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Stochastic bifurcations and stability of natural convection within two-dimensional
square enclosures are investigated by different stochastic modelling approaches.
Deterministic stability analysis is carried out first to obtain steady-state solutions
and primary bifurcations. It is found that multiple stable steady states coexist, in
agreement with recent results, within specific ranges of Rayleigh number. Stochastic
simulations are then conducted around bifurcation points and transitional regimes.
The influence of random initial flow states on the development of supercritical
convection patterns is also investigated. It is found that a multi-element polynomial
chaos method captures accurately the onset of convective instability as well as multiple
convection patterns corresponding to random initial flow states.

1. Introduction
It has been recently found that the Oberbeck–Boussinesq approximation to

convection can lead to multiple stationary states (Gelfgat, Bar-Yoseph & Yarin
1999; Gelfgat & Bar-Yoseph 2004) that are physically realizable (Pallares, Grau &
Giralt 1999; Pallares et al. 2001). Significant research activity therefore has focused
on the identification of these multiple solutions to natural convection (Puigjaner et al.
2004, 2008; Bousset, Lyubimov & Sedel’nikov 2008) but a systematic analysis of flow
state multiplicity corresponding to appropriate initial conditions is still lacking. In
fact, depending on the initial flow state – which is usually unknown in most practical
applications – the transient dynamics governed by nonlinear convection equations
could lead to different stationary stable convection patterns. In addition, even for
well-known initial flow states, the uncertainty in boundary conditions and/or in
thermophysical parameters such as the thermal diffusivity or the kinematic viscosity
can introduce a significant variation in the flow pattern, especially near bifurcations
(e.g. branch points, Hopf bifurcations, etc.). This lack of precise knowledge about
the system however has been traditionally neglected in numerical investigations of
convective heat transfer where physical parameters, boundary conditions, geometry
and initial conditions are usually set to be deterministic. Further developments towards
physically relevant results obviously raise the need to account for more realistic
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operating conditions, eventually represented in terms of random variables, random
processes and random fields. Recent rapid advances in the numerical solution of
stochastic partial differential equations (Ghanem & Spanos 1998; Xiu & Karniadakis
2002) and application to computational fluid dynamics (Lucor et al. 2003; Xiu &
Karniadakis 2003) open this possibility and allow the integration and the propagation
of randomness in numerical simulations of convection (Le Maı̂tre et al. 2005; Wan
& Karniadakis 2006b; Ganapathysubramanian & Zabaras 2007).

The purpose of the present paper is to study the stochastic bifurcation process in
Rayleigh–Bénard convection within two-dimensional square enclosures. Specifically,
we will consider the onset of convective instability and multiple stable steady states
arising within specific ranges of Rayleigh and Prandtl numbers. The choice to
rely on this simple prototype convection problem is mainly motivated by the fact
that it exhibits many dynamical features of three-dimensional flows and it can be
effectively treated with different stochastic approaches. In order to conduct these
studies on a systematic basis we first obtain steady-state solutions and primary
bifurcations through deterministic linear stability analysis and well-established
parameter continuation techniques (Allgower & Georg 1990). Subsequently, we
consider two different types of random flows. The first one corresponds to a random
Rayleigh number that includes the onset of convective instability (Asokan & Zabaras
2005), i.e. we study the stochastic convection near the onset. Random Rayleigh
number flows arise, for instance, when an unknown temperature difference is used as
a scaling factor for the temperature distribution within the cavity. The quantification
of stochastic aspects of this bifurcation problem is an important issue since any
stochastic simulation of fluid mechanics can potentially include this type of branch
point.

The second part of the paper is devoted to the study of multiple stable steady
states arising in thermal convection within specific ranges of Rayleigh and Prandtl
numbers. In particular, we will investigate the influence of initial conditions on the
development of supercritical convection patterns, i.e. we attempt to analyse the flow
state multiplicity beyond making just statements about its existence. We will consider,
in particular, the following general question: What is the probability that a specific
convection pattern develops within the cavity if the initial flow condition is random? As
we will see, the first step in obtaining an answer to this question is to provide a
suitable representation of the initial condition ensemble. In general, this involves an
infinite number of degrees of freedom. In this paper, however, we will restrict our
attention to a specific class of initial states obtained as a superimposition of particular
types of low-wavenumber eddies. We first determine the basins of attraction of the
steady-state convection patterns through deterministic analysis. Subsequently, we
investigate random flow and heat transfer for random initial conditions intersecting
different basins of attraction. Obviously, this problem has a discontinuity within the
ensemble of solutions since the continuous ensemble of initial states is asymptotically
split into as many parts as the number of stationary stable states. Different
stochastic approaches will be considered throughout the paper for the study of both
random Rayleigh number flows and random initial condition flows. In particular,
we will apply generalized polynomial chaos (gPC) (Xiu & Karniadakis 2002, 2003),
multi-element generalized polynomial chaos (ME-gPC) (Wan & Karniadakis 2005,
2006a) and Monte Carlo (MC) (Hammersley & Handscomb 1967; Fishman 1996)
methods.

The paper is organized as follows. In § 2 we consider the Oberbeck–Boussinesq ap-
proximation to convection via the vorticity transport equations in streamfunction-only



Stochastic bifurcation analysis of Rayleigh–Bénard convection 393

= 0

T = 0

∂T
∂x

∂T
∂x

=

0

T = 1
1 x

y

0

1

g

Figure 1. Schematic of dimensionless geometry and temperature boundary conditions. The
sidewalls of the cavity are assumed to be adiabatic while the horizontal walls are kept at
constant temperature. The velocity boundary conditions are of no-slip type, i.e. ∂ψ/∂x = 0
and ∂ψ/∂y = 0 at the walls.

formulation (Leal, Machado & Cotta 2000; Alves, Cotta & Pontes 2002) and obtain
an integral representation which is the basis of the subsequent bifurcation analysis
presented in § 3. In § 4 we investigate the onset of convective instability and determine
the statistics of random Rayleigh number flows that include this bifurcation point.
Section 5 is devoted to the study of multiple steady states arising in natural convection
within specific ranges of Rayleigh and Prandtl numbers. In particular, we try to
determine when and how each stable flow pattern is physically realized from specific
deterministic initial conditions. We also consider random initial condition flows that
intersect the basin of attraction of different stable states and we determine the time-
asymptotic statistics of the corresponding mixture of convection patterns. In other
words, we assess the probability that different supercritical flows are developed when
the initial flow condition is random. The main findings and their implications are
summarized in § 6. We also include two appendices dealing with temperature and
velocity mathematical representations.

