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Effect of Uncertainty in Blowing
Ratio on Film Cooling
Effectiveness
In this study, the effect of randomness of blowing ratio on film cooling performance is
investigated by combining direct numerical simulations with a stochastic collocation
approach. The geometry includes a 35-deg inclined jet with a plenum attached to it. The
blowing ratio variations are assumed to have a truncated Gaussian distribution with
mean of 0.3 and the standard variation of approximately 0.1. The parametric space is dis-
cretized using multi-element general polynomial chaos (ME-gPC) with five elements
where general polynomial chaos of order 3 is used in each element. Direct numerical
simulations were carried out using spectral element method to sample the governing
equations in space and time. The probability density function of the film cooling effective-
ness was obtained and the standard deviation of the adiabatic film cooling effectiveness
on the blade surface was calculated. A maximum of 20% of variation in film cooling
effectiveness was observed at 2.2 jet-diameter distance downstream of the exit hole. The
spatially-averaged adiabatic film cooling effectiveness was 0.23 6 0.02. The calculation
of all the statistical properties were carried out as off-line post processing. A fast conver-
gence of the polynomial expansion in the random space is observed which shows that the
computational strategy is very cost-effective. [DOI: 10.1115/1.4025562]
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1 Introduction

Increasing the turbine inlet temperature directly increases the
thermal efficiency of a gas turbine. However, the temperature of
the inlet gas is limited by the melting point of the blade metal. To
allow higher inlet gas temperatures, film cooling has been widely
used in modern gas turbines [1]. In film cooling technology, the
coolant flow is extracted after the compressor and is injected
through holes on the surface of the hot-gas components. However
as a result of variability in operating conditions, the performance
of film cooling can be unfavorably affected leading to the expo-
sure of the hot-gas components to high temperatures beyond the
permissible limit. This has severe impact on the gas turbine dura-
bility where increasing the airfoil temperature by 25 �C can reduce
the life time of a blade by a factor of two [2]. The cost of the
replacement of vane/blade airfoils is high, most of which is attrib-
uted to the manufacture or repair of the film cooling holes.

Film cooling effectiveness, among other factors, is strongly
dependent on the blowing ratio (the ratio of the averaged coolant
velocity in the delivery tube to the crossflow velocity) as demon-
strated by several experimental and numerical studies (see for
e.g., Refs. [3,4]). The coolant film with very low blowing ratio
(BR< 0.1) can be rapidly mixed out with the crossflow, which
leads to the deterioration of film cooling performance. Higher
blowing ratios (BR> 1), on the other hand, cause the jet to lift off
from the surface, which allows the hot gas from the crossflow to
penetrate into the separated region downstream of the jet, result-
ing in a poor coverage of the blade surface. Intuitively, a blowing
ratio exists which results in the best film cooling effectiveness,
and the existence of an optimal blowing ratio that maximizes film
cooling for specific operating conditions and geometry (typically
a flat plate) has been reported in the literature. The optimum blow-
ing ratio can vary depending on the operating conditions and

geometry, and designers use empirical data and experience in
designing the set-points for the film cooling parameters.

In practice, the blowing ratio is far from its designed value.
Abhari [5] reported the coolant fluctuations of up to 6100%
around the design blowing ratio due to rotor-stator interactions.
Experimental measurements carried out by Womack et al. [6]
showed that the blade heat transfer coefficient was significantly
affected by the presence of wakes in the crossflow; this variation
is, in part, due to variations in the blowing ratio. Thus, it is impor-
tant to investigate the effect of blowing ratio variation on the
cooling effectiveness.

As a numerical strategy in stochastic computations, Monte
Carlo methods and its variants are of the most widely used
approaches. This family of methods requires sampling of the
deterministic system at random inputs. Monte Carlo methods are
especially attractive when a large number of random variables are
considered, since their convergence rates do not depend or weakly
depend on the number of random dimensions. However, Monte
Carlo methods are prohibitively expensive for our problem, where
each sample requires solving an expensive direct numerical simu-
lation (DNS) with several millions degree of freedom.

In cases with only a few random variables, spectral methods in
which the target function is represented as an expansion of fast-
converging polynomials, can be far more efficient, especially
when the functional relationship between the random variable and
the target function is smooth. The spectral methods are relatively
new in the field of stochastic computation and they have enjoyed
a rapid growth in the last decade in the numerical simulation of
random/stochastic partial differential equations [7]. The first vari-
ant of these approaches is the polynomial chaos (PC) where the
Hermite polynomials constitute an orthogonal expansion basis of
the probability space. The coefficients of the expansion are
obtained by employing a Galerkin projection. This method was pi-
oneered by Ghanem and Spanos [8] for solving stochastic differ-
ential equations and was extended by Xiu and Karniadakis [9] to
gPC which includes a broader family of polynomials from the
Asky scheme. The gPC method was successfully used to solve
Navier-Stokes equations with random inflows [10]. In cases where
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sufficient smoothness between the input random variable and the
target random function does not exist, increasing polynomial
order can be inefficient [11]. To remedy this limitation, Wan and
Karniadakis [12] developed a multi-element extension (ME-gPC)
to the general polynomial chaos, in which the random space is first
decomposed into a number of finite elements. Within each ele-
ment an orthogonal polynomial expansion is employed; this is a
concept analogous to the spectral element approach that has been
used for deterministic problems.

One of the main considerations in studying the effect of uncer-
tainty in film cooling applications is the computational cost of
solving such a problem. The dynamics of film cooling problem is
properly studied as a jet-in-crossflow, where the interaction of the
coolant jet and the hot gas creates a highly unsteady and in most
cases turbulent flow. This problem has been extensively studied
both numerically and experimentally. The majority of the numeri-
cal simulations have utilized Reynolds averaged Navier-Stokes
equations which rely on turbulence models. These models have
been shown to be unsuitable to accurately capture the dynamics of
the flow and high-fidelity numerical simulations that resolve the
relevant spatial and temporal scales in the flow are required [13].
Large eddy simulation (LES) has been shown to be a reliable tool
in solving film cooling problems [14–18] by resolving the large
scale structures and modeling the smaller scales. Nevertheless
using any turbulence model brings a new source of uncertainty to
the problem that unless it is quantified, can interfere with the ran-
domness imposed by the boundary condition such as blowing ra-
tio. DNS, on the other hand, resolves all relevant time and space
scales without using a model and it has been successfully used to
simulate turbulent flows in film cooling [19,20].

