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ASYMPTOTICALLY EFFICIENT SIMULATION OF ELLIPTIC
PROBLEMS WITH SMALL RANDOM FORCING∗

XIAOLIANG WAN† AND XIANG ZHOU‡

Abstract. Recent rare-event simulations show that the large deviation principle (LDP) for
stochastic problems plays an important role in both theory and simulation, for studying rare events
induced by small noise. Practical challenges of applying this useful technique include minimizing
the rate function numerically and incorporating the minimizer into the importance sampling scheme
for the construction of efficient probability estimators. For a spatially extended system where the
noise is modeled as a random field, even for simple steady state problems, many new issues are
encountered in comparison to the finite dimensional models. We consider the Poisson equation
subject to a Gaussian random forcing with vanishing amplitude. In contrast to the simplified rate
functional given by space white noise, we consider the covariance operator of trace class such that the
effects of small noise of moderate or large correlation length on rare events can be studied. We have
constructed an LDP-based importance sampling estimator with a sufficient and necessary condition
to guarantee the weak efficiency, where numerical approximation of the large deviation principle is
also addressed. Numerical studies are presented.
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1. Introduction. During the past two decades, there has been a widespread
interest in uncertainty quantification to develop stochastic models and approaches to
quantitatively describe the propagation of uncertainty in complex systems. The fol-
lowing stochastic partial differential equation (SPDE) is a general model for spatially
extended systems perturbed by the additive noise:

(1) ∂tuε(t,x) + L(uε) =
√
εG(t,x), x ∈ D ⊂ Rd,

where L is a spatial differentiation operator, ε is a small positive number and G is
a zero-mean Gaussian process which is white in time but is allowed to be colored
in space. The distribution of G(t,x) is specified by its spatio-temporal covariance.
Assume G is white in time; then E(G(t,x)G(t′,y)) = K(x,y)δ(t − t′). The spatial
covariance function K is the kernel of the covariance operator Q on a Hilbert space
where G(t) takes its values. The examples of (1) appear in many fields, such as the
stochastic Navier–Stokes equations [26, 16, 31, 34], stochastic Cahn–Hillard equation
[35], stochastic Kardar–Parisi–Zhang equation [12], etc.

We are concerned with the rare events in model (1). For this randomly perturbed
system, the classic work is the Freidlin–Wentzell (F-W) large deviation principle
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(LDP) [14]. The key object of F-W LDP is the rate functional, or action functional.
Assume that the time integration in model (1) is in the Itô sense. The rate functional
is defined as [11]

(2) IQ(u) =
1

2

∫ T

0

‖Q−1/2(∂tu− L(u))‖2dt,

where ‖ · ‖ indicates the L2 norm on the physical domain D. Simply speaking, the
main conclusion of F-W LDP is that for any Borel set B, the probability Pr(uε ∈ B)
can be characterized by the minimizer of the rate functional, more specifically

(3) lim
ε↓0

ε log Pr(uε ∈ B) = − inf
uε∈B

IQ(uε).

From the application point of view, an immediate problem is to seek the mini-
mizer of the rate functional. The associated Euler–Lagrange (E-L) equation takes the
following abstract form:

(4) (∂t + L′)∗Q−1 (∂t + L) (u) = 0,

where L′ is the first-order derivative of L so that for any infinitesimal perturbation
function δu, L (u+ δu) ≈ L(u)+L′(u)δu. Apparently, (4) is not a classical PDE since
Q is defined globally. It was shown in [5, 2] that as Q converges to an identity operator
I, i.e., the kernel of Q goes to a delta function, the rate functional IQ Γ-converges to
II . Replacing Q with I, we see that the E-L equation associated with II is a classical
PDE. This implies that when the correlation length is small in a proper sense, we
can use the minimizer of II to approximate the minimizer of IQ by solving a classical
PDE. However, if the correlation length is moderate or large, such a strategy cannot
be used, and we need to solve (4) directly.

Another practical issue is about an accurate approximation of Pr(uε ∈ B). From
the LDP (3), we know that

(5) Pr(uε ∈ B) ∼ Ce−
IQ(u∗)

ε ,

where C is a prefactor, and u∗ is the minimizer of IQ. In general, the large deviation
theory only provides an estimate of the probability Pr(uε ∈ B) in an asymptotic
sense. For a finite ε, the prefactor cannot be ignored, which means that we need
more than large deviation theory for the computation of Pr(uε ∈ B). An intuitive
idea to incorporate the large deviation theory into the estimation of Pr(uε ∈ B) is
to construct an importance sampling scheme around the neighborhood of u∗, since
away from u∗ the density decays exponentially. The simplest strategy to do this is
to shift the mean of

√
εG from zero to the noise profile corresponding to u∗, which

results in an exponential tilting estimator. Although such a straightforward strategy
may not work well, as shown in [15], some remedy strategies have been developed in
terms of weak efficiency [15, 4], mainly for finite-dimensional cases. For any unbiased
estimator Z of Pr(uε ∈ B), we have

lim
ε↓0

ε logE[Z2] ≥ lim
ε↓0

ε logE[Z]2 = 2 lim
ε↓0

ε logE[Z] = −2IQ(u∗).

When the lower bound provided by the large deviation theory is reached, we say that
the estimator Z is asymptotically (or weakly) efficient. Although in general the control
(sub-solution) based approach developed in [8, 7] for the dynamical case insightfully
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provides a connection between the large deviation theory and the weak efficiency of
importance sampling, other forms of equivalent conditions for weak efficiency, which
is easy to verify in practice, are always expected for specific problems arising from
various applications.

In this work, we will explore the aforementioned two issues in an infinite dimen-
sional system: the approximation of (4) for a moderate or large correlation length,
and the accurate estimation of Pr(uε ∈ B). Before we describe our problem setting,
we briefly discuss the related work to these two issues. First of all, the numerical al-
gorithm of approximating the minimizer of the rate functional IQ is usually under the
name minimum action method (MAM) [9] when nongradient systems are considered.
Although many variants of MAM have been developed so far [27, 18, 30, 32, 16, 33],
most of these methods deal with the simplified case that Q = I to focus on the difficul-
ties from the phase transition in time direction. Second, rare or extreme events have
been discussed in [22, 21, 20] for the elliptic model −∇ · (a(x, ω)∇u) = f(x), where
the force term is deterministic and the coefficient a(x, ω) is log-normal. The mini-
mization of the rate functional results in a PDE-constrained optimization problem,
where the optimality condition has a different form than the E-L equation (4). Third,
the sufficient condition for the weak efficiency of estimator Z is usually considered
with respect to a stochastic ODE [8].

To focus on a PDE problem, we will simplify our problem by letting ∂t = 0 and
choosing L = −∆. This way, the difficulties from small-noise-induced transitions are
excluded and the choice of a simple Laplace operator will allow us to obtain more
insights from the theoretical point of view. As for the random-event set B, we pick

(6) B = {‖uε‖ ≥ CB} for some constrant CB ,

which consists of the random events that the L2 norm of uε exceeds a certain threshold.
We now outline our work in this paper. First of all, we derive the E-L equation for

the problem proposed, which is an eigenvalue problem of operator ∆Q−1∆ subject to
a Navier-type boundary conditions. Compared to the SPDE (1), the differentiation
order is doubled. If Q = I, the operator ∆Q−1∆ becomes the biharmonic opera-
tor. Second, we replace Q with QM , where QM is a finite-rank approximation of
Q given by the eigenfunctions associated with the largest M eigenvalues of Q. The
main question here is the convergence of eigenvalues of ∆(QM |VM )−1∆ to those of
∆Q−1∆, where QM |VM indicates the restriction of QM onto its range VM such that
the inverse exists. We proved that the convergence rate of the approximated eigen-
values of ∆(QM |VM )−1∆ is consistent with the decay rate of the eigenvalues of Q
with respect to M . Third, we use the minimizer of the rate functional to construct
an exponential tilting estimator to approximate Pr(uε ∈ B), where we obtain a suf-
ficient and necessary condition for the weak efficiency. More specifically, we proved
that the importance sampling estimator is weakly efficient if and only if the ratio
between the second smallest eigenvalue of ∆Q−1∆ and the smallest one is larger than
3, under the assumption that the smallest eigenvalue of ∆Q−1∆ is simple. Finally, we
implement numerical experiments to verify our theoretical results and explore some
interesting issues such as the relation between the smallest eigenvalue of ∆Q−1∆
and correlation length. We demonstrate numerically that the relative error per sam-
ple given by our estimator has an algebraic increase, in contrast to the exponential
increase given by a Monte Carlo estimator as ε→ 0.

