see soon. In this work we
choose n1 ¼ 1 and ni ¼ 2i�1 þ 1 as recommended in [31]. With this choice the Clenshaw-Curtis point sets are nested, which
reduces the number of points used in total.

Define V0
j ¼ 0 and Di

j ¼ V i
j � V i�1

j . The Smolyak algorithm is:
SCðsÞ ¼
X
jij6s

ðDi1
1 � � � � � M

iN
N Þ ð31Þ
where the summation is over N-dimensional vectors i with components i1; . . . ; iN 2 N. The parameter s controls the ‘sparse-
ness’ of the grid; larger s results in more points.

The operator can also be rewritten as:
SCðsÞ ¼
X

s�Nþ16jij6s

ð�1Þs�jij
N � 1
s� jij

� �
� ðV i1

1 � � � � � V
iN
N Þ: ð32Þ
From now on we assume that the interpolation rule V i
j is the same for all dimensions j, so that we can drop the subscript. Let

vi denote the one dimensional point set used in V i. The total set of points used in SCðsÞ is:
HCðsÞ ¼
[

s�Nþ16jij6s

ðvi1 � � � � � viN Þ
Then, in the general notation we have used above, the collocation points are given by fqjg
r
j¼1 where each qj 2 HCðsÞ and the

total number of points r ¼ CardðHCðsÞÞ. When Clenshaw-Curtis one-dimensional rules are used with this choice of ni, the
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point sets are nested (i.e. vi�1 � vi). When using nested one-dimensional rules the Smolyak formula is actually interpolatory
(see [31] for details).

The Smolyak formula can also be used as a cubature formula over C with respect to the weight q ¼
QN

j¼1qj as in the pre-
vious section. To do this, we simply replace V i with the corresponding one-dimensional quadrature formula U i in Eqs. (31)
and (32) of the Smolyak construction. In other words, let
U i
jðvÞ ¼

Xni

m¼1

vðyi
mÞ �wi

m

approximate the integral
Z
½�1;1�

vðyÞqjðyÞdy
for i 2 N and j ¼ 1; . . . ;N. Then, the Smolyak N�dimensional cubature operates
X
s�Nþ16jij6s

ð�1Þs�jij
N � 1
s� jij

� �
� ðU i1

1 � � � � � U
iN
N Þ:
approximates the N-dimensional integral
Z
C

vðyÞqðyÞdy:
for smooth functions v : C! R. Thus, the weights for the N-dimensional cubature are combinations of products of the one-
dimensional weights; see [25] for more details. In the Section 3, SBi ðsÞ refers to the Smolyak operator SCðsÞ constructed in the
element Bi of the mesh T h;C using conditional probability density function giðyÞ ¼

QN
j¼1gjðyjÞ defined in (10).

We make a choice for the approximating operator IBi in each element based on the needs of the problem. We may choose
IBi � Lp

Bi where p determines the degree of the interpolant and thus the number of points used. Alternatively, we can choose
IBi � SBi ðsÞ, where s controls the order of the approximant and also the number of points used. In this work we consider both
tensor product and sparse grids, built from both Gaussian and Clenshaw-Curtis formulations for one-dimensional bases. In
practice, the choice of what type of approximation to use should be problem-dependent, and factors to take into consider-
ation include: the suitability of a rule to the density function q, preference for points on or off boundaries, regularity of the
integrand and robustness of the rule, and of course the number of points required to achieve a particular degree of exactness.
This last consideration is addressed in detail in [26]. Since nested quadrature rules require less overall points in the Smolyak
algorithm, the Clenshaw-Curtis rule is often an attractive choice.

A.2. Proof of Theorem 4

Proof. Recall that we have defined a linear functional on Wmþ1;1ðAÞ:
EAðgÞ �
Z

A
gðxÞdx�QA

mðgÞ ð33Þ
whose norm is defined as
kEAkk;1;A ¼ sup
kgkk;1;A61

jEAðgÞj: ð34Þ
Let PmðAÞ denote the space of all polynomials of degree 6 m in the variable x 2 A � C. Since the quadrature rule QA
m has a

degree of exactness of m, i.e.,
EAðgÞ ¼ 0; 8g 2 PmðAÞ
we know from the Bramble-Hilbert lemma that there exists a constant CðAÞ such that
jEAðf Þj 6 CðAÞkEAkmþ1;1;Ajf jmþ1;1;A; ð35Þ
where the constant CðAÞ is determined by A.
For element Bi ¼

