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We propose a simple and effective numerical procedure for solving elliptic problems with non-Gaussian
random coefficients, assuming that samples of the non-Gaussian random inputs are available from a sta-
tistical model. Given a correlation function, the Karhunen–Loève (K–L) expansion is employed to reduce
the dimensionality of random inputs. Using the kernel density estimation technique, we obtain the mar-
ginal probability density functions (PDFs) of the random variables in the K–L expansion, based on which
we define an auxiliary joint PDF. We then implement the generalized polynomial chaos (gPC) method via
a collocation projection according to the auxiliary joint PDF. Based on the observation that the solution
has an analytic extension in the parametric space, we ensure that the polynomial interpolation achieves
point-wise convergence in the parametric space regardless of the PDF, where the energy norm is
employed in the physical space. Hence, we can sample the gPC solution using the joint PDF instead of
the auxiliary one to obtain the correct statistics. We also implement Monte Carlo methods to further
refine the statistics using the gPC solution for variance reduction. Numerical results are presented to
demonstrate the efficiency of the proposed approach.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Uncertainty quantification has recently received a lot of atten-
tion with many classical deterministic mathematical models being
reformulated in the stochastic sense. For example, physical param-
eters and boundary/initial conditions can be modeled by a random
process instead of a deterministic function in the mean sense. In
engineering applications, random inputs are often assumed to be
Gaussian both for simplicity and by the virtue of the central limit
theorem. However, the Gaussian assumption is not always valid
since observation data exhibit distinct non-Gaussian characteris-
tics in many cases. Thus, the simulation of non-Gaussian processes
is of great practical importance. Although simulations of Gaussian
processes are well established, simulations of non-Gaussian pro-
cesses are still limited and actively under development. The main
difficulty lies in the characterization of the random processes: un-
like Gaussian processes which are determined solely through the
first- and second-order probabilistic characteristics, one must
know the entire family of joint distributions, which is never avail-
able in practice, for the non-Gaussian random processes.

At present, simulations of non-Gaussian processes are mainly
based on memoryless nonlinear transforms of the standard Gauss-
ll rights reserved.

kis).
ian process due to the analytical tractability and availability of
Gaussian simulation methods (spectral representation [1],
Karhunen–Loève expansion [2], Wavelet expansion [3], and
Fourier–Wavelet expansion [4], etc.). Recent attempts utilize the
Hermite polynomial chaos method [5,6] by expressing a non-
Gaussian process RðtÞ as

RðtÞ ¼
X1
i¼1

aiHiðGðtÞÞ;

where Hi is the Hermite polynomial of degree i, and GðtÞ is a stan-
dard one-dimensional stationary Gaussian process. In [7], the Karh-
unen–Loève expansion was employed to simulate non-Gaussian
processes.

All these simulation methods can be coupled directly with
Monte Carlo methods to simulate the random response of the sys-
tem. However, due to the low convergence rate, brute-force Monte
Carlo methods are usually not affordable in large-scale simula-
tions. Thus, acceleration techniques for Monte Carlo methods and
non-statistical approaches have been developed. One such non-
statistical approach is polynomial chaos, which is a spectral expan-
sion of a given random function with respect to a multi-dimen-
sional random variable. In literature, polynomial chaos is often
coupled with the K–L expansion of the random inputs (see
[8–15] and references therein). If the random inputs can be ex-
pressed by a standard Gaussian process, the polynomial chaos
(Hermite-chaos) method can be employed directly to capture the
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uncertainty propagation, since the random variables in the K–L
expansion are mutually independent. However, the following situa-
tions can significantly weaken the effectiveness of polynomial
chaos methods for non-Gaussian random inputs:

(i) A strongly non-Gaussian processes RðtÞ may require a high-
order polynomial chaos expansion with respect to GðtÞ. If
RðtÞ represents the random input, a high-order polynomial
chaos expansion of the solution field may also be necessary
for convergence, which may not be possible due to the lim-
itation of high dimensionality and complexity.

(ii) When the K–L expansion is employed to simulate the non-
Gaussian random processes, polynomial chaos or its exten-
sions [9,10,13,15] cannot be used directly since all random
variables in the K–L expansion are uncorrelated but not
independent. If independence is assumed, the joint probabil-
ity density between random variables cannot be captured.

In the present work, we study an elliptic problem with a ran-
dom coefficient, which is a typical stochastic model in many phys-
ical applications, such as porous media, ground-water systems, etc.
In particular, we re-examine the polynomial chaos methods cou-
pled with the K–L expansion. However, we take into account the
joint probability density of uncorrelated random variables in the
K–L expansion. We treat the polynomial chaos method as a high-
dimensional approximation approach, and take advantage of the
property of the solution that it has an analytic extension in the
parametric space. We observe that the polynomial chaos interpola-
tion provides L1 convergence in the parametric space regardless of
the joint PDF. Thus, the polynomial chaos solution can actually be
regarded as a statistical model, based on which we can sample the
joint PDF to obtain the desired statistics. Accordingly, we sample a
known function instead of the original stochastic PDE, which re-
sults in substantial computational savings. Furthermore, we can
also use the polynomial chaos solution as a control variate for var-
iance reduction to sample the original stochastic PDE to efficiently
refine the obtained statistics.

This paper is organized as follows: we first present some neces-
sary techniques and analysis results for the model problem given
in the next section. We then describe our methodology in Section
3. In Section 4, we analyze the convergence behavior of our meth-
odology. A numerical study is given in Section 5, and we conclude
in Section 6 with a brief discussion.
2. Model problem

Let ðX;F; PÞ be a complete probability space, where X is the
sample space, F is the r-algebra of subsets of X and P is a proper
probability measure. Let D be a bounded, connected, open subset of
Rdðd ¼ 1;2;3Þ with a Lipschitz continuous boundary @D. We con-
sider the following stochastic elliptic problem as a model problem:
find a stochastic function, u : X� D! R, such that almost surely
(a.s.) the following equation holds:

�r � ðaðx;xÞruðx;xÞÞ ¼ f ðxÞ on D;

uðx;xÞ ¼ 0 on @D;
ð1Þ

where f ðxÞ is assumed to be a deterministic function for simplicity,
and aðx;xÞ is a second-order random process satisfying the follow-
ing strong ellipticity condition:

Assumption 2.1 (Strong ellipticity condition). Let aðx;xÞ 2 L1
ðD; XÞ be strictly positive with lower and upper bounds amin and
amax, respectively,

0 < amin < amax and Prðaðx;xÞ 2 ½amin; amax� 8x 2 DÞ ¼ 1: ð2Þ
Remark 2.2. The strong ellipticity condition can be relaxed as:
there exist a positive number amin > 0 such that aðx;xÞ > amin

almost surely [16]. In this work, we use the strong ellipticity
assumption for the discussion of our methodology and present
some numerical experiments for the more general cases.
2.1. High-dimensional deterministic problem

In practice, the most commonly used (non-Gaussian) random
processes are second-order stationary processes with a known cor-
relation function Kaðx1; x2Þ ¼ E½ðaðx1;xÞ � E½a�ðx1ÞÞðaðx2;xÞ�
E½a�ðx2ÞÞ�. Based on the correlation function Ka, we can implement
the K–L expansion in the form:

aðx; xÞ ¼ E½a�ðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
YiwiðxÞ; ð3Þ

where fYig1i¼1 is a set of uncorrelated random variables with zero
mean and unit variance, and fðki;wiðxÞÞg

1
i¼0 is a set of eigenvalue–

eigenfunction pairs satisfyingZ
D

Kaðx1; x2Þwiðx2Þdx2 ¼ kiwiðx1Þ; ð4aÞZ
D

wiðxÞwjðxÞdx ¼ dij; ð4bÞ

where dij is the Kronecker symbol. Furthermore, the random vari-
ables Yi satisfy

Yi ¼
1ffiffiffiffi
ki
p

Z
D
ðaðx;xÞ � E½a�ðxÞÞwiðxÞdx: ð5Þ

The eigenvalue problem (4), in general, does not have analytical
solutions, which means that numerical approximation is usually
necessary [17–19]. We note here that Yi are uncorrelated, but not
necessarily independent, for general (non-Gaussian) random inputs.
For numerical implementation, we need to truncate the K–L expan-
sion up to M terms as

aMðx;xÞ ¼ E½a�ðxÞ þ
XM

i¼1

ffiffiffiffi
ki

p
YiwiðxÞ ð6Þ

according to the L2 convergence

E

Z
D
ðaðx;xÞ � aMðx;xÞÞ2dx

� �
¼
X
i>M

ki ! 0 as M !1: ð7Þ

It is known that the K–L expansion is optimal in the L2 sense. We
rewrite the problem (1) as

�r � ðaMðx; YÞruðx; YÞÞ ¼ f ðxÞ on D;

uðx; YÞ ¼ 0 on @D;
ð8Þ

where Y ¼ ðY1; . . . ;YMÞ is a multi-dimensional random variable.
Then the solution uðx; YÞ will be determined by a finite number of
random variables Yi according to the Doob–Dynkin lemma [20].
Due to the strong ellipticity condition, we see that Y must be
bounded. From Eq. (5), we have

jYij 6
amax � aminffiffiffiffi

ki
p

Z
D
jwiðxÞjdx 6

ðamax � aminÞVolðDÞffiffiffiffi
ki
p :

Without loss of generality, we can assume that Y 2 C ¼
QM

i¼1Ci, and
C 2 RM is compact. We denote ri ¼

ffiffiffiffi
ki
p
kwiðxÞkL1ðDÞ, i ¼ 1; . . . ;M. It is

obvious that the value of M is determined by the decay rate of
eigenvalues ki, which, in general, relies on the regularity of the cor-
relation function Kaðx1; x2Þ. For more discussions about the decay
rate of ki we refer to [13].
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2.2. Density estimation

In this section, we present algorithms for the density estima-
tion, which are necessary for our methodology in Section 3. In
practice, it is impossible to obtain the joint PDF of Yi. However,
we can approximate the marginal PDFs qi of Yi efficiently using
density estimation approaches. Here we employ the technique
of kernel density estimator [21]. Given Nq realizations of the ran-
dom field aðx;xÞ, we can obtain a set fY ðjÞi g

Nq
j¼1 of samples for Yi

using Eq. (5). Then the kernel density estimation ~qi of qi takes
the form

~qi ¼
1

Nqh

XNq

j¼1

Kd
yi � Y ðjÞi

h

 !
; ð9Þ

where h > 0 is the bandwidth acting as a tuning parameter and
KdðyÞ is a prescribed kernel function satisfying

KdðyÞP 0;
Z

R

KdðyÞdy ¼ 1:

The most widely used kernel is the Gaussian kernel
KdðyÞ ¼ ð2pÞ1=2e�y2=2. In this case, the kernel density estimate can
be written as

~qi ¼
1

Nqh
ffiffiffiffiffiffiffi
2p
p

XNq

j¼1

e�ðyi�YðjÞ
i
Þ2=2h2

: ð10Þ

The bandwidth h is a scaling factor, which determines the quality of
the approximate marginal PDF ~qi. To this end, we choose the opti-
mal bandwidth h, which minimizes the asymptotic integrated mean
square error (AIMSE). In particular, AIMSE represents the distance
between two density functions, which can be written as

AIMSEð ~qi;qiÞ ¼
1

Nqh

Z
R

K2
ddyþ 1

4
h4
Z

R

y2KdðyÞdy
Z

R

ðq00i Þ
2dy;

with q00i being the second-order derivative of qi, see [22,23] and the
references therein for more details about numerical algorithms of
non-parametric density estimation. The best rate of convergence
of the AIMSE of the kernel density estimation is of order OðN�4=5

q Þ
[22,23].

2.3. L1 approximation of uðx; yÞ

In this section, we discuss briefly the gPC method via a colloca-
tion projection, or gPC interpolation in short. The regularity of the
solution uðx; yÞ in the parametric space y 2 C was given in the fol-
lowing lemma [16]:

Lemma 2.3. Let C�i ¼
QM

j¼1;j–iCj and yi;� 2 C�i , i ¼ 1; . . . ;M. Let
ci ¼ ri=amin. The solution uðx; yi; yi;�; xÞ admits an analytic extension
uðx; z; yi;�Þ, z 2 C, in the region of the complex plane

RðCi; siÞ � fz 2 C; distðz;CiÞ 6 sig

with 0 < si < 1=ð2ciÞ. Furthermore,

max
z2RðCi ;siÞ

kuðzÞkH1
0ðDÞ
6 Cðsi; ci; aminÞ;

where C is function of si , ci and amin.