2. Governing equations
Let us consider the dimensionless form of Oberbeck–Boussinesq approximation via

the vorticity transport equation in streamfunction-only formulation

−
∂

(
∇2ψ

)

∂t
− ∂ψ

∂y

∂
(
∇2ψ

)

∂x
+
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∂
(
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, (2.1a)
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∂t
+

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= ∇2T , (2.1b)

where ψ(x, y, t) denotes the dimensionless streamfunction, T (x, y, t) the dimensionless
temperature while Ra and Pr are the Rayleigh and the Prandtl numbers, respectively.
All the quantities have been made dimensionless by scaling lengths with the side
length of the cavity L, streamfunction with the kinematic viscosity ν, time with L2/ν
and temperature with the uniform temperature difference between the horizontal
walls. The boundary conditions associated with the system (2.1) are shown in figure 1
together with a sketch of the geometry. It is convenient to transform the non-
homogeneous boundary condition for the temperature at the lower horizontal wall
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into a homogeneous one. This is easily achieved by defining

T ∗(x, y, t)
def
= T (x, y, t) + (y − 1). (2.2)

A substitution of (2.2) into (2.1) yields the system

−
∂

(
∇2ψ

)

∂t
− ∂ψ

∂y

∂
(
∇2ψ

)

∂x
+

∂ψ

∂x

∂
(
∇2ψ

)

∂y
= −Pr∇4ψ + RaPr

∂T ∗

∂x
, (2.3a)

∂T ∗

∂t
+

∂ψ

∂y

∂T ∗

∂x
− ∂ψ

∂x

∂T ∗

∂y
+

∂ψ

∂x
= ∇2T ∗, (2.3b)

where all the boundary conditions are the same as those in figure 1, except that now
T ∗ = 0 at the lower horizontal wall.

2.1. Integral representation

For the purpose of the subsequent bifurcation analysis it is useful to transform the
system of (2.3) into an integral form. To this end, we consider an expansion of
temperature and velocity fields in terms of globally defined normalized eigenfunctions
ψ̂n (x, y) and Γ̂m (x, y) obtained in Appendices A and B, as follows:

ψ (x, y, t) =
Nv∑

n=1

an (t) ψ̂n (x, y) , (2.4a)

T ∗ (x, y, t) =
Nt∑

m=1

bm (t) Γ̂m (x, y) . (2.4b)

The advantage of using such representations is that they automatically satisfy all the
boundary conditions as well as the continuity equation (Cotta 1993; Leal et al. 2000).
A substitution of (2.4) into (2.3) and subsequent Galerkin projection onto ψ̂k and Γ̂k ,
respectively, gives the following system of ordinary differential equations (repeated
indices are summed unless otherwise stated):

−dan (t)

dt
Ank = an (t) am (t) Bnmk − Pran (t) Cnk + RaPrbn (t) Dnk, (2.5a)

dbk (t)

dt
= −an (t) bm (t) Enmk − an (t) Fnk − γ 2

k bk (t) , (2.5b)

where the coefficients Ank , Bnmk , etc., are defined as
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Also, in (2.5b) γ 2
k denote the eigenvalues of the Helmholtz equation (see Appendix A).

The system (2.5) can be integrated in time in order to obtain the functions an(t) and
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Figure 2. Bifurcation diagrams for natural convection of air (Pr = 0.7) within the cavity.
Shown are the heat transfer correlation function (a) and the dimensionless kinetic energy of
the fluid (b). Stable steady states are denoted by continuous lines (−) while unstable steady
states are denoted by dashed lines (−−). Also shown are branch points BP1, BP2 and BP3
reported in table 1.

bm(t). Once these are known, the streamfunction and the temperature fields can be
easily recovered from (2.4) and (2.2).

3. Bifurcation diagrams and stability analysis
The study of bifurcations and stability of steady-state convection within the

cavity has been carried out through the nonlinear system (2.5) with parameter
continuation techniques. Specifically, the continuation algorithm employed to track
steady states uses a prediction–correction scheme based on the Moore–Penrose matrix
pseudoinverse. Mathematical details may be found in Dhooge, Govaerts & Kuznetsov
(2003) (see also Allgower & Georg 1990). The bifurcation diagrams we obtained are
shown in figure 2 for flows up to Rayleigh number 22 000. Figure 2(a) reports the
integrated Nusselt number along horizontal walls versus the Rayleigh number, i.e. the
heat transfer correlation function at Prandtl number 0.7. Figure 2(b) shows the kinetic
energy of the fluid within the cavity versus the Rayleigh number, again at Prandtl
number 0.7. Let us briefly explain the meaning of these diagrams. We observe a
transition from conduction to convection (onset of convective instability) at Rayleigh
number 2585.02 through a pitchfork bifurcation. The stable branch departing from
this first branch point, denoted as BP1 in figure 2, is associated with a one-roll
convection pattern defined as S±

1 (+ clockwise roll, − anticlockwise roll). The velocity
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Figure 3. Velocity streamlines (first row) and isocontours of temperature fields (second row)
of steady-state convection patterns S+

1 (left), S+
2 (centre) and S1

3 (right). Both S+
1 and S+

2 are
stable at Ra = 15 000 while S1

3 is unstable at Ra = 21 000.

streamlines and the temperature field of S+
1 are shown in figure 3 (left) at Ra = 15 000.

