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Abstract. In this work, we develop a minimum action method (MAM) with optimal
linear time scaling, called tMAM for short. The main idea is to relax the integration
time as a functional of the transition path through optimal linear time scaling such
that a direct optimization of the integration time is not required. The Feidlin-Wentzell
action functional is discretized by finite elements, based on which h-type adaptivity is
introduced to tMAM. The adaptive tMAM does not require reparametrization for the
transition path. It can be applied to deal with quasi-potential: 1) When the minimal
action path is subject to an infinite integration time due to critical points, tMAM with a
uniform mesh converges algebraically at a lower rate than the optimal one. However,
the adaptive tMAM can recover the optimal convergence rate. 2) When the minimal ac-
tion path is subject to a finite integration time, tMAM with a uniform mesh converges
at the optimal rate since the problem is not singular, and the optimal integration time
can be obtained directly from the minimal action path. Numerical experiments have
been implemented for both SODE and SPDE examples.

Key words: Large deviation principle, small random perturbations, minimum action method,
rare events, uncertainty quantification.

1 Introduction

Small random perturbations of dynamical systems can introduce rare but important
events. For instance, the transitions between different stable equilibrium states of a de-
terministic dynamical system would be impossible if noise does not exist. Such noise-
induced transitions are actually observed and critical in many physical, biological and
chemical systems [16]. Examples include nucleation events of phase transitions, chemi-
cal reactions, regime change in climate, conformation changes of biomolecules, hydrody-
namic instability, etc.
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When the amplitude of random perturbations is small, the Freidlin-Wentzell (F-W)
theory of large deviations provides a rigorous mathematical framework to understand
the effects of noise on dynamics [11]. The theory shows that the occurrence of rare events
actually has a rather deterministic nature in the sense that a sharply peaked probability
will be observed around the pathway that is least unlikely. The central object of F-W
theory of large deviations is the F-W action functional. The minimizer of the F-W action
functional provides the pathway of maximum likelihood and the corresponding mini-
mum gives an estimate of the probability and the rate of occurrence of the rare events.
The most important practical issue becomes how to seek the minimum and minimizer of
the F-W action functional, which has to be addressed numerically for most cases.

In gradient systems, the most probable transition path is consistent with the mini-
mum energy path (MEP), which is always parallel to the drift of the stochastic differential
equation, and passes the separatrix through some saddle points with one-dimensional
unstable manifold [19], i.e., transition states. Many algorithms have been developed
to search the MEPs and transition states, including the string method [4, 6], the dimer
method and its variants [14, 27], the nudged elastic band method [15], eigenvector-
following-type methods [1], the gentlest ascent dynamics [7], etc., where the transition
mechanism of gradient systems is usually employed to improve the numerical efficiency.

Unfortunately, there does not exists a definite transition mechanism in non-gradient
systems [21, 22, 24, 26], where a direct minimization of the F-W action functional has to
be considered. The F-W action functional is defined on a finite time interval, which can
capture rare events defined on the specified time scale. The original minimum action
method (MAM) [5] was constructed to deal with this case. However, the time scale of
some random events increases exponentially as the amplitude of noise decreases, such
as transitions between two critical points. Then we need to consider the quasi-potential,
where the integration time in the F-W action functional becomes an optimization param-
eter and the optimal integration time can be infinite. There are several algorithms to deal
with quasi-potential. The most general algorithm is the geometric MAM (gMAM) [13],
which demonstrates that under proper constraints the F-W action functional can be re-
formulated with respect to a scaled arc length. The integration time then disappears in
the optimization problem and will be recovered by the mapping between time and arc
length after the most probable path is obtained. Another minimum action method, called
adaptive MAM (aMAM) [20], was constructed for the F-W action functional formulated
in time. The key observation of aMAM is that if the optimal integration time is infinite,
the most probable transition path can be well resolved through reparametrization or re-
meshing using a finite but large integration time. Since the integration time must be
prescribed, aMAM is not able to deal with the quasi-potential if the optimal integration
time is finite. The aMAM was reformulated in [23, 25] within the framework of finite
element method to enhance the numerical efficiency and robustness.

In this work, we develop a minimum action method to deal with quasi-potential for-
mulated with respect to time instead of arc length. We choose to work with time instead
of arc length because it can be more flexible, from the algorithm point of view, to deal
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with the objective functional formulated with respect to time, especially for spatially ex-
tended systems. Due to the observation of aMAM [20], we will use a finite integration
time for numerical approximation. We then consider a linear time scaling to map the time
interval [0,T] to [0,1]. The optimality condition shows that the optimal integration time
is uniquely determined by the transition path defined on [0,1]. We then substitute such
an optimality condition into the action functional to remove T from the optimization
problem. The transition path is approximated by hp finite elements, where h indicates
the element size and p the polynomial order. Such a minimum action method is called
tMAM for short. Numerical experiments show that tMAM with equidistant linear ele-
ments converges algebraically at the optimal rate for the case that the optimal integration
time is finite, and at a rate slightly lower than the optimal one for the case that the optimal
integration time is infinite. To deal with the singularity induced by the infinite optimal
integration time, we refine the finite element space using h-adaptivity, which recovers
the optimal algebraic convergence rate. This way, the global reparametrization used in
all available MAMs is avoided. The tMAM is mainly discussed with respect to a stochas-
tic differential equation and can be generalized straightforwardly to spatially extended
systems.

The paper is organized as follows. In Section 2, we give a brief description of the
theoretical background. Our methodology is presented in Section 3 and the adaptive
tMAM is developed in Section 4. We generalize tMAM to spatially extended systems in
Section 5 without addressing the spatial discretization. Numerical experiments are given
in Section 6 followed by a discussion section.

2 Problem

We consider small random perturbations of a dynamical system. The random process
Xt =X(t) : R+→R

n is defined by the following stochastic ordinary differential equation
(SODE):

dXt=b(Xt)dt+
√

εdWt , (2.1)

where Wt is a standard Wiener process in R
n and ε is a small positive parameter.

Let φ(t)∈R
n be an absolutely continuous function defined on t∈ [0,T]. The Freidlin-

Wentzell theory of large deviations [11] asserts that when ε is small enough the probabil-
ity of Xt passing the δ-tube about φ(t) on [0,T] is

Pr( sup
0≤t≤T

|Xt−φ|<δ)≈exp(−ε−1ST(φ)), (2.2)

where |·| indicates the ℓ2 norm in R
n, and ST(φ) is called the action functional defined

as

ST(φ)=
1

2

∫ T

0
L(φ,φ̇)dt=

1

2

∫ T

0
|φ̇−b(φ)|2dt. (2.3)

Eq. (2.2) implies the large deviation principle (LDP), which basically says that the prob-
ability of some random events can be estimated through a minimization if the random
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perturbation is small enough. For example, if A is a Borel subset in R
n, we have from

LDP that
lim
ε↓0

εlogPr(XT ∈A)=− inf
φ(0)=x,
φ(T)∈A

ST(φ). (2.4)

This result can be explained as the probability of paths that start from x and end in A at
time T is determined by the minimizer of the action functional.