Due to the analyticity, we are interested in the point-wise con-
vergence of polynomial interpolation in the parametric space. In
particular, we will examine gPC interpolation based on sparse
grids. In this section we assume that the random variables Yi are
independent for discussions about gPC interpolation and return
to this issue later in Section 3.

Let PpðCÞ indicate polynomials on C with the total polynomial
order up to p. We define an approximation space for the model
problem (8) as PpðCÞ � H1

0ðDÞ, where we do not include the errors
from physical discretization for simplicity. An interpolation opera-
tor based on sparse grids can be defined as

Ipv ¼ v 8v 2 PpðCÞ � H1
0ðDÞ: ð11Þ

We note that PpðCÞ is usually not the same as the polynomial space
that polynomial interpolation on sparse grids can exactly produce.
If we use AðM þ s;MÞ to indicate the tensor product formulas given
by the Smolyak algorithm, where s indicates the level of sparseness,
polynomial interpolation based on AðM þ s;MÞ will be exact for
polynomials in PsðCÞ and some other polynomials with a degree
larger than s [24]. However, in this work we will focus on the part
PsðCÞ.

Given a set of sparse grids fyig
n
i¼1 on C, we compute uðx; yiÞ by

solving the deterministic elliptic equation

�r � ðaMðx; yiÞruðx; yiÞÞ ¼ f ðxÞ; ð12Þ

where the number n of interpolation points is large enough to ex-
actly determine polynomials up to order p on C. When necessary,
we project the gPC interpolation results onto a basis of PpðCÞ
through the discrete integration formula based on sparse grids.
We note that if AðM þ p;MÞ is based on Gauss abscissas, the corre-
sponding discrete integration formula has a degree of exactness
2pþ 1 for p < 2M [25], i.e., the discrete integration formula will
be exact for polynomials with an order up to 2pþ 1.

To this end, the point-wise error of the gPC interpolation via
sparse grids can be expressed as

ku� ~upkL1ðC;H1
0ðDÞÞ
6 ðKn þ 1Þ inf

w2PpðCÞ�H1
0ðDÞ
kuþwkL1ðC;H1

0ðDÞÞ
; ð13Þ

where ~up ¼ Ipu and Kn is the Lebesgue constant associated with the
collocation points fyig

n
i¼1. It is obvious that the convergence is con-

trolled by two factors: the Lebesgue constant and the best approx-
imation given by the polynomial space PpðCÞ. Due to the existence
of analytic extension in the parametric space, we know that the best
approximation has a fast (exponential) point-wise convergence
[26]. However, the Lebesgue constant is only understood well for
certain choices of collocation points, e.g., Jacobi nodes. For a one-
dimensional interpolation formula, the optimal order of the Lebes-
gue constant is logðmþ 1Þ with m being the polynomial order [24].
Polynomial interpolation on sparse grids was studied in [27], where
the sparse grids were based on the extrema of the Chebyshev poly-
nomials. Although the authors considered functions in a Sobolev-
type space, the deviations can be directly applied to analytic func-
tions, due to the special tensor-product structure of Smolyak algo-
rithm, for an estimate of point-wise convergence. Regarding the
stochastic collocation finite element method for the model problem
(8), the L2ðC; H1

0ðDÞÞ approximation was studied in [16,28], and the
L1ðC; H1

0ðDÞÞ approximation was analyzed in [29], where sparse col-
location points were generated by a full tensor product with aniso-
tropic Chebyshev nodes in each random dimension, and the random
variables Yi were assumed to be mutually independent.

In this work, we will employ sparse grids based on Gauss
abscissas for an arbitrary PDF, which is in general a Jacobi-like
function (see Fig. 4 in Section 5). Since we know that it is possible
to use the Jacobi nodes to get the optimal order logðmþ 1Þ for the
Lebesgue constant through the ‘‘additional points method” [24],
we expect a fast point-wise convergence for the right-hand side
of Eq. (13). In this work, we just use the Gauss abscissas for a Jaco-
bi-like PDF, and numerical experiments show that the correspond-
ing sparse grids work well for the gPC interpolation with respect to
the L1ðC; H1

0ðDÞÞ norm.

Remark 2.4. In the polynomial interpolation, the PDF of Y does
not affect the norm k � kL1ðC;H1

0ðDÞÞ
directly unlike the L2 norm, which

means that the point-wise convergence is valid for any joint PDF of
Yi. However, we note that the PDF of Y can be implicitly related to
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the choice of grid points fyig, which will affect the Lebesgue
constant.

Remark 2.5. For the Galerkin projection, the L1ðC; H1
0ðDÞÞ conver-

gence of the polynomial approximation should also be valid due to
the analytic extension in the parametric space. To study the L1
convergence, the standard technique is to transfer the problem to
the approximation of Green’s functions of the adjoint problem.
To the best of our knowledge, no regularity study of such Green’s
functions is available yet. In this work, we will present some
numerical experiments based on the Galerkin projection results.

Based on the point-wise convergence in the parametric space,
we are now ready to describe our methodology for elliptic prob-
lems with general (non-Gaussian) random inputs.
3. Proposed methodology

The model problem (8) has been widely studied (see
[30,9,31,12,13,16,28,32] and references therein) using the polyno-
mial chaos method, where the uncorrelated random variables in
the K–L expansion of aðx;xÞ are either approximated by a set of
independent Gaussian random variables or just assumed to be
mutually independent. In this work, we take advantage of the
point-wise convergence of polynomial interpolation in the para-
metric space to develop a simple and effective methodology.

3.1. Approximation procedure

Let ~aðx;xÞ ¼Saðx;xÞ denote a simulator of aðx; xÞ. For exam-
ple, S can be a statistical model or a numerical simulation algo-
rithm of the non-Gaussian random process aðx;xÞ [5–7]. In other
words, we can obtain samples of the random field aðx;xÞ from
the simulator S, based on which we can implement a direct Monte
Carlo method. Since brute-force Monte Carlo methods are usually
unaffordable, especially for large-scale simulations, we shall try
to accelerate it by employing polynomial chaos simulations.