The recent work [24] used importance sampling to estimate the escape proba-
bility from a ball within a certain time for a linear stochastic evolution equation in
infinite dimensions, which generalized the the pre-asymptotic analysis in [7]. They also
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found that in their sub-solution method (after projection onto the leading mode of
the covariance operator), a spectral gap condition is required for the efficiency of the
importance sampling scheme. By considering a simple static problem, we avoid the
difficulties from path sampling such that we are able to derive a sufficient and neces-
sary condition for weak efficiency with respect to any prescribed covariance operator,
while in [24] the covariance operator is defined on the eigensapce of the Laplacian for
the convenience of analysis. Although we cannot directly compare the two spectral
gap conditions yet, we believe that both discoveries show the intrinsic connection
between certain spectral gaps and the rare-event conditional distribution. Our work
and [24] both confirmed the challenges of efficient rare-event simulations in infinite
dimensions, even for simple linear problems.

Our paper is organized as follows. The problem setting is described in section 2.
In section 3, we construct an LDP-based importance sampling scheme along with a
sufficient and necessary condition for the weak efficiency of the estimator. In section
4, we approximate the Euler–Lagrange equation associated with the rate functional
by replacing the covariance operator with its finite-rank approximation. The fully
discretized problem is given in section 5. Numerical results have been included in
section 6, which is followed by a summary section.

2. Problem setting. We consider the following stochastic elliptic problem on
a convex physical domain D ⊂ R2 with Lipschitzian boundary ∂D:

(7)

{
−∆uε(x) =

√
εG(x), x ∈ D,

uε(x) = 0, x ∈ ∂D,

where ε is a small positive number, and G(x) is a Gaussian field on the Hilbert
space L2(D). The covariance operator Q of G is nondegenerate, i.e., the null space
N (Q) = {0}. We also assume that Q is of trace class, positive, and self-adjoint. We
consider the probability of the following random event:

(8) B = {uε(x)| ‖uε‖ ≥ CB} ,

where 0 < CB <∞ is constant, and ‖ · ‖ indicates the L2 norm on D.

3. Estimation of Pr(uε ∈ B). In this section, we construct an importance
sampling scheme based on the results from the theory of large deviations.

3.1. Large deviation principle. Let Gε =
√
εG(x). For the scaled Gaussian

random field Gε, we have the following good rate functional [23]:

(9) IQ(φ) =
1

2

∥∥∥Q−1/2φ
∥∥∥2

=
1

2

〈
Q−1/2φ,Q−1/2φ

〉
, φ ∈ L2 (D) ,

where we set IQ(φ) = +∞ if Q−1/2φ cannot be defined, and 〈·, ·〉 indicates the inner
product on L2(D). More precisely, IQ(φ) is defined on the Cameron–Martin space
HQ = Q1/2L2(D), i.e., the image of Q1/2 acting on L2(D). Let H1

0 (D) consist of
functions in H1(D) which vanish on the boundary ∂D. Let ∆−1 : L2(D) 7→ H1

0 (D)
be the inverse of the Laplacian, which is continuous. According to the contraction
principle [6], we know that uε has a good rate functional:

S(u) = inf
φ∈L2(D):u=−∆−1φ

1

2

∥∥∥Q−1/2φ
∥∥∥2

.



A552 XIAOLIANG WAN AND XIANG ZHOU

When the domain boundary is good enough, e.g., Lipschitzian and convex [10], we
have uε ∈ H2(D) almost surely. We can then rewrite the above rate functional as

(10) S(u) =

{
1
2

∥∥Q−1/2∆u
∥∥2

if u ∈ H1
0 (D) ∩H2 (D) and ∆u ∈ HQ,

∞ otherwise.

Using the LDP for uε, we have an estimate of Pr(uε ∈ B) as

(11) lim
ε↓0

ε ln Pr (uε ∈ B) = − inf
u∈B

S(u) = −S(u∗),

where u∗ is the minimizer of S(u) in B. In other words, when ε is small, we have

(12) Pr (uε ∈ B) ≈ Ce−
S(u∗)
ε ,

where C is a prefactor. To capture the effect of the prefactor C, we can consider
importance sampling (IS) by using the asymptotic result (11) for the change of mea-
sure [4]. We then need to address two issues: (1) solving the optimization problem in
equation (11), and (2) checking the effectiveness of the LDP-based IS estimator.

Remark 3.1. In general, the attainability of the infimum in (11) on a admissible
set is of theoretical importance. For our problem, we expect that u∗ is located in the
admissible set {u|u ∈ H1

0 (D) ∩ H2(D), u ∈ B} since HQ is dense in L2(D) and B
is closed. Indeed, this fact can be established by the weakly lower-semicontinuity of
S(u) with respect to the norm ‖Q−1/2∆ · ‖ [10, 14].

3.2. The eigenvalue problem for minimizing the rate functional. We
now address the optimization problem defined by LDP:

Theorem 3.2. The minimizers of S(u) in (11) satisfy the following eigenvalue
problem:

(13) ∆Q−1∆u = λu

subject to Navier-type boundary conditions, u|∂D = (Q−1∆u)|∂D = 0. The minimum
of the rate functional is S(u∗) = 1

2λminC
2
B , where λmin is the minimum eigenvalue of

the problem (13), and u∗ is the corresponding eigenfunction with ‖u∗‖ = CB.

Proof. By the definition of Q, we can rewrite the rate functional S(u) as S(u) =
1
2

〈
∆u,Q−1∆u

〉
. It is easy to see that the minimum of S(u) on B must be achieved

at the boundary of B. Define the Lagrangian

(14) L(u, λ) =
1

2

〈
Q−1∆u,∆u

〉
− λ

2

(
〈u, u〉 − C2

B

)
,

where λ/2 is the Lagrange multiplier. The first-order variation of L in terms of u is

δL =
〈
∆Q−1∆u, δu

〉
+
〈
Q−1∆u, ∂nδu

〉
∂D
−
〈
∂n
(
Q−1∆u

)
, δu
〉
∂D
− λ 〈u, δu〉 .

Letting δu|∂D = 0 and (Q−1∆u)|∂D = 0, we obtain (13). From the duality feasibility
λ ≥ 0 and the complementarity condition λ

(
〈u, u〉 − C2

B

)
= 0, we have

S(u∗) =
1

2

〈
Q−1∆u∗,∆u∗

〉
=

1

2

〈
∆Q−1∆u∗, u∗

〉
=
λ

2
〈u∗, u∗〉 ≥ 1

2
λminC

2
B .

To verify that u∗ is indeed a local minimizer, we can look at the second-order variation

2δ2L =
〈
∆δu,Q−1∆δu

〉
− λ 〈δu, δu〉 .
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The sign of δ2L depends on λ. If λ > λmin, δ2L can be either positive or negative.
This implies that only λmin corresponds to a local minimizer u∗. Due to the definition
of B, we note that −u∗ is also a minimizer.

To deal with the boundary conditions (Q−1∆u)|∂D = 0, we define a new variable
v = Q−1∆u, and consider a mixed formulation of (13) [3]: Seek (v, u) ∈ H1

0 (D) ×
H1

0 (D), (v, u) 6= 0, such that

(15) ∆u = Qv, ∆v = λu,

subject to the Dirichlet boundary conditions u|∂D = v|∂D = 0. We include a simple
estimate of the lower bound of λmin and will address the numerical approximation of
(15) in section 4.

Property 3.3. The minimum eigenvalue λmin of problem (13) can be bounded
from below by

(16) λmin ≥ λ−1
Q,1λ̂min,

where λ̂min is the minimum eigenvalue of a biharmonic eigenvalue problem: ∆2u =
λ̂u, subject to Navier boundary conditions: u|∂D = ∆u|∂D = 0. If D is a square
[0, L]2, λmin ≥ 4π4λ−1

Q,1/L
4.

Proof. Note that

λmin = min
u∈H2(D)∩H1

0 (D),
‖u‖=1

〈
∆u,Q−1∆u

〉
≥ λ−1

Q,1 min
u∈H2(D)∩H1

0 (D),
‖u‖=1

〈∆u,∆u〉.

The minimum on the right-hand side can be given by the eigenvalue problem ∆2u =
λ̂u subject to Navier boundary conditions u|∂D = ∆u|∂D = 0. On convex domains,

we know that λ̂ will be just squares of the eigenvalues of the Laplace operator with
the homogeneous Dirichlet boundary condition. On a unit square, λ̂min = 4π4.

Since the behavior of λmin is closely related to λQ,1, we also include a general
property of λQ,1:

Property 3.4. Assume that the covariance kernel of Q is in the form of

K(x,y) =
1

ldc
ρ

(
x− y

lc

)
∀x,y ∈ Rd

for some nonnegative function ρ satisfying
∫
Rd ρ(x)dx = 1. Then the maximal eigen-

value of Q associated with any bounded domain D ⊂ Rd for any lc > 0 is strictly less
than 1, i.e.,

(17) λQ,1 = max
‖v‖=1

〈v,Qv〉 < 1.