The continuation of the conduction state beyond BP1 shows something interesting.
We get a secondary branch point (BP2) at Ra = 6742.31, with two other initially
unstable stationary states defined as S±

2 arising from BP2. The convection pattern
associated with S±

2 is a two-roll pattern. In figure 3 (centre) we show the velocity
streamlines and the temperature field of S+

2 at Ra = 15 000. As has been pointed out
by Puigjaner et al. (2004) this second primary bifurcation (BP2) cannot be predicted
by the method proposed by Catton (1972). The initially unstable stationary states
S±

2 become stable at Rayleigh number Ra = 11 279. This means that four stable
convective states S±

1 and S±
2 coexist within the range Ra = 11 279–22 000, the final

asymptotic pattern depending on the initial flow condition within the cavity. These
four different types of flows also satisfy several discrete symmetries discussed in § 3.1.
The continuation of the conduction solution beyond BP2 leads to a third branch
point (BP3) at Ra = 19 634. This bifurcation yields four additional unstable three-roll
flows defined as Sk

3 , (k = 1, . . . 4). In figure 3 (right) we show S1
3 at Ra = 21 000.

The other three patterns (i.e. S2
3 , S3

3 and S4
3 ) may be obtained from S1

3 through the
application of the discrete symmetry transformations reported in § 3.1.

It is interesting to note that the sequence of bifurcations shown in figure 2 is very
similar to that one reported by Puigjaner et al. (2004), who considered the more
challenging natural convection problem in a cubical cavity with adiabatic sidewalls
(Pallares et al. 1999, 2001, see also Puigjaner et al. 2008). In particular, there is a
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8 × 8 10 × 10 20 × 20 30 × 30

BP1 2585.37 2585.17 2585.03 2585.02
BP2 6745.17 6743.47 6742.35 6742.31
BP3 19 652.71 19 641.77 19 634.33 19 634.01

Table 1. Convergence of critical Rayleigh number at which bifurcation from conduction state
occurs as a function of the number of basis functions along the x and y direction employed
for both velocity and temperature representation. The Prandtl number is kept at 0.7.

correspondence between the equilibrium curves of S±
1 , S±

2 and Sk
3 and those defined as

S1, S5 and S4 in Puigjaner et al. (2004), respectively. In table 1 we report convergence
of the critical Rayleigh number at which bifurcation from the conduction state
occurs as a function of the number of basis functions retained for both velocity and
temperature representations. For the geometry and the boundary conditions shown
in figure 1, it is well known (Luijkx & Platten 1981; Gelfgat 1999) that the critical
Rayleigh number at the onset is Rac = 2585.02. At higher order the present study
confirms that Rac = 2585.02 (see the first row of table 1).

3.1. Symmetries of steady-state convection

The steady-state Oberbeck–Boussinesq approximation to natural convection within
two-dimensional cavities satisfies several discrete symmetries. As is well known (see
e.g. Hydon 2000, 2008), these types of symmetries may be systematically determined
from known non-trivial groups of continuous Lie symmetries of the field equations
(2.3). However, for the geometry and the boundary conditions considered in this
paper, at least two discrete symmetries may be identified directly by looking at
the equations of motion without calculating the continuous symmetry group. In
fact, if [ψ (x, y) , T ∗ (x, y)] is any solution to the steady-state convection problem
then

G1

[
ψ (x, y) , T ∗ (x, y)

] def
=

[
−ψ (1 − x, y) , T ∗ (1 − x, y)

]
, (3.1a)

G2

[
ψ (x, y) , T ∗ (x, y)

] def
=

[
−ψ (x, 1 − y) , −T ∗ (x, 1 − y)

]
(3.1b)

are also solutions, i.e. they satisfy the boundary conditions and the field equations.
This can be easily verified by a direct calculation. The application of a symmetry
transformation to any solution of the field equations yields another solution. In the
present case we observe that G1 maps S+

1 into S−
1 and both S±

2 into themselves.
Similarly, G2 maps S+

2 into S−
2 and both S±

1 into themselves. Note that an application
of G1 and G2 to the flow pattern S1

3 reported in figure 3 (right) yields three additional
different unstable flows.

4. Stochastic convection near the onset
The physical mechanism leading to the first transition at BP1 (onset of convective

instability) is different for a compressible gas or a liquid (Vekstein 2004). For
liquids, this transition takes place when the buoyancy effects due to temperature
gradients exceed the stabilizing viscous effects (Drazin & Reid 1961; Chandrasekhar
1981) or, equivalently, when the Rayleigh number exceeds a critical value that, in
general, depends on the aspect ratio of the cavity and the boundary conditions
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Figure 4. Sketch of the stochastic simulation domain for a random Rayleigh number including
the onset of convective instability. Shown are also different meshes used in the ME-gPC method.
Specifically, we show two subdivisions of the parameter space into N = 2 and N = 8 finite
elements. Note that in each case the random element boundary is on the bifurcation point.
Such a choice has been made possible by the previous deterministic bifurcation analysis.

but not on the Prandtl number. Different types of uncertainties may be considered
in order to simulate natural convection flows near the onset. For instance, the
thermophysical properties of the fluid may be modelled as random variables
and/or the temperature distribution at the horizontal boundaries may be subject
to unpredictable perturbations leading to non-uniform conditions. These random
perturbations render the bifurcation process to convection imperfect (Ahlers, Meyer
& Cannell 1989). As a consequence the pure conduction state no longer exists and
a finite though perhaps very small velocity can be observed even at very small
values of Rayleigh numbers. Such a quasi-conduction regime is typical of non-
uniform temperature conditions (Kelly & Pal 1978). Realistic flows are susceptible
to all these types of uncertainties. In this section however we restrict our attention
to the simpler steady-state stochastic convection problem for a random Rayleigh
number that includes the onset of convective instability. This very particular type of
uncertainty may be associated with an unknown temperature difference between the
isothermal hot and cold horizontal walls. Specifically, let us assume that the random
Rayleigh number is in the form

Ra = Rac (1 + σξ ) , (4.1)

where Rac = 2585 denotes the critical Rayleigh number corresponding to BP1, ξ is
a normalized random variable following a uniform probability distribution in [−1, 1]
and σ is set to 0.05. It is easy to determine that the random Rayleigh number (4.1)
approximately ranges from 2456 to 2714 (see figure 4), thus including the onset of
convective instability. The only possible stable steady states in the regime around BP1
are

(i) pure conduction for flows up to Rac = 2585;
(ii) weak convection characterized by one-roll patterns (S±

1 ) for Ra > Rac.
It is clear that depending on the initial condition for velocity and temperature, the
temporal evolution of supercritical flows may converge either to S+

1 or S−
1 . Such a

sensitivity analysis of convection patterns as a function of the initial condition will
be addressed in § 5. In the present section we shall restrict our attention to steady-
state flows obtained from the steady-state Oberbeck–Boussinesq approximation. In
particular, we consider only one branch of the pitchfork bifurcation associated
with anticlockwise one-roll flows (i.e. S−

1 ) and we study the statistical ensemble
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corresponding to the random Rayleigh number (4.1) through different stochastic
modelling approaches (MC, gPC and ME-gPC).

