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The distribution of variables in the water column controls the dispersion properties of non-hydrostatic models.
Because solving the Poisson equation is themost time consuming part of a non-hydrostaticmodel, it is highly de-
sirable to reduce the number of unknowns in the water column by placing them at optimal locations. The paper
presents the analytical dispersion relationship of a non-hydrostatic Euler model for water waves. The phase
speed of linear waves simulated by the semi-discretized Euler model can be expressed as a rational polynomial
function of the dimensionless water depth, kh, and the thicknesses of layers encompassing thewater column be-
come optimizable parameters in this function. The dispersion error is obtained by comparing this phase speed
against the exact solution based on the linear wave theory. It is shown that for a given dispersion error (e.g.
1%), the range of kh can be extended if the layer thicknesses are optimally selected. The optimal two- and
three-layer distributions for the aforementioned Euler model are provided. The Euler model with the optimized
layer distribution shows good linear dispersion properties up to kh≈ 9with two layers, and kh≈ 49.5with three
layers. The derived phase speedwas tested against both numerical and exact solutions of standingwaves for var-
ious cases. Excellent agreement was achieved. The model was also tested using the fifth-order Stokes theory for
nonlinear standingwaves. The phase speed of nonlinearwaves follows a similar trend of the derived phase speed
although it deviates proportionally with the increase of wave steepness ka0. Thus, the optimal layer distribution
can also be applied to nonlinear waves within a range of ka0 and kh. The optimization method is applicable to
other non-hydrostatic Euler models for water waves.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In physical oceanography, and coastal and ocean engineering, an
accurate and efficient prediction of surface waves is of paramount im-
portance. In the past several decadeswith the rapid advances in compu-
tational technology, substantial efforts have been devoted to developing
numerical models for simulating the propagation and evolution of
water waves from deep water to the shoreline.

A widely used type of models is based on depth-averaged equations,
such as Boussinesq-type models. The conventional Boussinesq models
(e.g. Peregrine 1967) have the drawback of weak dispersion and weak
nonlinearity, or a limited range of applicability. By introducing a refer-
ence velocity at an arbitrary vertical location as the velocity variable
and choosing the location to match the Padé [2, 2] expansion of the
exact linear dispersion relationship, Nwogu (1993) extended the appli-
cability of the model to kh≈ 3, here k is the wave number, and h is the
1 225 578 4595.
water depth. The dimensionless wave number kh serves as a dispersion
criterion.

Many efforts have been put in to enhance the deep-water accuracy of
the depth-integrated approach by developing high-order Boussinesq-
typemodels. By utilizing a quartic polynomial approximation for the ver-
tical profile of velocity field, Gobbi and Kirby (1999) developed a model
with excellent linear dispersion properties up to kh ≈ 6. The models of
Madsen and Schäffer (1998), andChenet al. (1998) also showedgood lin-
ear dispersive wave properties up to kh≈ 6. Madsen et al. (2002) further
improved the Boussinesq-typemodel andmade it applicable to extreme-
ly deep-water waves with kh≈ 40. Agnon et al. (1999) presented a new
procedure to achieve good nonlinear dispersion properties up to kh≈ 6.

Lynett and Liu (2004a and 2004b) introduced another approach to
improving the dispersion accuracy of Boussinesq-type models. Instead
of using a high-order approximation for the vertical profile of the flow
field, they used N independent quadratic polynomial approximations
for the velocity profiles. These polynomial approximations match at
the interfaces that divide the water column into N layers. Good disper-
sion accuracy up to kh ≈ 8 was achieved with an optimized two-layer
model. Chazel et al. (2009) combined the approach in Madsen et al.
(2002) and the approach in Lynett and Liu (2004a), and developed an
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efficient model with less complexity. This model exhibits good linear
and nonlinear dispersion properties to kh ≈ 10.

Another widely used type of models is based on the Navier–Stokes
equations (NSE) or the Euler equations of fluidmotion. Themomentum
equations are solved at every layer for this type ofmodels, thus the com-
putational cost is higher comparedwith the Boussinesq typemodels. To
capture the rapid changing free surface and to apply the pressure
boundary condition precisely on the free surface of the waves, Navier–
Stokes models involve the non-hydrostatic pressure on the top layer,
and solve this problem by methods of: (1) employing edged-based
grid systems (e.g. Lin and Li, 2002; Zijlema and Stelling, 2005, 2008;
Zijlema et al., 2011; Chen et al., 2011; Ma et al., 2012), (2) using the in-
tegration method (e.g. Yuan andWu, 2004), (3) implementing interpo-
lation approaches (e.g. Walters, 2005; Choi andWu, 2006; Young et al.,
2007), and (4) embedding Boussinesq-type like equation into the
Navier–Stokes model (e.g. Wu et al., 2010).

To improve themodel dispersion properties, non-uniform layers have
beenused. Finer vertical resolution is utilizednear the free surface for cap-
turing the rapid velocity and pressure variation while coarse resolution is
used at the bottomdue to themild change of velocity and pressure in this
region. Yuan and Wu (2006) presented a so-called top-down resolving
(TDR) technique to determine a set of suitable thickness for layers. The
basic concept of this technique is to keep a fine resolution from the top
layers down to the one just above the bottom layer, and use a coarse res-
olution for the bottom layer. With this TDR method, their model can
achieve the same dispersion accuracy using 5 non-uniform layers rather
than using 10 uniform layers for waves with kh= 4.