Proof. For any v(y) ∈ L2(D) with ‖v‖ = 1, we extend it to Rd by letting v(y) = 0
if y /∈ D. Using the Cauchy–Schwarz inequality, we have

|Qv| ≤
∫
Rd
K(x,y)|v|(y)dy =

1

ldc

∫
Rd
ρ

(
x− y

lc

)
|v|(y)dy =

∫
Rd
ρ(z)|v|(x− lcz)dz

<

(∫
Rd
ρ(z)dz

)1/2(∫
Rd
ρ(z)v2(x− lcz)dz

)1/2

=

(∫
Rd
ρ(z)v2(x− lcz)dz

)1/2

,
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where the strict inequality is due to the fact that the domain D is finite. Then

‖Qv‖2 <
∫
Rd

∫
Rd
ρ(z)v2(x− lcz)dzdx =

∫
Rd
ρ(z)

∫
Rd
v2(x− lcz)dxdz = ‖v‖2.

We then have 〈v,Qv〉2 < ‖v‖‖Qv‖ ≤ ‖v‖2, which yields the conclusion.

Remark 3.5. As we mentioned earlier, an important idealized case is white noise,
which corresponds toQ being an identity operator I; then (13) becomes the eigenvalue
problem for the biharmonic operator ∆2 [17]. Note that I is not of trace class. When
Q is of trace class with a finite correlation length, one can show that as Q goes to I,
i.e., the correlation length tends to zero, the rate functional ‖Q−1/2∆u‖2 Γ-converges
to ‖∆u‖2 [5, 2], where the minimizers of the rate functional converge correspondingly.
In the other extreme case, when the correlation length tends to infinity, the random
function G(x) tends to a random constant, and the kernel of Q is simply a constant.
In this paper, we are mainly interested in a moderate correlation length in terms of
the characteristic length of the domain D.

3.3. The importance sampling problem. Let

(18) γ := Pr (uε ∈ B) = E [1B (Gε)] =

∫
1B(ψ)P0(dψ),

where 1B is the indicator function, the Gaussian measure P0 is the law of Gε with
zero mean and covariance operator εQ. The Monte Carlo estimator is defined as

(19) P̂MC =
1

NMC

NMC∑
i=1

1B

(
G(i)
ε

)
,

where NMC is the number of samples and the superscript of G
(i)
ε indicates the index

of the samples. The relative error of this estimator is

(20)
Var1/2

(
P̂MC

)
γ

=
1√
NMC

(
1− γ
γ

)1/2

∼ (γNMC)
−1/2

.

If the relative error is O(1), we have NMC ∼ γ−1. Since γ decreases exponentially as
ε → 0, NMC must increase exponentially, which makes the brute-force Monte Carlo
method prohibitively expensive.

To reduce the variance, one typical method is the importance sampling (IS).
We look for a new Gaussian measure Pφ, where the covariance operator εQ remains
unchanged but the mean is shifted to a function φ. This results in an IS estimator of
exponential tilting type

(21) P̂IS =
1

NMC

NMC∑
i=1

Zφ

(
G̃(i)
ε

)
with Zφ(·) = 1B (·) dP0

dPφ
(·) ,

where G̃
(i)
ε are generated according to Pφ and dP0/dPφ is the Radon–Nikodym deriva-

tive:

(22)
dP0

dPφ
(ψ) = exp

〈
−1

ε

〈
φ,Q−1ψ

〉
+

1

2ε

〈
φ,Q−1φ

)〉
.
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To find a good alternative measure Pφ, we need to minimize the variance of the

unbiased estimator Zφ. Since Eφ
[
Z2
φ

]
≥ Eφ [Zφ]

2
= E [1B ]

2
, after taking logarithm

on both sides, we have from the LDP that

(23) lim
ε↓0

ε logEφ
[
Z2
φ

]
≥ 2 lim

ε↓0
ε logE[1B ] = −2S(u∗).

If the lower bound in (23) is reached, we say the estimator Zφ is asymptotically (or
weakly) efficient. The LDP suggests that one could use the “optimal” one φ∗ given
by the minimizer u∗ to construct Pφ. However, many recent works show that this
choice can be dangerous (especially when S has multiple local minimizers), since in
some cases (22) may lead to an infinite variance as ε→ 0 (cf. [15]).

We subsequently present an IS estimator for Pr(uε ∈ B) and rigorously prove its
weak efficiency under some appropriate conditions. Due to symmetry, we split B into
two disjoint sets B = B+ ∪B− and deal with the two subsets separately, where

B+ = {uε(x)|uε ∈ B, 〈uε, u∗〉 ≥ 0} and B− = {uε(x)|uε ∈ B, 〈uε, u∗〉 ≤ 0}.
(24)

We assume that the eigenvalues of the problem (13) are denoted by

λmin = λ1 < λ2 ≤ λ3 ≤ · · · ,

with the smallest eigenvalue λmin being simple. Then within B+, u∗ is the unique
minimizer of S(u), and within B−, −u∗ is the unique minimizer. Using φ∗ = ±∆u
and (21), we define the following two LDP-based IS estimators for Pr(uε ∈ B+) and
Pr(uε ∈ B−), respectively:

(25) Zφ∗ = 1B+

dP0

dPφ∗=−∆u∗
and Z−φ∗ = 1B−

dP0

dPφ∗=∆u∗
.

The estimator for Pr(uε ∈ B) is then defined as [15]

(26) Zφ∗ + Z−φ∗ ,

where Zφ∗ and Z−φ∗ are sampled independently.
Due to symmetry, we only need to focus on Zφ∗ for Pr(uε ∈ B+). The analysis

for Pr(B−) is exactly the same. A sufficient and necessary condition for the weak
efficiency of Zφ∗ is given in the following theorem:

Theorem 3.6. Let φ∗ = −∆u∗. Assume that the smallest eigenvalue of equation
(13) is simple. Then Zφ∗ is asymptotically efficient for estimating Pr(uε ∈ B+) if and
only if λ2 ≥ 3λmin, where λ2 is the second smallest eigenvalue of (13).

The proof of this theorem is split into the following two lemmas.

Lemma 3.7. The following two conditions are equivalent:

lim
ε↓0

ε logEφ∗
[
Z2
φ∗
]

= −2S(u∗) ⇔ lim
ε↓0

ε logE−φ∗
[
1B+

]
= −4S(u∗).

Proof. Using (22), we have

Eφ∗
[
Z2
φ∗
]

=

∫
B+

Z2
φ∗(ψ)Pφ∗(dψ) =

∫
B+

dP0

dPφ∗
P0(dψ)

=

∫
B+

dP0

dPφ∗
dP0

dP−φ∗
P−φ∗(dψ) =

∫
B+

exp

(
1

ε

〈
φ∗,Q−1φ∗

〉)
P−φ∗(dψ)

= exp

(
1

ε

〈
∆u∗,Q−1∆u∗

〉)
E−φ∗

[
1B+

]
,
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which yields that

lim
ε↓0

ε logEφ∗
[
Z2
φ∗
]

= 2S(u∗) + lim
ε↓0

ε logE−φ∗
[
1B+

]
.

By the definition of weak efficiency, we reach the conclusion.

Another lemma is needed for the asymptotic estimate of E−φ∗ [1B+
]:

Lemma 3.8. We have that

(27) min
u∈B+

[
Ŝ(u) =

1

2

〈
∆(u+ u∗),Q−1∆(u+ u∗)

〉]
= 4S(u∗)

if and only if λ2 ≥ 3λmin.

Proof. We introduce Lagrangian multipliers λa/2 and λb, respectively, for the
two inequality constraints of B+, i.e., ‖u‖ ≥ CB and 〈u, u∗〉 ≥ 0, and consider the
Lagrangian

L(u) =
1

2

〈
∆(u+ u∗),Q−1∆(u+ u∗)

〉
− λa

2
(〈u, u〉 − C2

B)− λb 〈u, u∗〉 ,

whose Euler–Lagrange equation is

(28) ∆Q−1∆(u+ u∗)− λau− λbu∗ = 0,

with the same boundary conditions as those for (13). Then the Karush–Kuhn–Tucker
(KKT) conditions for optimality include the first-order condition (28), dual feasibility
λa ≥ 0, λb ≥ 0, and the complementary slackness λa(‖u‖ − CB) = λb 〈u, u∗〉 = 0.