4.1. Stochastic Oberbeck–Boussinesq approximation for a random Rayleigh number

Let us consider a finite-dimensional representation of the streamfunction and the
temperature fields in a polynomial chaos basis {Φi(ξ )}

ψ (x, y; ξ ) =
M∑

i=0

Ψi (x, y)Φi (ξ ), (4.2a)

T ∗ (x, y; ξ ) =
M∑

i=0

τi (x, y)Φi (ξ ). (4.2b)

According to the standard gPC theory (Xiu & Karniadakis 2002, 2003) the basis
functions Φi(ξ ) are chosen to be Legendre polynomials of a uniform random variable.
Other representations of ψ and T ∗ in terms of different orthogonal series are obviously
possible (e.g. Le Maı̂tre et al. 2004). A substitution of (4.2) into the Oberbeck–
Boussinesq equations (2.3) and subsequent Galerkin projection onto the basis {Φi}
yields the following system of equations (only repeated indices n and m are summed):

−
[
∂Ψn

∂y

∂
(
∇2Ψm

)

∂x
− ∂Ψn

∂x

∂
(
∇2Ψm

)

∂y

]
〈ΦnΦmΦk〉

〈Φ2
k 〉

= −Pr∇4Ψk + RacPr

[
∂τk

∂x
+ σ

〈Φ1ΦmΦk〉
〈Φ2

k 〉
∂τm

∂x

]
, (4.3a)

−
[
∂Ψn

∂y

∂τm

∂x
− ∂Ψn

∂x

∂τm

∂y

]
〈ΦnΦmΦk〉

〈Φ2
k 〉 +

∂Ψk

∂x
= ∇2τk. (4.3b)

The averaging operation 〈·〉 is defined as

〈f (x, y, t; ξ )〉 def
=

∫ 1

−1

f (x, y, t; ξ )w (ξ ) dξ, (4.4)

where f is an integrable random field and w (ξ ) denotes the uniform probability
density function in [−1, 1], i.e. w (ξ ) ≡ 1/2. As easily seen, the averaging operation
allows one to transform effectively the stochastic convection problem into a system
of deterministic coupled partial differential equations to be solved for the so-called
chaos modes Ψi (x, y) and τi (x, y), i = 0, . . . , M . Once these are available it is easy
to compute other quantities such as the mean and the variance of the velocity field
components as

〈u (x, y; ξ )〉 =
∂Ψ0

∂y
, σ 2

u (x, y) =
M∑

k=1

(
∂Ψk

∂y

)2

〈Φ2
k 〉, (4.5a)

〈v (x, y; ξ )〉 = −∂Ψ0

∂x
, σ 2

v (x, y) =
M∑

k=1

(
∂Ψk

∂x

)2

〈Φ2
k 〉. (4.5b)

If the system is subject to several different types of uncertainties that can be
represented in terms of independent random variables then the multi-dimensional
chaos basis {Φi (ξ1, . . . , ξn)} can be constructed as a tensor product of one-dimensional
basis functions. In this case, it can be proved that the total number of equations to
be solved simultaneously is related to the number of independent random inputs n
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and to the highest order P of one-dimensional polynomial bases by

M + 1 =
(n + P )!

n!P !
. (4.6)

For the present stochastic convection problem we only have one random variable (the
Rayleigh number). This means that if we represent the stochastic solution through
a polynomial chaos of order P = 6 we have six Boussinesq-like problems to be
solved simultaneously for the chaos modes, which actually means 12 scalar coupled
partial differential equations for the temperature and the streamfunction modes. The
exponential proliferation of equations predicted by (4.6) as a function of the number
of random inputs n is a phenomenon known as the ‘curse of dimensionality’. Even for
a moderate number of random variables the system (4.3) becomes unacceptably large
and therefore several authors (e.g. Acharjee & Zabaras 2006; Burkardt, Gunsberger
& Webster 2007; Doostan, Ghanem & Red-Horse 2007; Venturi, Wan & Karniadakis
2008; Ma & Zabaras 2009; see also Venturi 2006) attempted to develop new
methodologies to reduce the computational complexity.

4.2. Symmetries of steady-state stochastic convection for a random Rayleigh number

A trivial calculation shows that the steady-state stochastic Oberbeck–Boussinesq
approximation (4.3) for a random Rayleigh number satisfies two discrete symmetries,
which are very similar to those discussed in § 3.1. In particular, if

[Ψ (x, y) , τ (x, y)]
def
=

[
{Ψ0 (x, y) , . . . ,ΨM (x, y)} , {τ0 (x, y) , . . . , τM (x, y)}

]
(4.7)

denotes an arbitrary solution to the system (4.3) then

Gs
1 [Ψ (x, y) , τ (x, y)]

def
= [−Ψ (1 − x, y) , τ (1 − x, y)] , (4.8a)

Gs
2 [Ψ (x, y) , τ (x, y)]

def
= [−Ψ (x, 1 − y) , −τ (x, 1 − y)] (4.8b)

are also solutions, i.e. they satisfy both the field equations and the boundary conditions.
As a consequence, the statistical properties of the steady-state random flows will be
influenced by the symmetries defined by the operators Gs

1 and Gs
2. This implies, in

particular, that the mean fields satisfy exactly (3.1) while the standard deviation fields
can be transformed according to two different reflections with respect to x = 0.5 and
y = 0.5.