The goal of the current study is to investigate the effect of the
uncertainty in the blowing ratio on the film cooling effectiveness.
We present a computationally affordable strategy to investigate
the effect of randomness in blowing ratio on the performance of
film cooling. We combine DNS using spectral/hp finite element
method and ME-gPC method as a strategy to discretize the para-
metric space. The film-cooling geometry includes a flat surface
with a 35-deg inclined coolant delivery tube fed by a plenum. The
outcome of this study will enable us to quantify the effect of ran-
domness in blowing ratio on the surface temperature or cooling
effectiveness. To the best knowledge of the authors, this is the first
study that investigates film cooling in a probabilistic framework.
Moreover, the discretization strategy provides some inherent
advantages in computational efficiency that is discussed in the
paper.

2 Problem Specification

We solve the incompressible Navier-Stokes equations for ve-
locity and pressure along with the advection-diffusion equation
for temperature. These equations in nondimensional form are
given by

r � u ¼ 0 (1)

@u

@t
þ ðu � rÞu ¼ �rpþ 1

Re
r2u (2)

@h
@t
þ ðu � rÞh ¼ 1

RePr
r2h (3)

where u ¼ uðx; t; nÞ, p ¼ pðx; t; nÞ, and h ¼ hðx; t; nÞ are nondi-
mensional Cartesian velocity vector, pressure, and temperature,
respectively, and n is the random variable representing blowing
ratio. The Cartesian coordinate is x ¼ fx1; x2; x3g, where x1, x2,
and x3 are the streamwise, wall-normal, and spanwise directions,
respectively, and the velocity vector is u ¼ fu1; u2; u3g. Prandtl
number is denoted by Pr and Reynolds number by Re defined as
Re ¼ U1D=� with crossflow velocity, U1, and jet diameter, D,
as the characteristic velocity and length scale, respectively. Tem-
perature (T) is nondimensionalized using

hðx; t; nÞ ¼ ðTðx; t; nÞ � TcÞ=ðTh � TcÞ

where Th is the hot gas temperature and Tc is the coolant
temperature.

The schematic of the domain and the boundary conditions used
to solve Eqs. (1)–(3) are shown in Fig. 1. The origin of the coordi-
nate system is at the center of the jet exit hole. The geometry
includes a 35-deg delivery tube with diameter D and length of
3.5D originating from a plenum with the size of 7.9D� 4D� 3D.
The main domain, where the coolant and free-stream interact,
spans the volume of 18D� 6D� 3D in streamwise, wall-normal,
and spanwise directions, respectively. The center of the jet exit is
located 6D downstream of the inlet boundary of the domain. For
inflow boundary condition, a laminar boundary layer profile with
the boundary layer thickness of d99%=D ¼ 1 and temperature of
h¼ 1 are used. The laminar boundary layer is superposed with
free-stream turbulence that is generated by the spectral synthesizer
method introduced in Ref. [21]. The free-stream turbulence is
assumed to be isotropic with the intensity of 0.5% and length and
time scale of 0.4D and 0.4D/U1, respectively. At the top bound-
ary, free-stream condition is used with u ¼ ðU1; 0; 0Þ and h¼ 1.
At the outflow boundary, a zero-gradient condition is assumed for
both velocity and temperature. In the spanwise direction, a peri-
odic boundary condition is enforced, mimicking a situation where
an array of holes are arranged in the spanwise direction with the
center-to-center distance of 3D. For all of the wall boundaries, a
no-slip boundary condition for velocity and adiabatic boundary
condition for temperature are used. The Reynolds number,
Re1 ¼ U1D=�, is 1500 throughout and the Prandtl number is
Pr¼ 0.71.

At the bottom of the plenum, a spatially-uniform random verti-
cal velocity of u2 ¼ aBRðnÞ is specified, where blowing ratio BR
is the ratio of the space-averaged jet velocity in the delivery tube
(Uj) to the crossflow velocity (U1) i.e., BR ¼ Uj=U1, and a
accounts for the area ratio of the bottom of the plenum (Ap) to the
normal cross-sectional area of the delivery tube, i.e.,
a ¼ pD2=4Ap. The area scaling factor for the current geometry is
a¼ 0.0331. The random blowing ratio, denoted by n � BR, is
characterized by symmetrically truncating the tails of a Gaussian
distribution around its mean. Considering a Gaussian distribution
with the probability density function (pdf) of

qðnÞ ¼ 1ffiffiffiffiffiffi
2p
p

r
expð�ðn� mÞ2Þ=r2Þ

Fig. 1 Three-dimensional schematic of the jet in crossflow
along with the boundary conditions
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with mean of m and the standard deviation of r, the pdf of the
truncated Gaussian distribution is given by

lðnÞ ¼
qðnÞ=b; jn� mj � r;

0; otherwise

(
(4)

where b is the scaling factor to enforce that
Ð

R
lðnÞdn ¼ 1, and r

is the distance from the mean beyond which q(n) is truncated.
Note that both pdf’s, q(n) and l(n), have the same mean value of
m, but their standard deviation values are different. In this study,
we choose the mean value of m¼ 0.3, which is the blowing ratio
at which the maximum film cooling effectiveness was observed
according to the experimental/numerical measurements carried
out by Bidan et al. [4] for a 35-deg inclined jet. The blowing ratio
is allowed to have a range of variability in [0, 0.6], which amounts
to 100% variation around its mean (r¼ 0.3). The standard devia-
tion of the Gaussian distribution q(n) is 0.1, which results in the
standard deviation of rBR¼ 0.098 for the truncated Gaussian dis-
tribution l(n). The probability density function of the random
blowing ratio is shown in Fig. 2.

It should be noted that in representing the variation or random-
ness in the blowing ratio, the notion of a temporal scale or time
varying blowing ratio is not introduced here. Rather, it is assumed
that the scale associated with the random variation is decoupled
and much larger than the time scales associated with the turbulent
flow fluctuations. This could indeed be the case in the engine
application since the coolant is supplied from the compressor
stage upstream, through its own separate plumbing system and its
inherent system-dynamics.

Since adiabatic conditions are used at the surface x2¼ 0, the
surface temperature field hðx; t; nÞ at x2¼ 0 represents a measure
of the surface cooling effectiveness by the coolant film, which is
defined by

gðx1; nÞ ¼ 1

w

ðw=2

�w=2

ð1� �hðx; nÞÞjx2¼0 dx3 (5)

where g(x1; n) is the spanwise-averaged film cooling effective-
ness, w is the width of the cooled surface and the operator ð:Þ rep-
resents a time-averaged quantity. Variations in blowing ratio (n)
will lead to variations in temperature and Eq. (5) can be used to
quantify this effect on film cooling effectiveness g(x1; n).