Young and Wu (2009) provided the top-layer thickness for their
two-layer non-hydrostatic model. For kh = 3.14, the top layer takes
50% of the water depth; for kh = 6, the top layer takes 39.3% of the
water depth, and for kh = 15, the top layer takes 15.7% of the water
depth. However, the dependence of the top layer thickness on kh values
hinders the model application in resolving highly dispersive random
waves. Young and Wu (2010) proposed an adapted top-layer control
(ATLC) method that eliminates the model layer thickness dependence
on kh. The basic concept is that the finer resolution of the top layer is
given by ΔσN = 0.5 / (N − 1), where ΔσN is the top layer size, and N
is the number of layers. The size of the rest layers exponentially
stretches to the bottom layer. The top layer size is set as 50%, 25% and
12.5% for two-, three-, and five-layer models, respectively. For a given
tolerance phase error of 1%, the two-, three-, and five-layer models are
capable of resolving linear wave dispersion up to kh = 3.14, 6.28 and
15.7, respectively.

Zijlema and Stelling (2005, 2008) and Zijlema et al. (2011) proposed
a non-hydrostatic, free-surface flow model, SWASH (an acronym of
Simulating WAves till SHore) for simulating wave propagation from
deep water to the surf zone, using a semi-implicit, staggered finite vol-
ume method. The adoption of the Keller-box scheme in this model en-
abled the pressure to be assigned at the free surface without any
approximation, and also enabled good dispersion properties at very
low vertical resolution (two or three layers). Using two uniform layers,
for a 1% tolerance phase error, SWASH achieves good linear dispersion
properties up to kh ≈ 7 and 3 for standing waves and progressive
waves, respectively. Using three uniform layers, for a 1% tolerance
phase error, SWASH achieves good linear dispersion properties up to
kh ≈ 7 for progressive waves. Zijlema et al. (2011) suggested that
adjusting layer thicknesses could significantly improvewave dispersion
accuracy. With layer thickness tuned as 10%, 20%, and 70% of the total
water depth, their three-layer model is able to simulate waves with kh
≈ 15.7 with a relatively small phase error.

Bai and Cheung (2013) provide theoretical dispersion relationships
for anN-layer Boussinesq-type system. The derived dispersion relation-
ships follow a [2 N− 2, 2 N] Padé expansion. The accumulative disper-
sion error is computed over 0.01≤ kh≤ 6 for covering a wide spectrum
of ocean waves from deep water to shoreline. The layer arrangement
appears as free parameter and can be adjusted for minimizing the
accumulative dispersion error, and optimizing the proposed model.
The two-layer model with the optimal layer arrangement of 50%–50%
of the water depth gives a minimum error of 3.445%. The three-layer
model with the optimal layer arrangement of 29%–32%–39% of the
water depth gives a minimum error of 3.09%.

Similar to Boussinesq-type models in which the location of the hor-
izontal velocity in the water column controls the dispersion properties,
the vertical distribution of the variables in non-hydrostatic free surface
flowmodels dictates themodel dispersion accuracy. Because solving the
Poisson equation is the most time consuming part of a non-hydrostatic
model, it is highly desirable to reduce the number of unknowns in the
water column by placing them at optimal locations. The objective of
our study is to derive the analytical dispersion relationship of a non-
hydrostatic free surface flow model and optimize it for extremely dis-
persive and highly nonlinear waves with only two or three layers. Al-
though the optimization method is applicable to all non-hydrostatic
models, for the demonstration purpose, the present work chose a
Euler model that uses the algorithm and numerical scheme presented
in Zijlema and Stelling (2005), except using thefinite differencemethod
in a sigma-coordinate. In this paper, we will present: (1) the derivation
of the phase speed of linear waves simulated by the semi-discretized
non-hydrostatic Euler model, and (2) the optimal two- and three-
layer distributions. For a 1% tolerance dispersion error, the optimal
two-layer distribution from bottom to top is 67% and 33% of the total
water depth and the Euler model is capable of simulating linear waves
up to kh = 9. For a 1% tolerance dispersion error, the optimal three-
layer distribution from bottom to top is 68%, 26.5% and 5.5% of the
total water depth and the Eulermodel is capable of simulating extreme-
ly dispersive waves up to kh= 49.5.

Furthermore, nonlinear standingwave tests have been performed to
examine the effect of nonlinearity. Kirby and Dalrymple (1986) pro-
posed a nonlinear dispersion relation, which effectively approximated
the dispersion characteristics of waves propagating from deep to shal-
low waters. The nonlinear effect was scaled by wave steepness ka0,
and the phase speed became a function of kh and ka0. In this paper, nu-
merical experiments with different ka0 are conducted. A fifth-order
Stokes-type exact solution for standing waves (Sobey, 2009) is utilized
to test our model. We have found that the phase speed of nonlinear
waves follows the analytically derived linear phase speed, although
the discrepancy rises as ka0 increases. Therefore the optimal layer distri-
bution can also be applied to the nonlinear wave simulation.

