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a b s t r a c t

There exist two types of commonly studied stochastic elliptic models in literature: (I) �r � (a(x,x)r
u(x,x)) = f(x) and (II) �r � ðaðx; xÞ}ruðx;xÞÞ ¼ f ðxÞ, where x indicates randomness, } the Wick prod-
uct, and a(x,x) is a positive random process. Model (I) is widely used in engineering and physical appli-
cations while model (II) is usually studied from the mathematical point of view. The difference between
the above two stochastic elliptic models has not been fully clarified. In this work, we discuss the
difference between models (I) and (II) when a(x,x) is a log-normal random process. We show that the dif-
ference between models (I) and (II) is mainly characterized by a scaling factor, which is an exponential
function of the degree of perturbation of a(x,x). We then construct a new stochastic elliptic model
(III): �r � ðða�1Þ}ð�1Þ}ruðx;xÞÞ ¼ f ðxÞ, which has the same scaling factor as model (I). After removing
the divergence from the scaling factor, models (I) and (III) can be highly comparable for many cases.
We demonstrate this by a numerical study for a one-dimensional problem.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Stochastic elliptic models are of fundamental importance for
the stochastic modeling of physical and engineering applications
[14,7]. For example, in reservoir and groundwater simulations, it
is more appropriate to consider the permeability of porous media
as a spatial random process instead of a deterministic function.
Then, we need to construct a stochastic version of the Darcy’s
law. Based on different modeling strategies, the following two sto-
chastic models

�r � ðaðx;xÞruðxÞÞ ¼ f ðxÞ; ð1Þ
� r � ðaðx;xÞ}ruðxÞÞ ¼ f ðxÞ ð2Þ

have been widely studied in literature, where x indicates random-
ness and } the Wick product.

In Eq. (1), a random coefficients a(x,x) is used to replace the
effective coefficient âðxÞ in a deterministic model. Note here that
the relation between E½a�ðxÞ and âðxÞ is usually model dependent.
Eq. (1) usually implies that âðxÞ – E½a�ðxÞ due to the closure for
the moment equations; Eq. (2) corresponds to a deterministic ellip-
tic equation with a coefficient âðxÞ ¼ E½a�ðxÞ for the mean solution
due to the properties of the Wick product. If we want to apply the
Lax–Milgram lemma to Eq. (1), a strong ellipticity condition is
needed for the wellposedness, in other words, a(x,x) must be
strictly positive from below almost surely [1,5]. Such a strong
ll rights reserved.
ellipticity condition will directly affect the dimension reduction
of a(x,x). For example, one approach to approximate a(x,x)
is the Karhunen–Loève (K–L) expansion aðx;xÞ :¼ E½a�ðxÞþP

iP1hiðxÞni, where ni are uncorrelated zero-mean random variables
and hi(x) are deterministic functions defined by the correlation
function of a(x,x). To maintain the strong ellipticity, such a K–L
expansion of a(x,x) is usually modified to satisfy the following
two extra conditions: (1) the number of ni is finite, and (2) the sup-
port of ni is compact. Then for a relatively low degree of perturba-
tion, the strong ellipticity condition can be achieved. Another
popular approach to define a(x,x) is to consider a nonnegative
function of a Gaussian random field, such as a log-normal [4] ran-
dom field, where the probability of a(x,x) approaching zero decays
exponentially. The log-normal random field is widely used in engi-
neering applications to model the physical properties of materials,
such as the permeability in porous media. Although numerical
computation shows that the solution of Eq. (1) for a log-normal
coefficient a(x,x) is square integrable in the probability space,
the strong ellipticity still fails since a log-normal random field is
not strictly positive from below, which implies that the Lax–Mil-
gram lemma cannot be applied directly. Then we have to study
the solution in a space larger than L2ðFÞ, where we usually associ-
ate a weight either to the probability measure or to each term of
the orthonormal basis of the L2ðFÞ space [7,12,9,13], see Section
3.2, where F indicates a complete probability space.

In Eq. (2), the regular product is replaced by the Wick product.
The Wick product is a regularization procedure to alleviate the
singularity induced by the noise. Mathematically speaking, it is a
version of Malliavin divergence operator corresponding to the
Itô-Skorohod integral. For example, the model
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_uðtÞ ¼ aðuðtÞÞ þ bðuðtÞÞ} _W

is equivalent to the stochastic Itô differential equation

_uðtÞ ¼ aðuðtÞÞ þ bðuðtÞÞdWt ;

where Wt indicates a standard Brownian motion and _W white noise.
Eq. (2) can be regarded as an extension of the Itô’s stochastic inte-
gral to spatially-dependent noise. Although the singularity induced
by noise is indeed alleviated by the Wick product to some extent
[9], we, in general, still need the weighted L2ðFÞ space to study
the solution existence of Eq. (2), see Section 3.2, when a(x,x) is
log-normal. In contrast to Eq. (1), the solution of Eq. (2) is much
more controllable through the weighted L2ðFÞ space and a strong
ellipticity condition is usually needed just for E½a�ðxÞ [9].

From the numerical point of view, the computation cost for
approximating Eqs. (1) and (2) can be significantly different. In this
work, we will employ a non-sampling technique, Winer chaos
expansion, to deal with both Eqs. (1) and (2). For a log-normal coef-
ficient a(x,x), both solutions of Eqs. (1) and (2) have a unique Wie-
ner chaos expansion. However, the cost to obtain the chaos
coefficients for Eq. (1) is in general quadratic because the partial
differential equations (PDEs) for the chaos coefficients are coupled
together; however, the cost for Eq. (2) is linear due to the lower-tri-
angular structure of the PDE system induced by the Wick product.

In this paper, we summarize the properties of the aforemen-
tioned two stochastic elliptic models and focus on a comparison
study of Eqs. (1) and (2) subject to log-normal random coefficients
a(x,x). It is shown that these two models are only comparable
when the degree of perturbation of a(x,x) is �1. The main differ-
ence between solutions of Eqs. (1) and (2) is characterized by a
scaling factor, which is an exponential function of the degree of
perturbation of a(x,x). To eliminate such a scaling factor, we con-
struct a new stochastic elliptic model, which is also based on the
Wick product. This new model is highly comparable to model (I)
for many cases. Furthermore, due to the Wick product, the new
stochastic elliptic model can be approximated efficiently using
the Wiener chaos expansion. The above observations will be dem-
onstrated through a comparison study for a one-dimensional sto-
chastic elliptic problem.