When ε ↓0, the time scale of some events will increase exponentially, e.g., exit of the
domain of attraction of a stable equilibrium. We then need to generalize the fact that T is
finite in Eq. (2.4) and define the quasi-potential from point x1 to x2 as

V(x1,x2)= inf
T>0

inf
φ(0)=x1,
φ(T)=x2

ST(φ). (2.5)

The probability meaning of the quasi-potential is as follows

V(x1,x2)= lim
T→∞

lim
δ↓0

lim
ε↓0

−εlogPr(τδ≤T), (2.6)

where τδ is the first entrance time of the δ-neighborhood of x2 for the process Xt start-
ing from x1. In other words, the quasi-potential V(x1,x2) characterizes the difficulty of
passage from x1 to a small neighborhood of x2. For example, if there exist only two sta-
ble equilibrium states x1 and x2, the long-term stochastic dynamics can be reduced to a
Markov chain on the state space {x1,x2}. According to the LDP [10], the transition rates
are

k1→2≍exp
(

−ε−1V(x1,x2)
)

, k2→1 ≍exp
(

−ε−1V(x2,x1)
)

, (2.7)

where the arrow indicates the transition direction, and f (ε)≍g(ε) if and only if
log f (ε)
logg(ε)

→1

as ε↓0.

3 Methodology

To address our methodology, we focus on the following optimization problem given by
the LDP to characterize the transition from one state a1 to another state a2:

V(a1,a2)=ST∗(φ∗)= min
T∈R+,φ∈A

ST(φ)= min
T∈R+,φ∈A

∫ T

0
L(φ̇,φ)dt, (3.1)

where the constraints for the set A are

φ(0)=a1, φ(T)=a2. (3.2)

Here φ∗ indicates the minimizer, also called the minimal action path (MAP), subject to
the optimal transition time T∗∈ (0,∞].
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Assumption 3.1. We assume that the transition path φ(t) can be approximated by a finite
dimensional approximation space V=

{

v : v∈R
n,vi ∈span{ψi(t)}M

i=1

}

such that

φ(t)=
M

∑
i=1

φiψi(t), δφ(t)=
M

∑
i=1

δφiψi(t), (3.3)

where φi,δφi∈R
n, and δφ(t) indicates a perturbation function in V.

Assumption 3.2. If T∗=∞, we assume that

ST(φ̂
∗)→ST∗=∞(φ

∗) as T→∞, (3.4)

where φ̂∗ is the minimizer of ST(φ) for a fixed T.

Remark 3.1. The validity of Assumption 3.2 is based on the observations given by the
adaptive minimum action method (aMAM) in [20], where it shows that the correct MAP
and minimum action can be well approximated using a finite but large integration time
T when T∗=∞.

One strategy to deal with problem (3.1) is the geometric minimum action method
(gMAM), where the action functional is reformulated with respect to a new parameter
α, i.e., the scaled arc length, such that the integration time T is removed by a nonlinear
mapping α(t) between t∈[0,T] and α∈[0,1]. The optimization in gMAM is with respect to
curves that connect a1 and a2 parametrized by α, and the integration time T is recovered
by the inverse mapping t(α).

In this work, we will address the optimization problem (3.1) with respect to time
instead of arc length. Due to Assumption 3.2, we separate T from the integration by a
simple linear scaling in contrast to the nonlinear mapping α(t) used in gMAM. More
specifically, we consider a scaled time variable s = t

T ∈ [0,1]. Let δST
δφ

be the functional

derivative of ST with respect to φ, which satisfies

δST(φ)= 〈δST(φ)

δφ
,δφ〉t= lim

ǫ→0

ST(φ+ǫδφ)−ST(φ)

ǫ
, T is fixed, (3.5)

with δφ being an arbitrary perturbation testing function. Here 〈 f1(t), f2(t)〉t indicates
the inner product of vector functions f1(t), f2(t) ∈ R

n on the interval t ∈ [0,T] and
〈g1(s),g2(s)〉s the inner product of vector functions g1(s),g2(s) ∈ R

n on the interval
s ∈ [0,1]. We will use 〈v,w〉 to indicate the inner product of vectors v,w ∈ R

n. From
now on, we use φ̇ to indicate the derivative with respect to t and φ′ the derivative with
respect to s. We then have

〈 f (t),g(t)〉t =
∫ T

0
〈 f (t),g(t)〉dt=T

∫ 1

0
〈 f (s),g(s)〉ds=T〈 f (s),g(s)〉s .
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Lemma 3.1. For any given φ(s)∈V, we have

∂ST

∂T
= 〈b,b〉s−T−2〈φ′,φ′〉s=T−1(〈b,b〉t−〈φ̇,φ̇〉t). (3.6)

Proof. We consider the action functional in an abstract form

ST(φ)=
T

2

∫ 1

0
L(T−1φ′,φ)ds. (3.7)

For a perturbation δT of T and a fixed path φ, we have

ST+δT(φ)=
T+δT

2

∫ 1

0
L((T+δT)−1φ′,φ)ds

≈ T+δT

2

∫ 1

0

(

L(T−1φ′,φ)− ∂L

∂(T−1φ′)
·(T−2φ′)δT

)

ds,

which results in the partial derivative

∂ST

∂T
=

1

2

∫ 1

0
L(T−1φ′,φ)ds− 1

2

∫ 1

0

∂L

∂(T−1φ′)
·(T−1φ′)ds. (3.8)

Substituting L(T−1φ′,φ)= 〈T−1φ′−b,T−1φ′−b〉 into the above equation, we obtain the
conclusion.

For any given φ(s), Eq. (3.6) shows that ST has a unique minimum at

T=

( 〈φ′,φ′〉s

〈b,b〉s

)1/2

, (3.9)

which is equivalent to the constraint

〈b(φ),b(φ)〉t = 〈φ̇,φ̇〉t. (3.10)

Note that if the following stronger constraint

〈b(φ),b(φ)〉= 〈φ̇,φ̇〉, ∀t (3.11)

holds, ∂ST/∂T=0 for sure. The geometric minimum action method (gMAM) [13] shows
that the constraint (3.11) is actually satisfied by the MAP under the assumption that the
total arc length of the transition path is finite. In this paper, we will refer to Eq. (3.11) as
the arc length constraint of the MAP. The constraint (3.10) is actually a weak version of
the arc length constraint reflecting the effect of the linear time scaling.
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Remark 3.2. The arc length constraint can be illustrated as follows. We have

1

2

∫ T

0
〈φ̇−b,φ̇−b〉dt=

1

2

∫ T

0
(〈φ̇,φ̇〉+〈b,b〉−2〈φ̇,b〉)dt

≥
∫ T

0
(|φ̇||b|−〈φ̇,b〉)dt=

∫ T

0
(|φ̇||b|−|φ̇||b|cosη)dt

=2
∫ T

0
|φ̇||b|sin2 η(t)

2
dt=2

∫ C

0
|b|sin2 η

2
dα,

where α is the arc length, C the total arc length of the curve and η the angle between φ̇

and b. It is seen that if the arc length constraint (3.11) holds, the inequality in the above
equation becomes equality and the action functional will depend on arc length instead of
time. We refer to [13] for more details of gMAM.

To this end, we have some general comments about the approximation of problem
(3.1). First, this problem has only been addressed by gMAM. The elegance of gMAM is
that it proves that the pointwise arc length constraint (3.11) can be imposed such that the
action functional only depends on a curve. This is an important observation because for
any path connecting a1 and a2 the optimal way to associate an integration time T is given
by the arc length constraint. Then the action functional can be minimized with respect
to curves and the optimal integration time T∗ is recovered by the nonlinear mapping be-
tween time and arc length. Second, to address problem (3.1) with respect to time instead
of arc length, we must have Assumption 3.2 since T∗ can be infinite. As long as Assump-
tion 3.2 holds, we can consider the linear time scaling, which yields a weak version of
the arc length constraint, i.e, Eq. (3.10). However, we expect that the arc length constraint
(3.11) will be approached as the approximation space V is being refined.