This paper is organized as follows: Section 2 briefly describes the
governing equations and the numerical schemes. Section 3 presents
the numerical results in comparison with the exact solution to demon-
strate the performance of themodel. In Section 4, we derive the analyt-
ical dispersion relationship of this discretized system of Euler equations
followed by the determination of the optimal two- and three-layer dis-
tributions for extremely dispersivewaves. Section 5 is focused on the ef-
fect of wave nonlinearity on the model performance with the optimal
layer distributions. Finally, Section 6 summarizes the findings and pre-
sents the conclusions.

2. The Euler model

2.1. Governing equations

The propagation of fully dispersive, nonlinear water waves is
governed by the continuity equation and the incompressible Euler
equations, which are written as

∂u
∂x� þ

∂w
∂z� ¼ 0 ð1Þ

∂u
∂t� þ u

∂u
∂x� þw

∂u
∂z� þ

∂p
∂x� ¼ 0 ð2Þ
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∂w
∂t� þ u

∂w
∂x� þw

∂w
∂z� þ

∂p
∂z� ¼ 0 ð3Þ
Fig. 1. The layout of the variables in the Keller-box scheme.
where, (x⁎,z⁎) is the Cartesian coordinates, u and w are the velocity
components in the x⁎- and z⁎-direction respectively, p is the total pres-
sure. p is normalized by thewater density ρ, and divided into hydrostat-
ic part g(η− z⁎) and non-hydrostatic part q. Here, g is the gravitational
acceleration, and η is the free surface elevation.

The physical computational domain is vertically bounded by the bot-
tom z⁎=−h(x⁎) and the free surface z⁎= η(x⁎,t⁎). To accurately rep-
resent the uneven bottom and the time dependent free surface, a σ-
coordinate (Phillips, 1957) is adopted.

t ¼ t�; x ¼ x�; σ ¼ z� þ h
D

ð4Þ

whereD(x,t)= η(x,t)+ h(x) is the total water depth. Themapped com-
putational domain is a stationary rectangular area, with σ ranging from
0 to 1 corresponding to the bottom and the free surface, respectively.
Based on the chain rule, the governing equations in the σ-coordinate
(x, σ, t) take the forms

∂u
∂x þ

∂u
∂σ

∂σ
∂x� þ

∂w
∂σ

∂σ
∂z� ¼ 0 ð5Þ

∂u
∂t þ u

∂u
∂x þwσ

∂u
∂σ þ g

∂η
∂x þ

∂q
∂x þ

∂q
∂σ

∂σ
∂x� ¼ 0 ð6Þ

∂w
∂t þ u

∂w
∂x þwσ

∂w
∂σ þ ∂q

∂σ
∂σ
∂z� ¼ 0 ð7Þ

where, u andw are components of velocity in the x- and σ-direction, re-
spectively, and

wσ ¼ Dσ
Dt�

¼ ∂σ
∂t� þ u

∂σ
∂x� þw

∂σ
∂z� ð8Þ

∂σ
∂x� ¼

1
D
∂h
∂x−

σ
D
∂D
∂x ;

∂σ
∂z� ¼

1
D
;

∂σ
∂t� ¼ −σ

D
∂D
∂t : ð9Þ

The kinematic boundary conditions at the free surface (σ = 1) and
the impermeable bottom (σ = 0) are:

wjσ¼1 ¼ ∂η
∂t þ u

∂η
∂x ð10Þ

wjσ¼0 ¼ −u
∂h
∂x : ð11Þ

The dynamic boundary condition at the free surface (σ = 1) is zero
atmospheric pressure

qjσ¼1 ¼ 0: ð12Þ

The depth-integrated continuity equation can be obtained by inte-
grating Eq. (1) through the water column. After applying the kinematic
boundary conditions, the resulting equation in σ-coordinate reads

∂η
∂t þ

∂
∂x D

Z 1

0
udσ

� �
¼ 0: ð13Þ

Waves are generated at the inflow boundary by prescribing the ve-
locities and the surface elevation from the linear wave theory. At the
outflow boundary, a sponge zone with a width of two wave lengths is
enforced to eliminate the wave reflection from the boundary. Inside
the sponge zone, the primitive variables are attenuated in the following
manner:

η j ¼ η j=Cs; uj ¼ uj=Cs; wj ¼ wj=Cs ð14Þ

in which Cs is the damping coefficient defined by

Cs ¼ αsð Þγs
i
; i¼0;…;n ð15Þ

where αs and γs are free parameters, and n is the number of grids in the
sponge zone. Numerical tests showed that best elimination of reflected
waves from the boundary is attainedwithαs=2andγs=0.88 for short
waves; whereas the so-called Sommerfeld radiation boundary condi-
tion needs to be utilized for long waves. Treatments of these two
types of outflowboundary conditions can be found in Chen et al. (1999).