Since the K–L expansion is valid for any second-order stationary
or non-stationary random process, we use it to reduce the number
of random dimensions, i.e.,

~aMðx;xÞ ¼ E½~a�ðxÞ þ
XM

i¼1

ffiffiffiffi
ki

p
YiwiðxÞ; ð14Þ

where the random variable Yi is defined as

Yi ¼
1ffiffiffiffi
ki
p

Z
D
ð~aðx;xÞ � E½~a�ðxÞÞwiðxÞdx: ð15Þ

Then, the marginal PDF qi of Yi can be approximated by density
estimation (see Section 2.2) using Eq. (15). Based on the approxi-
mate marginal PDFs ~qi, we subsequently define an auxiliary PDF
~q ¼

QM
i¼1 ~qi. In other words, independence is assumed between Yi

although they are only mutually uncorrelated. The reason in defin-
ing ~q is to construct orthogonal (generalized) polynomial chaos
bases f/ag and the corresponding Gauss quadrature points for
Y ¼ ðY1; . . . ; YMÞ 2 C with respect to the marginal PDFs ~qi, based
on which we generate sparse grids in the parametric space. Here
a ¼ ða1; . . . ;aMÞ 2 NM

0 is a multi-index. f/ag is a set of orthogonal
polynomials with respect to the auxiliary PDF ~q, where
/a ¼

QM
i¼1/ai

and f/ai
g is a set of orthogonal polynomials with re-

spect to the marginal PDF ~qi. Several issues must be clarified before
we try to obtain orthogonal polynomial chaos basis f/ag:

(1) The image of Y is usually hard to obtain in practice. How-
ever, the marginal PDF qi usually decay fast as jYij becomes
large. We then truncate the image of Yi at a certain point
where ~qi is relatively small and obtain Y 2 eC 	 C. Thus,
we neglect Y 2 C n eC, since the probability PrðY 2 C n eCÞ is
very small.

(2) To obtain orthogonal polynomials corresponding to the mar-
ginal PDF qi, we need to construct them numerically [15].
The efficiency of algorithms for numerical orthogonality is
mainly affected by the smoothness of the marginal PDF qi

[33]. Thus, we need an algorithm which can give us a smooth
approximation of qi. We noted in Section 2.2 that the
smoothness of the approximate marginal PDF ~qi is inherited
from the smoothness of the kernel Kd. If the Gaussian kernel
is employed, we have ~qi 2 C1ðCiÞ. Thus ~qi is proper for the
algorithms of numerical orthogonality. From Eq. (9), we
can see that the cost for the evaluation of ~qi at a given point
is determined by the number Nq of samples. If Nq is large,
the cost for numerical orthogonality is large. However, we
note that ~qi is nothing more but a sum of a series of Gaussian
functions, which implies that the fast Gauss transform (FGT)
[34,19] can be employed to accelerate the calculation. Actu-
ally, numerical experiments show that the cost for numeri-
cal orthogonality is very small. In general, the interpolation
error of Ipu is not very sensitive to the accuracy of ~qi, see
Section 5 for a convergence study.

Using the polynomial chaos basis f/ag with order
jaj ¼

PM
i¼1ai 6 p, we can model the solution field as

~upðx; YÞ ¼
X
jaj6p

~uaðxÞ/aðYÞ; ð16Þ

where the coefficients ~ua can be obtained from the interpolation re-
sults uðx; yiÞ

~uaðxÞ ¼
Xn

i¼1

uðx; yiÞ/aðyiÞwi; ð17Þ

with wi being the associated integration weight of grid yi. We note
here that the discrete Galerkin projection is based on the auxiliary
PDF ~q instead of the joint PDF of Y .
3.2. Post-processing procedure

Since the polynomial approximation ~upðx; YÞ is based on the
auxiliary PDF ~q while all the statistics of uðx; YÞ are with respect
to the joint PDF q, we must deal with the approximation ~upðx; YÞ
carefully to obtain the correct statistics. Since the gPC interpolation
~upðx; YÞ has a point-wise convergence in the parametric space, we
known the statistics of ~upðx; YÞ with respect to the joint PDF of Y
should converge to the statistics of uðx; YÞ. Based on such an obser-
vation, we propose two post-processing models:

(i) GPC predictor model: although we do not have the explicit
form of the joint PDF, we can sample it using the simulator
S. We first obtain a sample field of ~aðx; xÞ from the simula-
tor S, and then compute samples of Yi using Eq. (15). Then,
the moments of uðx; YÞ can be obtained as
E½umðx; ~aðxÞÞ� 
 1
Nmc

XNmc

i¼1

Bm
u ðx; Y ðiÞÞ; ð18Þ

where

Buðx; Y ðiÞÞ ¼
~upðx; Y ðiÞÞ if Y ðiÞ 2 C;

0 otherwise

(
and Nmc is the number of realizations. In other words, we
sample the polynomial chaos solution ~upðx; YÞ instead of
the stochastic elliptic PDE. If the polynomial chaos solution
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provides a good point-wise approximation, we will obtain a
good speed-up since sampling the stochastic PDE directly is
much more expensive.
(ii) GPC predictor–corrector model: furthermore, using the polyno-
mial chaos solution as a control variate for variance reduc-
tion, we can further refine the results obtained from the
first model. We implement the Monte Carlo method to sam-
ple the stochastic PDE in the following way:
E½umðx; ~aðxÞÞ� ¼ E½~um
p ðx; YÞ� þ 1

Nmc

XNmc

i¼1

½umðx; Y ðiÞÞ

� Bm
u ðx; Y ðiÞÞ�; ð19Þ

where E½~um
p ðx; YÞ� is computed from the joint PDF instead of

the auxiliary PDF, and Buðx;Y ðiÞÞ is defined as in Eq. (18).
Since we have the explicit form of ~upðx; YÞ, we can use a large
number of samples to compute E½~um

p ðx; YÞ� accurately. If
~um

p ðx; YÞ is a good approximation of umðx; YÞ, the random var-
iable umðx; YÞ � Bm

u ðx; YÞ will have a small variance and result
in a good variance reduction for the Monte Carlo method, see
Section 4 about the error analysis. In other words, the value
of Nmc can be reduced significantly to achieve convergence.
We now summarize our algorithm:

1: Compute marginal PDFs ~qi of uncorrelated random vari-
ables Yi in the K–L expansion by sampling the simulator S

of random inputs.
2: Generate orthogonal polynomial chaos basis for each mar-
ginal PDF ~qi.
3: Construct orthogonal multi-dimensional orthogonal poly-
nomial chaos basis for the auxiliary PDF ~q ¼

QM
i¼1 ~qi.