This paper is organized as follows. In Section 2 we introduce the
Wiener chaos space. We present three stochastic elliptic models
and compare them in Section 3. Numerical study is given in Section
4 followed by a summary section.

2. Wiener chaos space

We consider white noise defined on the space L2(D), where D
indicates the physical domain. Let fukg1k¼1 be a complete orthonor-
mal basis of L2(D) and _W ¼ f _WðhÞ; h 2 L2ðDÞg a zero-mean Gauss-
ian family such that

E½ _Wðh1Þ _Wðh2Þ� ¼ ðh1;h2Þ; 8h1; h2 2 L2ðDÞ; ð3Þ

where (�, �) indicates the inner product on L2(D). The (Gaussian)
white noise is defined as the formal series

_W ¼
X

k

_WðukÞuk: ð4Þ

According to Eq. (3), one can verify that the mapping h! _WðhÞ is
linear, which implies that f _WðhÞg is a Gaussian family. Due to the
fact that ðui;ujÞ ¼ dij; _WðukÞ � N ð0;1Þ are independent normal
random variables. Thus a formal series _W ¼

P
kP1nkuk defines

Gaussian white noise on L2(D), where nk � Nð0;1Þ are independent
normal random variables. We then define F :¼ ðX;F ; PÞ as a
complete probability space, where F is the r-algebra generated
by the countably many i.i.d. Gaussian random variables {nk}kP1.
We define a random vector n :¼ (n1,n2, . . .).
Let J be the collection of multi-indices a with a = (a1,a2, . . .) so
that ak 2 N0 and jaj :¼

P
kP1ak <1. For a; b 2 J , we define

aþ b ¼ ða1 þ b1;a2 þ b2; . . .Þ; jaj ¼
X
kP1

ak; a! ¼
Y
kP1

ak!:

We use (0) to denote the multi-index with all zero entries: (0)k = 0
for all k. Define the collection of random variables N ¼ fha;a 2 J g
as follows:

haðnÞ ¼
1ffiffiffiffiffi
a!
p HaðnÞ ¼

Y
kP1

1ffiffiffiffiffiffiffi
ak!
p Hak

ðnkÞ;

where Hn(x) are one-dimensional Hermite polynomials of order n.
For any fixed k, the following relation holds

E½Hak
ðnkÞHbk

ðnkÞ� ¼ dakbk
ak!; E½hahb� ¼ dab: ð5Þ

Recall the following result.

Theorem 2.1 [3]. The set N is an orthonormal basis in L2ðFÞ: if
g 2 L2ðFÞ and ga ¼ E½gha�, then g ¼

P
a2J gaha and E½g2� ¼

P
a2J g2

a.

Given a real separable Hilbert space X, we denote by L2ðF; XÞ the
Hilbert space of square-integrable F -measurable X-valued random
elements f. When X ¼ R, we write L2ðFÞ instead of L2ðF; RÞ. Given a
collection R ¼ fra; a 2 Jg of uniformly bounded positive real
numbers, we define the space RL2ðF; XÞ as the closure of L2ðF; XÞ
in the norm

kuk2
RL2ðF; XÞ ¼

X
a2J

rakuak2
X ; ð6Þ

where u ¼
P

a2J uahaðnÞ. The space RL2ðF; XÞ is called a weighted
Wiener chaos space [9]. For the stochastic elliptic problems studied
in this work, X is chosen as H1

0ðDÞ.

3. Three stochastic elliptic models

Let D be a bounded, connected, open subset of Rd ðd ¼ 1;2;3Þ
with a Lipschitz continuous boundary @D. The deterministic elliptic
equation takes the form

�r � ðâðxÞruðxÞÞ ¼ f ðxÞ; x 2 D;

uðxÞ ¼ 0; x 2 @D;

�
ð7Þ

where âðxÞ indicates the effective coefficient. Eq. (7) is equivalent to
the following first-order system

âðxÞruðxÞ ¼ FðxÞ; x 2 D;
�r � FðxÞ ¼ f ðxÞ; x 2 D;

uðxÞ ¼ 0; x 2 @D:

8><
>: ð8Þ

In practice, it is more appropriate to replace the deterministic coef-
ficient âðxÞwith a random process for many cases, such as in porous
media, to take into account the randomness. Then we need to gen-
eralize (7) to be a stochastic PDE. Obviously the generalization is
not unique due to different definitions of the stochastic integration.
To this end, we consider the following general stochastic elliptic
model:

ruðx;xÞ ¼ Taðx;xÞ � Fðx;xÞ; x 2 D;

�r � Fðx;xÞ ¼ f ðxÞ; x 2 D;

uðxÞ ¼ 0; x 2 @D:

8><
>: ð9Þ

where a(x,x) is a random process, T indicates a proper map deter-
mined by a certain modeling strategy, ‘�’ a proper operation, and
f(x) is assumed to be deterministic for simplicity. We also need
the following positivity assumptions:
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Assumption 3.1. There exists positive numbers ki and ~ki; i ¼ 1;2,
such that

0 < k1 6 E½a�ðxÞ 6 k2 <1; 0 < ~k1 6 E½a�1�ðxÞ 6 ~k2 <1: ð10Þ
Example 3.2. Consider a log-normal random process a(x,x) =
ec+G(x, x), where G(x,x) is a second-order Gaussian random process
with zero mean and c is constant. Then kE½a�ðxÞkL1ðDÞ <1, and

E½a�1�ðxÞ ¼ e�cE½e�Gðx;xÞ� ¼ e�cE½eGðx;xÞ� ¼ e�2cE½a�ðxÞ:

Thus, log-normal random processes satisfy our assumptions.
We now define the map T and operation � in Eq. (9) as follows:

ðIÞ : Taðx;xÞ :¼ a�1ðx;xÞ; � :¼ �;
ðIIÞ : Taðx;xÞ :¼ a}ð�1Þðx;xÞ; � :¼ };
ðIIIÞ : Taðx;xÞ :¼ a�1ðx;xÞ; � :¼ };

where � indicates the regular product, and } the Wick product de-
fined as

HaðnÞ}HbðnÞ ¼ HaþbðnÞ; 8a; b 2 J ; ð11Þ

and a}ð�1Þðx;xÞ is the inverse of a(x,x) with respect to the Wick
product satisfying

aðx;xÞ}a}ð�1Þðx;xÞ ¼ 1: ð12Þ
Proposition 3.3. If Assumption 3.1 holds, then a}ð�1Þðx;xÞ exists.
Proof. Let aðx;xÞ ¼
P

a2J aaðxÞHaðnÞ and a}ð�1Þðx;xÞ ¼
P

a2J ~abðxÞ-
HbðnÞ. Substituting them into Eq. (12) and comparing the
coefficients of Ha(n), we obtain

~að0ÞðxÞ ¼ a�1
ð0ÞðxÞ; ~aaðxÞ ¼ �a�1

ð0ÞðxÞ
X
b<a

aa�bðxÞ~abðxÞ: ð13Þ

Since að0ÞðxÞ ¼ E½a�ðxÞ > 0, the conclusion follows. h

If we consider the Wiener chaos expansion of Ha(n)Hb(n), it is
obvious that there exist lower-order terms except for Ha+b(n); how-
ever, in the definition of Wick product, all these lower-order terms
are removed. Such a difference between the Wick product and the
regular product stems from the fact that the Wick product should
be interpreted from the stochastic integral point of view. The con-
nection of Wick product with Itô-Skorohod integral can be found in
[7,11,9,18].

Corresponding to the three choices of T and �, we have the
following three stochastic PDEs of elliptic type:

ðIÞ : �r � ðaðx;xÞruIðx;xÞÞ ¼ f ðxÞ; ð14Þ
ðIIÞ : �r � ðaðx;xÞ}ruIIðx;xÞÞ ¼ f ðxÞ; ð15Þ

ðIIIÞ : �r � a�1
� �}ð�1Þðx;xÞ}ruIIIðx;xÞ
� �

¼ f ðxÞ: ð16Þ

Models (I) and (II) correspond to Eqs. (1) and (2), respectively, while
model (III) is a new stochastic elliptic model based on the Wick
product. Obviously the three stochastic elliptic models are charac-
terized by the different definitions of the fluxes:

F I ¼ aruI; F II ¼ a}ruII; ruIII ¼ a�1}F III: ð17Þ

In model (I), the flux is defined as a point-wise multiplication of
a(x,x) and ruI; in model (II), the flux corresponds to a stochastic
integral of a(x,x) and ruII through the Wick product; in model
(III), ruIII corresponds to a similar stochastic integral of a�1(x,x)
and FIII(x,x). Roughly speaking, model (II) smooths the flux while
model (III) smooths the gradient.
3.1. Mean solutions of models (I)–(III)

Let aðx;xÞ ¼ E½a�ðxÞ þ daðx;xÞ and uIðx;xÞ ¼ E½uI�ðxÞþ duIðx;xÞ,
where da and duI indicate the perturbations around the mean val-
ues of a(x,x) and uI(x,x). Then Eq. (14) can be rewritten as

�r � ðE½a�rE½uI�Þ � r � ðdarE½uI�Þ � r � ðE½a�rduIÞ � r � ðdarduIÞ
¼ f ðxÞ: ð18Þ

Taking the mean of the above equation, we obtain

�r � ðE½a�rE½uI�Þ � r � E½darduI� ¼ f ðxÞ: ð19Þ

It is obvious that there does not exist explicitly an equation for
E½uI�ðxÞ since we need the high-order moments r � E½darduI� for
the closure, which are, in general, unknown and need more assump-
tions to be dealt with, such as in the homogenization theory. In
other words, the effective coefficient âðxÞ for model (I) is usually
not the same as E½a�ðxÞ. However, both models (II) and (III) have a
deterministic PDE for the mean solution. By taking the expectation
of both sides of Eqs. (15) and (16), we obtain

�r � ðE½a�ðxÞ � rE½uII�ðxÞÞ ¼ f ðxÞ; ð20Þ

� r � 1
E½a�1�ðxÞ � rE½uIII�ðxÞ
� 	

¼ f ðxÞ: ð21Þ

Since E½a�ðxÞ is positive, we can use it to define the energy norm

kvke ¼
Z

D
E½a�ðxÞrv � rvdx

� 	1=2

; 8v 2 H1
0ðDÞ: ð22Þ

Comparing Eq. (19) with Eq. (20), we see that the effect of the Wick
product for the mean solution is equivalent to omitting the second-
order perturbation term in Eq. (19), which implies that E½uI�ðxÞ and
E½uII�ðxÞ are comparable only when the perturbation of a(x,x) is
very small and smooth.

We subsequently present some general properties of E½uII� and
E½uIII�.

Proposition 3.4. kE½uII�ke 6 kE½uIII�ke.
Proof. Considering the function t�1, we have

E½a�ðxÞP 1
E½a�1�ðxÞ

from the Jensen’s inequality. From Eqs. (20) and (21), we haveZ
D

E½a�rE½uII� � rv dx ¼
Z

D

1
E½a�1�rE½uIII� � rv dx; 8v 2 H1

0ðDÞ:

ð23Þ

Let v ¼ E½uII�. We obtain

kE½uII�k2
e ¼

Z
D

E½a�rE½uII� � rE½uII�

¼
Z

D

1
E½a�1 �

E½a� E½a�rE½uIII� � rE½uII�dx 6 kE½uIII�kekE½uII�ke; ð24Þ

which yields the conclusion. h
Proposition 3.5. If Assumption 3.1 holds, then

k1
~k1 6

kE½uIII�kH1
0ðDÞ

kE½uII�kH1
0ðDÞ
6 k2

~k2: ð25Þ
Proof. Substituting v ¼ E½uII� into Eq. (23), we obtain

k1kE½uII�k2
H1

0ðDÞ
6

1
~k1
kE½uIII�kH1

0ðDÞ
kE½uII�kH1

0ðDÞ
;