2.2. Numerical scheme and algorithm

The numerical method of this model follows the framework of
SWASH (Zijlema and Stelling, 2005). The discretization of the governing
equations is based on the Crank–Nicholsonmethod, which gives second
order accuracy in space and time. The adoption of the Keller-box
scheme in this model enabled the pressure at the free surface to be
assigned with the dynamic boundary condition without any approxi-
mation, and also enabled good dispersion properties at very low vertical
resolution (two or three layers). The computational domain in σ-
coordinate is divided into NX × NZ rectangular cells with width Δx
and height Δσk = σk − σk − 1, k = 1, …, NZ. The grid points in x- and
σ-direction are denoted as

Xjxiþ1=2 ¼ iΔx; i ¼ 0;…;NX
n o

and

Zjσk ¼ σk−1 þ Δσk; k ¼ 1;…;NZf g:
ð16Þ

The velocity components are distributed in a staggeredmanner, (i.e.
u andw are located at (i+1/2,k+1/2) and (i,k), respectively). The non-
hydrostatic pressure q is located at the sameplace asw in the Keller-box
scheme. The free surface elevation, η, is defined at the center of the sur-
face cell. Fig. 1 illustrates the layout of the all variables in the Keller-box
scheme.

The algorithm can be decomposed into two phases to handle the hy-
drostatic and non-hydrostatic pressure separately. The employment of
the pressure correction technique enables global mass conservation
and local mass conservation. In the first phase (i.e. the hydrostatic
phase), the hydrostatic part of the pressure, or the surface elevation
(η), is computed. The horizontal moment equation (Eq. (6)) and the
depth-integrated continuity equation (Eq. (13)) are discretized and
coupled into a linear system of equations in Δη, which is the temporal
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change in the surface elevation. In the second phase (i.e. the non-
hydrostatic phase), the non-hydrostatic part of the pressure, q, is com-
puted. The momentum equations (Eqs. (6) and (7)) and continuity
equation (Eq. (5)) are discretized and coupled into the Poisson equation
in Δq, which is the temporal change in the non-hydrostatic pressure.
The Poisson equation is solved by the HYPRE (http://acts.nersc.gov/
hypre), a software library for solving large-scale linear systems of equa-
tions on massively parallel computers. Jacobi and GMRES (Generalized
Minimal RESidual) solvers are utilized to solve non-symmetric systems.
Velocities u andw and pressure q are updated in this phase.More details
about the numerical procedure can be found in Zijlema and Stelling
(2005).

3. Model performance

The dispersion accuracy of the Euler model was examined through
simulation of linear and non-linear dispersive waves. Tests results
were compared with exact solutions from the linear wave theory. To
study the capability of this model in resolving linear dispersion proper-
ties and nonlinear effect, three test cases are discussed in this section:
(1) linear standing waves in a closed basin; (2) linear progressive
waves in a flume; and (3) non-linear standing waves in a closed basin.

3.1. Linear standing waves

The numerical model was first tested against the exact solution of
standing waves with an amplitude of a0 = 0.1 m in a 20 m long closed
basin. Dispersive waves (kh= 2π) were simulated to test the accuracy
of this model. The computational domain contains 200 grids with uni-
form spacing of 0.1 m in the horizontal direction, and two layers with
uniform thickness in the vertical direction. The time step Δt was set as
T/400, where T is the wave period. Fig. 2 (upper panel) shows the com-
parison of the numerical and exact surface elevations at x = 10 m. The
surface elevation was normalized by the wave amplitude a0 and time
was normalized by thewave period T. The computed surface elevations
agree very well with the exact solution.

Define the relative dispersion error as Δe = |cmodel − ce|/ce. Fig. 3
shows that the relative dispersion error reduces as the number of the
layers increases, and approaches a constant. For highly dispersive
waves, more layers are required for achieving sufficiently accurate re-
sults. Finer vertical resolution can help improve the dispersion accuracy,
but the computational cost goes up quickly as the vertical resolution of a
Fig. 2. Comparisons between the numerical (circles) and exact (solid line) surface eleva-
tions for standing waves (upper panel) and progressive waves (lower panel) with kh =
2π using two uniform layers.
non-hydrostatic Euler model increases. For this reason, in Section 4, we
present a method to achieve high dispersion accuracy using a small
number of layers (e.g. two or three layers).

3.2. Linear progressive waves on a flat bottom

The second test case is the linear progressive waves propagating in
constant water depth. A wave train with an amplitude of a0 = 10−3

m and a wavelength of L = 10 m is generated at the left end of a 160
m long flume. The water depth is set as 10m tomake waves highly dis-
persive (kh=2π). A 20 m long sponge zone is added at the right end of
the flume to absorb the outgoing waves and minimize the reflection.
The Courant number is defined as

Cr ¼ Δt
Δx

ffiffiffiffiffiffi
gh

p
þmax uð Þ

h i
: ð17Þ

The computational domain used a uniform grid spacing of 0.2 m in
the horizontal direction, and two layers with uniform thickness in the
vertical direction. The time integration with respect to the convection
terms is of explicit type. Thus, the Courant number was set as 0.1567,
and the time step Δt was determined accordingly, which gives Δt = T/
800, where T is the wave period. The high horizontal and temporal res-
olution minimizes the discretization errors in the x direction and time.
Fig. 2 (lower panel) shows the comparisons of numerical and analytical
surface elevations at t= 80 s. The surface elevation was normalized by
the wave amplitude a0 and time was normalized by the wave period T.
The computed surface elevations agree well with the exact solution
from the linear wave theory. The numerical result was taken one
wave length from the left boundary to avoid small disturbances intro-
duced by the inflow boundary.