Overall, due to Assumption 3.2, it is not necessary to reformulate the action functional
with respect to arc length, however, the arc length constraint (3.11) given by gMAM will
be used implicitly to compensate the time truncation in Assumption 3.2 through adap-
tive refinement of V (see Section 4 for algorithm development). This way, the procedure
is simplified, which makes it more flexible to develop efficient solvers to minimize the
action functional.

4 Minimum action method with optimal linear time scaling

In this section we will develop our minimum action method for problem (3.1) with re-
spect to time.

4.1 Define a finite element approximation space Vh

We define the partition Th for s∈ [0,1]

Th : 0= s0 < s1< ···< sN =1
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and the associated finite element approximation space Vh

VK
h ={v : v◦F−1

k ∈Pp(R)},

Vh={v : v∈R
n,vi ∈H1

0([0,1]),vi|K ∈VK
h ,K∈Th},

where FK is the mapping function for the element K=[si,si+1], i=0,1,··· ,N, mapping the
reference element R=[−1,1] to element K, and Pp(R) denotes the set of polynomials of
degree up to p over R. On the reference element R, we assume that Pp(R) consists of
linear combinations of the following basis functions [17]:

ψ̂i(τ)=











1−τ
2 , i=0,

1−τ
2

1+τ
2 P1,1

i−1(τ), 0< i< p,
1+τ

2 , i= p,

(4.1)

where P1,1
i denote orthogonal Jacobi polynomials of degree i with respect to the weight

function (1−τ)(1+τ). ψ̂0(τ), and ψ̂p(τ) are consistent with linear finite element basis,
and ψ̂i(τ), 0<i<p, are introduced for high-order approximation. Note that ψ̂i(±1)=0 for
0< i< p. We call ψ̂0(τ) and ψ̂p(τ) boundary modes, and ψ̂i(τ), 0< i< p, interior modes.

The approximation space for φ(s) is chosen as V = Vh. The discrete optimization
problem is then defined as

ST∗
h
(φ∗

h)= min
T∈R+,φh∈A

[

ST(φh)=
1

2
T〈T−1φ′

h−b,T−1φ′
h−b〉s

]

, (4.2)

where φ∗
h is the approximated MAP and T∗

h the approximation of T∗.

4.2 Remove T from the objective functional

Noting that Eq. (3.9) provides an optimal integral time T for any given path φ(s), we can
treat T in the optimization problem (4.2) as a functional of φ(s) such that we can remove
T from the objective functional. In other words, we consider the following equivalent
problem

min
φh∈A

[

ST(φh)(φh)=
1

2
T(φh)〈T−1(φh)φ

′
h−b(φh),T

−1(φh)φ
′
h−b(φh)〉s

]

, (4.3)

where T is given by Eq. (3.9) and

φh(0)=a1, φh(1)=a2.

This way, the optimization will be only with respect to the path φ(s).

Lemma 4.1. Let

φh(s)=
M

∑
i=1

φiψi(s)∈Vh. (4.4)
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We have
∂ST

∂φi,j
=T〈T−1φ′

h−b,T−1ψ′
iej−∇φh

bψiej〉s, (4.5)

where T(φh) is given by Eq. (3.9).

Proof. For a perturbation δφh, the linear perturbation of b(φh+δφh) is

b(φh+δφh)≈b(φh)+∇φh
bδφh, ∀s.

Let

δT=T(φh+δφh)−T(φh),

which yields that

δ(T−1)=−T−2δT.

Then the variation of ST(φh) is

ST+δT(φh+δφh)−ST(φh)

=2−1(T+δT)
〈

(T−1−T−2δT)(φ′
h+δφ′

h)−b−∇φh
bδφh,

(T−1−T−2δT)(φ′
h+δφ′

h)−b−∇φh
bδφh

〉

s
−2−1T〈T−1φ′

h−b,T−1φ′
h−b〉s

+ high-order terms

=T〈T−1φ′
h−b,T−1δφ′

h−T−2φ′
hδT−∇φh

bδφh〉s+2−1δT〈T−1φ′
h−b,T−1φ′

h−b〉s

+ high-order terms.

We look at the terms related to δT and have

−T〈T−1φ′
h−b,T−2φ′

hδT〉s+2−1δT〈T−1φ′
h−b,T−1φ′

h−b〉s

=−2−1δT〈T−1φ′
h−b,T−1φ′

h+b〉s

=−2−1δT(〈T−1φ′
h,T−1φ′

h〉s−〈b,b〉s)=0,

where in the last step we used Eq. (3.9). Thus, we have

δST =T〈T−1φ′
h−b,T−1δφ′

h−∇φh
bδφh〉s.

We then obtain the desired gradient by choosing δφh=δφi,jψiej.

To this end, a gradient-type optimization algorithm, such as nonlinear conjugate gra-
dient and BFGS, etc., can be employed to solve the discretized problem (4.3) [18]. Once
the MAP φ∗

h is obtained, the optimal integration time is approximated as T∗
h =T(φ∗

h) by
Eq. (3.9). From now on, we will use tMAM to indicate the proposed minimum action
method with optimal linear time scaling.
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Remark 4.1. The formula given in Eq. (4.5) has the same form as the gradient of action
functional for a fixed integration time T [23, 25], except that T(φh) is now a functional
of φh. This implies that the optimization problems given by Eq. (2.4) with a fixed T and
Eq. (2.5) with a free T can both be dealt with by tMAM using the same optimization
algorithm subject to a slight modification that T is updated with respect to the transition
path or not. We note that gMAM is not able to minimize the action functional for a given
T and aMAM is not able to deal with quasi-potential subject to a finite optimal integration
time. In this sense, tMAM is more flexible than both aMAM and gMAM.

Lemma 4.2. Let φ∗ be a local minimizer of problem (3.1). Assume that φ∗ ∈ H1(Rn;[0,1])∩
C1(Rn;[0,1]) and b(φ)∈C2(Rn;[0,1]). The optimal convergence rate given by Vh with a fixed
polynomial order p is

|ST∗(φ∗)−ST(φ∗
h)
(φ∗

h)|∼O(N−2p), (4.6)

where N is the number of elements.

Proof. We only need to focus on the case that T∗ is finite, where ST∗(φ∗)=ST(φ∗)(φ
∗). Let

φ∗
h =φ∗+(φ∗

h−φ∗)=φ∗+δφ∗.

ST(φ∗
h)
(φ∗

h)−ST∗(φ∗)=ST(φ∗+δφ∗)(φ
∗+δφ∗)−ST(φ∗)(φ

∗).

Since φ∗ is a local minimizer, δST = T〈T−1(φ∗)′−b,T−1(δφ∗)′−(∇φ∗b)(δφ∗)〉s = 0. We
need to consider the second-order variation. We first perturb δST using a perturbation
function δψ∗. It can be shown that

δST(φ
∗+δψ∗,δφ∗)−δST(φ

∗,δφ∗)

=T〈T−1(δψ∗)′−(∇φ∗b)δψ∗,T−1(δφ∗)′−(∇φ∗b)δφ∗〉s

−T〈T−1(φ∗)′−b,B(b,δφ∗)δψ∗〉s−T−1〈b,b〉sδT(δψ∗)δT(δφ∗),

where B(b,δφ∗)δψ∗ indicates the first-order perturbation of the term ∇φ∗bδφ∗ induced
by δψ∗, and B(b,δφ∗)∈R

n×n, and

Bi,j=
n

∑
k=1

(∇φ∗∇φ∗b)ikjδφ∗
k =

n

∑
k=1

∂2bi

∂φ∗
k ∂φ∗

j

δφ∗
k , i, j=1,··· ,n,

and

δT(δφ∗)=T(φ∗+δφ∗)−T(φ∗)=
〈(φ∗)′,(δφ∗)′〉s−T2〈b,(∇φ∗b)(δφ∗)〉s

T〈b,b〉s
.