2990 X. Wan / Comput. Methods Appl. Mech. Engrg. 199 (2010) 2987–2995
which results in

k1
~k1kE½uII�kH1

0ðDÞ
6 kE½uIII�kH1

0ðDÞ
:

Similarly, we can let v ¼ E½uIII�, which yields

kE½uIII�kH1
0ðDÞ
6 k2

~k2kE½uII�kH1
0ðDÞ

:

Combining the above two inequalities, we obtain the
conclusion. h
3.2. Existence of solutions

We start with the uncertainty propagators of models (I)–(III).
Assume that

aðx;xÞ ¼
X
a2J

aaðxÞHaðnÞ; a�1ðx;xÞ
� �}ð�1Þ ¼

X
a2J

âaðxÞHðnÞ: ð26Þ

Substituting the chaos expansions of uI–uIII into Eqs. (14)–(16),
respectively, and implementing the Galerkin projection in the prob-
ability space, we obtain the corresponding uncertainty propagators
of models (I)–(III)

�
X
a2J
r � E½aðx;xÞHaHc�ruI;aðxÞ

� �
¼ f ðxÞdð0Þ;c; ð27aÞ

�
X
a6c

r � ac�aðxÞruII;aðxÞ
� �

¼ f ðxÞdð0Þ;c; ð27bÞ

�
X
a6c

r � âc�aðxÞruIII;aðxÞ
� �

¼ f ðxÞdð0Þ;c; ð27cÞ

for any c 2 J , which are high-dimensional deterministic partial
differential equations. We note here that Eq. (27a) is a coupled
system while Eqs. (27b) and (27c) are decoupled systems due to
the lower-triangular structure, i.e., uII,c and uIII,c only depend on
the chaos coefficients uII,a and uIII,a, respectively, with a < c.

For numerical computations, the truncation of {ni} and {ha(n)} is
required. We usually choose the first M most important random
dimensions of n and define the truncated Wiener chaos space as
fha j a 2 J M;pg, where a 2 NM

0 and jaj 6 p for any a 2 JM;p � J .
The importance of each random dimension ni usually depends on
the correlation length and the regularity of the correlation func-
tions of a(x,x). For example, in the expression of Karhunen-Loève
expansion of a(x,x) (see Eq. (48)), M relies on the decay rate of the
eigenvalues of the correlation function [5]. Uncertainty propaga-
tors (27a), (27b), (27c) can then be solved by any classical numer-
ical methods for PDEs, such as finite element methods. For Eq.
(27a), iterative methods, such as the block Gauss-Siedel method
and the conjugate gradient method, are usually more efficient
due to the coupling between coefficients uI,a. The efficiency of such
iterative methods relies heavily on the degree of perturbation of
a(x,x), in other words, a good preconditioner is usually necessary
for approximating Eq. (27a). For Eqs. (27b) and (27c), the coeffi-
cients uII,a and uIII,a can be solved one-by-one, which can be very
efficient. We refer to [1,5,17,16,18,10] for more details about the
accuracy and efficiency of the stochastic finite element methods
for models (I) and (II).

We subsequently summarize some theoretical results for mod-
els (I) and (II) with a(x,x) being a log-normal random process. Re-
sults are mainly from [13] for model (I), and [10] for model (II).
Since both models (II) and (III) are based on the Wick product, all
the results for model (II) can be adapted for model (III).

A lot of work on numerical analysis for model (I) has been done
(see [1,2,5,6] and references therein). Most of the work is based on
the assumption of strong ellipticity, which means that the
coefficient a(x,x) is positive and uniformly bounded from below.
Obviously this assumption is too strong for the log-normal random
processes. Recently the numerical analysis of stochastic finite ele-
ment method for model (I) with a(x,x) being log-normal was car-
ried out in [13], which is based on white noise analysis and
weighted L2 norm in the probability space, since the regular L2

norm is not enough for the convergence study due to the relaxation
of the uniform ellipticity. Instead of using the probability space
F ¼ ðX;F ; PÞ, which is generated by countably many i.i.d. normal
random variables, the white noise analysis uses the probability
space F̂ ¼ ðS0;BðS0Þ;lÞ, where S0 is a properly defined space of dis-
tributions, BðS0Þ is the r-field of Borel subsets of S0, and l is the
white noise measure given by the Bochner-Minlos theorem

E½eih�;/i� :¼
Z
S0

eihw;/idlðwÞ ¼ e�
1
2k/k

2
2 ; 8/ 2 S: ð28Þ

With S0 being the dual of S; hw;/i ¼ wð/Þ is the action of w on /. A
general definition of S can be found in [13].

The coefficients a(x,x) is modeled as aðx;xÞ :¼ eW/ðx;wÞ, where
W/(x, w) is the smoothed white noise (see Section 3.3) defined as
W/(x, w) :¼ hw, /xi with /x 2 L2(D) and w 2 S0. To study the sto-
chastic elliptic problem

�r � ðeW/ðx;wÞruIÞ ¼ f ðxÞ; ð29Þ

we define Vs as the weighted space consisting of functions
v : D	 S0 ! R such that

kvk2
Vs

:¼
Z
S0
kvk2

H1
0ðDÞ

eskwk2
�h dlðwÞ <1; s 2 R; ð30Þ

and its dual as

V�s :¼ fvðwÞjkvk2
V�s
¼
Z
S0
kvk2

H1
0ðDÞ

e�skwk2
�h dlðwÞ <1g: ð31Þ

Then the following inf–sup condition holds

Theorem 3.6. [13]. Let � > 0 and assume that Ch = supx2D k/xkh <1.
Then the bilinear form að�; �Þ : Vs 	 V�sþ� ! R given by Eq. (29) is
continuous and bounded, i.e.

aðu;vÞ 6 e
C2
h

2�kukVs
kvkV�sþ�

; ð32Þ

and satisfies the following inf–sup condition

inf
u2Vsnf0g

sup
v2V�s��nf0g

aðu; vÞ
kukVs

kvkV�s��

P e�
Ch
2� : ð33Þ

For f 2 V 0�s�� � V 0�sþ�, there exists a unique solution uI 2 Vs satisfying
the weak form

aðuI; vÞ ¼ hf ; vi; 8v 2 V�sþ�: ð34Þ
Note here that we need the constant � to be positive. If uI 2 V0,

we need f 2 V 0��. If f 2 V 00, we have uI 2 V��, in other words, we
must associate uI to a weight e��kwk

2
�h in the probability space F̂.