4. Linear dispersion analysis

4.1. Linear dispersion properties for an N-layer model

In this section, the phase speed of linear waves simulated by the
aforementioned non-hydrostatic Euler model is derived. The Keller-
box scheme and the same layout of variables (i.e., velocities, pressure
and surface elevation) are used in the derivation for the sake of consis-
tency. The dispersion error is obtained by comparing this phase speed
against the analytical phase speed from the linear wave theory.

http://acts.nersc.gov/hypre
http://acts.nersc.gov/hypre
image of Fig.�3
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The linearized governing equations in the Cartesian coordinate are
written as follows:

∂u
∂x þ

∂w
∂z ¼ 0 ð18Þ

∂u
∂t þ g

∂η
∂x þ

∂q
∂x ¼ 0 ð19Þ

∂w
∂t þ ∂q

∂z ¼ 0 ð20Þ

∂η
∂t þ

∂
∂x

Z 0

−h
udz ¼ 0: ð21Þ

The computational domain is divided into N layers. The layer
thickness is denoted as Δzj = αjh(j = 1, 2, …, N,
from the bottom layer to the top layer), where Δzj is the thickness
of layer j; h is the water depth; αj is the ratio of thickness of layer j
to the water depth. αj satisfies the equality ∑ αj = 1.

The derivation starts with the quasi-discrete vertical momentum
equation, obtained by discretizing Eq. (20) in the vertical direction only.

1
2

∂wjþ1

∂t þ ∂wj

∂t

 !
þ qjþ1−qj

Δz jþ1
¼ 0; j ¼ 0;…;N−1 ð22Þ

The vertical momentum equation is discretized at the center of the
layer, rather than at the interface of the layer. Aflat bottom is considered
here, thusw0 = 0 and ∂w0/∂t=0. The time derivative of vertical veloc-
ity is obtained from Eq. (22).

∂w1

∂t ¼ −2
q1−q0
α1h

ð23Þ

∂wj

∂t ¼ −2
qj−qj−1

α jh
−

∂wj−1

∂t ; j ¼ 2;…;N ð24Þ

By taking the temporal derivative of Eq. (18) and the spatial deriva-
tive of Eq. (19), and doing subtraction, we get

1
Δz j

∂wj

∂t −
∂wj−1

∂t

 !
−g

∂2η
∂x2

−1
2

∂2qj

∂x2
þ ∂2qj−1

∂x2

 !
¼ 0; j ¼ 1;…;N:

ð25Þ

The time derivative of vertical velocity from Eqs. (23) and (24), and
the free surface dynamic boundary condition (i.e. qN=0) are substitut-
ed into Eq. (25), yielding

−2
q1−q0
α2
1h

2 −g
∂2η
∂x2

−1
2

∂2q1
∂x2

þ ∂2q0
∂x2

 !
¼ 0 ð26Þ

−2
qj−qj−1

α2
j h

2 −4
XN−1

s¼1

−1ð Þs q j−s−qj−s−1

α j−sα jh
2 −g

∂2η
∂x2

−1
2

∂2qj

∂x2
þ ∂2qj−1

∂x2

 !

¼ 0; j ¼ 2;…;N: ð27Þ

The pressure, the horizontal velocity and the surface elevation can
be expressed in harmonic forms

qj ¼ Q je
iθ
; uj ¼ U je

iθ
; η ¼ Aeiθ ð28Þ
where θ= kx−ωt, k is thewave number, andω is the angular frequen-
cy. According to the linear wave theory, the pressure can be further
expressed as

qj ¼ mjgAe
iθ
: ð29Þ

Substituting Eq. (29) into Eqs. (26) and (27) leads to a system of lin-
ear equations for mj, which is

−2
m1−m0

α2
1

þ khð Þ2 þ 1
2

m0 þm1ð Þ khð Þ2 ¼ 0 ð30Þ

−2
mj−mj−1

α2
j

−4
Xk−1

s¼1

−1ð Þs mj−s−mj−s−1

α j−sα j
þ khð Þ2 þ 1

2
mj þmj−1

� �
khð Þ2

¼ 0; j ¼ 2;…;N: ð31Þ

By virtue of the Cramer's rule (Cramer, 1750),mj can be expressed as
a rational polynomial function of kh, with themaximum power equal to
2 N. The ratios of layer thicknesses to the water depth (αj) play as free
parameters in this function.

Applying the rectangle rule to Eq. (21) yields

∂η
∂t þ

∂
∂x
XN
j¼1

ujΔz j ¼ 0: ð32Þ

By substituting the expression ofmj, and harmonic forms of u, q and
η into Eqs. (19) and (21), a system of linear equations for Uj and A is ob-
tained:

−ωAþ kh
XN
j¼1

α jU j ¼ 0 ð33Þ

1þ 1
2

mj þmj−1

� �� �
gkA−ωU j ¼ 0; j ¼ 1;…;N: ð34Þ

In order to get a non-trivial solution for Uj and A, the determinant of
thematrix must be equal to zero, which leads to the phase speed of lin-
ear waves simulated using this Euler model. The calculations were per-
formed using MATHEMATICA.