4: Implement the polynomial chaos method via the colloca-
tion or Galerkin projection to obtain the approximation
uðx; yiÞ on fyig

n
i¼1 	 C based on the auxiliary PDF ~q.

5: Project the interpolation results from step 4 onto the poly-
nomial chaos basis f/ag to obtain the chaos expansion
~upðx; YÞ.
6: Compute statistics by sampling the polynomial chaos
approximation ~upðx; YÞ as in Eq. (18) or use it as a control var-
iate for variance reduction as in Eq. (19).
4. Error analysis of the proposed methodology

In this section we present a general error analysis for the meth-
odology proposed in Section 3. We first list the main error sources:

(1) Truncation of the marginal PDFs. In numerical implementa-
tion, we cannot exactly obtain the image C of Y . Instead we
use a truncated version ~C 	 C.

(2) Approximation of ~upðx; YÞ ¼ Ipu based on the auxiliary PDF.
Lemma 4.1. We assume thatZ
~Cc
kuk2

H1
0ðDÞ

qðyÞdy 6 �2
1 and kuðx; yÞ � ~upðx; yÞkL1ð~C;H1

0ðDÞÞ
6 �2;

where ~Cc ¼ C n ~C, and qðyÞ is the joint PDF of Y . Then we have

jE½kukH1
0ðDÞ
� � E½k~upkH1

0ðDÞ
�j 6 �1 þ �2: ð20Þ

Proof.

jE½kukH1
0ðDÞ
� � E½k~upkH1

0ðDÞ
�j

6 E½jkukH1
0ðDÞ
� k~upkH1

0ðDÞ
j�
6 E½ku� ~upkH1
0ðDÞ
�

¼
Z

~Cc
kukH1

0ðDÞ
qðyÞdy þ

Z
~C
ku� ~upkH1

0ðDÞ
qðyÞdy

6

Z
~Cc
kuk2

H1
0ðDÞ

qðyÞdy
� �1=2 Z

~Cc
qðyÞdy

� �1=2

ðCauchy—Schwarz inequalityÞ

þ
Z
eC ku� ~upkH1

0ðDÞ
qðyÞdy

6 �1 þ �2:

It is seen that �1 is due to the truncation of image of Y . The error
of ~up with respect to the joint PDF qðyÞ is dominated by the L1 er-
ror �2 given by the approximation with respect to the auxiliary
PDF.

Remark 4.2. The assumption that
R

~Cc kuk2
H1

0ðDÞ
qðyÞdy 6 �2

1 is rea-
sonable since uðx; YÞ 2 L2ðC; H1

0ðDÞÞ [31].

Lemma 4.3. Let

uH ¼ E½k~upkH1
0ðDÞ
� þ 1

Nmc

XNmc

i¼1

kukH1
0ðDÞ
ðY ðiÞÞ � kBukH1

0ðDÞ
ðY ðiÞÞ

h i
;

where Y ðiÞ are samples from the simulator of random inputs, and
Buðx;Y ðiÞÞ is defined as in Eq. (18). We have the convergence estimate

jE½u� � uHj � O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ �2
2

q
N�1=2

mc

� �
: ð21Þ

Proof. We examine the variance of du ¼ kukH1
0ðDÞ
� kBukH1

0ðDÞ
.

VarðduÞ ¼ E½d2
u� � ðE½du�Þ2 6 E½ðkukH1

0ðDÞ
� kBukH1

0ðDÞ
Þ2�

6

Z
~Cc
kuk2

H1
0ðDÞ

qðyÞdy þ
Z

~C
ku� ~upk2

H1
0ðDÞ

qðyÞdy 6 �2
1 þ �2

2:

Thus, uH ¼ E½k~upkH1
0ðDÞ
� þ E½kukH1

0ðDÞ
� � E½k~upkH1

0ðDÞ
� þ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ �2
2

q�
N�1=2

mc Þ, where we use the convergence rate of Monte Carlo methods.

Remark 4.4. From Lemma 4.3 we see that the efficiency of the
polynomial chaos solution for variance reduction is determined
by the error �1 and �2. In Lemma 4.3 we assume that E½k~upkH1

0ðDÞ
�

is exactly known. In practice, it is possible that we can only obtain
E½k~upkH1

0ðDÞ
� by sampling the random inputs. However, since ~up is an

explicit polynomial, it will be much faster to obtain a desired accu-
racy compared to sampling the stochastic PDE.

Remark 4.5. One option to reduce the errors �1 and �2 is the multi-
element extension of polynomial chaos methods [14,15], where
the parametric space is decomposed for extra h-type convergence.
In fact, by doing the decomposition, the domain of analytic exten-
sion will be also enlarged, see [35] for more details.
5. Numerical studies

5.1. Algebraic model

We first investigate the convergence of the proposed methodol-
ogy using a simple algebraic problem

ðc þ rðn1 þ n2ÞÞu ¼ 1; ð22Þ

where c and r are positive numbers, and ni, i ¼ 1;2 are two uncor-
related random variables. For solvability, we assume that
n1 2 ½�1;1� and c þ rðn1 þ n2Þ > 0.
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For simplicity, we assume that n2 ¼ n2ðn1Þ is a function of n1.
Then the fact that n1 and n2 are uncorrelated implies orthogonality
between n1 and n2 with respect to the PDF f ðn1Þ of n1. In other
words, n2 can be expressed as an orthogonal polynomial of n1.
We note that n2 is dependent on n1. In the phase space, ðn1; n2Þ is
located on a curve n2 ¼ n2ðn1Þ; however, if we use the auxiliary
PDF qðn1; n2Þ, ðn1; n2Þ is on ½�1;1�2. This can be regarded as the
worst case for our methodology since we need to approximate a
one-dimensional problem using two-dimensional polynomials. It
is obvious that the convergence on ½�1;1�2 in the L2 norm is not en-
ough for the convergence on the curve n2ðn1Þ. A stronger metric to
measure the convergence of polynomial chaos is needed, such as
the L1 norm.