Then the second-order variation is

2δ2ST =T〈T−1(δφ∗)′−(∇φ∗b)δφ∗,T−1(δφ∗)′−(∇φ∗b)δφ∗〉s

−T〈T−1(φ∗)′−b,B(b,δφ∗)δφ∗〉s−T−1〈b,b〉s(δT(δφ∗))2.
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From the approximation theory, we know that

〈δφ∗,δφ∗〉s= 〈φ∗
h−φ∗,φ∗

h−φ∗〉s ∼O(N−2(p+1)), 〈(δφ∗)′,(δφ∗)′〉s ∼O(N−2p).

Using Cauchy-Schwarz inequality, we have

|〈T−1(δφ∗)′,T−1(δφ∗)′〉s|∼O(N−2p),

|〈T−1(δφ∗)′,(∇φ∗b)δφ∗〉s|∼O(N−2p−1),

|〈(∇φ∗b)δφ∗,(∇φ∗b)δφ∗〉s|= |〈δφ∗,(∇φ∗b)T(∇φ∗b)δφ∗〉s|∼O(N−2p−2),

|〈T−1(φ∗)′−b,B(b,δφ∗)δφ∗〉s|= |〈δφ∗,A(φ∗)δφ∗〉s|∼O(N−2p−2)

|δT|∼ |〈(φ∗)′,(δφ∗)′〉s|∼O(N−p),

where we assume that the matrices ∇φ∗b, (∇φ∗b)T(∇φ∗b) and A(φ∗) are uniformly
bounded. Overall, we then have

|δ2ST(φ
∗)|∼O(N−2p).

The proof is completed.

4.3 Why does tMAM with equidistant elements work

We know that for the case T∗=∞, the original MAM [5] with equidistant elements does
not work due to the clustering problem although a large T is used, which is a fundamen-
tal numerical difficulty induced by the separation of slow and fast dynamics.

For example, we consider the ODE example in Section 6.1. If we use the two critical
points a1=(−1,0) and a3=(0,1), where a1 is a stable fixed point and a3 is a saddle point
located on the basin of attraction of a1, as the two ends of transition paths, T∗ should
be ∞. However, if we move a1 and a3 slightly to â1 = (cos(π−0.1),sin(π−0.1)) and
â3 =(cos(π/2+0.1),sin(π/2+0.1)), respectively, along the MAP connecting a1 and a3,
T∗ for the MAP connecting â1 and â3 becomes from ∞ to about 2.3 (see Fig. 3) while
the corresponding action only drops from 2 to 1.96. Thus resolving the region of fast
dynamics between â1 and â3 is critical to capture the MAP connecting a1 and a3. If we
choose T=100 and 100 equidistant linear finite elements to discretize the MAP connecting
a1 and a3, each element has a length 1 and we only have two elements to cover the region
of fast dynamics between â1 and â3 and all other points will be clustered around a1 and
a3.

To resolve the clustering problem for a fixed T, the adaptive MAM (aMAM) was de-
veloped in [20]. The key idea of aMAM is to redistribute the grid points with respect to
arc length such that more points will be moved into the region of fast dynamics. Nu-
merical experiments show that such a strategy is crucial for accuracy. However, the
reparametrization is a global operation involving re-meshing and projection of the path
from the old mesh to the new one, which becomes a bottleneck for scalability if parallel
computing is considered [25].



12 X. Wan / Commun. Comput. Phys., xx (2015), pp. 1-28

For tMAM, we consider the optimization problem (4.3). The most important differ-
ence of tMAM from the original MAM and aMAM is that the integration time T is de-
cided optimally by the path itself instead of being fixed. There are several benefits about
relaxing the integration time T. First, for any given φh, we have

ST(φh)(φh)≤ST=C(φh),

where the equality only holds if T(φh)=C. If φ∗
h is the MAP returned by aMAM, we can

immediately obtain a smaller action as

ST(φ∗
h)
(φ∗

h)≤ST=C(φ
∗
h).

In other words, although the assumption that T should be large enough for numerical
approximation is consistent with the real dynamics, it does not provide the most effec-
tive numerical way to reduce the value of the action functional. Second, The clustering
problem can be alleviated by the optimal linear time scaling. We still consider the afore-
mentioned SODE example. If we use 100 equidistant linear finite elements to minimize
ST(φh)(φh), we obtain T∗

h =5.67 for the MAP from a1 to a3. In other words, we have about
2.3/(5.67/100) ≈ 40 elements to cover the region of fast dynamics between â1 and â3.
Thus, tMAM is able to put quite a number of elements into the region of fast dynamics
by the optimal linear time scaling.

Numerical experiments show that tMAM with equidistant elements converges alge-
braically even for the case T∗=∞. However, due to the singularity induced by T∗=∞,
tMAM with equidistant elements is not able to reach the optimal convergence rate given
by Vh (see Lemma 4.2). For example, if we use linear finite elements, the optimal conver-
gence rate should be O(N−2) for the error of ST(φ∗

h)
(φ∗

h), which can be achieved by both
aMAM and gMAM with global reparametrization. The tMAM with equidistant elements
is converging at a rate O(N−α) with α<2 (see Section 6.1 for detailed numerical experi-
ments). This is the price we need to pay to just consider a linear time scaling. Then the
main task of this paper is to verify if an adaptive refinement of Vh is able to recover the
optimal convergence rate.

We now give an intuitive argument about the comparison between gMAM and
tMAM. We still use the aforementioned MAP connecting a1 and a3 as an example, which
does not pass any other critical points. The reason that T∗ is infinite is that the Jacobin
between time and arc length is singular at critical points. According to the arc length
constraint, we have dα= |φ̇∗|dt= |b(φ∗)|dt and

T∗=
∫

φ∗

dα

|b(φ)| , (4.7)

where α is the arc length. If b(φ)∈C1(Rn), we then have |b(φ)|∼Cα around a1 and a3,
which implies that T∗=∞. We now split the MAP into three pieces a1→ â1→ â3→a3. We
connect a1 and â1 using a linear path and a finite time, say 1, and do the same thing for â3

and a3. The MAP from â1 to â3 can be captured by tMAM since the optimal integration
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time, say T̂∗, is finite. We now have an artificial path connecting a1 and a3 subject to a
finite integration time. First, if we let â1 go to a1 and â3 to a3, this path converges to the
MAP with a finite optimal integration time T̂∗+2; Second, the action given by this path
should be larger than that given by tMAM since it might not be the optimal linear time
scaling. Considering that the linear time scaling in tMAM is not able to handle the details
around a1 and a3, the action given by tMAM should be larger than that given by gMAM.
However, this error can be limited to the vicinity of a1 and a3, where only a small action
is needed since φ̇ ≈ 0 and b(φ)≈ 0 around critical points. We also note that although
gMAM preserves exactly the nonlinear mapping between time and arc length, the fact
that the Jacobin between time and arc length is singular at critical points brings troubles
to numerical computations especially when unknown critical points are located on the
MAP [13]. For tMAM, this is not an issue because it uses a linear mapping.

4.4 Refine the approximation space adaptively

Before we address the adaptivity of tMAM, we clarify the difference between the adap-
tivity for tMAM and that for aMAM. In aMAM, the adaptivity means re-meshing, where
a new global partition Th will be generated for a fixed element number N. In the lan-
guage of adaptive finite element method, it corresponds to the r-adaptivity. For tMAM,
we will not consider re-meshing. Instead, we will consider h-adaptivity. In other words,
we refine the current partition Th by decomposing a certain number of elements. The
reasoning of h-adaptivity is that tMAM can balance the element distribution in regions
of fast and slow dynamics by optimal linear time scaling, and we do not expect that such
a balance will change significantly. In other words, most of the elements in the region
of fast dynamics will remain in the region of fast dynamics after Th is refined. Similar
arguments are valid for the region of slow dynamics.