Further, a spatially-averaged (overall) film cooling effective-
ness, denoted by ~gðnÞ, can be obtained from

~gðnÞ ¼ 1

x1e
� x1s

ðx1e

x1s

gðx1; nÞdx1 (6)

where x1s
and x1e

denote the beginning and the end of the stream-
wise interval over which ~gðnÞ is calculated. In this study, x1s

¼ 1
and x1e

¼ 12.
The objective of the current work is to investigate the effect of

uncertainty of blowing ratio represented by the pdf shown in
Fig. 2 on the measures of the film cooling effectiveness, g(x1; n)
and ~gðnÞ, and the representative statistics associated with these
measures.

3 Numerical Algorithm

As it was demonstrated in Sec. 2, blowing ratio is a random
number and adds another dimension, which is referred to as para-
metric space, to the governing equations. Note that solving the
film cooling problem given by Eqs. (1)–(3) for a constant deter-
ministic blowing ratio requires performing a DNS simulation with
several millions degree of freedom. Therefore adding another
dimension requires an efficient discretization strategy to solve an
already expensive problem. In this section, we explain the numeri-
cal algorithm that is used in the current study to solve
Eqs. (1)–(3).

3.1 Stochastic Discretization

3.1.1 Decomposition in Parametric Space. We use ME-gPC
introduced by Wan and Karniadakis [12] to discretize governing
Eqs. (1)–(3) in the one-dimensional parametric space, which is
formed by the random blowing ratio in the range of B¼ [0, 0.6].
We first decompose the parametric space B into Ne nonoverlap-
ping elements denoted by: B1;B2;B3;…;BNe. Note that each
element Be is a segment of the blowing ratio interval [0, 0.6], and

Be ¼ ½ae; beÞ

where ae and be are the beginning and the end of element Be,
respectively, and since the elements are non-overlapping, the end
of one element is the beginning of the next element, i.e.,
be ¼ aeþ1. The schematic of this decomposition is shown in
Fig. 2. We introduce the indicator random variable

IBe
ðnÞ ¼ 1; n belongs to Be;

0; otherwise

�
(7)

If a sample of blowing ratio, n, with the pdf given by Eq. (4), is
drawn and the sample resides in the element Be, the value of
IBe
ðnÞ is one and if the sample resides outside of the element Be,

the value of IBe
ðnÞ is zero. From the law of total probability, we

have

Prðn � qÞ ¼
XNe

e¼1

Prðn � qjIBe
¼ 1ÞPrðIBe

¼ 1Þ (8)

where PrðEÞ is the probability of event E, and PrðEjFÞ is the con-
ditional probability and represents the probability of event E given
that event F has occurred. Also note that from the definition of
the indicator random variable given by Eq. (7), we arrive at

PrðIBe
¼ 1Þ ¼

ð
Be

lðnÞdn

Now using Bayes’ rule, we have

Fig. 2 Probability density function of blowing ratio; a trun-
cated Gaussian distribution with mean of 0.3 and variance of
0.01. Elemental decomposition (Be ; e ¼ 1; . . . ;Ne) is shown
schematically.
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l̂eðnjIBe
¼ 1Þ ¼ lðnÞ

PrðIBe
¼ 1Þ (9)

where l̂eðnjIBe
¼ 1Þ is the conditional pdf with the condition of

IBe
¼ 1, which, by using Eq. (7), can be interpreted as: if the ran-

dom variable n resides in the element Be. The expectation of a
generic function f(n) in the global domain B is obtained by

Eðf ðnÞÞ ¼
ð

B

f ðnÞlðnÞdn (10)

Using Eqs. (8)–(10), we reach at

E½f ðnÞ� ¼
XNe

e¼1

PrðIBe
¼ 1Þ

ð
Be

f ðnÞl̂eðnjIBe
¼ 1Þdn (11)

Above equation provides a basis for the calculation of statistical
information from the elemental to the global level. The definition
of the expectation motivates a natural weighted inner product with
pdf as the weight. This follows:

ðf ; gÞl :¼ E½f ðnÞgðnÞ�; jjf jjl :¼ ðf ; f Þ1=2
l (12)

where ð:; :Þl is the inner product and jj:jjl is the norm with respect
to the weight l(n). Thus for two random functions of f(n) and
g(n), the condition of ðf ; gÞl ¼ 0 indicates orthogonality; a con-
cept that is used in Sec. 3.1.2 to define an orthogonal basis for
expansion of a generic function.

3.1.2 Stochastic Collocation. We consider a basis consisting
of local polynomial chaos up to order M in each element Be which
are denoted by /e

i ðnÞ, where i ¼ 0; 1;…;M is the polynomial
order and e ¼ 1; 2;…;Ne denotes the element number. A zero
extension of polynomial /e

i ðnÞ in region outside the element Be is
assumed, i.e.,

/e
i ðnÞ ¼ 0; n outside of Be:

The polynomials /e
i ðnÞ for i ¼ 0;…;M are mutually orthogonal

with respect to the local pdf of l̂eðnÞ. In other wordsð
Be

/e
i ðnÞ/e

j ðnÞl̂eðnjIBe
¼ 1Þdn ¼ ðce

i Þ
2dij (13)

where ce
i is the norm of the polynomial /e

i ðnÞ and is given by

ðce
i Þ

2 ¼
ð

Be

/e
i ðnÞ

2l̂eðnjIBe
¼ 1Þdn (14)

These polynomials are constructed numerically using the proce-
dure proposed by Wan and Karniadakis [12]. The polynomials
/e

i ðnÞ with i ¼ 0; 1; 2;…; form a hierarchical basis. Note that by
considering the zero expansion of polynomial /e

i ðnÞ outside of the
element Be, orthogonality in the global sense is also retained, i.e.,

E½/e
i ðnÞ/e

j ðnÞ� ¼ PrðIBe
¼ 1Þðce

i Þ
2dij (15)

Now, we consider a polynomial expansion for time-averaged tem-
perature, denoted by �h, as follows:

�hMðx; nÞ ¼
XNe

e¼1

XM

k¼0

�̂h
e
kðxÞ/e

kðnÞ (16)

where the subscript M represents the projection of the respective
field onto to the polynomial basis /e

i ðnÞ, and bue
kðxÞ, �̂pe

kðxÞ, and
�̂h

e
kðxÞ are the expansion coefficients. In the remaining of this

section, in the interest of brevity, we carry out the formulation for
temperature only, noting that the procedure can be similarly repli-
cated for time-averaged velocity and pressure. The expansion

coefficients �̂h
e
kðxÞ are obtained by employing Galerkin projection.