4.2. Two-layer model

For a two layer model (j = 2), the pressure coefficients mj can be
expressed as:

m0 ¼ −2 a1−a2 þ a3ð Þ khð Þ2
khð Þ4 þ a1−2a2 þ a3ð Þ khð Þ2 þ a1a3

ð35Þ

m1 ¼ −2 khð Þ4−2 a1−a2ð Þ khð Þ2
khð Þ4 þ a1−2a2 þ a3ð Þ khð Þ2 þ a1a3

ð36Þ

m2 ¼ 0 ð37Þ

where a1= 4/α1
2, a2=−8/α1α2, a3= 4/α2

2. The dispersion relationship
for the two-layer model is expressed as

ω2 ¼ gk kh 1þ 1
2
α1 m0 þm1ð Þ þ 1

2
α2m1

� �� �
: ð38Þ
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Fig. 4. Comparison of the relative phase errors obtained theoretically (solid lines) and nu-
merically (circles) using two equally distributed (upper panel) and optimally distributed
(lower panel) layers bounded by a 1% tolerance dispersion error.
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The phase speed cmodel becomes

cmodel ¼ ghð Þ1=2 kh 1þ 1
2
α1 m0 þm1ð Þ þ 1

2
α2m1

� �� �1=2
: ð39Þ

The dispersion error is obtained by comparing this phase speed
against the analytical phase speed, ce, from the linear wave theory.
The relative dispersion error Δe = |cmodel − ce|/ce is obtained as

Δe ¼
kh

tanh khð Þ 1þ 1
2
α1 m0 þm1ð Þ þ 1

2
α2m1

� �� �1=2
−1: ð40Þ

For a 1% tolerance dispersion error, the two-equidistant-layer model
can simulate waves with kh up to 7. This dispersion accuracy is consis-
tent with that of SWASH. A simple loop algorithm is utilized to find
out the optimal layer thickness. Since α1 plays as the only free parame-
ter in the dispersion error expression for the two-layer model, we
started at α1 = 0.01 (1% of water depth h) with increment of 0.001
and select the optimal 1 to maximize the range of kh for a given toler-
ance dispersion error. A summary of the optimization results is shown
in Table 1. For simulating waves with a fixed kh value, Eq. (40) can be
utilized to determine an appropriate layer distribution for achieving
the minimum dispersion error.

To examine the model's dispersion properties, a series of numerical
tests, both standing wave tests and progressive wave tests, were con-
ducted. The phase errors were quantified and compared with the theo-
retically derived results (i.e. Eq. (40)). Excellent agreement has been
obtained although small discrepancies between numerical and analyti-
cal phase speedswere observed for progressive wave test cases because
of the inflow and outflow boundary effect. In the following parts of this
paper, only standingwave test results are discussed. Thewavelength L is
fixed as 20m, and thewater depth h varies. Thewave amplitude a0 is set
as 10−4 m to eliminate nonlinear effects.

Fig. 4 shows the comparison of the relative phase errors obtained the-
oretically and numerically using equidistant (upper panel) and optimal
(lower panel) layer distributions with a 1% tolerance dispersion error.
The numerical results exhibit excellent agreement with the theoretical
estimates, which indicates that the derived phase speed accurately rep-
resents the linear dispersion properties of this model. Fig. 5 shows the
theoretical and numerical phase speeds with the optimal layer distribu-
tion. The wave speeds were normalized by the exact solution from the
linear wave theory. As seen in the inset, the simulated free surface eleva-
tions are in good agreement with the exact solution for kh= 9.08.

4.3. Three-layer model

For a three-layer model (j = 3), the pressure coefficient mj can be
expressed as:

m0 ¼ B0
1 khð Þ2 þ B0

2 khð Þ4 þ B0
3 khð Þ6

C0 þ C1 khð Þ2 þ C2 khð Þ4 þ C3 khð Þ6 ð41Þ

m1 ¼ B1
1 khð Þ2 þ B1

2 khð Þ4
C0 þ C1 khð Þ2 þ C2 khð Þ4 þ C3 khð Þ6 ð42Þ
Table 1
Optimal layer distribution for the two-layer model.