4.4.1 An error indicator for the effect of linear time scaling

In this work, we will focus on h-refinement. It is proved in the gMAM [13] that the arc
length constraint (3.11) should hold pointwisely for the quasi-potential. In contrast, the
optimal integration time T of tMAM satisfies Eq. (3.9), which is weaker than the arc length
constraint (3.11). We then propose to use the following quantity θ as an error indicator
for φh

θ2=T(φh)
∫ 1

0
(|b(φh)|−T−1(φh)|φ′

h|)2ds=
∫ T

0
(|b(φh)|−|φ̇h|)2dt, (4.8)

which measures the deviation of Assumption 3.2 to the arc length constraint.

Lemma 4.3. Let V0
h = {φh|φh ∈Vh,φh(0)= a1,φh(1)= a2}. If T−1(φh)|φ′

h|= |b(φh)| does
not hold pointwisely for any φh ∈V0

h , θ defined in Eq. (4.8) can serve as an error indicator in the
sense that if ST(φ∗

h)
(φ∗

h)→ST∗(φ∗), then θ→0.

Proof. Following is a general argument, where we will not focus on the mathematical
details. In the Lemma, we assume that T−1(φh)|φ′

h|= |b(φh)| does not hold pointwisely
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for any φh ∈ V0
h . Since φh ∈ V0

h is a piecewise polynomial, φ′
h can be discontinuous at

points s = si, i = 1,··· ,N−1. If it is so, the continuity of |b(φh)| implies the arc length
constraint will break in the vicinity of si. Within each element, φh is a polynomial of
finite order. If |b(φh)|2 is not a polynomial, the arc length constraint cannot hold since
T−2|φ′

h|2 is a polynomial. Let |b(φh)|2 be a polynomial. If the arc length constraint holds,

then they should belong to the same space {sn}2p−2
n=0 , which is, in general, not true if b(φh)

is linear or has a polynomial nonlinearity. In other words, the validity of the assumption
is related to the definition of b(φh) and can be checked once it is specified. We will focus
on the cases that our assumption holds.

We now consider the regular case where T∗ < ∞. According to the definition of θ,
it reaches to its minimum 0 when |b(φ)|= T−1(φ)|φ′| pointwisely. At φ∗, T(φ∗) = T∗

and |b(φ)|=(T∗)−1|φ′| holds pointwisely due to the arc length constraint (3.11), which
yields that θ(φ∗) = 0. If |b(φ)| 6= T−1(φ)|φ′| at a certain point, due to the continuity
|b(φ)| 6=T−1(φ)|φ′ | holds in a small open interval containing this point, which results in
θ(φ) 6=0. In other words, θ(φh) 6=0 for any φh∈V0

h due to the assumption.
We then consider θ in the space V̂ =φ∗⊕V0

h , where φ∗ is the unique minimizer of θ
in V̂ since no element in V0

h satisfies the arc length constraint (3.11). Let φ∗
h ∈V0

h be the
approximation of φ∗ given by the optimization algorithm. We now look at

θ2(φ∗
h)=

∫ T(φ∗
h)

0
(|b(φ∗

h)|−|φ̇∗
h |)2dt.

We regard φ∗
h as φ∗

h = φ∗−(φ∗−φ∗
h) = φ∗+δφ∗

h , where δφ∗
h =φ∗

h−φ∗ ∈ V̂ is treated as
a small perturbation determined by the accuracy of the discrete optimization problem
(4.3). Then we have

θ2(φ∗
h)= θ2(φ∗+δφ∗

h)−0= θ2(φ∗+δφ∗
h)−θ2(φ∗).

Since φ∗ ∈ V̂ is the minimizer of θ2, it is not difficult to verify that δθ2(φ∗) = 0. Then
θ2(φ∗

h) is determined by the second-order variation δ2θ2(φ∗), which should be always
positive if δφ∗

h is not trivial. Let PV0
h
φ∗ indicates the projection of φ∗ onto V0

h , then

δφ∗
h =PV0

h
φ∗−φ∗

h+(I−PV0
h
)φ∗,

where I is an identity operator. Let δΦ indicates all the coefficients of (PV0
h
φ∗−φ∗

h)∈V0
h .

In the matrix form, we have

θ2(φ∗
h)=δΦTAδΦ+O(|δΦ|3),

where A is a positive definite matrix. In other words, as V0
h is refined and φ∗

h goes to
PV0

h
φ∗, θ goes to zero correspondingly because A is positive definite. In this sense, θ can

serve as an error indicator.
We now consider T∗=∞. We first assume that a1 and a2 are critical points, and the

MAP does not pass any other critical points. We then break the MAP into three parts:
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a1 → â1 → â2 → a2, where â1 and â2 are two arbitrary points satisfying |a1− â1|= ρ and
|a2− â2|= ρ. If we let ρ→ 0, the MAP from a1 to a2 will be recovered. Note that T∗ for
the MAP from â1 to â2 is finite, the aforementioned argument is valid for this part. For
the MAPs a1→ â1 and â2→a2, we can just connect them using straight lines with a fixed
time T = 1. As ρ → 0, θ goes to zero, because a1 and a2 are critical points. If the MAP
passes a critical point, such a strategy is also valid and we only need to break the MAP
to more parts to separate the critical points.

4.4.2 An adaptivity criterion

Although θ can be used to measure the deviation from the arc length constraint, it is, in
general, not an effective measure of the distance between φ∗

h and φ∗. Thus we still need
an indicator of the error φ∗−φ∗

h . In this paper, we consider a simple indicator based on
the following physical intuition [20]. When T∗=∞, there exist two main difficulties to
achieve a good accuracy in action functional. First, fast dynamics contributes most to the
action functional, which needs to be well resolved. Second, slow dynamics introduces
singularity in T, but fortunately its contribution to the action functional is small.

When the action functional is formulated with respect to time, elements in the region
of fast dynamics are more likely to have a large arc length. To well capture the fast
dynamics, we need to refine these elements. The arc length of element [si,si+1] is

ŝi =
∫ Tsi+1

Tsi

|φ̇h|dt=
∫ si+1

si

|φ′
h|ds. (4.9)

We define
ŝmax=max{ŝi}, i=0,1,··· ,N−1, (4.10)

where ŝmax is the largest elementwise arc length. We then define a threshold 0< rŝ < 1.
For element i, if ŝi ≥ rŝ ŝmax, we will refine the element to capture fast dynamics better.

The arc length does not make much sense for slow dynamics. However, due to the
singularity in T, the slow dynamics can be important for accuracy although its contri-
bution is relatively small. To deal with the slow dynamics, we use the parameter θ. We
define for each element

θ2
i =T(φh)

∫ si+1

si

(|b(φh)|−T−1(φh)|φ′
h|)2ds, i=0,··· ,N−1, (4.11)

and
θmax=max{θi}, i=0,1,··· ,N−1. (4.12)

An element will be refined if θi ≥ rθθmax, where the threshold 0< rθ <1.
Elements associated with fast dynamics may have large θi and ŝi at the same time

while elements associated with slow dynamics are more likely to have a large θi but a
small ŝi. To deal with both fast and slow dynamics, we simply decompose element i to
two equidistant elements if the following criterion

ŝi ≥ rs ŝmax or θi ≥ rθθmax (4.13)
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is satisfied. Our main concern is that whether the adaptive tMAM can recover the optimal
h-convergence rate given by the approximation space Vh.