This follows:

�̂h
e
kðxÞ ¼ E½�hMðx; nÞ/e

kðnÞ�=E½/e
kðnÞ

2�; 0 � k � M; 1 � e � Ne

(17)

To estimate the coefficient bue
kðxÞ, we use pseudo-spectral projec-

tion method [22] by using Gauss-quadrature rule which for a
generic function f is defined asð

Be

f ðnÞl̂eðnjIBe
¼ 1Þdn ’

XQ

i¼0

we
ðiÞf ðx; ne

ðiÞÞ (18)

where fne
ðiÞ;w

e
ðiÞg

Q
i¼0 are a set of Qþ 1 Gauss-quadrature points

and weights in element Be. Note that the (Qþ 1)-point Gauss
quadrature formula is exact to evaluate E½f � for any polynomial f
up to degree 2Qþ 1. By using the quadrature rule given by Eqs.
(18) and (14), the expansion coefficients for temperature given by
Eq. (17) can be estimated as

�̂h
e
kðxÞ ’

XQ

i¼0

we
ðiÞhðx; ne

ðiÞÞ/e
kðne
ðiÞÞ=ce2

k ; 0 � k � M; 1 � e � Ne

(19)

By replacing above equation in the polynomial expansion given
by Eq. (16), a low-dimensional representation of random
temperature is obtained which can serve as an off-line stochastic
surrogate model whose evaluation is inexpensive.

3.1.3 Cost-Effectiveness and Numerical Efficiency. To show
the efficiency of the current approach let’s consider the error of

the expansion fMðnÞ ¼
PNe

e¼1

PM
k¼0 f̂ e

k /e
kðnÞ as

e2 ¼ E½ðf ðnÞ � fMðnÞÞ2� ¼
ð

Be

ðf ðnÞ � fMðnÞÞ2lðnÞdn (20)

where f(n) represents the exact solution and fM(n) represents the
orthogonal projection of f(n) onto polynomial space up to order M
similar to Eq. (16). The discretization discussed in Secs. 3.1.1
and 3.1.2 with only one element, i.e., Ne � 1, represents the gPC
discretization of the random space which has the following
characteristics:

(1) If f(n) is a smooth function of n, i.e., infinitely differentia-
ble, fM(n) converges exponentially fast to f(n) as M
increases. The assumption of smoothness of film cooling
effectiveness as a function of blowing ratio is later con-
firmed in Sec. 4.3, where the fast convergence of ~gMðnÞ is
observed in Fig. 8. Moreover, since the coefficients of
fM(n), f̂ e

k , are obtained using the Galerkin projection, (which
is an orthogonal projection), analogous to Eq. (17), fM(n) is
the best approximation among any other polynomial expan-
sion up to order M. More specifically, this means that the
expansion error, e, given by Eq. (20), is minimum among
all polynomial expansions up to order M of f(n) (see
Ref. [23], chapter 3 for more details).

(2) Since the expansion basis is orthogonal, the coefficients of
the polynomial expansion can be effectively computed
using Gauss quadrature points and weights in the quadra-
ture rule.

(3) Since a stochastic collocation approach is used, all deter-
ministic simulations can run concurrently and
independently.
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The above observations are at the core of the cost-effectiveness
and efficiency of the gPC expansion. In fact, fast convergence of
the gPC expansion to the exact solution reduces the polynomial
order M required to reach a desired level of accuracy e :¼ edes,
when compared to low-order methods. Note that the polynomial
order M is directly equivalent to the computational cost, since for
an expansion with polynomial order M and one element, Mþ 1
deterministic simulations need to be performed. In this study, we
employ ME-gPC where we use several elements to discretize the
parametric space. This strategy improves the accuracy of the
method in cases where function f(n) does not have enough
smoothness, while maintaining the computational advantages as
stated above (see Ref. [11,12] for more discussion).

3.1.4 Statistical Information. The stochastic surrogate model
given by Eq. (19) can be used to calculate the statistical moments
such as expectation using

E½�hMðx; nÞ� ¼
XNe

e¼1

XM

k¼0

�̂h
e
kðxÞE½/e

kðnÞ� (21)

and by considering the orthogonality of the basis (Eq. (15)), the
variance is calculated from

r2
hðxÞ ¼

XNe

e¼1

XM

k¼0

�̂h
e
kðxÞ

2
E½/e

kðnÞ
2� �

XNe

e¼1

XM

k¼0

�̂h
e
kðxÞ

2
E½/e

kðnÞ�
2

(22)

where rhðxÞ is the standard deviation of the temperature at point x
in space. The expansion for temperature given by Eq. (16) can
accordingly be used to calculate the statistical moments for
spanwise-averaged film cooling effectiveness, g(x1; n), and
spatially-averaged film cooling effectiveness, ~gðnÞ, by using
Eqs. (5) and (6), respectively.

Another useful statistical information that can be extracted is
the sensitivity of time-averaged quantities with respect to the
random blowing ratio, which, for instance, for temperature is
defined as

ShðxÞ ¼ E
@ �hMðx; nÞ

@n

� �
¼
XNe

e¼1

XM

k¼0

�̂h
e
kðxÞE

@/e
kðnÞ
@n

� �
(23)

where ShðxÞ denotes the sensitivity of time-averaged temperature
with respect to random variation of blowing ratio.