Ŝ is quadratic in terms of u. The optimal point does not lie in the interior of B+,
but on its boundary. So either λa 6= 0 if the optimal solution satisfies ‖u‖ = Cb or
λb 6= 0 if the optimal solution satisfies 〈u, u∗〉 = 0. It is not possible that both are
zeros. Before we look into the KKT conditions, we simplify Ŝ(u) first by writing

u = qu∗ + ũ,

where ũ satisfies 〈ũ, u∗〉 = 0. Since u ∈ B+, then q ≥ 0. The E-L equation (28) can
be rewritten as

(29) ∆Q−1∆ũ− λaũ+ (λmin(q + 1)− λaq − λb)u∗ = 0.

It is known that the orthogonal conditions holds for two eigenfunctions of (13) corre-
sponding to distinct eigenvalues. Taking the inner product of (29) with u∗ and using
the assumption that λmin is simple, after applying integration by parts for the first
term, we have

(λmin(q + 1)− λaq − λb) 〈u∗, u∗〉 = 0,

which implies that the E-L equation (28) is equivalent to the system

(30)

{
∆Q−1∆ũ− λaũ = 0,
λmin(q + 1)− λaq − λb = 0,

where ũ satisfies the Navier-type boundary conditions as u and u∗. So if ũ is nonzero,
it is also one of the eigenfunctions of ∆Q−1∆ and its eigenvalue λa is strictly larger
than the smallest one λmin (i.e., λa ≥ λ2) since λmin is simple. In addition, if λa = 0,
ũ = 0 is the unique solution of ∆Q−1∆ũ = 0.
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For the constraints, we have by definition

〈u, u〉 = q2 〈u∗, u∗〉+ 〈ũ, ũ〉 = q2C2
B + 〈ũ, ũ〉 ,

〈u, u∗〉 = q 〈u∗, u∗〉 = qC2
B .

(31)

u ∈ B+ if and only if q ≥ 0 and 〈ũ, ũ〉 ≥ (1 − q2)C2
B . The minimization over u is

equivalent to the minimization over q and ũ. The complementary slackness condition
becomes

(〈ũ, ũ〉 − (1− q2)C2
B)λa = qλb = 0.

The functional Ŝ can be rewritten as

Ŝ(u) =
1

2

〈
∆(ũ+ (q + 1)u∗),Q−1∆(ũ+ (q + 1)u∗)

〉
=

1

2

(
λa 〈ũ, ũ〉+ λmin(q + 1)2C2

B

)
.

(32)

We now start to analyze two possible cases when the KKT conditions hold.
Case I: λb = 0. This means 〈u, u∗〉 > 0 and the constraint ‖u‖ = CB has to be

active (λa > 0). By (31), we know q is strictly positive. From the second equation of
(30) and λb = 0 in this case, we obtain that

λa = λmin(1 + 1/q).

Then additionally with (32) and noting that 〈ũ, ũ〉 is equal to (1− q2)C2
B , we have

Ŝ(u) =
1

2

(
λmin(1 + 1/q)(1− q2)C2

B + λmin(q + 1)2C2
B

)
=

2 + q + 1/q

2
λminC

2
B ≥ 2λminC

2
B = 4S(u∗).

The equality holds at the optimal q = 1, which implies λa = 2λmin and ũ = 0. So,
the minimizer of Ŝ is also u∗, the minimizer of S.

Case II: λb 6= 0. The constraint 〈u, u∗〉 = 0 is active now, and q = 0. Then u = ũ.
Notice that λa 6= 0 is also true in this case; otherwise, ũ = 0 by (30) and it follows
that u is zero too, which does not satisfy the constraint ‖u‖ ≥ CB . Nonzero λa then
means ‖u‖ = CB . Then

Ŝ(u) =
1

2
(λa 〈ũ, ũ〉+ λminC

2
B) =

1

2
(λa 〈u, u〉+ λminC

2
B)

=
1

2
C2
B(λmin + λa) ≥ 1

2
C2
B(λmin + λ2),

where we used the fact that the smallest possible value of λa is λ2. In this case, the
optimal u for Ŝ is the eigenfunction of ∆Q−1∆ corresponding to the second smallest
eigenvalue λ2.

Now combining cases I and II, we know that the true minimum is eventually
determined by the competition of the above two cases as follows:

min
u∈B+

Ŝ(u) = min

{
4S(u∗) = 2λminC

2
B ,

1

2
C2
B(λmin + λ2)

}
.

Therefore, the condition (27) holds if and only if

1

2
C2
B(λmin + λ2) ≥ 2λminC

2
B ,

which is equivalent to λ2 ≥ 3λmin.
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We are now ready to prove Theorem 3.6:

Proof. First of all, Zφ∗ is unbiased:

Eφ∗ [Zφ∗ ] =

∫
B+

1B+

dP0

dPφ∗
Pφ∗(dψ) =

∫
B+

1B+dP0(dψ) = E
[
1B+

]
.

From Lemma 3.7, we need to estimate E−φ∗ [1B+ ], which can be done by the large
deviation principle. Shifting the mean of Gε to −φ∗, we have

−∆ûε = −φ∗ +Gε ⇒ −∆(ûε + u∗) = Gε.

From the contraction principle, we know that ûε has a good rate functional Ŝ(u)
defined in (27). The conclusion follows Lemma 3.7 and 3.8.

Remark 3.9. In many cases where the simple exponential tilting scheme fails, the
reason usually is the existence of multiple local minimizers of the rate function (see
[8] for the first work to solve this issue based on the control theory). Here we point
out one simple case in which, although the minimizer on B+ is unique, one may still
run into the risk of losing the weak efficiency, which is consistent with the observation
in [15] for a finite-dimensional case. One sufficient condition given in Chapter 5.2 of
[4] to obtain weak efficiency is the so called dominating point, which requires that the
set is completely located on one side of a hyperplane tangent to the level set of rate
function at the minimizer. Obviously, this sufficient condition is too strong for the
set B+ here. From the proof of Lemma 3.8, we have if λ2 < 3λmin that the relative
error per sample of the IS estimator is

Var1/2
(
P̂IS

)
γ

√
NMC =

Eφ∗
[
Z2
φ∗

]
− γ2

γ2

1/2

≈
E1/2
φ∗

[
Z2
φ∗

]
γ

∼ e
3λmin−λ2

2λminε
S(u∗)

,

which increases exponentially as ε→ 0.

4. Approximate Q by a finite-rank approximation QM . When estimating
Pr(uε ∈ B), the Gaussian field Gε(x) needs to be sampled, implying that Q must be
approximated. In this work, we employ the Karhunen–Loevé (K-L) expansion to
approximate G:

(33) G(x) ≈ GM (x) =

M∑
i=1

√
λQ,ieQ,i(x)ξi,

where ξi are i.i.d. normal random variables, and {(λQ,i, eQ,i(x))}∞i=1 the eigenpairs of
Q with λQ,1 ≥ λQ,2 ≥ · · · > 0. The K-L expansion is given by an eigenvalue problem
associated with the kernel K of Q:

(34) Qv =

∫
D

K(x,y)v(y)dy = λQv(x),

where K(x,y) = E [G(x)G(y)] is the covariance matrix [19]. The finite-rank approx-
imation of Q is

(35) Q ≈ QM =

M∑
i=1

λQ,i 〈·, eQ,i〉 eQ,i.
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The variational formulation of (15) is to find (v, u) ∈ H1
0 (D)×H1

0 (D), (v, u) 6= (0, 0),
such that

(36)

{
〈Qv, w〉+ 〈∇w,∇u〉 = 0 ∀w ∈ H1

0 (D),
〈∇v,∇ŵ〉 = −λ 〈u, ŵ〉 ∀ŵ ∈ H1

0 (D).

ReplacingQ withQM , we have the semidiscrete version of (36): Find (ṽ, ũ) ∈ H1
0 (D)×

H1
0 (D), (ṽ, ũ) 6= (0, 0), such that

(37)

{
〈QM ṽ, w〉+ 〈∇w,∇ũ〉 = 0 ∀w ∈ H1

0 (D),

〈∇ṽ,∇ŵ〉 = −λ̃M 〈ũ, ŵ〉 ∀ŵ ∈ H1
0 (D).

Lemma 4.1. Problem (37) has M eigenvalues, which are all positive.