Based on Theorem 3.6, the convergence of a stochastic finite ele-
ment method can be established. Note here that with respect to
the Winer chaos, a proper set R ¼ fra;a 2 Jg of uniformly
bounded positive real numbers can be defined according to the
weight eskwk2

�h , which establishes a correspondence between Vs

and the weighted Wiener chaos space RL2ðF; H1
0ðDÞÞ, see Eq. (6).

Numerical analysis for model (II) was implemented in [17,16]
using the white noise analysis. We here discuss it in the weighted
Wiener chaos space, which takes advantage of the lower-triangular
structure of the uncertainty propagator [9,18,10]. Eqs. (27b) and
(27c) have the same abstract form

Að0Þuð0Þ ¼ f ; jcj ¼ 0;
Að0Þuc ¼ �

P
a2J

0<a6c

Aauc�a; jcj > 0;

8><
>: ð35Þ
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where we neglect the subscripts II and III, and Aa = �r�(aa(x)r).
Then Eq. (35) can be solved as

uð0Þ ¼ A�1
ð0Þf ; jcj ¼ 0;

uc ¼ �
P
a2J

0<a6c

A�1
ð0ÞAauc�a; jcj > 0;

8>><
>>: ð36Þ

If operators A�1
ð0Þ and A�1

ð0Þ Aa are bounded, we can always find proper
weights {ra} to construct a weighted Wiener chaos space
RL2ðF; H1

0ðDÞÞ, in which a unique solution of Eq. (35) exists. Such
observations are summarized in the following theorem

Theorem 3.7 [10]. Assume that operators A�1
ð0Þ and A�1

ð0ÞAa; a 2 J ;
jaj > 0, are bounded, where kA�1

ð0ÞAak 6 Ca. Let b = (b1,b2, . . .) be of
sequence of positive numbers, such that Ca 6 ba. Then Eq. (35) has a
unique solution u 2 RL2ðF; H1

0ðDÞÞ with weights ra ¼ ca

a! for a deter-
ministic function f(x) 2 H�1(D), where c = (c1, c2, . . .) is a sequence of
positive numbers.

Note that in Theorem 3.7, we do not assume explicitly that the
random field a(x,x) is log-normal as we do in Theorem 3.6. The
assumptions in Theorem 3.7 are much more general and cover a rel-
atively large class of nonlinear random coefficients with high-order
Wiener chaos expansions, including the log-normal random fields.

3.3. Smoothed white noise

We subsequently consider the solution behavior of models
(I)–(III), where a(x,x) is a log-normal random process. We start
from the definition of smoothed white noise [7]

W/ðxÞ :¼
X
kP1

ð/x;ukÞnk; ð37Þ

where /x 2 L2(D). For example, let /ðyÞ ¼ I½0;h�	½0;h�ðyÞ, where h is a
positive number and IðyÞ is the indicator function. We can define
/x = /(y � x). Obviously, W/(x) is a Gaussian random process. Note
that this is a simple and direct way to introduce correlation. Obvi-
ously, W/(x1) and W/(x2) are correlated if x2 � x1 or x1 � x2 2 [0,
h] 	 [0, h], which introduces a correlation length h.

Let aðx;xÞ ¼ e}W/ðxÞ, where the Wick exponential is defined as

e}W/ðxÞ ¼
X1
n¼0

1
n!

W}n
/ ðxÞ: ð38Þ

It can be readily checked that [7]

e}W/ðxÞ ¼ eW/ðxÞ�1
2k/k

2
2 ; ð39Þ

and the following statistics hold

E e}W/ðxÞ

 �

¼ 1; Var e}W/ðxÞ
� �

¼ ek/k
2
2 � 1: ð40Þ

We also have

e}W/ðxÞ}e}ð�W/ðxÞÞ ¼ 1: ð41Þ

For the one-dimensional case, we have the following exact solutions
of ui [7], i = I, II, III.

Theorem 3.8. Let L 2 R; D ¼ ð0; LÞ; aðx;xÞ ¼ e}W/ðxÞ, and f(x) 2
L1(D) is a deterministic function. Then the exact solutions of models
(I)–(III) are:

uI ¼ ek/k
2
2 eA � Z x

0
e}ð�W/ðtÞÞdt �

Z x

0

Z t

0
f ðsÞdse}ð�W/ðtÞÞdt

� �
;

uII ¼ A}
Z x

0
e}ð�W/ðtÞÞdt �

Z x

0

Z t

0
f ðsÞdse}ð�W/ðtÞÞdt; ð42Þ

uIII ¼ ek/k
2
2 uII;
where

eA ¼ Z L

0
e}ð�W/ðtÞÞdt

� 	�1

�
Z L

0

Z t

0
f ðsÞdse}ð�W/ðtÞÞdt;

A ¼
Z L

0
e}ð�W/ðtÞÞdt

� 	}ð�1Þ

}
Z L

0

Z t

0
f ðsÞdse}ð�W/ðtÞÞdt:
Proof. From Eq. (39), we have

1
e}W/ðxÞ

¼ e
1
2k/k

2
2 e�W/ðxÞ ¼ ek/k

2
2 e}ð�W/ðxÞÞ:

Thus,

1
e}W/ðxÞ

� 	}ð�1Þ

¼ e�k/k
2
2 e}W/ðxÞ; ð43Þ

where Eq. (41) is applied. Then we can follow the proof of theorem
4.6.2 in [7]. For completeness, we give a brief deviation for uII. We
consider

ðe}W/ðxÞ}u0IIðxÞÞ
0 ¼ �f ðxÞ;

subject to homogeneous boundary conditions on [0, L], where 0 indi-
cate derivative with respect to x. Integrating the above equation, we
obtain

e}W/ðxÞ}u0IIðxÞ ¼ �
Z x

0
f ðtÞdt þ AðxÞ;

where A(x) is independent of x. Multiplying e}ð�W/ðxÞÞ to both sides
of the above equation with respect to Wick product and integrating
it, we have

uIIðxÞ ¼ AðxÞ}
Z x

0
e}ð�W/ðtÞÞ dt �

Z x

0

Z t

0
f ðsÞdse}ð�W/ðtÞÞ dt:

Using the boundary condition uII (L) = 0, the random variable A(x)
can be determined. h
Remark 3.9. For a high-dimensional problem, no exact solution is
available for model (I) while the exact solutions of model (II) and
(III) can be obtained [7]. When aðx;xÞ ¼ e}W/ðxÞ, the relation
uIII ¼ ek/k

2
2 uII still holds due to the relation (43).