Note that using Eq. (5), the expectation, variance and sensitivity
for spanwise-averaged film cooling effectiveness become

E½gðx1; nÞ� ¼ 1

w

ðw=2

�w=2

ð1�E½�hMðx; nÞ�Þjx2¼0 dx3 (24)

r2
gðx1Þ ¼

1

w

ðw=2

�w=2

r2
hðxÞjx2¼0 dx3 (25)

Sgðx1Þ ¼
1

w

ðw=2

�w=2

ShðxÞjx2¼0 dx3 (26)

3.1.5 Discretization Details. In the current study, we use five
elements, i.e., Ne¼ 5. The beginning the intervals are a1¼ 0.00,
a2¼ 0.05, a3¼ 0.15, a4¼ 0.30, and a5¼ 0.45, and the end of the
intervals are b1¼ 0.05, b2¼ 0.15, b3¼ 0.30, b4¼ 0.45, and
b5¼ 0.60, providing a set of nonoverlapping elements that covers
BR in the range of [0, 0.6]. The elements are refined at BR¼ 0,
where BR¼ 0 represents the condition that the jet is off. By
increasing blowing ratio from zero large gradients of velocity,

pressure, and temperature are expected, which implies that local
refinement may be necessary. This is consistent with the proper-
ties of the ME-gPC method where a local-refinement strategy can
be adopted by either increasing the polynomial order locally
(known as p� refinement), or refining the element size (known as
h� refinement); the later of which is adopted in this study. On the
other hand, in gPC method, increasing the polynomial order glob-
ally is the only refinement strategy which may not be efficient if
low regularity or sharp transition exists locally.

We choose polynomial order M¼ 3 within each element. Note
that the polynomial basis is orthogonal with respect to the local
pdf of l̂eðnjIBe

¼ 1Þ in each element and as a result the polyno-
mial bases of the same degree are different from one element to
another. We use 4 Gauss quadrature points (Q¼ 3) which results
in a degree of exactness of 2Qþ 1 ¼ 7, when evaluating E½f � in
each element. In total, Ne� ðQþ 1Þ times sampling of the
governing Eqs. (1)–(3) is required. Therefore for the given
parameters, 20 DNS simulations are performed.

3.2 Discretization in Space and Time. In all the cases in this
study, we perform direct numerical simulation on the jet in cross-
flow with the schematic of the problem shown in Fig. 1. For dis-
cretization in space, we use spectral element method with
hexahedral element implemented in N ejT ar [24]. A third-order
semi-implicit fractional step method is used to advance the gov-
erning equations in time. For more details on the method and its
implementation see Ref. [25].

A three-dimensional view of the computational grid that is used
in this study is shown in Fig. 3(a). To generate the grid, a total
number of 2226 quadrilateral elements were first generated in
x1� x3 plane at the jet exit elevation, out of which 372 elements
belonged to the jet exit. A closer view of this grid near the jet exit
is shown in Fig. 3(b). The two-dimensional grid was then swept
along the x2 direction generating 17 parallel layers of grid with
increasing height away from the wall. The first-layer elements
have a height of Dx2¼ 0.05D and large elements with the height
of 3D were used for the topmost layer. Similarly, within the pipe
the grid at the jet exit was swept with 24 layers along the axis of
the tube with the height of Dx2¼ 0.07D for the first and last layer.
An analogous strategy to that of the main domain was used for
generating grid in the plenum where first a quadrilateral grid with
720 elements were generated at the top x1� x3 plane. These ele-
ments were then swept downward to the plenum inlet creating 11
layers with Dx2¼ 0.06D at the topmost layer and Dx2¼ 1.2D at
the bottommost layer. The final grid obtained had 52464 elements.
We use polynomial with spectral order of four which translates
into ð4þ 1Þ3 ¼ 125 points within each element, resulting in
approximately a total of 6.5 millions points. The same grid is used
in all simulations and the grid spacing in the wall coordinate

xþi ¼ usxi=�, where us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð@u1=@x2Þwall

p
is the average friction

velocity for the highest blowing ratio (BR¼ 0.5841), is related to
the regular spacing by Dxþi ¼ 375Dxi. Given that polynomial with
spectral order of four is used within each element, the accuracy is
comparable with Fourier spectral method with two complete
modes resolved in each element. On the other hand, a finite differ-
ence approximation would require 5 points to capture two com-
plete Fourier modes. Therefore, the resolution in the wall-normal
direction of the first-layer element in the main domain in a finite
difference spirit is Dxþ2 ¼ 0:05� 375=4 ¼ 4:69. However note
that the spectral element with polynomial order of P is signifi-
cantly more accurate than a (Pþ 1)-point-finite-difference
approximation. For a more detailed discussion on this see
Ref. [25]. In the same way, the resolution of the grid in the main
domain in the streamwise direction is 7:5 � Dxþ1 � 20 and in the

spanwise direction 7:5 � Dxþ3 � 14.
The spectrum of the kinetic energy E ¼ ðu2

1 þ u2
2 þ u2

3Þ
1=2=2 at

point x1¼ 2, x2¼ 1, and x3¼ 0 for the highest blowing ratio
considered in this study is shown in Fig. 4. The Kolmogorov
inertial range with the slope of� 5/3 is observed.

Journal of Heat Transfer MARCH 2014, Vol. 136 / 031701-5

Downloaded From: http://heattransfer.asmedigitalcollection.asme.org/ on 11/18/2013 Terms of Use: http://asme.org/terms



4 Results

4.1 Comparison With Experiment. In this section, we
compare the numerical results obtained from the DNS with exper-
imental measurements performed by Bidan et al. [4]. The geome-
try includes a 35-deg inclined pipe with the diameter of D and
length of 7D. The main domain spans the volume of
21D� 10D� 6D in steamwise, wall-normal, and spanwise direc-
tions, respectively. The inflow boundary condition is a laminar
boundary layer with the thickness of d¼ 0.63D. The experimental
setup does not have a plenum and the jet inflow boundary condi-
tion is enforced at the pipe inlet, where a uniform flow is super-
posed with 10% turbulence, generated by employing the spectral
synthesizer method introduced in Ref. [21]. The Reynolds number
based on the freestream velocity and the jet diameter is
Re1 ¼ U1d=� ¼ 1710. A hexahedral grid with 121,700 elements
with a spectral order of four was used. In Fig. 5, the profiles of
time-averaged streamwise velocity are compared with those of

experimental measurements in Ref. [4] at three different stream-
wise sections on the centerline plane. The agreement between the
predictions and the measured data is good, which gives us greater
confidence in carrying out the computations with the current
approach.

4.2 Effect of Blowing Ratio on Film Cooling. We per-
formed twenty direct numerical simulations in total, at Gauss-
quadrature points in the parametric space, where each quadrature
point represents a unique blowing ratio. For each simulation,
time-averaged quantities are collected and used in Eq. (19) to
compute the expansion coefficients. Finally, the stochastic
response of the system is constructed using Eq. (16) from which
all the statistical information can be directly extracted.