Following the methodology proposed in Section 3, we first sam-
ple n1 and n2 to obtain the density estimation. Based on the esti-
mated marginal PDFs we construct orthogonal polynomials and
implement the gPC method. Finally, we compute the statistics
using the joint PDF, in other words, we sample n1 since we know
that n2 is a function of n1.

Let n1 be a Beta random variable of distribution Beta (1
2,12). We let

n2 ¼ 2n2
1 � 1. It is easy to verify that n2 also has a Beta distribution

Beta (1
2,12). We have two choices for constructing the polynomial

chaos basis corresponding to the auxiliary joint PDF.

(i) Construct the two-dimensional polynomial chaos basis
using the one-dimensional Chebyshev polynomials since
both marginal PDFs of n1 and n2 are Beta ð12,12Þ.
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Fig. 1. Convergence of the mean and standard deviation for the algebraic model.
Chebyshev polynomials are used to construct the polynomial chaos basis corre-
sponding to the auxiliary PDF.
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Fig. 2. Convergence of the mean and standard deviation for the algebraic model. Estima
density estimation. Right: 100,000 samples for density estimation.
(ii) Estimate the marginal PDFs of n1 and n2, and then construct
orthogonal polynomial chaos basis numerically.

Both cases are investigated. In Fig. 1 we show the convergence
of mean and standard deviation for approach (i). All statistics are
computed with respect to the joint PDF dðn2 � n2ðn1ÞÞqð12;12Þðn1Þ,
where qð12;12Þð�Þ is the PDF of Bð12 ; 1

2Þ distribution. It can be seen that
the overall convergence rate is, in fact, exponential. If we use the
solutions from approach (ii) and the joint PDF dðn2�
n2ðn1ÞÞqð12;12Þðn1Þ to compute the desired statistics, we also obtain
fast (exponential) convergence, as shown in Fig. 2. It can be seen
that the convergence behavior is similar for Nq ¼ 100 and
100;000. In Fig. 3, we present some estimated marginal PDFs and
demonstrate the sensitivity of convergence with respect to the
sample size for density estimation. It is observed that the esti-
mated marginal PDFs may be very different, however, the corre-
sponding approximation errors can be of the same order. In other
words, convergence is not sensitive to the sample size for density
estimation. The reason is that the solution of the algebraic model
is analytic with respect to n1 and n2, and the Taylor expansion con-
verges in the L1 norm.
5.2. One-dimensional elliptic model

In this section we study the performance of the proposed meth-
odology numerically using an one-dimensional elliptic problem

� d
dx

aðx;xÞduðx; xÞ
dx

� �
¼ 1; x 2 ð0;1Þ

uðx; xÞ ¼ 0; x ¼ 0;1; ð23Þ

where the random process aðx; xÞ takes the form

aðx; xÞ ¼ eGðx;xÞ ð24Þ

and Gðx;xÞ is a Gaussian random process of zero mean satisfying an
exponential kernel.

5.2.1. The Karhunen–Loève expansion of aðx;xÞ
Let KGðx1; x2Þ denote the covariance kernel of GðxÞwith the form

KGðx1; x2Þ ¼ r2e�jx1�x2 j=l; ð25Þ

where r is constant and l the correlation length. We know that the
K–L expansion of Gðx;xÞ is

Gðx;xÞ ¼ r
X1
i¼1

ffiffiffiffiffiffiffi
kG;i

p
hG;iðxÞZi; ð26Þ
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where fkG;i;hG;ig1i¼1 are eigenpairs and fZig is a set of independent
random variables with zero mean and unit variance. We obtain
the following statistics of aðx;xÞ:

� Mean:

�aðxÞ ¼ E½a� ¼ e
1
2r

2
:

� Variance:

VarðaÞ ¼ E½ða� �aÞ2� ¼ e2r2 � er2
:

� Correlation function:

Kaðx1; x2Þ ¼
E½ðaðx1; xÞ � �aðx1ÞÞðaðx2;xÞ � �aðx2ÞÞ�

VarðaÞ

¼ er2e�jx1�x2 j=l � 1
er2 � 1

:

The K–L expansion of aðx;xÞ takes the form

aMðx;xÞ ¼ �aðxÞ þ ra

XM

i¼1

ffiffiffiffiffiffiffi
ka;i

p
ha;iðxÞYi: ð27Þ

We note that Yi are not independent.

5.2.2. Numerical orthogonality
For the underlying Gaussian random process, we let r ¼ 0:3 and

l ¼ 5. Using Eq. (15), we can obtain the marginal PDFs of random
variables Yi in the K–L expansion of the random process aðx;xÞ.
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Fig. 4. Estimated marginal PDFs using different numb
In Fig. 4, the estimated marginal PDFs of Yi are shown. For compar-
ison, we include the normal distribution. It can be seen that the
marginal PDFs of Yi are different from the normal distribution.
There exists an apparent bias in the marginal PDF of Y1 towards
the negative direction. We note that all the estimated PDFs are
smooth.

In Fig. 5 we present some orthogonal polynomials with respect
to the marginal PDFs of Y1 and Y2. It is seen that nonsymmetric
structure in the marginal PDFs is clearly reflected in the orthogonal
polynomials, in particular, the fifth-order polynomials.

5.2.3. Convergence of the proposed strategy
Due to the absence of exact solutions, we use the solutions gi-

ven by Monte Carlo simulations as reference solutions.
Let ~upðx; YÞ be the polynomial chaos approximation of uðx;xÞ

based on the auxiliary PDF ~q. For this example, we compute
~upðx; YÞ through the gPC method via the Galerkin projection. Let
Nq indicate the size of samples for marginal density estimation
and Nmc the number of realizations for Monte Carlo simulation.
We approximate the statistics of solution using the following four
methods:

(i) Implement Monte Carlo simulations with 105 realizations.
(ii) Sample ~upðx; YÞ with respect to the auxiliary PDF ~q. We note

that this method is only correct when the random variables
in the K–L expansion of aðx;xÞ are independent, otherwise,
there exists a model error in the random inputs.

(iii) Sample ~upðx; YÞwith respect to the joint PDF q using the gPC
predictor model, see Eq. (18).
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(iv) Implement Monte Carlo simulations using the gPC predic-
tor–corrector model, see Eq. (19).