4.3. Numerical results and discussion

We have determined the relevant statistics of stochastic steady-state convection for
a random Rayleigh number through different stochastic approaches: MC, gPC and
ME-gPC. The meshes (Wan & Karniadakis 2006a) considered for the ME-gPC
stochastic simulations are shown in figure 4. Note that in each case we have put
the element boundary on the bifurcation point. This has been made possible by
the preliminary systematic bifurcation analysis carried out in § 3. In many practical
applications, however, the location of the bifurcation points may be not known
a priori. In these cases an adaptive method (Wan & Karniadakis 2005; Ma &
Zabaras 2009) is recommended to deal effectively both with discontinuities and long-
term integrations. In figure 5 we show the accurate ensemble mean and ensemble
standard deviation for the velocity and the temperature fields obtained by sampling
100 000 flows through the global Galerkin method outlined in § 2.1. A quantitative
comparison between MC, gPC and ME-gPC is reported in figure 6 where we plot
the mean and the standard deviation of all the fields of interest along the crossline
y = 0.5.
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Figure 5. MC benchmark stochastic flow near the onset of convective instability. The flow ensemble counts 100 000 samples and it has been
constructed through an accurate global Galerkin method. Shown are ensemble mean (a) and ensemble standard deviation (b) of velocity
components and temperature field.
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Figure 6. Stochastic convection near the onset. Shown are means (a) and standard deviations
(b) of velocity components and temperature field along the crossline y = 0.5. We plot
different stochastic results: MC benchmark, 100 000 samples (−), gPC order 3 (−−), ME-gPC
2 elements of order 3 (· · · ), ME-gPC 8 elements of order 3 (−·). The ME-gPC plots are
essentially superimposed on those of MC.

ME-gPC
gPC

Two elements Eight elements
Order 3 Order 5 of order 3 of order 3

ε2

〈u〉 2.43 × 10−2 1.37 × 10−2 6.53 × 10−4 6.54 × 10−5

〈v〉 2.47 × 10−2 1.39 × 10−2 6.62 × 10−4 6.63 × 10−5

〈T 〉 1.10 × 10−3 6.20 × 10−2 2.97 × 10−5 2.96 × 10−6

σu 1.29 × 10−2 9.13 × 10−3 5.92 × 10−4 5.85 × 10−5

σv 1.31 × 10−2 9.25 × 10−3 5.99 × 10−4 5.93 × 10−5

σT 5.73 × 10−4 4.09 × 10−4 2.70 × 10−5 2.67 × 10−6

ε∞

〈u〉 5.35 × 10−2 3.00 × 10−2 1.44 × 10−3 1.44 × 10−4

〈v〉 5.33 × 10−2 2.99 × 10−2 1.43 × 10−3 1.43 × 10−4

〈T 〉 2.02 × 10−3 1.14 × 10−3 5.49 × 10−5 5.43 × 10−6

σu 2.85 × 10−2 2.01 × 10−2 1.30 × 10−3 1.29 × 10−4

σv 2.84 × 10−2 1.99 × 10−2 1.29 × 10−3 1.28 × 10−4

σT 1.05 × 10−3 7.52 × 10−4 4.96 × 10−5 5.89 × 10−6

Table 2. Mean squared errors (ε2) and maximum pointwise errors (ε∞) of gPC and ME-gPC
with respect to the MC benchmark for the stochastic convection problem near the onset.

An analysis of figure 6 shows that the gPC approach is rather accurate for
the representation of both the mean and the standard deviation of velocity and
temperature. Obviously, the ME-gPC results are more accurate, so accurate that the
corresponding plots of figure 6 cannot be distinguished from those of MC. Therefore,
in order to compare gPC and ME-gPC methods for the simulation of the onset
of convective instability, we have summarized in table 2 the mean squared and the
maximum pointwise errors with respect to the MC benchmark. These errors are
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defined as

ε2 [g]
def
=

[∫ 1

0

∫ 1

0

(g (x, y) − gr (x, y))2 dx dy

]1/2

, (4.9a)

ε∞ [g]
def
= max

(x,y)
|g (x, y) − gr (x, y)| , (4.9b)

where g is an integrable deterministic field and gr is its reference value, in the
present case that of MC. Results of table 2 confirm that the pitchfork bifurcation
characterizing the transition from conduction to convection is captured rather
accurately by the gPC equations (4.3), even at low-order polynomial chaos.

5. Sensitivity of multiple states to initial conditions
We have seen in § 3 that different (stable) steady-state convection patterns coexist

for moderate values of Rayleigh numbers, the final asymptotic state depending on the
initial condition. Specifically, we have obtained a total number of four stable patterns
(S±

1 and S±
2 ) at Rayleigh number 15 000 and Prandtl number 0.7.

In this section we try to determine when and how each flow pattern is physically
realized from specific initial conditions. In other words, we analyse the physical
realizability of flow state multiplicity beyond just making statements about its
existence. The first step in obtaining an answer to this question is to provide a
suitable representation of the initial condition ensemble. By using the eigenfunction
expansions (2.4) it is clear that any initial flow state satisfying all the boundary
conditions may be represented as

ψ† (x, y; a1, a2, . . .) =
∞∑

k=1

akψ̂k (x, y), (5.1a)

T † (x, y; b1, b2, . . .) = 1 − y +
∞∑

j=1

bj Γ̂j (x, y), (5.1b)

where {ak} and {bk} are infinite sets of real Fourier coefficients. Therefore, a complete
representation of the initial condition theoretically involves an infinite number of
degrees of freedom. This suggests that the numerical determination of flow state
multiplicity corresponding to arbitrary initial states can be computationally very
expensive. For the purpose of the present paper we shall restrict our attention to a
specific class of initial conditions that can be represented in terms of low-wavenumber
modes. Specifically, we consider initial states in the form

ψ† (x, y; a1, a2) = a1ψ̂1 (x, y) + a2ψ̂2 (x, y), (5.2a)