Proof. We look at the problem from the point of view of spectral approximation
theory. We start from the source problem associated with (37): For g ∈ L2(D), find
(ṽ, ũ) ∈ H1

0 (D)×H1
0 (D) such that

(38)

{
AM (ṽ, w) +B(w, ũ) = 0 ∀w ∈ H1

0 (D),
B(ṽ, ŵ) = −〈g, ŵ〉 ∀ŵ ∈ H1

0 (D),

where we define two continuous symmetric bilinear forms, AM (v, w) = 〈QMv, w〉 and
B(v, w) = 〈∇v,∇w〉. It is seen that (38) is uniquely solvable for any g ∈ L2(D) be-
cause ṽ and ũ are solutions of two decoupled elliptic equations subject to homogeneous
Dirichlet boundary conditions. We then introduce the component solution operator
S : L2(D)→ H1

0 (D), Sg = ṽ such that B(Sg, ŵ) = −〈g, ŵ〉 for any ŵ ∈ H1
0 (D), and

the solution operator TM : L2(D)→ L2(D), TMg = ũ, where

|Sg|H1
0 (D) ≤ CD‖g‖,

with CD being the Poincaré constant, i.e., S is bounded.
First of all, all eigenvalues of (37) are positive. Letting w = ṽ and ŵ = ũ in (37),

then we have
AM (ṽ, ṽ) = 〈QM ṽ, ṽ〉 = λ̃M 〈ũ, ũ〉 .

Since AM (ṽ, ṽ) ≥ 0, we have λ̃M ≥ 0. We need to pay attention to the case that
AM (ṽ, ṽ) = 0, since QM is of finite rank. Let VM = span{eQ,i}Mi=1 and write ṽ =
PM ṽ + (I − PM )ṽ, where PM indicates a projection onto VM . We then have that

AM (ṽ, ṽ) = AM (PM ṽ,PM ṽ) = 0,

implying that PM ṽ = 0, i.e., ṽ ⊥ VM and QM ṽ = 0. However, if QM ṽ = 0, then
by the first equation of (37) we have ũ = 0 since ∆ũ = 0 and ũ ∈ H1

0 (D), which
further implies that ṽ = 0 by the second equation of (37). Thus, the condition
AM (ṽ, ṽ) = 0 will lead to the contradiction that (ũ, ṽ) = 0. Consequently, we proved
that AM (ṽ, ṽ) > 0 for any nonzero ṽ, i.e., λ̃M > 0.

Second, the eigenpairs of (37) can be characterized by TM . We can think of
the eigenvalue problem (37) as a source problem with g = λM ũ. In other words, if
(λ̃M , (ṽ, ũ)) is an eigenpair of (37), then TM (λ̃M ũ) = ũ. On the other hand, the source
problem with TM (λ̃M ũ) = ũ and ũ 6= 0 corresponds to an eigenvalue problem, since
there exists a S(λ̃M ũ) = ṽ ∈ H1

0 (D) such that (λ̃M , (ṽ, ũ)) is an eigenpair of problem
(37). Hence, λ̃M is an eigenvalue of (37) if and only if λ̃−1

M is an eigenvalue of TM .
We can then focus on the property of TM .
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Third, TM is self-adjoint and nonnegative. Let f ∈ L2(D). We let ŵ = TMf in
the second equation of (38), and have

B(Sg, TMf) = −〈g, TMf〉 .

We let ũ = TMf , ṽ = Sf , and w = Sg in the first equation of (38), and have

A(Sf,Sg) +B(Sg, TMf) = 0.

The above two equations yield

〈g, TMf〉 = AM (Sf,Sg) ∀f, g ∈ L2(D).

Since AM is symmetric, we have

〈g, TMf〉 = AM (Sf,Sg) = AM (Sg,Sf) = 〈f, TMg〉 .

When f = g, 〈g, TMg〉 = AM (Sg,Sg) ≥ 0. Thus TM is self-adjoint and nonnegative.
Fourth, TM is of finite rank. For each eQ,i ∈ VM , i = 1, . . . ,M , there exists a

unique uQ,i such that

AM (eQ,i, w) +B(w, uQ,i) = 0 ∀w ∈ H1
0 (D).

It is easy to see that uQ,i are linearly independent, where i = 1, . . . ,M . Then for

any g ∈ L2(D), we have TMg =
∑M
i=1 〈QMSg, eQ,i〉uQ,i. We only need to make sure

that, for each eQ,i, there exists g such that 〈QMSg, eQ,i〉 6= 0. We pick g = eQ,i, and
let ŵ = SeQ,i. We have

〈eQ,i,QMSeQ,i〉 = 〈QMeQ,i,SeQ,i〉 = λQ,i 〈eQ,i,SeQ,i〉 = −B(SeQ,i,SeQ,i) ≤ 0.

If B(SeQ,i,SeQ,i) = 0, we have SeQ,i = 0 since SeQ,i ∈ H1
0 (D). This is possible only

when eQ,i = 0.
Overall, TM is self-adjoint, nonnegative, and of rank M . Thus, TM has M positive

eigenvalues λ̃−1
M , implying that (37) has M positive eigenvalues λ̃M .

We now establish the convergence of λ̃M to λ.

Lemma 4.2. There is a constant C such that the eigenvalues in (36) associated
with Q and in (37) associated with QM satisfy

(39) |λ−1 − λ̃−1
M | ≤ Cλ

2
Q,M+1,

where λQ,M+1 is the (M + 1)th smallest eigenvalue of Q.

Proof. This lemma is an application of Theorem 11.1 in [1]. We include the
associated source problems of (36): For g ∈ L2(D), find (v, u) ∈ H1

0 (D) × H1
0 (D),

such that

(40)

{
A(v, w) +B(w, u) = 0 ∀w ∈ H1

0 (D),
B(v, ŵ) = −〈g, ŵ〉 ∀ŵ ∈ H1

0 (D),

where we define a new continuous bilinear forms A(v, w) = 〈Qv, w〉, and B is the
same as in the proof of previous lemma. We also need a new solution operator
T : L2(D) → L2(D) such that T g = u, for any g ∈ L2(D). The component solution
operator Sg = v will be shared by (38) and (40).
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To this end, we can consider the approximation of T given by TM . If ‖T −TM‖ → 0
as M →∞, we can use Theorem 11.1 in [1] to establish the convergence of λ̃M to λ.
For any g ∈ L2(D), we have

A(Sg, w) +B(w, T g) = 0 ∀w ∈ H1
0 (D)

from the first equation of (40), and

AM (Sg, w) +B(w, TMg) = 0 ∀w ∈ H1
0 (D)

from the first equation of (38). The difference of the above two equations satisfies

〈(Q−QM )Sg, w〉+ 〈∇w,∇(T − TM )g〉 = 0 ∀w ∈ H1
0 (D).

Letting w = (T − TM )g, we can obtain

‖(T − TM )g‖ ≤ CD|(T − TM )g|H1
0 (D) ≤ CD‖(Q−QM )Sg‖ ≤ CD‖Q −QM‖‖S‖‖g‖.

We then have
‖T − TM‖ ≤ CDλQ,M+1‖S‖,

where ‖S‖ is bounded. The conclusion is reached by applying Theorem 11.1
in [1].

5. Numerical discretization. For numerical experiments, we will consider the
one-dimensional (1D) problem defined on Γ = [−1, 1] and the two-dimensional prob-
lem defined on D = Γ2. We choose the spectral method for spatial discretization in
view of the simple geometry of D. In particular, we pick the following one-dimensional
basis functions [25]:

(41) φi(x) = (Li(x)− Li+2(x))/
√

4i+ 6 ∈ H1
0 (Γ),

where Lk is the Legendre polynomial of degree k. Let WN = span{φi(x)}N−1
i=0 . The

two-dimensional approximation space is constructed by tensor product: VN = WN ⊗
WN = span{θi(k,l)(x) = φk(x)φl(y)}N2

i=1 ⊂ H1
0 (D) , where i(k, l) indicates the global

index corresponding to k and l. The fully discretized version of (37) takes the following
matrix form:

(42)

(
KT MQM
0 −K

)(
u
v

)
= λ̃M

(
0 0
M 0

)(
u
v

)
,

where the vectors u and v consist of unknown coefficients of the expansions of u and v
in VN , K is the matrix 〈∇θi,∇θj〉, MQM is 〈QMθi, θj〉, and M is 〈θi, θj〉. The entries
of MQM can be computed using the definition of QM :

(43) 〈QMθi, θj〉 =

M∑
k=1

λQ,i 〈θi, eQ,k〉 〈θj , eQ,k〉 .