QN
k¼1ðak; bkÞ we define an invertible affine mapping
Fi : x 2 C! FiðxÞ ¼ qTxþ c 2 Bi;
where the constant vectors q; c 2 Rn. Since C ¼ ð0;1ÞN , it is easy to see that the component qk ¼ bk � ak 6 h, k ¼ 1; . . . ;N. We
now examine the relation between jf jmþ1;1;F�1

i ðB
iÞ and jf jmþ1;1;Bi .
jf jmþ1;1;F�1
i ðB

iÞ ¼ max
jaj¼mþ1

ess supx2F�1
i ðB

iÞjD
af j ¼ max

jaj¼mþ1
ess supx2Bi qajDaf j 6 hmþ1jf jmþ1;1;Bi ; ð36Þ
where qa ¼
QN

k¼1qak
k .
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Using inequalities (35) and (36), we have
Z
C

f ðxÞdx�
XNe

i¼1

QBi
mf ðxÞ

�����
����� ¼

XNe

i¼1

Z
Bi

f ðxÞdx�QBi
mf ðxÞ

�����
����� 6

XNe

i¼1

volðBiÞ
Z

F�1
i ðB

iÞ¼C
f ðyÞdy�QC

mðf ðyÞÞ
�����

�����
6

XNe

i¼1

volðBiÞCðCÞkECkmþ1;1;Cjf jmþ1;1;F�1
i ðB

iÞ 6 CðCÞhmþ1
XNe

i¼1

volðBiÞkECkmþ1;1;Cjf jmþ1;1;Bi

6 CðCÞhmþ1kECkmþ1;1;Cjf jmþ1;1;C;
which concludes the proof. h
A.3. Proof of Theorem 9

Proof. Recall that Lp
Bi is defined to be an affine mapping of the interpolation operator Lp

C from C into Bi. The first step is to
bound the error in each element Bi. To do this, we first map from the element to the reference element C ¼ ð0;1ÞN . Let Bi be
an element in the mesh. Then, define c ¼ ðc1; c2; . . . ; cNÞ to be the vector in RN such that Bi ¼ ðc1; c1 þ hÞ � � � � � ðcN; cN þ hÞ.

Now let y be any point in RN and define the mapping FiðyÞ ¼ yhþ c and let �u � u � Fi. Then, Fi : C! Bi, and
kLp
Bi u� ukL2ðBi ;H1

0ðDÞÞ
¼ hN=2kLp

C
�u� �ukL2ðC;H1

0ðDÞÞ
:

We can bound this last quantity using Lemma 1, as long as we ensure that Regularity Property 1 holds for �u and determine
the size of the domain of the analytic extension.

Recall that u : C! H1
0ðDÞ has an analytic extension uj

a in each dimension j, which we can think of as a function taking
C� C	j to the space H1

0ðDÞ. Note that ua can also be thought of as a function of ðz2; yj; y
	
j Þ, where z2 2 R, taking values again in

H1
0ðDÞ. To see this, consider the element z 2 C associated with the coordinate pair ðz1; z2Þ through the relation z ¼ z1 þ iz2. In

the context of uj
a : C� C	j ! H1

0ðDÞ, the first space C is actually the complex plane in which the real axis corresponds to yj.
Thus, dependence on z 2 C can be written as dependence on a coordinate pair ðyj; z2Þ where z1 ¼ yj. We now define a
function �uj

a by making the following mapping: Let z2 2 R, yj 2 R, and and y	j 2 RN�1, and define the new mapping
�uj
aðz2; yj; y

	
j Þ � uj

a hz2;hyj þ cj;hy	j þ c	j
� �
where c	j is the vector c with the jth dimension deleted. This function is defined for all ðz2; yj; y
	
j Þ such that the analytic exten-

sion ua is defined. It is clear then that �uj
a coincides with �u for all ðz2; yj; y

	
j Þ such that z2 ¼ 0 and yj 2 Cj. Thus, it is an extension

of �ujCj
. In addition, since this mapping does not affect the analyticity properties of a function, �uj

a as a function of the pair,
ðz2; yjÞ 2 C, is analytic for all ðz2; yjÞ such that ðhz2;hyj þ cjÞ 2 R. In particular, we can say that �uj

a is an analytic extension
of �ujCj

in the region:
RðCj;
1
h
ajÞ ¼ x 2 C;distðx;CjÞ 6

1
h
aj

� �
: ð37Þ
Furthermore, 8z 2 RðCj;
1
h ajÞ; k�uj

aðzÞkC0ðC	j ;H1
0ðDÞÞ
6 k. The analyticity region can be much larger than this for certain elements,

but this region is a minimum that is valid for all elements. Note that the bound k is also independent of the element choice.
Thus, using Lemma 1, we can bound
kLp
C