Based on the exact solution, it is easy to show that uI for the
one-dimensional problem is square integrable in the probability
space by noting the fact

E

Z x

0
gðtÞe}ð�W/ðtÞÞdt

� 	n
 �

6 E xn�1
Z x

0
gnðtÞe�nW/ðtÞ�1

2nk/k2
2 dt


 �

¼ xn�1
Z x

0
gnðtÞE e�nW/ðtÞ�1

2nk/k2
2

h i
dt

¼ xn�1e
n2
2 k/k

2
2�

1
2nk/k2

2

Z x

0
gnðtÞdt <1; 8n 2 Z; ð44Þ

where we assume that g(t) is a positive function and
R x

0 gnðtÞdt
exists. For uI, g(t) = 1 or j

R t
0 f ðsÞdtj. In the above deviation, we em-

ploy the Jensen’s inequality using the fact that xn is convex for
n 2 Z on the interval (0, +1). Thus, we can apply the Hölder
inequality to the exact solution of uI to show that uI is square inte-
grable for any x provided that f(s) is good enough. Using Eq. (44) it
can also be shown that for any x, both uII and uIII are square integra-
ble [7] in the probability space.

We now compare the exact solutions uI, uII and uIII. First, it is
seen that the form of uI is very similar to that of uIII. We can obtain
uIII from uI by replacing some multiplication operations � by Wick
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product }. Second, compared to uI and uIII, uII does not have the
scaling factor ek/k

2
2 , which is also the only difference between uII

and uIII. Thus, existence of the scaling factor should be related to
the way that we apply the Wick product, see (9). Third, the scaling
factor is an exponential function of k/k2

2. We will show later on in
Section 3.3.2 that k/k2

2 can be related to the variance of W/(x). In
other words, if the degree of perturbation of a(x,x) increases, the
difference between the statistics given by uI and uII will increase
exponentially. Since uIII also includes the scaling factor ek/k

2
2 , we

are more interested in the difference between uI and uIII.

3.3.1. Spatially-independent noise
This is the simplest case, where W/(x) is independent of x. Let

aðx;xÞ ¼ ern�1
2r

2 , where n � Nð0;1Þ and c is constant. In other
words, we take /(y) as a constant to smooth the white noise, see
Eq. (37). It is easy to verify that

ern�1
2r

2}e�rn�1
2r

2 ¼ 1: ð45Þ

Then the exact solutions of models (I)–(III) can be expressed as

uIðx;xÞ ¼ e�rnþ1
2r

2
D�1f ðxÞ;

uIIðx;xÞ ¼ e�rn�1
2r

2
D�1f ðxÞ;

uIIIðx;xÞ ¼ e�rnþ1
2r

2
D�1f ðxÞ;

where D�1 is the inverse of Laplace operator satisfying the homoge-
neous boundary conditions. It is seen that models (I) and (III) give
the same solutions for space-independent noise, while there exists
a scaling factor uI=uII ¼ er2 between models (I) and (II). Since

E ern�1
2r

2
h i

¼ 1 and Var ern�1
2r

2
� �

¼ er2 � 1;

the scaling factor increases exponentially with the degree of pertur-
bation of a(x,x).

3.3.2. Spatially-dependent noise
Let the smoothed white noise be a zero-mean stationary Gauss-

ian process with a correlation function R(x, y) = R(x � y). According
to the Mercer theorem [15] we have

Rðx; yÞ ¼
X1
i¼1

ki/iðxÞ/iðyÞ; ð46Þ

where fki;/iðxÞg
1
i¼1 are eigen-pairs satisfyingZ

D
Rðx; yÞ/iðxÞdx ¼ ki/iðyÞ;

Z
D

/iðxÞ/jðxÞdx ¼ dij: ð47Þ

Let /x ¼
P1

i¼1

ffiffiffiffi
ki
p

/iðxÞ/iðyÞ and ui ¼ /iðyÞ. From Eq. (37), we obtain

W/ðxÞ ¼
X1
i¼1

ffiffiffiffi
ki

p
/iðxÞni; ð48Þ

which is exactly the Karhunen-Loève expansion of the Gaussian
random process. We also have

k/xk
2
2 ¼

X1
i¼1

ki/iðxÞ/iðxÞ ¼ Rð0Þ; ð49Þ

which is valid for any given x 2 D. Note that R(0) is the variance of
W/(x). We choose the above particular forms of /x and ui mainly
due to the convenience for numerical computation. We now look
at the Wiener chaos expansion of e}W/ðxÞ. Using Eqs. (48) and (49),
and the generating function of Hermite polynomials

esx�1
2s2 ¼

X1
n¼0

sn

n!
HnðxÞ; ð50Þ
we obtain

e}W/ðxÞ ¼ eW/ðxÞ�1
2k/k

2
2 ¼ e

P1
i¼1

ffiffiffi
ki

p
/iðxÞni�1

2ki/iðxÞ/iðxÞ

¼
X
a2J

UaðxÞffiffiffiffiffi
a!
p haðnÞ; ð51Þ

where

UðxÞ ¼
ffiffiffiffiffi
k1

p
/1ðxÞ;

ffiffiffiffiffi
k2

p
/2ðxÞ; . . .