The approximation of eQ,k(x) can be completely independent of problem (42), where
any appropriate method for the eigenvalue problem (34) can be used. In this work, we
use the Nyström method to compute eQ,k, where (34) is enforced on some collocation
points in D. Depending on the correlation length, we will choose the Legendre–
Gauss–Lobatto (LGL) quadrature points either globally on D or locally after a finite
element discretization of D. We finally move the eigenvalue λ̃M to the left-hand
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side to compute the largest value of λ̃−1
M , because the matrix on the left-hand side is

nonsingular.
For sampling we also need a numerical solver for the stochastic elliptic problem

(7). The weak form is to find uε,N ∈ VN such that

(44) 〈∇uε,N ,∇v〉 =
〈
φ+
√
εGM , v

〉
∀v ∈ VN ,

where φ = 0 for the brute-force Monte Carlo method and φ = φ∗ = ±∆u∗ = ±QMv∗
for the importance sampling. We use the truncated K-L expansion (33) to approxi-
mate G. Then the weak form (44) can be written in matrix form as

(45) Bu = f +
√
εCξ,

where B is the stiffness matrix 〈θi, θj〉, u the vector consisting of all unknown coef-
ficients, f the vector 〈φ, θi〉 induced by force term φ, C the matrix

〈
θi,
√
λQ,jeQ,j

〉
,

j = 1, . . . ,M , and ξ = (ξ1, ξ2, . . . , ξM )T. We can then sample equation (45). Tak-
ing φ = φ∗, one realization of the shifted Gaussian field can be represented as

ψ = φ∗ +
√
εG

(i)
M . Then the Radon–Nikodym derivative can be written in terms

φ∗ and G
(i)
M as

dP0

dPφ∗
(ψ) = exp

(
−λM,minC

2
B

2ε
− 1√

ε

〈
G

(i)
M , (QM |VM )

−1
φ∗
〉)

,

where λM,min is the minimum eigenvalue given by (37), and QM |VM is the restriction
of QM onto VM such that the inverse is well defined.

To this end, we summarize our algorithm as follows:
(1) The K-L expansion. Use any appropriate algorithm to solve the eigenvalue

problem (34) to obtain GM (x) and QM .
(2) The E-L equation. Use the mixed formulation (15) to solve the E-L equation

(13) to obtain (v∗, u∗) and φ∗ = ±∆u∗ = ±QMv∗.
(3) The importance sampling. Sample the approximated Gaussian field GM (x)

and use the IS estimator (26) to estimate Pr(uε ∈ B).

6. Numerical results.

6.1. The minimizer. We now study the eigenvalues of ∆Q−1∆ numerically
using D = Γ2. We choose the Gaussian kernel:

(46) K(x,y) =
1

πl2c
exp

(
−|x− y|2

l2c

)
.

Note that limlc→0K(x,y) = δ(x−y), where δ(·) indicates the Dirac delta function. As
the correlation length lc goes to 0, the colored noise becomes white, i.e., all eigenvalues
of the kernel become 1. In this work, we are interested in the cases that lc is moderate
or large. The decay rate of eigenvalues is determined by the regularity of K(x,y),
and the behavior of the leading eigenvalue is described in Property 3.4.

In the left plot of Figure 1, we plot the decay behavior of the eigenvalues of
K(x,y) for various correlation length lc. The eigenvalue problem (33) is computed
by the Nyström method subject to 48 × 48 = 2304 Legendre–Gauss–Lobatto (LGL)

quadrature points. We truncated the eigenvalues at the same level such that
λQ,i
λQ,1

≤
10−8. We see that the eigenvalues decay exponentially and will quickly reach the
machine accuracy at a moderate or large correlation length [13]. Note that λQ,1 < 1
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Fig. 1. Left: The decay behavior of eigenvalues of kernel (46) for different correlation lengths.
λQ,1|lc=0.2 ≈ 0.96, λQ,1|lc=0.6 ≈ 0.75, λQ,1|lc=1.0 ≈ 0.54, λQ,1|lc=2.0 ≈ 0.24. Note that λQ,1 < 1

for lc > 0. The eigenvalues are truncated such that
λQ,i
λQ,1

≤ 10−8. Right: The convergence of λM,min

with respect to M .

for any lc > 0, and λQ,1 decays as lc increases. This is consistent with Property 3.4
with ρ(x) = π−d/2 exp(−|x|2).

In practical applications, one may also concern with a covariance kernel with
a constant variance regardless of the correlation length. So we also consider the
Gaussian kernel in the following form:

(47) K̃(x,y) := exp

(
−|x− y|2

l2c

)
= πl2cK(x,y),

K̃(x,x) = 1 regardless of the choice of lc. The eigenvalues of K̃ and K are only
different up to a factor πl2c , and the associated eigenfunctions are the same.

6.1.1. Convergence of λM,min. We look at the convergence of λM,min with
respect to M , where λM,min is the minimum eigenvalue given by (37). We set up a
rule to choose M by defining

(48) M(δQ) =

∞∑
i=1

1{ λQ,i
λQ,1

≤δQ
},

where δQ is a prescribed threshold. In other words, we keep all the terms such that
λQ,i
λQ,1

≤ δQ. We define a relative error

(49) ελ =
|λ−1
M,min − λ

−1
ref |

λ−1
ref

,

where λref is a reference solution. In the right plot of Figure 1, we plot the convergence
behavior of λM,min with respect to M . M(δQ) is given by decreasing the threshold
δQ. Kernel (46) is used for Q. N = 32 is used to construct the approximation space
VN , i.e., |VN | = 32 × 32. The correlation length is set to be lc = 0.3. We use the
eigenvalue λM,min given by δQ = 10−10 as the reference solution. From Lemma 4.2,
we know the convergence rate is determined by the decay rate of the eigenvalues of Q.
Since kernel (46) is smooth, its eigenvalues decay exponentially. In the right plot of
Figure 1, we observe that the error of λM,min also decays exponentially with respect
to M , which is consistent with our theoretical results.
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Fig. 2. The dependence of λmin on the correlation length lc. Two-dimensional elliptic problems
are considered. Left: Kernel K. Right: Kernel K̃.

6.1.2. Dependence of λmin on the correlation length. For the computa-
tion, we choose M(δQ = 10−6) for QM , which is good enough since the error in λmin

decays exponentially with respect to M . In Figure 2, we plot the dependence of λmin

on the correlation length for kernel K on the left and for kernel K̃ on the right. Let

λKmin and λK̃min be λmin given by K and K̃, respectively. In the left plot, we also include
the curve given by π4/(4λQ,1), which is the lower bound of λmin given in Property 3.4
for L = 2. It is seen that as lc → 0, λKmin goes to π4/4 since λQ,1 goes to 1 meanwhile.
This is because that as Q → I,

〈
∆u,Q−1∆u

〉
Γ-converges to 〈∆u,∆u〉 [2], implying

the convergence of the corresponding minimizers of the two functionals. As lc →∞,
K ∼ l−2

c and λQ,1 → 0, implying that λmin must go to infinity. For kernel K̃, which is

a scaled version of K by πl2c , we simply have λK̃min = λKmin/(πl
2
c). The figure for λK̃min

is plotted in log-log scale. Since λKmin → π4/4 as lc → 0, we should have λK̃min ∼ l−2
c

when lc is small. This is demonstrated by the straight line with a slope −2. When

lc → ∞, it appears that λK̃min converges to a constant. When lc = ∞, K̃ = 1D,
corresponding to the right-hand side of the SPDE model (7) being simply a Gaussian
random variable. The kernel 1D has one nonzero eigenvalue |D| associated with a
constant eigenfunction. For this case, λmin = 9.1776, which is exactly the constant

that λK̃min converges to as lc →∞.
In summary, the relation of λmin to the correlation length lc for K has an opposite

trend compared to that for K̃. Since S(u∗) is proportional to λmin, this implies that
the choice of kernel is important for the estimation of Pr(B) even when the same
correlation length and noise amplitude are used.

6.1.3. Profile of the minimizer u∗. We now look at the profile of the min-
imizer (u∗, v∗) corresponding to the smallest eigenvalue of (37), where we normalize
u∗ such that ‖u∗‖ = 1. We use kernel K̃ for the demonstration. In Figure 3, we plot
u∗ for lc = 0.1, 1. The two profiles of u∗ are quite similar visually, and are mainly
determined by low order modes in VN . More specifically, the difference between the
two u∗’s is ‖u∗|lc=0.1 − u∗|lc=1‖ = 5.19%. However, such a slight difference can be

amplified by ∆ and Q−1. In Figure 4, we plot (QM |VM )−1/2∆u∗ = Q1/2
M v∗. It is seen

that the difference between the two Q1/2
M v∗’s is significant. Indeed, the two minimum

eigenvalues given by ‖(QM |VM )−1/2∆u∗‖2/‖u∗‖2 are 784.41 and 16.59 for lc = 0.1 and
1, respectively. Note that we have M(10−6) = 1860 for lc = 0.1, where λQ,1 = 0.0311,
and M(10−6) = 41 for lc = 1.0, where λQ,1 = 1.70.
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6.2. Importance sampling for Pr(uε ∈ B+). In this section we will test the
efficiency and convergence of the LDP-based IS estimator for the rare event Pr(uε ∈
B+) defined in (24). We consider both one- and two-dimensional elliptic problems.