T † (x, y, 0; b2, b4) = 1 − y + b2Γ̂2 (x, y) + b4Γ̂4 (x, y), (5.2b)

where a1, a2, b2, b4 are assumed to be real coefficients with values in [−1, 1]. Obviously,
(5.2a) induces a velocity field having the following representation:

u (x, y; a1, a2) = a1U1 (x, y) + a2U2 (x, y), (5.3)

where U i(x, y)
def
= [∂ψ̂i/∂y, −∂ψ̂i/∂x] (i = 1, 2) are low-wavenumber velocity modes

(eddies) depicted in figure 7. The functions Γ̂2, and Γ̂4 appearing in (5.2) are given by
(see Appendix A)

Γ̂2 (x, y) = 2 cos (πx) sin (πy),

Γ̂4 (x, y) = 2 cos (2πx) sin (πy).
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Figure 7. Streamlines of low-wavenumber velocity modes U1 (a) and U2 (b) whose
combination is used to construct a random initial velocity state for flows at Ra = 15 000
and Pr = 0.7.
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Figure 8. Interesting two-dimensional sections of the basins of attraction characterizing the
stable flow patterns S±

1 and S±
2 at Ra = 15 000. Numerical results show that most of the

attractor is characterized by one-roll flows S±
1 .

The pair (U1, Γ̂2) is likely to activate one-roll stable patterns S±
1 , while (U2, Γ̂4)

probably activates two-roll flows S±
2 . Obviously, other ensembles of initial states can

be considered for the simulation of flow state multiplicity. In every case a fundamental
question to be posed is whether stochastic approaches to convection are reliable for
the representation of these multiple states.

5.1. Attractor picture and basins of attraction

We fix the Rayleigh number at 15 000 and the Prandtl number at 0.7. From the
bifurcation diagram of figure 2 we see that we have four possible stable states S±

1 and
S±

2 (S+
1 and S+

2 are shown in figure 3). For each choice of coefficients a1, a2, b2, b4 we
have an initial condition given by (5.2). By integrating the time-dependent equations
(2.5) we can easily compute the time-asymptotic flow corresponding to such an initial
condition. This allows us to obtain a map in a four-dimensional parameter space
characterizing the basins of attraction of the stable solutions S±

1 and S±
2 . In figure 8

we plot two different sections of such a map. Let us briefly explain the meaning
of these diagrams before we proceed further. If the initial condition is represented
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S+
1 S−

1 S+
2 S−

2

45.8 % 45.8 % 4.2 % 4.2 %

Table 3. Composition of MC ensemble (160 000 flow samples) corresponding to the random
initial states (5.2) at Ra = 15 000 and Pr = 0.7. The principal components contributing to the
mean flow are basically determined by one-roll stable patterns S±

1 . Note also that the relative
contribution of S±

i is equivalent to that of S∓
i .
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Figure 9. (a) Zoom-in of the basins of attraction shown in figure 8 (a), and (b) temperature
time-traces at point (x, y) = (0.75, 0.75) corresponding to the initial states 1, 2 and 3 indicated
in (a). Note that the initial velocity condition is the same for 1, 2 and 3. The small difference
between the initial temperature condition yields completely different asymptotic states.

by a set of parameters falling within the dark grey region, e.g. (b2, b4) = (0, 0.4)
in figure 8 (a), then a stable flow pattern S+

2 develops. Similarly, if the initial state
is represented by a set of parameters falling within the white regions then a flow
pattern S−

2 develops. In figure 9(b) we plot several temperature time-traces at point
(x, y) = (0.75, 0.75) corresponding to temperature initial conditions that are nearly
the same (see figure 9a). Note that such a small difference yields completely different
asymptotic states. Note also that the steady-state temperatures of plots ‘2’ and ‘3’ are
in agreement with temperature fields of figure 3 (left and centre). It is important to
remark that even though the extension of basins of attraction associated with S±

1 and
S±

2 looks comparable in figure 8, most of the attractor is characterized by one-roll
stable patterns S±

1 . Indeed, as we will show in table 3, the overall contribution of S±
2

within the flow ensemble corresponding to initial conditions of type (5.2) is rather
small.

5.2. Random dynamics corresponding to random initial states

In many practical applications of thermal convection we may not know precisely
what are the initial conditions for the velocity and the temperature fields. We
have seen that different initial conditions could lead to different stable steady states
having the same Rayleigh and Prandtl numbers. In the context of stochastic fluid
mechanics this flow multiplicity naturally yields two different questions. The first one
concerns the determination of the time-asymptotic state corresponding to random
velocity/temperature initial conditions. The second one is the random switching
between different stable states under noise. In the latter case large deviation theory
can be used to examine the rate of switching. In this section we look for an answer
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to the following question: What is the probability that a specific convection pattern
is established within the cavity if the initial condition is random? In order to answer
this question we restrict our attention to a specific class of random initial states
defined by (5.2), where a1, a2, b2 and b4 are now assumed to be independent random
variables following a uniform probability distribution in [−1, 1]. Such an ensemble
of initial conditions obviously intersects all four basins of attraction, as clearly
seen in figure 8 and therefore the time-asymptotic stochastic convection will have
components belonging to S+

1 , S−
1 , S+

2 and S−
2 . The relative contribution of each one

of these states is proportional to the extension of the associated basin of attraction
within the initial condition domain. A very simple measure of such an extension can
be obtained through MC estimation. To this end, we have sampled 160 000 possible
realizations of steady-state flows corresponding to initial condition samples in the
form (5.2) and we have counted the number of each stable state appearing within the
solution ensemble. The results are summarized in table 3. It is seen that the relative
contribution of S±

1 is much bigger than that of S±
2 . This implies, in particular, that

the principal components contributing to the mean fields are basically determined by
one-roll patterns. We also note that there is an equal probability that the steady roll is
clockwise or anticlockwise. In figure 10 we plot the MC ensemble mean and ensemble
standard deviation for all the fields of interest. Alongside the MC method we have
also employed gPC and ME-gPC approaches for the simulation of the stochastic
transient dynamics corresponding to random initial states. In this case the chaos
representation of the Oberbeck–Boussinesq problem takes the form