Tolerance
dispersion error (%)

Upper limit
of kh range

Layer distribution (percentage of
the water depth) from bottom to top

0.1 0.32 51%–49%
0.5 0.86 50%–50%
1 9.08 67%–33%
m2 ¼ B2
1 khð Þ2 þ B2

2 khð Þ4 þ B2
3 khð Þ6

C0 þ C1 khð Þ2 þ C2 khð Þ4 þ C3 khð Þ6 ð43Þ

m3 ¼ 0 ð44Þ

where the coefficients B10, B20, B11, B21, B12, B22, B32, C0, C1, C2 and C3 are given
in Appendix A. The dispersion relationship for the three-layer model is
expressed as

ω2 ¼ gk kh 1þ 1
2
α1 m0 þm1ð Þ þ 1

2
α2 m1 þm2ð Þ þ 1

2
α3m2

� �� �
: ð45Þ

The phase speed cmodel becomes

cmodel ¼ ghð Þ1=2 1þ 1
2
α1 m0 þm1ð Þ þ 1

2
α2 m1 þm2ð Þ þ 1

2
α3m2

� �1=2
:

ð46Þ

The dispersion error Δe is obtained as

Δe ¼
kh

tanh khð Þ 1þ 1
2
α1 m0 þm1ð Þ þ 1

2
α2 m1 þm2ð Þ þ 1

2
α3m2

� �� �1=2
−1:

ð47Þ

For a 1% tolerance dispersion error, the three-equidistant-layer
model can simulate waves with kh up to 16.4. Two variables α1 and α2

play as free parameters in the selection of the optimal layer thicknesses.
A summary of the optimization results is shown in Table 2.

Fig. 6 shows the comparison of the relative phase errors obtained
theoretically and numerically using equidistant (upper panel) and opti-
mal (lower panel) layer distributions bounded by a 1% tolerance disper-
sion error. The numerical results exhibit excellent agreement with the
theoretical estimates. Fig. 7 shows the theoretical and numerical phase
speeds with the optimal layer distribution. The wave speeds were nor-
malized by the exact solution from the linear wave theory. As seen in
the inset, the simulated free surface elevations are in good agreement
with the exact solution for kh= 49.5.

For the three-layer model, the highest polynomial order of kh in the
numerator and denominator in the expression of phase speed reaches 6,
compared with 4 for the two-layer model. This explains why the three-
layer model can produce more accurate results than the two-layer
model. The dispersion accuracy is drastically improved by increasing
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the number of layers or by using optimal layer distribution as shown in
Fig. 8.

5. Evaluation of the nonlinear effect

5.1. Nonlinearity parameter

The aforementioned dispersion relationships were derived assum-
ing wave steepness ka (where a is the characteristic wave amplitude)
was infinitely small, or ka ≪ 1. However, for large amplitude waves,
the wave properties and analytical dispersion relationship involve a
power series of ka (e.g. Sobey, 2009); therefore, the nonlinearity can
be scaled by the wave steepness ka. The breaking criterion limits the
maximum amplitude of wave to be 2a/L ≈ 0.14 (ka ≈ 0.44) in deep
water (Longuet-Higgins, 1973; Michell, 1893). The derivation of disper-
sion relationship for nonlinear waves is not trivial due to nonlinear
terms in the governing equations. Howeverwe can attain the dispersion
curves numerically.

Nonlinear standing waves with an amplitude a0 sloshing in a 20 m
long closed basin were simulated to examine the performance of this
Euler model in simulating nonlinear dispersive waves. Exact solutions,
based on a fifth-order Stokes theory (Sobey, 2009), were used to specify
the initial conditions and verify the model results. The non-linear dis-
persion relationship derived by Sobey (2009) reads

gkð Þ1=2
X5
i¼1

ka0ð Þ i−1ð ÞDi ¼ 2π=T ð48Þ

where Di are dimensionless coefficients given in Appendix B. The phase
speed, affected by the wave nonlinearity, becomes a function of kh and
ka0. The three-layermodel using the optimal vertical layoutwas utilized
to predict waves with four wave steepnesses, ranging from linear (ka0
= 0.000314), weakly nonlinear (ka0 = 0.157), and strongly nonlinear
Table 2
Optimal layer distribution for the three-layer model.

Tolerance
dispersion error (%)

Upper limit
of kh range

Layer distribution (percentage
of the water depth) from bottom to top

0.1 0.5 33.4%–33.3%–33.3%
0.5 23.5 45%–43%–12%
1 49.5 68%–26.5%–5.5%
(ka0 = 0.314) to the wave breaking limit (ka0 = 0.44). Also, for a
given tolerance dispersion error (1%), the maximum kh is found for
ka0 ranging from 0.000314 to 0.44 with an increment of 0.05.

5.2. Numerical results

Fig. 9 shows the comparison of the relative phase speeds (c/ce) ob-
tained theoretically (linear) and numerically (nonlinear) for the four
types of waves. For nonlinear waves the phase speed follows a similar
trend to the derived phase speed for linear waves but deviates propor-
tionally with the increase of ka0; therefore, the optimal layer distribu-
tion based on the linear dispersion relationship of the discretized
Euler equations can also be utilized to simulate nonlinear waves within
a range of ka0 and kh. Table 3 lists themaximum kh for different ka0with
the dispersion error limited to 1%. In practical applications, if ka0 is
known, a rough range of kh can be estimated and within this range
the optimized model can provide numerical results with a dispersion
error less than 1%.