First of all, we check if the condition for weak efficiency given in Theorem 3.6
is satisfied. As lc → 0, the kernel (46) approaches the delta function, i.e., Q goes
to the identity operator I. Then 〈∆u,Q−1∆u〉 Γ-converges to 〈∆u,∆u〉 [2]. Corre-
spondingly the eigenvalue problem (13) becomes ∆2u = λu subject to Navier bound-
ary conditions, for which we have exact solutions of λ. For the biharmonic opera-
tor, λ2/λmin = 16 for the 1D case, and λ2/λmin = 25/4 = 6.25 for a square, and
λ1/λmin = 4 for a cube. For nonzero correlation lengths, we plot λ2/λmin of ∆Q−1∆
versus lc in Figure 5 using kernel K for Q, where the left plot is for the 1D elliptic
problem and the right plot is for the 2D elliptic problem. It is clearly shown that
for both 1D and 2D cases, as lc decreases to zero, λ2/λmin monotonically decreases
to the limit ratio corresponding to the biharmonic operator. This implies that the
IS estimator (26) is asymptotically efficient for any correlation length lc for both 1D
and 2D elliptic problems. Since kernel (47) is the same as kernel (46) up to a scaling
factor, this observation holds for both kernels (46) and (47). Noticing that the limit
ratio λ2/λmin, given by the biharmonic operator, does not depend on the form of the
kernel as long as the kernel approaches the delta function, an interesting question is
whether the above observation holds for other kernels. In figure 5, we also include the
convergence behavior of λ2/λmin given by the exponential kernel e−|x−y|/lc and the
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following cubic kernel [29]:{
1− 7

(
τ
lc

)2

+ 35
4

(
τ
lc

)3

− 7
2

(
τ
lc

)5

+ 3
4

(
τ
lc

)7

if τ = |x− y| < lc,

0 otherwise.

The results qualitatively agree with those for the Gaussian kernel. We note that the
limit ratio of λ2/λmin is also larger than 3 for 3D elliptic problems. Based on our 1D
and 2D results, we expect that the IS estimator may be still asymptotic efficient for
any correlation length for 3D elliptic problems.

We now look at the IS estimator P̂IS defined in (21). We choose the correlation

length lc = 0.5 around where the kernels K and K̃ induce comparable λmin. In
this experiment, we use kernel K. We pick M(10−6) = 12 for the 1D case and
M(10−6) = 110 for the 2D case. The ratio of λ2/λmin ≈ 23 for the 1D case and
≈ 9 for the 2D case. Due to the symmetry, and for simplicity, we only consider the
estimation of Pr(uε ∈ B+) using Zφ∗ (see (25)). Let σ̂IS and σ̂MC be the unbiased

estimates of the standard deviation of the IS estimator P̂IS and Monte Carlo estimator
P̂MC, respectively. We use

εIS = σ̂IS/Pref and εMC = σ̂MC/Pref

to indicate the relative errors, where Pref is a reference estimate of Pr(B+).
We compare the IS estimator and the Monte Carlo estimator by considering a

sequence of increasing values of CB so that Pr(uε ∈ B+) decreases. The reference
probability is given by the IS estimator subject to 107 realizations. The results are
summarized in Table 1 for the 1D case and in Table 2 for the 2D case.

First, it is easy to check that both εIS and εMC have the convergence rate O(N
−1/2
MC ).

Second, the IS estimator is always better than the MC estimator. For the same num-
ber of realizations, the ratio εMC/εIS keeps increasing as CB increases. When CB is
small enough, their performance is similar, as shown in Tables 1(a) and 2(a). When
Pr(uε ∈ B+) is of O(10−3) and O(10−5), the ratio εMC/εIS is about of O(10) and of
O(102), respectively, as shown in Tables 1(b)–1(c) and 2(b)–2(c). When CB is large
enough, i.e., Pr(uε ∈ B+) is small enough, the Monte Carlo method starts to have dif-
ficulties in capturing the rare events, as shown in Tables 1(d) and 2(d). Interestingly,
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Table 1
[1D case] Convergence behavior of MC and IS estimators for one-dimensional elliptic problems.

The noise amplitude is chosen as ε = 10−8.

(a) CB = 3× 10−5

NMC 103 104 105 106 107

P̂IS 2.154e-1 2.272e-1 2.249e-1 2.258e-1 2.254e-1
εIS 3.5e-2 1.1e-2 3.5e-3 1.1e-3 3.6e-4

P̂MC 2.210e-1 2.241e-1 2.271e-1 2.254e-6 2.252e-6
εMC 5.8e-2 1.9e-2 5.9e-3 1.9e-3 5.9e-4

(b) CB = 1× 10−4

NMC 103 104 105 106 107

P̂IS 4.539e-3 4.399e-3 4.458e-3 4.446e-3 4.443e-3
εIS 5.6e-2 1.7e-2 5.4e-3 1.7e-3 5.5e-4

P̂MC 8.000e-3 4.000e-3 4.150e-3 4.354e-3 4.420e-3
εMC 6.3e-1 1.4e-1 4.6e-2 1.5e-2 4.7e-3

(c) CB = 1.5× 10−4

NMC 103 104 105 106 107

P̂IS 4.533e-5 4.263e-5 4.190e-5 4.207e-5 4.200e-5
εIS 6.8e-1 2.1e-2 6.7e-3 2.1e-3 6.7e-4

P̂MC 1.000e-3 1.000e-4 5.000e-5 3.700e-5 4.12e-5
εMC 23.8 2.4 5.3e-1 1.5e-1 4.8e-2

(d) CB = 2× 10−4

NMC 103 104 105 106 107

P̂IS 7.399e-8 7.806e-8 7.608e-8 7.688e-8 7.717e-8
εIS 7.4e-2 2.5e-2 7.6e-3 2.4e-3 7.7e-4

P̂MC - - - - 1.000e-7
εMC - - - - 1.3

one out of the 107 realizations for the MC estimator of the 1D elliptic problem cap-
tured the rare event in our numerical experiment, where εMC is of O(1), and εMC/εIS is
of O(103). For the 2D case, the 107 realizations for the MC estimator did not capture
the rare event. If we assume one realization captures the rare event for this case, it
would induce a relative error 10.62 (bracketed number in the table), corresponding to
a ratio εMC/εIS of O(104). Third, the IS estimator appears robust for both 1D and 2D
elliptic problems in terms of all the four CB ’s, since we do not observe a significant
change in εIS for the same number of realizations as CB increases. More specifically,
we look at the change of the relative error per sample, i.e., εIS

√
NMC, with respect

to ε. In Figure 6 we plot the relative error per sample versus ε−1 in log-log scale on
the left, and the probability Pr(uε ∈ B+) versus ε−1 with only the y axis in log scale
on the right, which confirms that as ε decreases, Pr(uε ∈ B+) decays exponentially.
While the relative error per sample of the MC estimator increases exponentially, the
scaling in figure 6 shows that the relative error per sample of the IS estimator appears
to increase only algebraically, implying that our IS scheme is indeed weakly efficient.

6.3. The dependence of λ2/λmin on random events. In section 3, we pre-
sented an LDP-based IS importance sampling scheme to estimate Pr(B), where a



A568 XIAOLIANG WAN AND XIANG ZHOU

Table 2
[2D case] Convergence behavior of MC and IS estimators for two-dimensional elliptic problems.

The noise amplitude is chosen as ε = 10−8.