For the underlying Gaussian random process, we let r ¼ 0:2 and
l ¼ 5. For this case, the eigenvalues decay fast and we keep the first
five eigenvalues for the K–L expansion of the log-normal process
aðx; xÞ. We use a 20-term K–L expansion to approximate the
underlying Gaussian process Gðx;xÞ when Monte Carlo simula-
tions are needed.

In Fig. 6 we show the mean and standard deviation of uðx;xÞ gi-
ven by the first three methods. It is seen that the results are close
to each other, which implies that the correlation between Yi has a
small effect on the statistics up to second order due to the Gauss-
ian-like marginal PDFs.
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We subsequently investigate the convergence of methods (iii)
and (iv). Let Q refðxÞ be a reference function and QðxÞ an approxima-
tion. We define the difference between Q and Q ref as

� ¼ jQðxÞ � Q refðxÞj
max
06x61

jQ refðxÞj
: ð28Þ

We use the results given by Monte Carlo simulations with 105 real-
izations as a reference. In Fig. 7 we show the convergence behavior
with respect to � for different polynomial orders p and sample size
Nq used in the kernel density estimation. For the mean, it is clear
that � becomes smaller as the sample size Nq for the density estima-
tion increases. Similar behavior is observed for the standard devia-
tion. However, the error � of the standard deviation given by
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Nq ¼ 103 is almost the same as that given by Nq ¼ 104 when p ¼ 2.
Then we increase the polynomial order to p ¼ 3 and obtain a smal-
ler �, which implies that the error from polynomial chaos is domi-
nant for p ¼ 2 and Nq ¼ 103;104. Thus, the proposed strategy
converges to the correct results when Nq and p increase. In contrary
to the algebraic model, we see that the size of samples for density
estimation has noticeable influence on the convergence. This is be-
cause the long tails of PDFs can be approximated better if a larger
number of samples is used, in other words, the error �1 in Lemma
4.1 is reduced.

However, when the number of random dimensions is large, it is
not efficient to increase the polynomial order. Thus, it is necessary
to consider the method (iv). We compare the results from methods
(iii) and (iv) in Fig. 8. It is seen that a small number of realizations
of the stochastic elliptic problems can significantly improve the
convergence, which implies that the polynomial chaos solution
based on the auxiliary PDF provides a good prediction for variance
reduction, in other words, the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ �2
2

q
in Lemma 4.3 is

small.

5.3. Two-dimensional elliptic model

Let Giðx;xÞ, i ¼ 1;2; . . . ;2m be independent Gaussian random
fields with zero mean and unit variance, where m is a positive inte-
ger. Each Gaussian random field has the same correlation function
KGðx1; x2Þ ¼ KGðjx1 � x2jÞ. We consider the following nonnegative
random field:

RCðx;xÞ ¼ 1
2

X2m

i¼1

G2
i ðx;xÞ: ð29Þ

It can be verified that given x, the marginal distribution of RCðx;xÞ
is a gamma distribution of mean m. Therefore, RCðx; xÞ can be called
a homogeneous Gamma random field. We summarize the statistics
of RCðx;xÞ as follows

� Mean:

RC ¼ E½RC� ¼ m:

� Variance:

VarðRCÞ ¼ E½ðRC � RCÞ2� ¼ m:

� Correlation function:

KRC ðx1; x2Þ ¼
E½ðRCðx1;xÞ � RCðx1ÞÞðRCðx2;xÞ � RCðx2ÞÞ�

VarðRCÞ
¼ K2

Gðx1; x2Þ:
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Fig. 8. Accelerate Monte Carlo simulations using the polynomial chaos approxi-
mation for variance reduction.
The derivation of the correlation function is given in Appendix
A. We see that the correlation function of RCðx;xÞ is independent
of m.

We consider the following non-Gaussian coefficient

aðx;xÞ ¼ 1þ rRCðx; xÞ ð30Þ

for the model problem (1). Based on the K–L expansions of the
underlying Gaussian fields Giðx;xÞ, aðx;xÞ can be approximated as

aðx;xÞ 
 âðx; fni;jgÞ ¼ 1þ r
2

X2m

i¼1

XM

j¼1

kG;jhG;jðxÞni;j

 !2

; ð31Þ

where ni;j are independent standard Gaussian random variables.
To employ the standard procedure of polynomial chaos meth-

ods, we need to project the approximate Gamma field âðx; fni;jgÞ
onto Hermite-chaos. However, we notice there are several issues
related to the efficiency of polynomial chaos methods: (1) the
number of random variables is mM, which increases fast with re-
spect to m; (2) second-order Hermite-chaos is necessary to repre-
sent the random inputs, which implies that high-order Hermite-
chaos may be necessary to model the solution.

In contrast to the standard procedure, we start from the corre-
lation function of RCðx; xÞ, which has a simple relation with the
correlation function KGðx1; x2Þ and is independent of the number
of underlying Gaussian random fields. We assume that KGðx1; x2Þ
is a Gaussian kernel as

KGðx1; x2Þ ¼ e�
jx1�x2 j

2

l : ð32Þ

Then the correlation function of RCðx; xÞ is

KRC ðx1; x2Þ ¼ e�
jx1�x2 j

2

l=2 : ð33Þ

It is seen that the correlation function of RCðx;xÞ is also Gaussian
with a half correlation length compared to KGðx1; x2Þ. The K–L
expansion of aðx;xÞ can be expressed as

aðx;xÞ ¼ 1þ r E½RC� þ stdðRCÞ
X1
i¼1

ffiffiffiffi
ki

p
hiðxÞYi

 !

¼ 1þ rmþ rm1=2
X1
i¼1

ffiffiffiffi
ki

p
hiðxÞYi; ð34Þ

where stdðRCÞ is the standard deviation of RCðxÞ, fki;hiðxÞg1i¼1 is a set
of eigenpairs of KRC ðx1; x2Þ, and fYig is set of mutually uncorrelated
random variables with zero mean and unit variance. Given a reali-
zation of aðx;xÞ, a sample of Yi can be obtained as

Yi ¼
1

rm1=2
ffiffiffiffi
ki
p

Z
D
ðaðxÞ � ð1þ rÞmÞhiðxÞdx: ð35Þ
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In numerical approximation, we obtain realizations of aðx;xÞ
through a set of independent Gaussian random variables using Eq.
(31). For a good accuracy, we let M ¼ 30.