Figure 6 shows the instantaneous temperature field at the mid-
plane (x3¼ 0) at six quadrature points in the parametric space. At
BR¼ 0.004, a significant ingestion of the crossflow gas into the
delivery tube can be seen. As the blowing ratio increases
(BR¼ 0.1442), the coverage extends to a larger portion of the sur-
face downstream of the jet, improving the spatially-averaged film
cooling effectiveness. This trend continues up to BR¼ 0.2902
where the shear layer tends to become unstable around x1¼ 6 as
evidenced by the unsteadiness in the time sequence of the data. At
BR¼ 0.3956, a clear roll-up of the shear layer can be seen which
leads to the formation of hairpin vortices that shed periodically

Fig. 4 Spectrum of the energy of the velocity signal at location
x1 5 2, x2 5 1, and x3 5 0 with blowing ratio of BR 5 0.5841

Fig. 5 Time-averaged streamwise velocity profiles u1 at x2 5 0
and BR 5 0.15; DNS (solid line), experimental data [4] (triangle)

Fig. 3 Unstructured hexahedral grid; (a) three-dimensional view; (b) x1 2 x3 view
of the grid in the vicinity of the jet exit, black lines: element boundaries; gray lines:
Gauss-Lobatto-Legendre quadrature grid with spectral order of four
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after x1 	 6. As blowing ratio further increases, the coolant jet
detaches from the surface, leading to the reduction of the coverage
in the near-hole region. At BR¼ 0.4891, the roll-up of the shear
layer occurs closer to the hole and due to the separation of the
coolant from the surface, film cooling effectiveness continues to
decrease. At BR¼ 0.5841, the jet is fully detached and the cross-
flow then penetrates in the region behind the jet body and causes a
poor coverage of the surface.

Figure 7 shows the time-averaged temperature on the cooled
surface for all quadrature points. It is clear that as blowing ratio
increases from the small value of BR¼ 0.004 to BR¼ 0.2044, the
film cooling effectiveness improves everywhere on the surface.
However further increase in blowing ratio (BR¼ 0.2538) results
in reduction of the film cooling effectiveness in the vicinity of the
jet exit due to the jet liftoff, but further downstream (x1> 5) the
effectiveness still increases, which is caused by the re-attachment
of the coolant jet. The spanwise coverage also increases modestly
up to higher blowing ratios (BR	 0.4891), after which the deteri-
oration of the coverage is more pronounced immediately down-

stream of the jet exit (x1< 2) and less strongly further
downstream (x1> 5).

4.3 Spatially-Averaged Film Cooling Effectiveness. The
previous observations from Figs. 6 and 7 indicate that an optimal
blowing ratio exists. In Fig. 8, the spatially-averaged film cooling
effectiveness, ~gðnÞ, versus blowing ratio is shown. The optimal
blowing ratio is approximately at BRopt¼ 0.3, which is in agree-
ment with the experimental/numerical study carried out by Bidan
et al. [4]. The projections of ~gðnÞ to different polynomial orders
ranging from M¼ 0 to M¼ 3 are also shown in Fig. 8. The
response surface with projection order of M¼ 0 represents a
piece-wise constant approximation of the response surface, whose
computation cost is equivalent to five deterministic direct numeri-
cal simulations. As it is clear, this approximation provides a rough
measure of the response surface and relatively large amount of
error would be associated with statistical quantities computed
from this approximation. However as polynomial order increases

Fig. 6 Instantaneous temperature surface in the mid-plane (x3 5 0) for different blowing ratios

Fig. 7 Time-averaged temperature contours for quadrature points on cooled surface (x2 5 0). In this figure simulations for all
Gauss quadrature points are shown.
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to M¼ 1 (piece-wise linear) the approximation significantly
improves. The improvement of the response surface continues as
projection order increases to M¼ 2 and the difference between the
response surfaces with projection orders of M¼ 2 and M¼ 3, as it
can be seen in Fig. 8, is negligible.

An important requirement for ME-gPC to be a numerically effi-
cient approach is that ~gðnÞ must be a piece-wise smooth function
of n. The fast convergence of ~gMðnÞ with increasing projection
order from M¼ 0 to M¼ 3 can be qualitatively observed in Fig. 8
that assures that ~gðnÞ is in fact a piece-wise smooth function of n.
This important numerical observation shows that ME-gPC is an
efficient numerical method in investigating the effect of uncer-
tainty of blowing ratio on film cooling effectiveness. The decision
on what order of projection order is suitable depends on what
level of accuracy is desired. However, in any circumstances, if
only a certain number of DNS runs can be afforded, it is still bet-
ter to perform those simulations in the current framework, since
according to the statements made in Sec. 3.1.3, for the current ele-
mental decomposition, the response surface with projection order
M¼ 0, for instance, is the best response surface among all piece-
wise constant response surfaces (see Sec. 3.1.3 for the error defini-
tion). The similar statements can be made for response surfaces
with projection orders M¼ 1, 2, and 3.

Note that the polynomial /e
i ðnÞ are discontinuous across ele-

ments, however the discontinuity at the element interfaces is of
measure zero (i.e., negligible) with respect to the norm given by
Eq. (12). One could have chosen Gauss-Lobatto-Legendre quadra-
ture points where the end points of the elements are included and
thus the continuity across the elements is ensured, however, in
that case the degree of exactness for (Qþ 1) quadrature points is
2Q� 1 as opposed to the degree of exactness of 2Qþ 1 for the
Gauss quadrature points used in this study, resulting in larger
amount of error overall for the Gauss-Lobatto-Legendre quadra-
ture points. Nevertheless for a fixed elemental decomposition, the
current choice of quadrature points gives the best polynomial
approximation when the error is measured in the norm given by
Eq. (12). For a more detailed discussion in this regard see
Ref. [12].

Mathematically, the relationship between the pdf of the random
blowing ratio l(n) and the pdf of film cooling effectiveness q(g) is
determined by

qðgÞ ¼ lðnÞ=jðdg=dnÞj (27)

where we assume that g(n) is monotonic for simplicity. Equation
(27) has two implications:

(1) The existence of regions in which blowing ratio has high
probability of occurrence, increases the likelihood of the
film cooling effectiveness occurrence at values of g(n)
associated with those blowing ratios.

(2) The pdf of the film cooling effectiveness, q(g), is inversely
proportional to the slope of g versus n. In other words, the
regions where film cooling effectiveness is not sensitive to
the variation of blowing ratio, i.e., low dg/dn, tend to
increase the likelihood of occurrence of values of g
corresponding to those blowing ratios.