(a) CB = 1× 10−5

NMC 103 104 105 106 107

P̂IS 3.369e-1 3.345e-1 3.366e-1 3.390e-1 3.391e-1
εIS 3.2e-2 1.0e-2 3.1e-3 1.0e-3 3.2e-4

P̂MC 3.360e-1 3.341e-1 3.378e-1 3.387e-1 3.391e-1
εMC 4.4e-2 1.4e-2 4.4e-3 1.4e-3 4.4e-4

(b) CB = 5× 10−5

NMC 103 104 105 106 107

P̂IS 2.727e-3 2.620e-3 2.623e-3 2.614e-3 2.617e-3
εIS 5.8e-2 1.8e-2 5.7e-3 1.8e-3 5.7e-4

P̂MC 4.000e-3 2.100e-3 2.750e-3 2.525e-3 2.576e-3
εMC 7.6e-1 1.8e-1 6.3e-2 1.9e-2 6.1e-3

(c) CB = 7× 10−5

NMC 103 104 105 106 107

P̂IS 4.380e-5 4.420e-5 4.270e-5 4.311e-5 4.308e-5
εIS 6.9e-2 2.2e-2 6.8e-3 2.2e-3 6.8e-4

P̂MC 1.000e-3 3.000e-4 6.000e-5 4.000e-5 4.370e-5
εMC 23.2 4.0 5.7e-1 1.5e-1 4.9e-2

(d) CB = 1× 10−4

NMC 103 104 105 106 107

P̂IS 9.019e-9 9.213e-9 9.444e-9 9.423e-9 9.416e-9
εIS 8.2e-1 2.6e-2 8.4e-3 2.6e-3 8.3e-4

P̂MC - - - - (1.000e-7)
εMC - - - - (10.6)
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Fig. 6. The IS estimator for two-dimensional elliptic problem with CB = 10−4 and NMC = 106

realizations. Left: Relative error per sample versus ε−1. Right: Pr(uε ∈ B+) versus ε−1.
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sufficient and necessary condition, i.e., λ2/λmin ≥ 3, for the weak efficiency is ob-
tained. Numerical experiments in section 6.2 show that this condition holds for any
correlation length in 1D and 2D cases. However, we note that the definition of the
eigenvalue problem (13) depends on the definition of random-event set B, and so does
the condition given in Theorem (3.6). To demonstrate this, we subsequently apply the
procedure developed in this work to another rare-event set, where we pay particular
condition to the condition for the weak efficiency of the IS estimator.

We consider

(50) B̂ = {‖∇u‖ ≥ CB̂}.

It can be obtained that the minimizer of S(u) restricted onto B̂ corresponds to the
following new biharmonic-type eigenvalue problem:

(51) ∆Q−1∆u = −λ∆u,

subject to boundary conditions u|∂D = (Q−1∆u)|∂D = 0, which has a mixed formu-
lation

(52) ∆u = Qv, ∆v = −λ∆u,

subject to homogeneous Dirichlet boundary conditions u|∂D = v|∂D = 0. Equation
(52) can be decoupled into two subproblems:

(53)

{
∆v = −λQv, x ∈ D,
v|∂D = 0, x ∈ ∂D, and

{
∆u = Qv, x ∈ D,
u|∂D = 0, x ∈ ∂D.

To construct an asymptotically efficient IS estimator, we consider the following
splitting B̂ = B̂+ ∩ B̂−:

B̂+ = {uε(x)|uε ∈ B, 〈uε, φ∗〉 ≥ 0} and B̂− = {uε(x)|uε ∈ B, 〈uε, φ∗〉 ≤ 0},

where φ∗ = −∆u∗ = −Qv∗, and we still use u∗ to indicate the minimizer of S(u).
Note that we project uε onto φ∗ instead of u∗ due to the definition of B̂. Using
an argument similar to that in the proof of Theorem 3.6, we can obtain the same
condition λ2 ≥ 3λmin such that Zφ∗ is asymptotically efficient for Pr(B̂+), except
that λmin and λ2 are the two smallest eigenvalues of (51) with λmin being simple. We
then obtain an asymptotically efficient IS estimator Zφ∗ + Z−φ∗ for Pr(B̂).

For the random event B̂ defined in (50), we see from (53) that the limit ratio
of λ2/λmin as lc → 0 is defined by the eigenvalues of Laplace operator subject to
homogeneous Dirichlet boundary conditions. When Q = I, λ2/λmin = 4 for the 1D
case, λ2/λmin = 2.5 for a square and λ2/λmin = 2 for a cube. This implies that
the condition λ2/λmin > 3 may break down for 2D and 3D cases when lc is small
enough. In Figure 7, we plot λ2/λmin for 1D and 2D elliptic problems. For 1D elliptic
problems, λ2/λmin > 3 for any correlation length lc. For 2D elliptic problems, we
plotted rQ/3 = (λ2/λmin)/3. It is seen that for all the three kernels studied, λ2/λmin

is smaller than 3 if lc is not large enough, indicated by the dotted horizontal line with
rQ = 3. For lc such that the corresponding rQ/3 is under the dotted horizontal line,
the IS estimator Zφ∗ for B̂ does not have weak efficiency.

We now compare the convergence behavior of the IS estimator at two correlation
lengths lc = 0.1 and lc = 0.5 for the two-dimensional elliptic problems and the kernel
K. When lc = 0.1, λ2/λmin ≈ 2.54; when lc = 0.5, λ2/λmin ≈ 3.58. In other
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Fig. 8. Relative error per sample for the two-dimensional elliptic problem with CB̂ = 10−4 and

NMC = 106 realizations. Left: lc = 0.1, λ2/λmin ≈ 2.54. Right: lc = 0.5, λ2/λmin ≈ 3.58.

words, the condition for weak efficiency holds for lc = 0.5, but fails for lc = 0.1.
We use M(10−5) = 1370 and M(10−5) = 110 to approximate QM for lc = 0.1 and
0.5, respectively. We fix NMC = 106 and CB̂ = 10−4, and vary ε. We will focus
on relatively large ε, such that the Monte Carlo estimator with NMC = 106 yields a
reasonable approximation of E[1B̂+

]. In Figure 8, we compare the relative error per
sample given by both IS and MC estimators. It is seen that the relative error per
sample given by the IS estimator increases exponentially for lc = 0.1 and algebraically
for lc = 0.5, indicating that the LDP-based IS estimator for random-event set B̂ is
not weakly efficient when the condition λ2/λmin ≥ 3 fails.

7. Conclusion and discussion. In this work, we addressed the probability es-
timation of small-noise-induced rare events for an elliptic problem by employing the
large deviation principle. The whole procedure consists of several steps. (1) Approxi-
mation of the Gaussian random field: We employed the Karhunen–Loéve expansion to
do this, which results in a finite-rank approximationQM ofQ. (2) Minimizing the rate
functional: We derived the associated Euler–Lagrange equation, which corresponds to
an eigenvalue problem of a nonlocal operator ∆Q−1∆. To deal with the Navier-type
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boundary conditions we considered a mixed formulation of the E-L equation. We
have proved that ∆(QM |VM )−1∆ has M positive eigenvalues if Q is replaced by its
finite-rank approximation QM , and the convergence rate of eigenvalues as M → ∞
is consistent with the decay rate of the eigenvalues of Q. (3) Exponential tilting im-
portance sampling estimator: We derived a sufficient and necessary condition that
λ2/λmin ≥ 3 to guarantee the weak efficiency of the estimator.

Although our problem setting is relatively simple and specific, our work provides a
fundamental understanding of the main difficulties, and a guidance to the probability
estimation of other random events such as B̂ given in section 6.3. We expect to
generalize our work to a more general setting, where time dependence and nonlinearity
are taken into account as in equation (4).
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[1] I. Babuška and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis II, P. G.
Ciarlet and J. I. Lions, eds., North-Holland, Amsterdam, 1991, pp. 641–687.

[2] Z. Brzezniak, S. Cerrai, and M. Freidlin, Quasipotential and exit time for 2D stochastic
Navier-Stokes equations by space time white noise, Probab. Theory Relat. Fields, 162
(2015), pp. 739–793.

[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin,
1991.

[4] J. A. Bucklew, Introduction to Rare Event Simulation, Springer-Verlag, Berlin, 2004.
[5] S. Cerrai and M. Freidlin, Approximation of quasi-potential and exit problems for multidi-

mensional RDE’s with noise, Trans. Amer. Math. Soc., 363 (2011), pp. 3853–3892.
[6] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2nd ed.,

Springer-Verlag, Berlin, 1998.
[7] P. Dupuis, K. Spiliopoulos, and X. Zhou, Escaping from an attractor: Importance sampling

and rest points I, Ann. Appl. Probab., 25 (2015), pp. 2909–2958.
[8] P. Dupuis and H. Wang, Importance sampling, large deviations, and differential games, Stoch.

Stoch. Reports, 76 (2004), pp. 481–508.
[9] W. E, W. Ren and E. Vanden-Eijnden, Minimum action method for the study of rare events,

Commun. Pure Appl. Math., 57 (2004), pp. 637–565.
[10] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI,

1998.
[11] W. Faris and G. Jona-Lasinio, Large fluctuations for a nonlinear hear equation with noise,

J. Phys. A: Math. Gen., 15 (1982), pp. 3025–3055.
[12] H. C. Fogedby and W. Ren, Minimum action method for the Kardar-Parisi-Zhang equation,

Phys. Rev. E, 80 (2009), p. 041116.
[13] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems with

stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205–228.
[14] M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed.,

Springer-Verlag, New York, 1998.
[15] P. Glassman and Y. Wang, Counterexamples in importance sampling for large deviation

probabilities, Ann. Appl. Probab., 7 (1997), pp. 731–746.
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