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In many stochastic partial differential equations (SPDEs) involving
random coefficients, modeling the randomness by spatial white
noise may lead to ill-posed problems. Here we consider an elliptic
problem with spatial Gaussian coefficients and present a method-
ology that resolves this issue. It is based on stochastic convolution
implemented via generalized Malliavin operators in conjunction
with weighted Wiener spaces that ensure the ellipticity condition.
We present theoretical and numerical results that demonstrate the
fast convergence of the method in the proper norm. Our approach
is general and can be extended to other SPDEs and other types of
multiplicative noise.
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E lliptic partial differential equations perturbed by spatial noise
provide an important stochastic model in applications, such

as diffusion through heterogeneous random media (1), stationary
Schrodinger equation with a stochastic potential (2), etc. A typi-
cal model of interest is the following stochastic partial differential
equation (SPDE):

−∇ · (a(x, ω)∇u(x)) = f (x), x ∈ D ⊂ Rd, u|∂D = g(x), [1]

where ω indicates randomness. Recently, this model has been
actively investigated in the context of uncertainty quantification
(UQ) for mathematical and computational models, see, e.g.,
refs. 3 and 4 and the references therein. The diffusion coeffi-
cient a(x, ω) is typically modeled by the Karhunen–Loève type
expansion a(x, ω) = ā(x) + ε(x). Here, ā(x) is the mean and
ε(x) = ∑

k≥1 σk(x)ξk is the noise term, where σk(x) are deter-
ministic matrices and ξ := {ξi}i≥1 is a set of uncorrelated random
variables with zero mean and unit variance. For the problem of Eq.
1 to be well posed, the ellipticity condition is required. However, if
the noise ε(x) is Gaussian, (or any other type with infinite negative
part), the standard ellipticity condition would not hold, no mat-
ter how small the variance of ε(x, ω) is. Various modifications of
the aforementioned setting have been used to mitigate this prob-
lem. For example, Gaussian models were replaced by distributions
with finite range (e.g., uniform distribution). We note that from
the statistical and, by implication, UQ perspectives, Gaussian per-
turbations are of paramount importance and should be modeled
judiciously.

In this article, we propose a well-posed modification of the
model of Eq. 1 with Gaussian noise ε = ε(x). More specifically,
we replace Eq. 1 by the following SPDE:

∇ · (ā(x)∇u(x)) + ∇ · (δε(x)(∇u(x)))− f (x), x ∈ D, u|∂D = g(x),
[2]

where “δε(x)” denotes the Malliavin divergence operator (MDO)
with respect to Gaussian noise ε(x) (see, e.g., refs. 5 and 6 and
the next section). The MDO δε(ζ) is a stochastic integral and
specifically, in the present setting, a convolution of the integrand
ζ with the driving Gaussian noise ε. Although replacing the ordi-
nary product by stochastic convolution may be surprising at first,
it should be appreciated that physical systems rarely produce an
instant response to sharp inputs such as multiplicative forcing.

Therefore, in modeling systems subject to sharp perturbations,
convolutions often become a model of choice.

Historically, stochastic convolution-based models were used to
bypass the exceeding singularity of models with (literally under-
stood) multiplicative noise. In fact, the idea of reduction to MDO
could be traced back to the pioneering work of K. Itô on stochastic
calculus and stochastic differential equations. Specifically, in his
seminal work (7), Itô has replaced the “product” model

u̇(t) = a(u(t)) + b(u(t)) · Ẇ (t) [3]

by the “stochastic convolution” model

u(t) = u0 +
∫ t

0
a(u(s))ds +

∫ t

0
b(u(s))dW (s), [4]

where
∫ t

0 b(u(s))dW (s) is the famous Itô’s stochastic integral. In
this article, we extend Itô’s idea to the infinite dimensional sta-
tionary system in Eq. 1 and replace it with Eq. 2. In contrast to
Itô’s SDEs, elliptic equations like 1 or 2 are not causal. By this
reason, we replace Itô’s integral by the MDO δẆ . The latter, in
this instance, is equivalent to anticipating (noncausal) Skorohod
integral, (see ref. 6).

A general theory of bilinear elliptic SPDEs that includes, in
particular, Eq. 2 was developed recently in ref. 8. In particular,
it was shown that to ensure well-posedness of Eq. 2 it suffices to
assume positivity of ā(x) rather than of a(x, ω) = ā(x) + ε(x). This
approach is based on Malliavin calculus and Wiener chaos expan-
sion (WCE) with respect to Cameron–Martin basis (see ref. 9 and
next section).