� �
: ð52Þ
Example 3.10. It is known that the eigen-pairs {ki, /i(x)} for the

one-dimensional exponential kernel e�
jx�yj

l have the following
analytical forms on [0, L] [8]

/iðxÞ ¼
k̂il cosðk̂ixÞ þ sinðk̂ixÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 ð1þ k̂2

i l2ÞLþ ðk̂2
i l2 � 1Þ sinð2k̂iLÞ

4k̂i
þ 1

2 lð1� cosð2k̂iLÞÞ
q ; ð53Þ

where k̂i satisfying

k̂2
i ¼

2=l� ki=l2

ki
; ðk̂2

i � 1=l2Þ tanðk̂iTÞ � 2k̂i=l ¼ 0: ð54Þ

We will use these formulas for numerical experiments in Section 4.
We subsequently present a numerical procedure to compute

the statistics of uI, uII and uIII based on the exact solutions given
in Theorem 3.8. A general numerical procedure is to solve the
uncertainty propagators (27a)–(27c). Since the difference between
uII and uIII is just a scaling factor. We only consider uI and uIII.
Assume that

uIðx;xÞ ¼
X
a2J

uI;aðxÞhaðnÞ; uIIIðx;xÞ ¼
X
a2J

uIII;aðxÞhaðnÞ;
Z x

0
e}ð�W/Þdt ¼

X
a2J

gaðxÞhaðnÞ;

andZ x

0

Z t

0
f ðsÞdse}ð�W/Þdt ¼

X
a2J

ĝaðxÞhaðnÞ;

where

gaðxÞ ¼
Z x

0

UaðtÞffiffiffiffiffi
a!
p dt; ĝaðxÞ ¼

Z x

0

Z t

0
f ðsÞds

UaðtÞffiffiffiffiffi
a!
p dt:

Using the Galerkin projection in the probability space, we then haveX
a;b2J

uI;aðxÞgbðLÞE hahbhc


 �
¼ er2 X

a;b2J
ĝaðLÞgbðxÞ � gaðLÞĝbðxÞ
� �

E½hahbhc�; ð55Þ

and

X
a6c

uIII;aðxÞgc�aðbÞ
c

a

� 	1=2

¼ er2 X
a6c

ĝaðLÞgc�aðxÞ � gaðLÞĝc�aðxÞ
� � c

a

� 	1=2

; ð56Þ

for any c 2 J , where r = k/xk2. Noticing the fact that

hiðnÞhjðnÞ ¼
X
k6i^j

Bði; j; kÞhiþj�2kðnÞ ð57Þ

for one-dimensional normalized Hermite polynomials, where

Bði; j; lÞ ¼
i

l

� 	
j

l

� 	
iþ j� 2l

i� l

� 	
 �1=2

;
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we have

E½hahbhc� ¼
X

j6a^b
Bða;b;jÞdj;c; Bða;b;jÞ ¼

Y1
i¼1

Bðai;bi;jiÞ; ð58Þ

for the multi-dimensional cases. We note that for any given x, the
linear system (55) for uI,a is full while the linear system (56) for
uIII,a is lower-triangular.

4. Numerical experiments

In this section, we study models (I)–(III) numerically. We will
focus on the comparability of the statistics of uI–uIII given in Theo-
rem 3.8. Assume that the random coefficient aðx;xÞ ¼ e}W/ðxÞ is a
log-normal random field, where the underlying Gaussian field
W/(x) is subject to an exponential correlation function Rðx� yÞ ¼
r2e�

jx�yj
l , where r is the standard deviation of W/(x) and l the corre-

lation length. The physical domain is D ¼ ½0;1� and f(x) = 1.
We first look at a relatively large correlation length l = 5

compared to the physical domain. We use four Gaussian random
variables to approximate the underlying Gaussian random process
(smoothed white noise) based on the Karhunen-Loève expansion

W/ðxÞ ¼
X4

i¼1

ffiffiffiffi
ki

p
/iðxÞni;

where ki and /i(x) are given by Eqs. (53) and (54). The smallest
eigenvalue is 0.48% of the largest one. Since

E e}W/ðxÞ

 �

¼ 1 and Var e}W/ðxÞ
� �

¼ er2 � 1;
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Fig. 1. Statistics of uI, uII and uIII when r = 1 and l
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Fig. 2. Statistics of uI, uII, uIII at x = 0.5 with respect to
r can also indicate the degree of perturbation of e}W/ðxÞ. We then
approximate the exact solutions given in Theorem 3.8 using
fourth-order Wiener chaos. In Fig. 1 we plot the mean and the stan-
dard deviation of ui, i = I, II, III, when r = 1. We note that r = 1 cor-
responds to a degree of perturbation around 130%. It can be seen
that without the scaling factor ek/k

2
2 ¼ er2 , there exist a large differ-

ence between statistics of uI and uII. However, the corresponding
statistics of uI and uIII are comparable. In Fig. 2, we plot the statistics
of uI, uII and uIII at x = 0.5, where the largest standard deviation oc-
curs. It is seen that the relative difference between the statistics in-
creases with the degree of perturbations. When r = 1 the relative
difference between the statistics of uI and uIII is 4.34% and 3.42%
for the mean and the standard deviation, respectively.

We subsequently look at a smaller correlation length l = 1,
which is still comparable with respect to the physical domain.
We use eight random variables to construct the K–L expansion of
W/(x). The smallest eigenvalue is 0.55% of the largest one.
Fourth-order Wiener chaos expansions are employed. In Fig. 3,
we plot the mean and the standard deviation at x = 0.5 with respect
to the parameter r. It can be seen that the difference between the
statistics of uI and uIII becomes larger as the correlation length l be-
comes smaller. When r = 1, the relative difference between the
statistics of uI and uIII is 14.98% and 13.97% for the mean and stan-
dard deviation, respectively.

To this end, for a Gaussian random process W/(x) with a corre-
lation function Rðx; yÞ ¼ r2e�

jx�yj
l , we see that E½uI� depends on r and

l; E½uII� is independent of r and l because only E½e}W/ � ¼ 1 is needed
for Eq. (20) satisfied by E½uII�; E½uIII� only depends on r since
uIII ¼ er2 uII. Furthermore, the dependence of E½uIII� on r is through
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Fig. 3. Statistics of uI, uII and uIII at x = 0.5 with respect to r. l = 1. Left: mean and right: standard deviation.
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Fig. 4. l = 0.1. Left: mean of uI, uII and uIII at x = 0.5 with respect to r and right: relative difference between E½uI� and E½uIII�.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

1/L

R
el

at
iv

e 
di

ffe
re

nc
e

10−1 100 101 102
10−2

10−1

100

1/L

R
el

at
iv

e 
di

ffe
re

nc
e

Fig. 5. Relative difference between E½uI� and E½uIII� at x = 0.5 with respect to 1/l when r = 1. Left: the original scale and right: the log–log scale.