For this example, we consider the gPC method via a collocation
projection. Let the physical domain D ¼ ð0;1Þ2, f ðxÞ ¼ 1, and
r ¼ 0:2. Let the correlation length l ¼ 1 for the underlying Gauss-
ian random fields, which yields that the correlation length for
the corresponding Gamma random field is l=2 ¼ 0:5. In Fig. 9, we
show the first 10 largest eigenvalues of Gaussian kernels with
l ¼ 1;0:5. It can be seen that we need M ¼ 4 Gaussian random vari-
ables to keep 90% energy in the K–L expansion of Giðx;xÞ. Consider
m ¼ 20. If the standard procedure is employed, we need mM ¼ 80
independent Gaussian random variables to approximate the Gam-
ma random field. For the gPC interpolation, 2,342,921 grid points
are needed for non-nested sparse grids with sparseness level 3
based on the one-dimensional Gauss quadrature formula. The
choice of sparseness level 3 is according to the fact that the sec-
ond-order Hermite-chaos approximation is needed for the random
inputs. However, if we implement the K–L expansion directly with
respect to the correlation function of RCðx;xÞ, only 8 mutually
uncorrelated random variables are necessary to keep 99% energy.
In contrast to the standard procedure, the dimension of random in-
puts is dramatically reduced. In this work, we keep the first 10
eigenvalues of KRC ðx1; x2Þ. For the gPC interpolation, we need 486
grid points for the non-nested sparse grids with sparseness level
2 based on the one-dimensional Gauss quadrature formula. We
use sparseness level 2 because that the K–L expansion is a first-or-
der polynomial with respect to the random variables.
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Fig. 11. Standard deviation of uðx; xÞ along the center line
In Figs. 10 and 11 we show the mean and the standard deviation
along the center line x ¼ 0:5. The statistics are computed by both
direct Monte Carlo simulations and the gPC predictor model (see
Eq. (18)). For Monte Carlo simulations, we sample the stochastic
elliptic PDE directly; for the gPC predictor model, we first sample
the stochastic elliptic PDE 486 (the number of sparse grid points)
times to obtain the approximate gPC solution ~upðx; YÞ, which is a
second-order polynomial with respect to 10 random variables
(see Eq. (16)), and then sample ~upðx; YÞ instead of the stochastic
elliptic PDE to compute statistics. It can be seen that sampling
the gPC solution ~upðx; YÞ 100,000 times provides a comparable
accuracy with that given by sampling the stochastic PDE 100,000
times. However, the numerical cost is significantly different. The
main numerical cost of both strategies comes from sampling the
stochastic PDE. For the comparable accuracy, we only need to solve
486 deterministic PDEs for the gPC predictor model in contrast to
solving 100,000 deterministic PDEs for the direct Monte Carlo
method, which results in a speed up of Oð200Þ. Since the gPC pre-
dictor model yields accurate statistics, we know that the predictor-
corrector model (see Eq. (19)) will be effective to further refine the
results, where the gPC solution is used a control variate for vari-
ance reduction.
6. Discussion

In this work, we have proposed and investigated a numerical
methodology for elliptic problems with general (non-Gaussian)
random inputs. We note that the methodology presented is a gen-
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eral one, not restricted to the model problem used. The idea is
based on the observation that the polynomial chaos method pro-
vides an approximate model of the original stochastic PDE while
the Monte Carlo method only needs the outputs. Thus, we can
‘feed’ the Monte Carlo method using the polynomial chaos
solution.

The Karhunen–Loève expansion, which is valid for any second-
order random process, was employed to reduce the dimensionality
of random inputs. To maintain the joint PDF of random variables in
the Karhunen–Loève expansion, we considered a high-dimensional
interpolation problem in the parametric space. By noting the ana-
lyticity of solution and the L1 convergence of polynomial interpo-
lation in the parametric space, we implemented the polynomial
chaos approximation based on an auxiliary PDF. In the post-pro-
cessing stage, we considered two models. In the gPC predictor
model, we computed all desired statistics by sampling the polyno-
mial chaos solution with respect to the joint PDF instead of the
auxiliary one. In the gPC predictor-corrector model, we used Monte
Carlo methods to refine the statistics given by gPC predictor model,
where the polynomial chaos solution served as a control variate for
variance reduction to accelerate efficiently the convergence of the
Monte Carlo method.

Acknowledgements

This work is supported by DOE, NSF, AFOSR and ONR.

Appendix A. Derivation of the correlation function of RðxÞ

Let X1 ¼ RCðx1;xÞ and X2 ¼ RCðx2; xÞ, we first look at the gener-
ating function gðh1; h2Þ ¼ E½eh1X1þh2X2 �. Let Yi;1 ¼ Giðx1;xÞ and
Yi;2 ¼ Giðx2;xÞ. We know that Yi;1 and Yi;2 are normal random vari-
ables with covariance KGðjx1 � x2jÞ. It is easy to see

gðh1; h2Þ ¼ E½eh1X1þh2X2 � ¼
Y2m

i¼1

E½e1
2h1G2

i ðx1Þþ1
2h2G2

i ðx2Þ�

¼
Y2m

i¼1

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

G

q
�
Z

R2
e

1
2h1yi;1þ1

2h2yi;2 e
�1

2ð1�K2
G
Þ
ðy2

i;1
þy2

i;2
�2KGyi;1yi;2Þ

dyi;1yi;2

¼
Y2m

i¼1

ðð1� h1Þð1� h2Þ � h1h2K2
GÞ
�1=2

¼ ðð1� h1Þð1� h2Þ � h1h2K2
GÞ
�m ðA:1Þ

We are now ready to compute the correlation function of RCðx;xÞ

KRC ðx1; x2Þ ¼
E½ðRCðx1Þ � E½RC�ðx1ÞÞðRCðx2Þ � E½RC�ðx2ÞÞ�

rRC ðx1ÞrRC ðx2Þ

¼ E½ðX1 �mÞðX2 �mÞ�
m

¼ E½X1X2� �m2

m

¼
@2g

@h1@h2
jh1¼h2¼0 �m2

m
¼ K2

Gðjx1 � x2jÞ: ðA:2Þ
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