Fig. 10 shows the comparison of the modeled surface elevation and
fifth-order Stokes solution (Sobey, 2009) under four types of wave con-
ditions corresponding to the maximum kh values of 49.50, 11.95, and
2.83, respectively. It is seen that the numerical model with the
0 10 20 30 40 50
0.99

0.992

0.994

kh

Fig. 7. Comparison of the theoretically derived (solid line) and numerically obtained (cir-
cles) phase speedswith three optimally distributed layers. Inset: comparison of numerical
(circles) and exact (solid line) solutions of surface elevations for kh = 49.5.
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Table 3
The maximum kh for different ka0 with 1% dispersion error.

ka0 Maximum kh

0.000314–0.16 49.50
0.2 13.82
0.25 12.57
0.314 11.94
0.35 4.40
0.4 3.45
0.44 2.83
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optimized layer thickness captures the wave nonlinearity quite well in
comparison with the Stokes solutions of nonlinear stranding waves.

6. Conclusions

Amodel for simulating the propagation of fully dispersive, nonlinear
water waves was developed following the Keller-box scheme and the
numerical algorithm presented in the SWASH model. The aim of this
paper was to develop a theoretically sound method to optimize non-
hydrostatic Euler models for extremely dispersive, nonlinear water
waves. The key findings are as follows:

1. The theoretical phase speed of linear waves simulated by the non-
hydrostatic Eulermodel is provided in this paper. It is a rational poly-
nomial function of the dimensionless water depth, kh, and the thick-
nesses of layers encompassing the water column appear as free
parameters in this function. The dispersion error thereupon is ob-
tained by comparing this phase speed against the exact solution
from the linear wave theory.
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Fig. 9. Comparison of relative phase speeds obtained from theoretical derivation (black
solid line) and numerical experiments for linearwaves (ka0= 3e− 4, cross), weakly non-
linearwaves (ka0= 0.157, triangle), strongly nonlinear waves (ka0= 0.314, square), and
extremely nonlinear waves (ka0 = 0.440, circle).
2. For a 1% tolerance dispersion error, the optimal layer distribution of a
two-layer model from bottom to top is 67% and 33% of the water
depth, and with this optimal layer distribution the model can simu-
late waves up to kh = 9.08.

3. For a 1% tolerance dispersion error, the optimal layer distribution of a
three-layer model from bottom to top is 68%, 26.5% and 5.5% of the
water depth, and with this optimal layer distribution the model can
simulate waves up to kh = 49.5.

4. The phase speed of simulated nonlinear waves follows a trend simi-
lar to linear waves; therefore, the optimal layer distribution can be
applied to nonlinear wave simulations as well. A table is provided
for estimating the applicable range of kh for a given ka0 to simulate
nonlinear waves with less than a 1% dispersion error.

5. It has been shown that the derived dispersion relationships for two-
and three-layer models are valid. Such a technique can be extended
to any number of layers. Moreover, the methodology can be applied
to other non-hydrostatic models for water waves to minimize the
number of layers needed to simulate a wide spectrum of ocean
waves from deep to shallow waters.
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Appendix A. Dispersion relation coefficients for the three-layer
model

The coefficients B10, B20, B11, B21, B12, B22, B32, C0, C1, C2 and C3 for the three-
layer model are given as

B0
1 ¼ −4α2

1−4α2
2−4α2

3−8α1α2−8α1α3−8α2α3 ðA:1Þ

B0
2 ¼ −2α2

1α2α3−2α1α
2
2α3−2α2

3α1α2 ðA:2Þ

B0
3 ¼ −1

4
α2
1α

2
2α

2
3 ðA:3Þ

B1
1 ¼ −8α1α2−8α1α3−8α2α3−4α2

2−4α2
3 ðA:4Þ

B1
2 ¼ −α2

1α
2
2−α2

1α
2
3−2α2

1α2α3−2α1α
2
2α3−2α1α2α

2
3 ðA:5Þ

B2
1 ¼ −8α1α3−8α2α3−4α2

3 ðA:6Þ

B2
2 ¼ −2α2

1α2α3−2α1α
2
2α3−α2

1α
2
3−4α1α2α

2
3−α2

2α
2
3 ðA:7Þ

B2
3 ¼ −1

4
α2
1α

2
2α

2
3 ðA:8Þ

C0 ¼ 8 ðA:9Þ

C1 ¼ 2α2
1 þ 2α2

2 þ 2α2
3 þ 8α1α2 þ 8α1α3 þ 8α2α3 ðA:10Þ

C2 ¼ 1
2
α2
1α

2
2 þ

1
2
α2
1α

2
3 þ

1
2
α2
2α

2
3 þ 2α2

1α2α3 þ 2α1α
2
2α3 þ 2α1α2α

2
3

ðA:11Þ

C3 ¼ 1
8
α2
1α

2
2α

2
3: ðA:12Þ

Appendix B. Dimensionless coefficients of dispersion relationship
for stokes waves

Let q = tanh(kh), the dimensionless coefficients Di are given as
(Sobey, 2009)

D1 ¼ q1=2 ðB:1Þ

D2 ¼ 0 ðB:2Þ

D3 ¼ − 1
64

−9þ 3q4 þ 12q2 þ 2q6

q7=2
ðB:3Þ

D4 ¼ 0 ðB:4Þ
D5 ¼
1 12q16−176q14−681q12 þ 201q10 þ 279q8−978q6−279q4 þ 513q2 þ 405
−

16384 q19=2
:

ðB:5Þ
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