2994 X. Wan / Comput. Methods Appl. Mech. Engrg. 199 (2010) 2987–2995
the scaling factor er2 , and E½uIII� cannot see the variation of the
correlation length l. From Figs. 2 and 3, it appears that the differ-
ence between E½uI� and E½uIII� increases as the correlation length de-
creases for a certain r.

We subsequently examine the difference between E½uI� and
E½uIII� for a much smaller correlation length compared to the phys-
ical domain. Since for a small correlation length l, a relatively large
number of random variables is necessary to express the log-normal
random process, we use the Monte Carlo method to deal with the
high dimensionality. We consider correlation length l = 0.1 and 100
random variables for the K–L expansion of W/(x). The smallest
eigenvalue is 0.11% of the largest one. In Fig. 4 we plot the mean
solutions of uI, uII and uIII at x = 0.5 and the relative difference be-
tween E½uI� and E½uIII� with respect to the degree of perturbation,
where E½uI� is obtained by the Monte Carlo simulation with
100,000 realizations, E½uII� and E½uIII� are computed exactly. When
r = 1, the relative difference between E½uIII� and E½uI� is 17.98%.
From the right plot in Fig. 4, we see that the relative difference in-
creases overall algebraically. Roughly speaking, the relative differ-
ence is about O(r2). It is also seen that when r 6 0.7, the difference
is smaller than 10%. We note that r = 0.7 corresponds to a degree
about 80% of perturbation of a(x,x).

One interesting question we have not answered yet is: Is there a
limit of the relative difference between E½uI� and E½uIII� for a certain
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r as the correlation length decreases? We have seen that when
r = 1, the relative difference between E½uI� and E½uIII� is 4.34%,
14.98% and 17.98% corresponding to the correlation length 5, 1
and 0.1, respectively. In Fig. 5, we plot the evolution of the relative
difference between E½uI� and E½uIII� with respect to the inverse of
correlation length, i.e., 1/l, using different scales, i.e., a regular scale
for the left plot and a log–log scale for the right plot. We use 1000
Gaussian random variables to represent the log-normal random
process and 100,000 realizations for the Monte Carlo simulation.
We can see from the left plot of Fig. 5 that the relative difference
E½uI� and E½uIII� first increases quickly as the correlation length de-
creases from infinity, and the relative difference reaches a limit
about 24% when l 
 0.3, then the relative difference will decrease
gradually as the correlation length decreases. Furthermore, the
increasing rate and the decreasing rate are roughly the same, see
the right plot in Fig. 5. In Fig. 5, the dashed lines indicate a 10%
relative difference. We see that the relative difference between
E½uI� and E½uIII� is less than 10% in an approximate region
l 2 Dl :¼ ð0; 1

20� [ ½2;1Þ. In other words, E½uI� and E½uIII� are compara-
ble when the correlation length belongs to the region Dl when the
degree of perturbation of a(x,x) is about 130%, i.e., r = 1. By notic-
ing that such a comparability is from the scaling factor er2 , we
know that when l 2 Dl, the relative difference between E½uI� and
E½uIII� is dominated by the change of r. We should note from
previous studies that the region Dl will become larger when r
becomes smaller. In summary, although E½uIII� cannot see the
change in the correlation length of the underlying Gaussian
process W/(x), it does provide a comparable mean solution with
E½uI� for a large range of the correlation length l and the degree
of perturbation r.
5. Discussions

In this paper, we discussed two stochastic modeling strategies
for elliptic problems, corresponding to models (I) and (II), respec-
tively. Model (I) is widely used in engineering and physical appli-
cations while model (II) has a direct connection with Itô-
Skorohod stochastic integration. We focused on the comparability
of the statistics given by these two strategies. For a one-dimen-
sional elliptic problem subject to a log-normal random coefficient,
it was shown that the difference between models (I) and (II) is
mainly from a scaling factor, which is an exponential function of
the standard deviation of the underlying Gaussian random process.
Based on such an observation, we proposed a new stochastic ellip-
tic model, i.e., model (III), which is a variation of model (II). The
main difference between models (II) and (III) is the way that we
apply the Wick product. Specifically, models (I) and (III) shares
the same aforementioned scaling factor, and numerical experi-
ments for one-dimensional problems show that the first- and sec-
ond-order moments of the solutions given by models (I) and (III)
can be highly comparable.

Both E½uII� and E½uIII� can be given by a deterministic PDE. For the
log-normal coefficients chosen in this work, E½uI� is a function of
both the degree of perturbation and the correlation length; E½uII�
only depends on the mean of a(x,x) and cannot see the change
of either the degree of perturbation or the correlation length;
E½uIII� is a function of the degree of perturbation. Numerical exper-
iments for one-dimensional problems show that statistics of the
solutions given by models (I) and (III) can be comparable for many
cases, especially when the correlation length of the underlying
Gaussian process is either small or large, or the standard deviation
is small.

For the new stochastic elliptic model (III), there are some inter-
esting open problems:
� Will uI and uIII converge to the same solution as l ? 0 for one-
dimensional problems? We note that for the one-dimensional
case, the equation satisfied by E½uIII� corresponds to the homog-
enized one-dimensional elliptic PDE.
� The aforementioned correspondence will not remain for two-

and three-dimensional cases since the effective coefficients of
the homogenized two- and three-dimensional elliptic PDEs do
not take the form of a harmonic mean. For this case, it should
be more interesting to quantify the difference between uI and
uIII with respect to r. In the numerical experiments, we see that
such a difference can be of O(r2).
� From the numerical point of view, the comparability between

models (I) and (III) is also an interesting issue. First, if the differ-
ence between uI and uIII is small enough, it might be not neces-
sary to use model (I) since the uncertainty propagator of model
(III) can be approximated much more efficiently. Second, if it is
necessary to approximate model (I), model (III) might provide
an efficient preconditioner due to the small difference between
uI and uIII and the efficiency to obtain uIII.

Studies on these topics are in progress and the above questions
are partially answered in [19].
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