The Cameron–Martin basis consists of random variables ξα,
where α = (α1, α2, . . .) is a multiindex with nonnegative integer
entries (see the next section for more detail). The WCE solu-
tion of Eq. 2 is given by the series u(x) = ∑

α∈J uα(x)ξα, where
uα = E[uξα]. One can view the Cameron–Martin expansion as a
Fourier expansion that separates randomness from the determin-
istic “backbone” of the equation. It was shown in ref. 8 that the
WCE coefficients uα(x) for Eq. 2 verify a lower triangular system
of linear deterministic elliptic equations (see Eq. 19 below): We
refer to this system as the (uncertainty) propagator. Under very
general assumptions, the propagator is equivalent to SPDE 2 in
the same way as the set of coefficients of a Fourier expansion is
equivalent to the underlying function.

In this article, we develop a numerical method for solving Eq. 2
with high-order discretization in the physical space and weighted
WCE in the probability space. We conduct a theoretical and
numerical investigation of the propagation of the truncation errors
and illustrate the results by numerical simulations. In particu-
lar, an a priori error estimate is presented to demonstrate the
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convergence of the developed numerical algorithm. We also carry
out numerical and theoretical comparisons of the model of Eq. 2
with direct multiplication model of Eq. 1 for positive (lognormal)
coefficient a(ω). To facilitate the theoretical comparison of these
models, we have developed a generalization of the MDO δε (based
on Gaussian noise ε) to a divergence operator with respect to a
class of noises including nonlinear transformations of Gaussian
noise (e.g., lognormal).

In addition to its physical meaning, there are other mathemat-
ical and computational reasons for employing the “convolution”
model of Eq. 2 instead of the “multiplication” model of Eq. 1,
specifically: (i) The convolution model is computationally effi-
cient due to the lower triangular (in fact, bidiagonal) structure
of the propagator; its computational complexity is linear. One
could also formally define an approximate WCE solution for the
multiplication model of Eq. 1; however, its propagator would be
a full system with quadratic computational complexity. (ii) The
variance of WCE solutions for both models is infinite. However,
the blow-up of the convolution model is controllable, in that the
WCE solution can be effectively rescaled by simple weights rα
such that

∑
α r2

αu2
α < ∞ (see Theorem 3). We remark that the

blowup in both models is inevitable even if the perturbation ξ is
1-dimensional (see example in the next section). The blowup of
the multiplication model of Eq. 1 is much more severe and could
hardly be controlled effectively. In fact, we are not aware of any
systematic treatment of Eq. 1.

There are alternative ways to address Eq. 2 and similar bilin-
ear equations. In particular, one could attack Eq. 2 using Hida’s
white-noise infinite dimensional calculus (see refs. 10 and 11). In
Hida’s approach, convolution is interpreted in terms of the Wick
product, an operator closely related to stochastic integrals. Con-
volution models for SPDEs with positive (lognormal) and normal
random coefficients have been studied extensively (see, e.g., refs.
2 and 12–14) by means of white-noise analysis. The white-noise
approach relies on built-in spaces of stochastic distributions known
as Hida and Kondratiev spaces (see, e.g., refs. 15 and 16). The
Malliavin calculus is more flexible, and in applications to SPDEs
it allows us to build solution spaces optimal for the equation at
hand (see, e.g., refs. 8 and 17). In this article, we take advantage of
this important feature of Malliavin calculus to obtain more pow-
erful numerical approximation schemes and substantially more
precise estimates of the convergence rates than those reported in
literature on white-noise analysis.

Malliavin Calculus and Elliptic SPDEs
Let F := (Ω, F , P) be a probability space, where F is the σ-algebra
generated by ξ := {ξi}i≥1 and U be a real separable Hilbert space.
Given a real separable Hilbert space X , we denote by L2(F; X )
the Hilbert space of square-integrable F -measurable X -valued
random elements f . When X = R, we write L2(F) instead of
L2(F; R). A formal series Ẇ = ∑

k≥1 ξkuk, where {uk, k ≥ 1} is a
complete orthonormal basis in U , is called Gaussian white noise on
U . Specifically, for the elliptic SPDE we consider here the proper
spaces are X = H1(D) and U = L2(D).

To explain the exact nature of solution to SPDE 2, we recall
the notion of Cameron–Martin basis. Let J be the collection
of multiindices α with α = (α1, α2, . . .) so that αk ∈ {0, 1, 2, . . .}
and |α| := ∑

k≥1 αk < ∞. For α, β ∈ J , we define α + β =
(α1 + β1, α2 + β2, . . .), |a| = ∑

k≥1 αk, and α! = ∏
k≥1 αk!. By εi we

denote the multiindex of length 1 and with the single nonzero entry
at position i: i.e., the kth coordinate of εi is 1 if k = i and 0 if k '= i.
Define the collection of random variables Ξ = {ξα, α ∈ J } as fol-
lows: ξα = ∏

k≥1(Hαk (ξk)/
√

αk!), where Hn(x) are 1-dimensional
Hermite polynomials of order n.