Algorithm 1 Adaptive tMAM

Initialize T (0)
h using a relatively coarse partition of the interval [0,1].

Start a loop for adaptivity in terms of the index k.

• Solve optimization problem (4.3) for φ
∗,(k)
h using current T (k)

h .

• Compute elementwisely {ŝi}N−1
i=0 and {θi}N−1

i=0 .

• Check the adaptivity criterion (4.13) for mesh refinement to obtain T (k+1)
h .

• Project the current path φ
∗,(k)
h onto T (k+1)

h as the initial path.

Stop the loop if one of the following conditions is satisfied:

• The index k reaches its prescribed maximum.

• The number of degrees of freedom becomes too large.

• The difference between S
T(φ

∗,(k)
h )

(φ
∗,(k)
h ) and S

T(φ
∗,(k+1)
h )

(φ
∗,(k+1)
h ) is small enough.

Remark 4.2. A more general definition of ŝi is

ŝi =
∫ Tsi+1

Tsi

w(t)dt=
∫ Tsi+1

Tsi

√

1+C|φ̇h|2dt, (4.14)

where C is a positive number [20]. When C goes to infinity, w(t)∼|φ̇h|.

5 Spatially extended systems

We consider
∂tu(t,x)+Gu(t,x)=

√
εẆ(t,x), (5.1)

where x∈D⊂R
d is the space variable, G is a spatial differentiation operator, and W(x,t)

is space-time white noise. The F-W action functional is defined as [3, 9]

ST(u)=
1

2

∫ T

0
‖∂tu−Gu‖2dt=

1

2
〈∂tu−Gu,∂tu−Gu〉x,t, (5.2)

where ‖·‖ indicates the L2 norm for x∈ D and 〈·,·〉x,t the inner product with respect to
both x and t. We consider the optimization problem [8]

min
T∈R+,u∈A

ST(u), (5.3)



X. Wan / Commun. Comput. Phys., xx (2015), pp. 1-28 17

where the set A contains all transition paths such that

u(0,x)=u0(x), u(T,x)=u1(x).

We will generalize the strategy for ODE systems to deal with problem (5.3). Consid-
ering the linear scaling s= t/T, we have the optimization problem

min
T∈R+,u∈A

[

ST(u)=
1

2
T〈T−1∂su−Gu,T−1∂su−Gu〉x,t

]

, (5.4)

which yields that
∂ST

∂T
= 〈Gu,Gu〉x,s−T−2〈∂su,∂su〉x,s=0, (5.5)

i.e.,

T(u)=

( 〈∂su,∂su〉x,s

〈Gu,Gu〉x,s

)1/2

. (5.6)

We then regard T as a functional of u and remove it from the optimization problem to
obtain

min
u∈A

[

ST(u)=
1

2
T(u)〈T−1(u)∂su−Gu,T−1(u)∂su−Gu〉x,s

]

, (5.7)

where
u(0,x)=u0(x), u(1,x)=u1(x).

We define the perturbation operator Ĝ satisfying

G(u+δu)=Gu+Ĝδu+O(δ2u).

It can be shown that

δST =T
〈

(T−1∂s−G)u,(T−1∂s−Ĝ)δu
〉

x,s
+

δT

2
(〈Gu,Gu〉x,s−T−2〈∂su,∂su〉x,s)

=T
〈

(T−1∂s−G)u,(T−1∂s−Ĝ)δu
〉

x,s
, (5.8)

where the condition (5.5) is applied. To this end, we obtain the following lemma:

Lemma 5.1. Let {hi(x)}Nx
i=1 and {ψi(t)}Nt

i=1 the approximation bases for space and time, respec-
tively. Then u(t,x) has the following approximation

u(t,x)≈uh(t,x)=
Nx

∑
i=1

Nt

∑
j=1

ui,jhi(x)ψj(t),

and the gradient of ST is given as

∂ST

∂ui,j
= δST|δu=hi(x)ψj(t)

, (5.9)

where δST is given by Eq. (5.8).
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The elementwise error indicator θi is defined as

θ2
i =T−1(u)

∫ si+1

si

(

T−1(u)‖∂su‖−‖Gu‖
)2

ds, i=0,1,··· ,N−1, (5.10)

and the adaptivity criterion (4.13) can be generalized straightforwardly for spatially ex-
tended systems.

Remark 5.1. It is well known that Eq. (5.1) can be ill-posed if W(x,t) is space-time white
noise especially for d ≥ 2. Then a finite correlation length lc in space is usually intro-
duced in space to obtain well-posedness. In other words, the spatial correlation should
be included in the definition of action functional [11]. However, studies [2, 12] show that
under certain conditions, such as 0< ε≪ lc ≪1, the correlation length lc can disappear at
the level of large deviations, i.e., a regular L2 norm in space can be used in the definition
of action functional. Roughly speaking, under certain conditions the action functional
defined in Eq. (5.2) can be used when the spatial correlation length is small enough. In
fact, tMAM can be readily generalized to deal with noise that is correlated in space and
white in time. We here only use the action functional (5.2) to demonstrate tMAM for
spatially extended systems.

6 Numerical results

In this section, we implement some numerical experiments to examine the performance
of (adaptive) tMAM. Two ODE examples and one PDE example are considered. The
optimization problem (4.3) is solved by nonlinear conjugate gradient method [23].

6.1 An SODE example: a gradient system

We consider the following SODE example:

{

dx=−∂xV(x,y)dt+
√

εdWx
t ,

dy=−∂yV(x,y)dt+
√

εdW
y
t ,

(6.1)

where Wx
t and W

y
t are independent Wiener processes, and the potential V(x,y) is

V(x,y)=(1−x2−y2)2+y2/(x2+y2). (6.2)

This problem was used to study the adaptive MAM (aMAM) in [20], which is a gradient
system. The dynamical system has two stable fixed points a1 = (−1,0) and a2 = (1,0),
which are local minima of the potential V(x,y). We consider the MAP in the upper half-
plane connecting a1 and a2 through the saddle point a3=(0,1). Then the explicit form of
this MAP is the upper branch of the unit circle: x2+y2 =1. The exact action functional is
2×(V(a3)−V(a1))=2.
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Figure 1: Error of action functional with respect to the optimal integration time T∗
h (φ

∗
h). All partitions Th are

given by uniform linear elements.

We first look at the relation between the error of action functional and T∗
h (φ

∗
h). We

use the two stable fixed points a1 and a2 as the ends of the transition paths and uniform
linear elements for the partition Th. In Fig. 1, we plot the error of action functional with
respect to T∗

h . First, although T∗=∞, T∗
h can be relatively small to reach a good accuracy

for the action functional. Second, T∗
h depends on the resolution. When the resolution is

lower, T∗
h is smaller. As the space Vh is refined, T∗

h increases correspondingly. Third, as
the integration time T∗

h increases, the error of action functional decreases exponentially.
See Section 6.2 for more numerical results about T∗

h .