∂
(
∇2Ψk

)

∂t
+

[
∂Ψn

∂y

∂
(
∇2Ψm

)

∂x
− ∂Ψn

∂x

∂
(
∇2Ψm

)

∂y

]
〈ΦnΦmΦk〉

〈Φ2
k 〉 = Pr∇4Ψk − RaPr

∂τk

∂x
,

(5.4a)

∂τk

∂t
−

[
∂Ψn

∂y

∂τm

∂x
− ∂Ψn

∂x

∂τm

∂y

]
〈ΦnΦmΦk〉

〈Φ2
k 〉 +

∂Ψk

∂x
= ∇2τk, (5.4b)

where the Galerkin projection of the random initial state (5.2) onto the chaos basis
{Φk} has non-trivial components. It can be shown that the steady-state solution
to the system (5.4) satisfies the discrete symmetries (4.8). This implies that all the
relevant statistics of the random flow such as the mean and the standard deviation
will be influenced by those symmetries as well (see the discussion of § 4.2). In table
4 we report the errors (4.9) of gPC and ME-gPC approaches with respect to the
MC benchmark. It is seen that gPC is not accurate either for the mean or for the
standard deviation fields (see also figure 11). We also note that gPC does not exhibit
monotonic convergence with the polynomial chaos order; this behaviour is typical of
discontinuous problems. On the contrary, low-order polynomial chaos combined with
suitable ME-gPC meshes provide an efficient way to deal with discontinuities within
the flow ensemble. The ME-gPC results reported in table 4 are obtained on a total
number of 24 = 16, 44 = 256, 84 = 4096 random elements.

Next, we consider local heat transfer between the horizontal walls and the fluid.
This is quantified in terms of random local Nusselt number defined as

Nux
def
= − ∂T

∂y

∣∣∣∣
wall

, (5.5)

where the subscript ‘wall’ indicates that the partial derivative is evaluated along the
horizontal boundaries. The integrated Nusselt number is represented by the random
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Figure 10. Mean and standard deviation of velocity and temperature fields corresponding to
the ensemble of random initial states (5.2). Results are from MC simulation (160 000 flow
samples).

variable

Nu
def
=

∫ 1

0

Nux dx. (5.6)

In figure 11 we plot the mean and the standard deviation of the random local
Nusselt number along the lower horizontal wall. We observe a rather high value of
the standard deviation in the proximity of the sidewalls of the cavity. This is due
to the high probability that either a clockwise or an anticlockwise one-roll pattern
is established. In figure 12 we show indeed that deterministic local Nusselt numbers
corresponding to S±

1 are in very good agreement with a statistical confidence interval
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ME-gPC
gPC

16 elements 256 elements 4096 elements
Order 2 Order 3 Order 4 of order 3 of order 2 of order 1

ε2

〈u〉 0.5007 0.0795 0.3054 0.0731 0.0631 0.0363
〈v〉 0.5346 0.0850 0.3216 0.0775 0.0666 0.0373
〈T 〉 0.0646 0.0046 0.0345 0.0036 0.0022 0.0011
σu 2.9317 0.5052 1.3168 0.4613 0.2883 0.0940
σv 3.3606 1.3748 2.0111 1.3668 0.6563 0.1654
σT 0.0380 0.0129 0.0274 0.0099 0.0053 0.0013

ε∞

〈u〉 1.3025 0.2448 0.7877 0.2404 0.1960 0.1149
〈v〉 1.4689 0.1649 0.8612 0.1588 0.1309 0.0756
〈T 〉 0.1138 0.0121 0.0588 0.0103 0.0064 0.0024
σu 5.8870 1.2208 2.5254 1.1269 0.7008 0.2166
σv 7.6953 7.6359 7.6255 7.3331 2.9303 0.5943
σT 0.0834 0.0565 0.0649 0.0357 0.0190 0.0043

Table 4. Errors in the mean and in the standard deviation of random flow obtained
as superimposition of supercritical convection patterns at Rayleigh number Ra = 15 000
(Pr = 0.7). Shown are mean squared errors (ε2) and maximum pointwise errors (ε∞) with
respect to the MC benchmark flow (160 000 samples).
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Figure 11. Mean (a) and standard deviation (b) of random local Nusselt number at steady
state (Ra = 15 000, Pr = 0.7) along the lower horizontal wall. Shown are results obtained from
different stochastic approaches: MC (160 000 flow samples) (−), gPC order 3 (−−), ME-gPC
256 elements of order 2 (· · · ), ME-gPC 4096 elements of order 1 (−·).

in the proximity of the sidewalls. The mean and the standard deviation of the
integrated Nusselt number (5.6) are obtained as

〈Nu〉 = 2.40, σNu = 0.12. (5.7)

Note that the mean value 〈Nu〉 turns out to be in very good agreement with the
deterministic integrated Nusselt number of S±

1 at Rayleigh number 15 000 (see
figure 2). The small value of standard deviation σNu is obviously due to the presence
of several states of type S±

2 within the flow ensemble (see table 3).
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6. Summary
We have investigated the effectiveness of both classical and new stochastic