As it is clear from Fig. 8, ~gðnÞ is not a monotonic function of n,
and therefore Eq. (27) cannot be used to calculate the pdf of ~gðnÞ.
Instead, we use Monte Carlo method where n is sampled from its
distribution, the truncated Gaussian l(n) with the mean of 0.3 and
standard deviation of rBR¼ 0.098. This is achieved by first draw-
ing samples from Gaussian distribution q(n) with the mean of 0.3
and the standard deviation of 0.1. Then, the samples (n’s) that are
outside the region of [0, 0.6], are rejected. We draw twenty mil-
lion samples from n’s distribution. Negligible difference between
the histogram of the samples and the exact pdf was observed,
indicating that the sample size is sufficiently large. Next, ~gðnÞ is
evaluated at all sampled n’s, creating a collection of twenty
million samples of ~gðnÞ, whose pdf is shown in Fig. 9. Note that
sampling from the n’s distribution and evaluating ~gðnÞ at these
samples are carried out as post processing and it takes only
seconds to perform the calculations. The maximum value of ~gðnÞ
is 0.254 and all other values for ~gðnÞ are below this peak number.
Therefore, the probability of ~gðnÞ beyond this peak is zero, which
is reflected by the sudden drop of the value of qð~gÞ to zero for
~gðnÞ > 0:254. The value of qð~gÞ becomes unbounded at
~g ¼ 0:251, since d~g=dn ¼ 0 at this point. There is a second
smaller peak at ~g of 0.246, which is related to the near-zero slope
of ~gðnÞ at this value as shown in Fig. 9. Two square-shape jumps
in the profile of qð~gÞ in the region of 0:215 < ~g < 0:225 are trig-
gered by the small discontinuity of ~gðnÞ at elemental boundaries
(discussed in the preceding paragraph).

Once the film cooling effectiveness response is obtained all sta-
tistical moments can be computed. The expected value for the
spatially-averaged film cooling effectiveness is E½~g� ¼ 0:238 and
is shown by a vertical dashed line in Fig. 9. It is important to note

Fig. 9 Probability density function for film cooling effective-
ness ~gðnÞ

Fig. 8 Spatially-averaged film cooling effectiveness ~gM ðnÞ with
different projection orders M ¼ 0; . . . ; 3
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that this expected value is lower than the optimal value of effec-
tiveness of 0.25 at the design BR of 0.3. This deterioration in
cooling performance is not surprising since it is linked to the vari-
ation in the blowing ratio around the 0.3 value, and cooling per-
formance worsens on either side of the 0.3 value. The standard
deviation of the spatially-averaged film cooling effectiveness is
r~g ¼ 0:022 which is equivalent to 6 9.4% variation with respect
to the expected value. This implies an overall cooling effective-
ness range of 0.216–0.26. In view of the blowing ratio variations
that are naturally present in the gas turbine environment, the
expected value E½~g� and the range of the cooling effectiveness
around E½~g� are of significant value to the turbine designer
because it allows for the incorporation of realistic effects such as
the blowing ratio variations.

4.4 Spanwise-Averaged Film Cooling Effectiveness. In
Fig. 10, the spanwise-averaged film cooling effectiveness at four
streamwise stations are shown. The film cooling effectiveness at
x1¼ 2 increases from BR¼ 0 and reaches the maximum of
g¼ 0.38 at BR¼ 0.18. Further increase in blowing ratio leads to
the jet liftoff and a decrease in g is observed. The slope dg/dn
decreases as the maximum g value is reached which according to
Eq. (27), causes the sharp increase of q(g) as it is shown in Fig.
11(a). At the maximum of g (g¼ 0.38), dg/dn¼ 0, and therefore
q(g) becomes unbounded. As the blowing ratio increases, the
magnitude of slope of g(n) increases as well, which contributes to
the decrease in q(g). However, the likelihood of blowing ratio
residing in this region increases (large l(n)) which prohibits a fast
decay of q(g). As a result a relatively large spread of q(g) around
its mean is observed, which is responsible for large values of the
standard deviation. Physically, large amount of the standard devi-
ation implies significant fluctuations in the cooling effectiveness
values despite the high cooling effectiveness values of 0.38 at this
region. This is further illustrated in Fig. 12, where at x1¼ 2, the
expected value E½~g� ¼ 0:316 and the standard deviation is 0.058.
At x1¼ 4 the maximum of g occurs at higher blowing ratio of
BR¼ 0.23. This overlap of the low-slope region near the g-maxi-
mum with the region of high probability for blowing ratio tends to
centralize q(g) in the overlapped region and thus it decreases the
spread of the pdf as it is shown in Fig. 11(b). As a consequence
the variance at this x1 decreases. This trend continues up to x1¼ 6,
where the width of the low-slope region widens and also the maxi-
mum of g nearly coincides with the maximum of l(n) at n¼ 0.3.
This gives rise to the most concentrated q(g) among the four cases
considered here, as it is shown in Fig. 11(c), and therefore the
least amount of the standard deviation is observed at x1¼ 6. This
implies that at this downstream location, despite the variability in
the upstream BR, its impact on the cooling effectiveness

variations is muted relative to the upstream locations. Further
downstream, at x1¼ 10 the maximum of g shifts to higher blowing
ratio (BR ’ 0:45), and downstream of the peak in the l(n) curve.
However, the relatively wide region of flat g creates a low-
sensitivity relationship between g and BR. This results in a fairly
concentrated q(g) and small value of standard deviation (see Fig.
11(d)).

In Fig. 12, the optimal film cooling effectiveness
(goptðx1Þ � gðx1; BRopt ¼ 0:3) and the expectation (E½gðx1; nÞ]) of
the spanwise-averaged film cooling effectiveness are shown. The
streamwise axis is extended to include the jet hole and its
upstream segment. The optimal effectiveness has higher values
everywhere downstream of the jet. The vertical bars show the
range of E½gðx1; nÞ�6rgðx1Þ, where rg(x1) is the standard varia-
tion of g(x1; n). It is clear that the randomness of the blowing ratio

Fig. 10 Spanwise-averaged film cooling effectiveness g(x1; n)
versus random blowing ratio at x1 5 2, 4, 6, and 10

Fig. 11 The pdf of spanwise-averaged film cooling effective-
ness at x1 5 2, 4, 6, and 10. Note that the horizontal axis in
(a)–(d) corresponds to the vertical axis in Fig. 10.