We now compare the performance of tMAM and aMAM for this problem. In Fig. 2,
we the plot the approximated MAPs given MAM, aMAM and tMAM subject to 50 linear
finite elements, where T = 50 for MAM and aMAM. It is seen that for MAM, most of
the grid points are clustered around simple fixed points a1, a2 and a3. The re-meshing
strategy of aMAM produces a more uniform distribution of the grids with respect to arc
length, which also improves the accuracy significantly. The grid distribution of tMAM is
uniform with respect to time. Although the grids of tMAM are not uniform with respect
to arc length, the element size decreases gradually to the simple fixed points instead of
dropping suddenly as in MAM. We now compare the accuracy of aMAM and tMAM
for the same resolution. For the resolution of 50 linear finite elements, the aMAM with
T=50 and tMAM yield errors 9.24e-3 and 6.37e-3, respectively, in action functional, which
are comparable. By varying T, the best accuracy of aMAM we can achieve is 5.32e-3 at
T = 18. However, the best accuracy of aMAM is difficult to obtain in reality because of
the following two conflicting issues: 1) T∗=∞ implies that the integration time T should
be large enough; 2) The approximation error will increase for a given time mesh as T
increases. We usually do not know how to choose a T in advance to balance these two
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Figure 2: The MAP is approximated using 50 linear finite elements. Left: approximated MAPs given by MAM
and aMAM with a fixed T=50; Right: approximated MAP given by tMAM.

issues for aMAM. In tMAM, the choice of T is determined by the algorithm, which yields
the smallest action for a fixed mesh.

In Fig. 3, we plot the h-convergence of aMAM and tMAM with respect to the num-
ber of elements, where a singular case is considered in the left plot using a1 and a2 as
the two ends of transition paths, and a non-singular case is considered in the right plot
using â1=(cos(π−0.1),sin(π−0.1)) and â3=(cos(π/2+0.1),sin(π/2+0.1)) as the two
ends of transition paths. Note that â1 and â3 are located on the MAP connecting a1 and
a3, and close to a1 and a3, respectively. More specifically, the arc length of the MAP be-
tween a1 and a3 is π/2≈1.57 and the arc length of the MAP between â1 and â3 is about
1.37. We first look at the singular case. First, it is seen that aMAM and tMAM converge
algebraically at a rate of O(N−2) and O(N−1.7), respectively. In other words, tMAM
with a uniform time mesh is not able to reach the optimal convergence rate, which is a
common phenomena of finite element method for singular problems. Second, tMAM
with a uniform time mesh, in general, provides a better accuracy than aMAM when
the number of degrees of freedom is small, and will be outperformed by aMAM when
the resolution is fine enough due to the smaller convergence rate. Third, the adaptive
tMAM can recover the optimal convergence rate of O(N−2). Compared to aMAM, adap-
tive tMAM only refine the elements which have a relatively large arc length ŝi or θi. In
other words, reparametrization is not necessary. We also have a sequence of hierarchical
meshes, which provides the information about the convergence. We now look at the non-
singular case, where there do not exist critical points on the MAP. It is seen that tMAM
converges at the optimal rate of O(N−2) while aMAM is not able to deal with this case
since the integration time T must be given in aMAM. According to the adaptive tMAM
with 1946 linear elements, the minimum action is 1.960133 reached at T∗

h = 2.299242 for
the MAP connecting â1 and â3. It is known that if we use a1 and a3 as the two ends of
transition paths, the problem will be singular corresponding to T∗=∞ and a minimum
action 2. It is seen that although the minimum action drops slightly, the integration time
T∗ drops substantially.
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Figure 3: h-convergence of aMAM, tMAM and adaptive tMAM for linear elements. rθ = 0.8 and rα = 0.5.
Left: A singular case is considered with (x(0),y(0)) = a1 and (x(T),y(T)) = a2. The exact MAP is the
upper semicircle of radius 1 corresponding to an action 2; Right: A non-singular case is considered with
(x(0),y(0))= (cos(π−0.1),sin(π−0.1)) and (x(T),y(T))= (cos(π/2+0.1),sin(π/2+0.1)). The exact MAP
is part of the upper semicircle of radius 1 connecting the two ends. The reference action is given by the adaptive
tMAM with 1946 linear elements, which is 1.960133 reached at T∗

h =2.299242.

We now look at the mechanism that aMAM and tMAM work for singular cases, i.e.,
T∗=∞. For simplicity, we consider the MAP that connects a1 and a3. Starting from 10
equidistant linear finite elements, we use adaptive tMAM to obtain a time mesh of 94
elements, where rθ = 0.8 and rα = 0.5. We then use aMAM to obtain a time mesh of 94
linear elements, where T=50 is fixed. We will use the part of the MAP from â1 to â3 to
characterize the fast dynamics. On the mesh given by aMAM, â1 is passed on the element
t∈ [23.74,23.95] and â3 on the element t∈ [26.05,26.26], which implies that the time used
from â1 to â3 is between 2.10 and 2.52. This is consistent with T∗

h ≈ 2.30 predicted in
the non-singular case. For the mesh given by adaptive tMAM, â1 is passed on the time
element s∈ [0.38125,0.3875] and â3 on the element s∈ [0.6215,0.61875] subject to T∗

h =9.87,
which implies that the time used from â1 to â3 is between 2.22 and 2.34, which agrees
with T∗

h ≈ 2.30 predicted by the non-singular case. In other words, both aMAM and
tMAM are able to adjust the time mesh to make sure that the part of the MAP given by
the fast dynamics can be resolved well. For a reference, we also include the tMAM with
94 equidistant linear elements, where â1 is passed on the element s∈ [0.287,0.298] and â3

on the element s∈ [0.70,0.71] subject to a smaller T∗
h = 5.61, which implies that the time

used from â1 to â3 is between 2.26 and 2.37. This also agrees with the prediction T∗
h ≈2.30

given by the non-singular case. Another thing that is worthy of notice is that there are 44,
66 and 40 elements to cover the fast dynamics from â1 to â3 in aMAM, adaptive tMAM,
and tMAM, respectively, which results in errors of action functional as 6.0e-4, 1.3-4, and
3.5e-4. It is seen that due to the variation of T in tMAM, the linear time scaling can put
more elements to address the fast dynamics when no adaptivity is employed.

For adaptive tMAM and aMAM subject to 94 linear finite elements, we plot in Fig. 4
the distribution of ŝi in the left plot and that of θi in the right plot, where the filled ◦
and ⋄ indicate the elements in which â1 and â3 are located, and serve as a delimiter
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between slow and fast dynamics. It is noticed that although aMAM tries to move the
clustered points away from critical points a1 and a3 to the region of fast dynamics, there
are still quite a number of points clustered around a1 and a3, where these elements have
a small arc length and are not effective for the approximation of the MAP. This is because
that the chosen integration time T = 50 is too large, and many redundant elements has
to be pushed into the region of slow dynamics. The adaptive tMAM returns that T∗

h =
9.87 in contrast to the fixed T = 50 for aMAM. The adaptive tMAM has more effective
elements in the region of slow dynamics. In the region of fast dynamics, the elements
of adaptive tMAM have a smaller average arc length compared to those of aMAM. The
adaptive tMAM has a much more uniform distribution of θi than aMAM in regions of
both slow and fast dynamics due to the adaptivity criterion (4.13). It is noticed that θi can
be relatively large in the region of slow dynamics, which implies that mesh refinement is
also necessary here to improve the accuracy.

6.2 Another SODE example: a non-gradient system

We consider the following Maier-Stein model:

{

dx=(x−x3−βxy2)dt+
√

εdWx
t ,

dy=−(1+x2)ydt+
√

εdW
y
t ,

(6.3)

where Wx
t and W

y
t are independent Wiener processes and β > 0 is a parameter. This

example was used to study gMAM in [13]. which is a non-gradient system except when
β= 1. This system has two stable fixed points: b1 =(−1,0) and b2 =(1,0), and a saddle
point b3=(0,0). For numerical experiments, we set β=10.