approaches to simulate the onset of convective instability and the influence of random
initial flow states on the development of supercritical convection patterns within
two-dimensional square enclosures. In order to perform this analysis we have first
obtained suitable solution maps through deterministic linear stability analysis and
parameter continuation techniques. Subsequently, we have considered two different
sources of uncertainty. The first one corresponds to a random Rayleigh number
that includes the onset of convective instability, i.e. we have studied the stochastic
convection near the onset. We have found that polynomial chaos approaches applied
to the streamfunction formulation of the Oberbeck–Boussinesq approximation are
reliable for the representation of these types of random flows, even at low-order
polynomial chaos. In the second part of the paper we have studied the problem of
multiple stable steady states arising in thermal convection within specific ranges of
Rayleigh numbers. Reliable stochastic convection results corresponding to the random
initial condition ensemble show that the most probable convection pattern which is
developed from a low-wavenumber initial state is a one-roll pattern. This type of
flow, whose kinetic energy turns out to be approximately twice that associated with
the two-roll pattern, is also the greatest contribution to heat transfer rate. However,
the ensemble of initial states we have considered in this paper does not cover all
possible initial flow conditions. For example, one may ask what is the most probable
convection pattern arising from a nearly calm nearly isothermal flow within a cubical
box (Stork & Müller 1972; Kirchartz & Oertel 1988; Pallares et al. 1996, 2001;
Puigjaner et al. 2004, 2008) at fixed Rayleigh number. Clearly, the answer to these
types of questions involves the computation of the stochastic transient corresponding
to appropriate initial condition ensembles, i.e. stochastic approaches can be used to
assess the probability that different convection patterns are developed in experiments.
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More generally, stochastic modelling of realistic thermal convection problems has
to take into account the fact that the temperature distribution at the solid boundaries
may be subject to non-uniform unpredictable perturbations. These perturbations
can have a significant influence both on the onset of convective instability as well
as on the ensemble of supercritical states. In particular, the bifurcation process
leading to convection is imperfect (Ahlers et al. 1989) and the pure conduction state
no longer exists, being replaced by a quasi-conduction regime (Kelly & Pal 1978). In
preliminary work, we have addressed this issue and modelled the random temperature
perturbations as stochastic processes represented in terms of Karhunen–Loève modes
(Ghanem & Spanos 1998) of a prescribed correlation kernel with finite correlation
length; in contrast, the results presented here correspond to infinite correlation length.
Specifically, for correlation length of the order of the cavity width we have observed
stable convection patterns (not necessarily symmetric rolls) at Rayleigh number
around 1000 (i.e. well below the onset of the classical deterministic case) for 1 %
perturbations. Further research is necessary in order to determine the influence of
these non-uniform random temperature boundary conditions – parametrized by their
correlation length and amplitude – on the bifurcation process.

This work was supported by OSD-MURI grant number FA9550-09-1-0613 and by
DOE grant number DE-FG02-07ER25818.

Appendix A. Temperature representation
We consider an eigenfunction expansion based on the classical Helmholtz problem

in Cartesian coordinates

∇2T ∗ + γ 2T ∗ = 0 (A 1)

with homogeneous boundary conditions

T ∗(x, 0) = T ∗(x, 1) =
∂T ∗(0, y)

∂x
=

∂T ∗(1, y)

∂x
= 0. (A 2)

A straightforward separation of variables operated in (A 1) gives the following two
Sturm–Liouville problems:

d2X

dx2
+ a2X = 0,

dX (0)

dx
=

dX (1)

dx
= 0, (A 3)

d2Y

dy2
+ b2Y = 0, Y (0) = Y (1) = 0, (A 4)

whose solutions are the well-known (Özişik 1985, 1999) normalized eigenfunctions

X0(x) = 1, Xn (x) =
√

2 cos (nπx) (n = 1, 2, 3, . . .), (A 5)

Ym (y) =
√

2 sin (mπy) (m = 1, 2, 3, . . .), (A 6)

while the eigenvalues are

an = πn (n = 0, 1, 2, . . .), (A 7)

bm = πm (m = 1, 2, . . .). (A 8)

This implies that the eigenvalues of (A 1) are

γ 2
nm = π2

(
n2 + m2

)
. (A 9)
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The temperature basis function can be written as

Γ̂n (x, y) = Xi(n)(x)Yj (n)(y), (A 10)

where i(n) and j (n) are suitable subsequences obtained according an ordering of γ 2
ij .

Appendix B. Velocity representation
All the velocity boundary conditions are of no-slip type. This means ∂ψ/∂x =

∂ψ/∂y = 0 everywhere at the boundary. In order to generate a divergence-free basis
for the velocity representation satisfying such boundary conditions it is convenient
(Cotta 1993; Figueira & Cotta 1996; Leal et al. 2000; Puigjaner et al. 2004) to consider
the following eigenvalue problem:

∂4ψ

∂x4
+

∂4ψ

∂x4
= Λ4ψ, (B 1)

ψ(x, 0) =
∂ψ

∂x
= 0, ψ(x, 1) =

∂ψ

∂x
= 0, (B 2)

ψ(0, y) =
∂ψ

∂y
= 0, ψ(0, y) =

∂ψ

∂y
= 0. (B 3)

This eigenvalue problem is symmetric and separable. The spectral theory for linear
operators in a Hilbert space guarantees that the eigenfunction set is then complete. A
substitution of

ψ(x, y) = X(x)Y (y) (B 4)

into (B 1) yields two equivalent eigenvalue problems for X(x) and Y (y) in the form

d4X

dx4
= α4X, (B 5)

X(0) = X(1) =
∂X(0)

∂x
=

∂X(1)

∂x
= 0. (B 6)

The general integral of (B 5) is easily found as

X(x) = a sin (αx) + b cos (αx) + c sinh (αx) + d cosh (αx).

By enforcing the boundary conditions (B 6) we get the following normalized set of
eigenfunctions:

Xi(x)

=

{
cos [αi (x − 1/2)] / cos [αi/2] − cosh [αi (x − 1/2)] / cosh [αi/2] , i = 1, 3, 5, . . . ,

sin [αi (x − 1/2)] / sin [αi/2] − sinh [αi (x − 1/2)] / sinh [αi/2] , i = 2, 4, 6, . . . ,

where the eigenvalues αi are solutions of the transcendental equation

tanh
(αi

2

)
=

{
− tan (αi/2) for i = 1, 3, 5, . . . ,

tan (αi/2) for i = 2, 4, 6, . . . .
(B 7)

A similar solution can be obtained for Y (y). A normalized basis for the two-
dimensional streamfunction can be obtained as a tensor product of one-dimensional
bases as

ψ̂n (x, y) = Xi(n) (x) Yj (n) (y) , (B 8)
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where i(n) and j (n) are suitable subsequences obtained according to an eigenvalue
ordering

Λ4
n = α4

i(n) + β4
j (n). (B 9)
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