�u� �ukL2ðC;H1
0ðDÞÞ
6 C

XN

j¼1

pj expf�rjðhÞpjg;
with rjðhÞ defined as
rjðhÞ ¼ log
aj

2h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

a2
j

vuut
0
@

1
A

2
4

3
5:
The constant C depends on the function �u only through the quantity that bounds k�uj
aðzÞkC0ðC	j ;H1

0ðDÞÞ
. Since this quantity is

bounded by k, and this bound holds for any j and any element i, C can be chosen to be independent of the element choice.
This bound is independent of the element choice Bi so it is a uniform bound for the L2 interpolation error over every

element. Then,
k~u� uk2
L2ðC;H1

0ðDÞÞ
¼ k

XNe

i¼1

ðLp
Bi uÞIfy2Big � uk2

L2ðC;H1
0ðDÞÞ
¼
XNe

i¼1

kLp
Bi u� uk2

L2ðBi ;H1
0ðDÞÞ
¼
XNe

i¼1

hNkLp
C

�u� �uk2
L2ðC;H1

0ðDÞÞ

6 C
XN

j¼1

expf�pjrjðhÞg
 !2

: �
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A.4. An adaptive procedure

We denote the gPC expansion of a random field in element Bk as:
ûðyÞ ¼
XNp

j¼0

ûjUk;jðyÞ;
where p is the highest order of polynomial chaos, Np denotes the total number of basis modes for a gPC expansion of max-
imum order p in N dimensions, and fUk;jg1j¼1 is the local orthogonal polynomial chaos basis in element Bk.

By noting that there exists a unique correspondence between the gPC basis and the Lagrange basis defined by grid points
used in ME-PCM, we can employ the adaptive criterion developed in [4] in the following manner. We must first obtain the
gPC coefficients ûj of the solution in each element since the adaptivity criterion is evaluated in terms of these coefficients. To
do this, we project the collocation solution onto each basis function Uk;j to obtain the coefficient ûj using the numerical quad-
rature rule associated with the collocation points. From the orthogonality of gPC we can easily obtain the local variance given
by polynomial chaos with order p:
.2
k;p ¼

XNp

j¼1

û2
j E U2

k;j

h i
:

We define the decay rate of relative error of polynomial chaos in each element as follows:
#k ¼
PNp

i¼Np�1þ1û2
i E U2

k;i

h i
.2

k;p

:

Based on #k and the scaled parameter PrðYðxÞ 2 BkÞ, we implement h-type refinement, in other words, we decompose the
current random element into smaller ones, if the following criterion
#
c
kPr YðxÞ 2 Bk
� �

P h; 0 < c < 1
is satisfied, where c and h are prescribed constants. The sensitivity of each random dimension is defined as
ri ¼
ûi;p
	 
2

E½U2
i;p�PNp

j¼Np�1þ1û2
j E½U

2
j �
; i ¼ 1;2; . . . ;N ð38Þ
where we drop the subscript k for clarity, and the subscript 	i;p denotes the mode varying in only the ith random dimension
with polynomial order p. All random dimensions which satisfy
ri P a � max
j¼1;...;d

rj; 0 < a < 1; i ¼ 1;2; . . . ;N ð39Þ
will be split into two equal random elements in the next time step while all other random dimensions will remain un-
changed. To split each element, a new collocation grid on each daughter element is constructed. Then, the ME-PCM interpo-
lant at each new collocation point is evaluated to provide a current set of solutions at every collocation point in the domain.

We note that not all gPC coefficients ûi, i ¼ 0; . . . ;Np are utilized in the adaptivity criterion. In fact, from above we can see
that it is only necessary to project the collocation solution onto the highest modes of the basis in order to evaluate this cri-
terion. The order p of the polynomial chaos basis used can be approximately determined by the following proposition.

Proposition 12. To maintain an accurate transformation between collocation solutions and the gPC spectral expansion, the
polynomial order of the gPC basis can be taken up to bm=2c, where b	c indicates the integer not larger than * and m indicated the
degree of exactness of the quadrature rule.

Proof. The conclusion can be obtained directly from the definition of Galerkin projection. h

In the examples we used c ¼ 0:5, a ¼ 0:01 and we varied h. More details on the adaptivity criteria can be found in [4,18].
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