Theorem 1. [Cameron–Martin (9)] The set Ξ is an orthonormal
basis in L2(F): if η ∈ L2(F) and ηα = E[ηξα], then η =∑

α∈J ηαξα = ∑
α∈J ηαHα(ξ)/

√
α! and E[η2] = ∑

α∈J η2
α.

Next, we introduce the Malliavin derivative (MD) and the
MDO. To make these notions more transparent, we begin with
the simplest setting: we will differentiate and integrate ξα with
respect to a single normal random variable, e.g. ξk, the kth coor-
dinate of ξ. The MD Dξk and divergence operator δξk are defined,
respectively, by

Dξk (ξα) := √αkξα−εk
, δξk (ξα) :=

√
αk + 1ξα+εk

. [5]

In the literature on quantum physics (see, e.g., ref. 18) the
operators δξk and Dξk are often called creation and annihilation
operators, respectively. As intuition suggests, the MDO of Dξk (ξα)
recovers the integrand ξα. Indeed, for αk > 0, α−1

k δξk (Dξk (ξα)) =
ξα. Also, MD and MDO can be extended to L2(F; X ). For exam-
ple, for f ∈ L2(F; X⊗U), δẆ (f ) is defined as the unique element of
L2(F; X ) with the property E[ϕδẆ (f )] = E[(f , DẆ ϕ)U ] for every
ϕ such that ϕ ∈ L2(F) and DẆ ϕ ∈ L2(F; U) (see, e.g., ref. 17).

Before proceeding with the SPDE 2, let us consider a simple
example to shed some light on the structure of the spaces within
which we could expect existence of solutions of this equation.

Example 1. Let u be a solution of equation

u = 1 + δξ(u), [6]

where ξ ∼ N (0, 1). Simple calculations show that ‖u‖2
L2(F) =

∑∞
k=1 u2

n = ∞, where un = ∑
n≥0 E[uHn(ξ)]/

√
n!. On the other

hand, taking a weighted norm with weights rn = (n!)−1/22−qn/2,
q > 0, we get

‖u‖2
RL2(F) :=

∑

n

r2
nu2

n =
∑

n≥0

2−qn = (1− 2−q)−1. [7]

The above example demonstrates that even simple station-
ary equations do not have solutions with finite second moments.
To overcome this obstacle one should introduce an appropriate
weighted version of the solution space. Clearly, introduction of
weights amounts to rescaling of the stochastic Fourier (Wiener
chaos) representation of the solution. Below, we discuss briefly
the construction of weighted spaces.

Let R be a bounded linear operator on L2(F) defined by
Rξα = rαξα for every α ∈ J , where the weights {rα, α ∈ J }
are positive numbers. In what follows, we will identify the opera-
tor R with the corresponding collection {rα, α ∈ J }. The inverse
operator R−1 is defined as R−1ξα = r−1

α ξα. The elements of
RL2(F; X ) can be identified with a formal series

∑
α∈J fαξα,

where
∑

α∈J ‖fα‖2
X r2

α < ∞. Clearly, RL2(F; X ) is a Hilbert space
with respect to the norm ‖f‖2

RL2(F;X ) := ‖Rf‖2
L2(F;X ). We define

the space R−1L2(F; X ) as the dual of RL2(F; X ) relative to the
inner product in the space L2(R; X ). For f ∈ RL2(F; X ) and
g ∈ R−1L2(F) we define the scalar product

〈〈f , g〉〉 := E[(Rf )(R−1g)] ∈ X , [8]

where 〈〈f , g〉〉 = ∑
α∈J fαgα, with g = ∑

α∈J gαξα.

Remark 1. One could readily check that u = 1 + ξ · u, i.e., the mul-
tiplication version of Eq. 6, is much more complicated and blows
up much faster than Eq. 6.

To address SPDEs driven by lognormal and other important
types of random perturbations, we need to develop a bilinear
symmetric version of MDO with white noise Ẇ replaced by an
arbitrary nonlinear transformation of Gaussian random variables.
To begin with, assume that vector ξ consists of a single Gaussian
random variable ξ ∼ N (0, 1). Let ξm = Hm(ξ)/

√
m!. Define a

n-tuple MDO by induction: δ⊗1
ξ (ξm) := δξ(ξm) and δ⊗n

ξ (ξm) :=
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δξδ
⊗(n−1)
ξ (ξm) for n > 1. Let δξn (ξm) := δ⊗n

ξ (ξm)/
√

n!. It is readily
checked that

δξn (ξm) =
√

(m + n)!
m!n! ξm+n = 1√

m!n!
Hm+n(ξ). [9]

Now, for ξ := (ξ1, ξ2, . . .) and multiindices α and β, define
δξα(ξβ) := ∏∞

k=1 δ
⊗αk
ξk

(ξβk (ξk)). The formula of Eq. 9 translates
into the multidimensional case as follows:

δξα(ξβ) =
√

(β + α)!/α!β!ξβ+α. [10]

Remark 2. (Wick product) The Wick product (.), can be defined
as follows: for α, β ∈ J , Hα(ξ) . Hβ(ξ) := Hα+β(ξ), where
Hγ(ξ) := ∏

k≥1 Hγk (ξk). It follows from Eq. 10 that Hα(ξ).Hβ(ξ) =
δHα(ξ)(Hβ(ξ)).