Fig. 12 Uncertainty in the spanwise-averaged film cooling
effectiveness g(x1; n)

Journal of Heat Transfer MARCH 2014, Vol. 136 / 031701-9

Downloaded From: http://heattransfer.asmedigitalcollection.asme.org/ on 11/18/2013 Terms of Use: http://asme.org/terms



does not have any effect on the region upstream of the hole and
therefore the standard deviation is zero in this segment. As it was
demonstrated above, the random blowing ratio has the maximum
impact near the jet trailing edge. The standard deviation decreases
after x1	 2.5 and reaches a minimum near x1¼ 6 and then
increases again till x1 ’ 9:5 and remains almost unchanged there-
after. This behavior is quantified in Figs. 13 and 14.

In Fig. 13, the contour plot of the standard deviation of temper-
ature, rhðxÞ, is shown on the cooled surface of x1¼ 0. Note that
the standard deviation of time-averaged temperature is also
equivalent to the standard deviation of the local film cooling
effectiveness, since �hðx1; 0; x3; nÞ ¼ 1� gðx1; x3; nÞ. The region
immediately downstream of the jet hole has the largest amount of
variability in film cooling effectiveness of rg ’ 0:15, which is
also equal to the relative variation of local film cooling effective-
ness of rg=E½g� ¼ 20%. Assuming typical engine operating con-
ditions with Th ¼ 1500�C and Tc ¼ 750�C, rh ¼ 0:15 translates
to Dh ’ 110�C on the blade surface as a result of variation in
blowing ratio.

Figure 14 shows the sensitivity and standard deviation of
spanwise-averaged film cooling effectiveness. The highest magni-
tude of the sensitivity is reached at x1¼ 2, which also corresponds
to maximum value of standard deviation, both re-affirming the ex-
istence of the high-sensitivity region downstream of the jet hole.
It should be noted that Sgðx1Þ, is a measure of the overall sensitiv-
ity of g(x1; n) with respect to blowing ratio. As it can be seen in
Fig. 10, g(x1; n) at x1¼ 2 has a large portion of negative slope
coinciding with the high-probability region. This leads to the
negative sign of sensitivity in this region. The magnitude of sensi-
tivity decreases at x1> 2 and becomes zero at x1 ’ 5. At x1 ’ 5
(although not shown in Fig. 10), the maximum of g(x1; n) roughly
occurs at the design point n¼ 0.3. This leads to a balanced distri-
bution of positive- and negative-slope regions around n¼ 0.3 with
a symmetric probability distribution around it. This means that the

random g(x1; n) at x1 ’ 5 has equal samples of positive and nega-
tive slope of dg/dn that have resulted in their cancellation and thus
zero sensitivity is resulted. Note that the standard deviation
reaches its minimum at roughly the same location of x1 ’ 5. At
x1	 5, the positive-slope region outweighs the negative-slope
region (see Fig. 10) resulting in positive sensitivities. The magni-
tude of the sensitivity also increases as the maximum of the g(x1;
n) occurs at higher blowing ratios, resulting in a smaller negative-
slope region. The value of standard deviation also increases due to
the increasing offset between the maximum of g(x1; n) and l(n).

5 Concluding Remarks

In this study, an efficient numerical algorithm for quantifying
the effect of uncertainty of blowing ratio on film cooling perform-
ance has been presented. The geometry of the problem includes a
plenum and a 35-deg inclined delivery tube. The blowing ratio is
a random variable associated with a truncated Gaussian distribu-
tion with the mean of 0.3 and the standard deviation of 0.098. The
multi-element general polynomial chaos is utilized to discretize
the parametric space into non-overlapping elements and an
orthogonal polynomial expansion within each element. A pseudo-
spectral method has been used to find the expansion coefficients
in a non-intrusive manner by sampling the governing equations at
Gauss-quadrature points. The spectral element method has been
used to perform direct numerical simulation at each quadrature
point. The findings of this study can be summarized as:

(1) A probabilistic framework to quantify the effect of random-
ness in the blowing ratio on film cooling effectiveness is
presented.

(2) Fast convergence of the the general polynomial chaos com-
bined with capability of local refinement offered by ME-
gPC method is as an effective strategy to evaluate the effect
of uncertainty or randomness in the blowing ratio on the
cooling performance.

(3) Using the approach in the current study, all the statistical
information of the time-averaged quantities, such as proba-
bility density function, expectation and variance, sensitiv-
ity, etc can be calculated. This information can be
integrated into a Bayesian approach for probabilistic
design, and future studies at higher Reynolds number will
explore these extensions into probabilistic design.

(4) The laterally-averaged cooling effectiveness has its maxi-
mum value closer to the trailing edge of the coolant hole.
This maximum value occurs at a lower blowing ratio, and
is associated with the largest variance.

(5) The expected values are lower than the design cooling
effectiveness at the design BR of 0.3 and reflect the influ-
ence of the blowing ratio randomness.

(6) The standard deviation of the surface temperature indicates
the randomness in blowing ratio causes the highest amount
of temperature variation (rh ’ 0:15) in the region extend-
ing from trailing edge of the exit hole to four diameters
downstream. This amounts to 20% of relative variation of
local film cooling effectiveness (rg=E½g�) or equivalently
the temperature variation of Dh ’ 110�C on the blade sur-
face for typical engine conditions.

(7) The most and least sensitive regions to the variation in
blowing ratio occur at two jet diameters and five jet diame-
ters downstream of the hole, respectively.
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Nomenclature

Be ¼ random element
BR ¼ blowing ratio

D ¼ jet diameter
IBe ¼ indicator random variable at element, Be

M ¼ general polynomial chaos order
Ne ¼ number of element in random space

p ¼ pressure
Pr ¼ Prandtl number
Re ¼ Reynolds number
S ¼ sensitivity with respect to random parameter
u ¼ Cartesian velocity vector
x ¼ Cartesian coordinate

Greek Symbols

g ¼ spanwise-averaged adiabatic film cooling effectiveness
~g ¼ spatially-averaged adiabatic film cooling effectiveness

l(n) ¼ probability density function of random parameter
/e

i ðnÞ ¼ general polynomial chaos basis of order i at element e
r ¼ standard deviation
h ¼ normalized temperature
n ¼ random parameter

Subscripts and Superscriptscð:Þ ¼ expansion coefficient
ð:ÞM ¼ orthogonal projection onto polynomial space of order

ð:Þ ¼ time average
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