We consider the transition from b1 to b2. The MAP given by adaptive tMAM with
116 linear elements is plotted in the left plot of Fig. 5, where we also plot the element
distribution with respect to arc length. The MAP passes the saddle point b3, but is not
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Figure 5: Left: The MAP from b1 to b2 with element distribution with respect to arc length for adaptive tMAM
with 116 linear elements; Right: h-convergence of (adaptive) tMAM. The solid lines are for adaptive tMAMs
and the dash dot lines are for tMAMs with a uniform partition. The reference solution is given by adaptive
tMAM with 608 elements of polynomial order 4.

the heteroclinic orbit connecting b1 and b2 due to the fact that the system is non-gradient
and β is large enough. In contrast to the MAP connecting a1 and a2 in the previous
ODE example, which is smooth at the saddle point in terms of arc length, this MAP is
continuous but not differentiable at the saddle point b3. In the right plot of Fig. 5, we
plot the h-convergence of adaptive tMAM with linear and quadratic elements, where the
reference solution is given by adaptive tMAM with 608 elements of polynomial order 4.
It is seen that tMAM with a uniform partition converges algebraically at a rate slightly
lower than the optimal one and the optimal convergence rate is eventually recovered
by adaptivity regardless of the low regularity at the saddle point. In gMAM, special
attention needs to be paid around the critical points, otherwise, we can only obtain a first-
order convergence even a second-order scheme is used. One reason is that the arc length
constraint holds pointwisely in gMAM, which makes the mapping between time and
arc length sensitive to critical points; the other reason is that adaptive tMAM is defined
in the framework of finite element method, which can deal with non-smooth functions
more efficiently than the finite difference method used in gMAM.

In Fig. 6 we plot the x component with respect to s, where the left plot is for the
adaptive tMAM with 116 linear elements and the right plot is for the adaptive tMAM
with 109 elements of polynomial order 3. It is seen that the fast dynamics is resolved by
a large number of small elements and the slow dynamics is captured by a small number
of large elements and a long integration time. For a higher resolution, T(φ∗

h) is larger
and more time is assigned to slow dynamics, which makes it more consistent with real
dynamics.

In Fig. 7, we plot the error of the action functional in terms of the integration time
T∗

h (φ
∗
h), where the left plot is for tMAMs with a uniform partition and the right plot for

adaptive tMAMs. Overall, the integration time T∗
h increases and the error decreases as the

approximation space is refined. However, if a uniform refinement is considered, the error
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Figure 7: Error of action functional with respect to the optimal integration time T∗
h (φ

∗
h). Left: Results given

by tMAMs with a uniform partition. Right: Results given by adaptive tMAMs.

decays exponentially with respect to T∗
h ; if the adaptive tMAM is considered, the error

decays algebraically with respect to T∗
h . At this moment, it is still not clear why these two

different convergence behaviors occur. It is seen that for a comparable accuracy, tMAM
of a uniform partition needs a much smaller optimal integration time than the adaptive
tMAM. Such an observation is consistent with the fact that the region of fast dynamics is
critical to minimize the action functional while the region of slow dynamics is important
to recover the optimal convergence rate.

6.3 An SPDE example

We consider the infinite dimensional analogue of the Maier-Stein model:

{

∂tu=κ∂xxu+u−u3−βuv2+
√

εẆu(x,t),

∂tv=κ∂xxv−(1+u2)v+
√

εẆv(x,t),
(6.4)
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where x ∈ [0,1], κ > 0 is a parameter, and Ẇu and Ẇv are space-time white noise. We
assume that the above equations satisfy periodic boundary conditions in x direction. This
problem was used to study geometric MAM (gMAM) in [13]. The system has two stable
fixed points: (u−,v−)=(−1,0) and (u+,v+)=(+1,0). We consider the MAP from (u−,v−)
to (u+,v+). When β is small enough, the system is close to a gradient system, and the
MAP follows the graph of a heteroclinic orbit connecting (u−,v−) and (u+,v+); when
β is large enough, the system is far from a gradient system and we then expect that
the MAP connecting (u−,v−) to an unstable equilibrium point will be different from the
heteroclinic orbit.

Let φ(x,t)= (u,v)T. Let Gφ= κ∂xxφ+b(φ) with b(φ)= (u−u3−βuv2,−(1+u2)v)T.
The action functional can be written as

ST(φ)=
1

2
〈∂tφ−Gφ,∂tφ−Gφ〉x,t. (6.5)

The perturbation operator Ĝ is obtained as

Ĝδφ=(κ∂xx+∇φb(φ))δφ. (6.6)

We choose Fourier expansion in x direction due to the periodic boundary conditions,
where hi(x)∈span{ei2πnx}16

|n|=0
. Then Lemma 5.1 can be applied to compute the gradient

of action functional.

We here only consider one case β= 1 and κ = 0.024 for the study of accuracy. More
discussions of this SPDE generalization of the Maier-Stein model can be found in [13]. In
Fig. 8, we plot the snapshots of u along the MAP from (u−,v−) to (u+,v+) on the left, and
the partition Th of the adaptive tMAM with 104 elements of polynomial order 3 on the
right. It is seen that most of the elements go to the region of fast dynamics, where two
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Figure 8: Left: snapshots of u along the MAP from (u−,v−) to (u+,v+). The red line indicates the unstable
equilibrium points approximated by the MAP. β=1 and κ=0.024. Right: final partition Th with 104 elements
of polynomial order 3.
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Figure 9: h-convergence of adaptive tMAM with linear elements. The reference solution is given by adaptive
tMAM with 104 elements and polynomial order 3.

regions of fast dynamics are separated by the unstable equilibrium solution. In Fig. 9, we
plot the convergence behavior of the adaptive tMAM with linear elements starting from
8 equidistant elements. It is seen that as the number of elements increases, the optimal
convergence rate O(N−2) is eventually recovered by the h-adaptivity.

7 Conclusion

In this work we developed a minimum action method with optimal linear time scal-
ing. The key idea is to treat the integration time as a functional through the weak arc
length constraint (3.10) such that the integration time will be not optimized directly. A
simple adaptivity criterion has also been constructed to enhance the convergence rate
of tMAM. The adaptive tMAM has the following properties: (1) It is able to deal with
quasi-potential with respect to time. If T∗ is finite, its approximation can be obtained
directly from the MAP. (2) The adaptive tMAM does not need re-meshing. Instead, we
considered h-adaptivity, which produces a sequence of hierarchical partitions of the time
interval. The hierarchical meshes provide the information of relative approximation er-
ror of the action functional. (3) When T∗=∞, the adaptive tMAM can recover the optimal
algebraic convergence rate for a fixed polynomial order p.

We have mainly focused on the convergence behavior of tMAM in this work, where
the numerical efficiency depends on the underlying gradient-based optimization solver.
There are a couple of ways to enhance the numerical efficiency, which is particularly
important for spatially extended systems. First, the adaptive criterion can be refined.
For instance, the threshold rθ and rŝ are not necessarily fixed and can be linked to the
current MAP φ∗

h and a targeted number of degrees of freedom for the new partition, e.g.,
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we can consider multi-level h-refinement of a certain element. Furthermore, although
we only considered h-adaptivity in this work, tMAM is actually flexible to couple with
hp-adaptivity. Second, error indicators that are consistent with the approximation theory
can be constructed. The indicator we used for the error φ∗−φ∗

h is just based on physical
intuition, which is not related to the best approximation of Vh for φ∗. Furthermore, if p-
adaptivity is included, a regularity indicator is also needed. Third, preconditioning needs
to be taken into account. Fourth, the Euler-Lagrange equation of the action functional
can be solved by a Newton solver. For the third and fourth issues, we need to look into
the structure of the spatial differentiation operator when spatially extended systems are
considered. The study about these issues will be reported elsewhere.
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