Theorem 2. If θ , η ∈ RL2(F; X ), set δξα(θ) := ∑
β∈J θβδξα(ξβ) and

δη(θ) := ∑
α∈J ηαδξα(θ). Then δη is a bounded linear operator on

R′L2(F; X ) and

δη(θ) = δθ (η). [11]

The proof follows from Eq. 10.

Example 2. Let ξ ∼ N (0, 1) and c is a constant. Let θ = exp(−cξ−
c2
2 ) and η = exp(cξ− c2

2 ). Then, δη(θ) = 1. This relation is impor-
tant for the comparison of the product of Eq. 1 and convolution
of Eq. 2 with lognormal coefficient a(ω) (see Numerical Results).

Elliptic SPDE Model. Let us rewrite Eq. 2 as an SPDE in the sense
of Malliavin calculus:

{
Au(x) + δẆ (Mu(x)) = f (x) on D,

u(x) = g(x) on ∂D, [12]

where D denotes the physical domain, Ẇ is white noise on U =
L2(D), the Hilbert space of square summable sequences of real
numbers,

Au(x) := −
∑

i,j

Di(aij(x)Dju(x)), [13a]

Mku(x) :=
∑

i,j

Di
(
σk

ij(x)Dju(x)
)
, [13b]

and Mu = ∑
k≥1 Mku⊗ uk. We note that uk in L2(D) can be iden-

tified with εk, see Eq. 5. For simplicity, we assume that g = 0 and
that f is deterministic. We can now rewrite the term δẆ (Mu) as

δẆ (Mu) =
∑

k≥1

δξk (Mku). [14]

Everywhere below we assume that: (i) the functions aij(x) andσk
ij(x)

are measurable and bounded in the closure D̄ of D; and (ii) there
exist positive numbers A1, A2 such that A1|y|2 ≤ aij(x)yiyj ≤ A2|y|2
for all x ∈ D̄ and y ∈ Rd.

Definition 1. A solution to Eq. 12 is a random element u ∈ H1
0 (D)

such that the equality

〈〈Au, v〉〉+ 〈〈δẆ (Mu), v〉〉 = 〈〈f , v〉〉 [15]

where f ∈ H−1(D) and

v ∈ R−1L2(F) and DẆ v ∈ R−1L2(F; U). [16]

Analytical issues related to Eq. 15 have been investigated in ref.
8. In particular, the following result holds:

Theorem 3. There exists an operator R and a unique solution u ∈
RL2(F; H1

0 (D)) of Eq. 12 such that:

(i) The operator R is defined by the weights rα given by

rα = qα

√|α|! , with qα =
∞∏

k=1

qαk
k ,

where the numbers qk are chosen so that the “renormalization
condition”

∑

k≥1

C2
kq2

k < 1 [17]

holds, and Ck are defined by

‖A−1Mkv̂‖H1
0 (D) ≤ Ck‖v̂‖H1

0 (D), ∀v̂ ∈ H1
0 (D).

(ii) With the definition of rα given in (i), uα satisfy

r2
α‖uα‖2

H1
0 (D)

≤ C2
A‖f‖2

H−1(D)

|α|!
α!

∏

k≥1

(Ckqk)2αk ,

where the constant CA is defined by

‖u0‖H1
0 (D) ≤ CA‖f‖H−1(D). [18]

Because the expectation of the MDO is zero, we have

E[Au + δẆ (Mu)] = AE[u] = f (x),

which is the unperturbed (deterministic) version of elliptic Eq. 1.
By substituting the WCE u = ∑

α∈J uαξα into Eq. 15 and perform-
ing a Galerkin projection in the probability space, we can establish
the equivalence between Eqs. 2 and 15 and derive the following
uncertainty propagator:

Auα +
∑

k≥1

√
αkMkuα−εk = fα, [19]

which is a system of deterministic partial differential equations
(PDEs). In the next section, we will develop an efficient numerical
algorithm to solve Eq. 19.

Numerical Method
We will employ WCE in the probability space and a high-order
finite element discretization in the physical space. Our method
exploits the recursive structure of the propagator of Eq. 19.
This remarkable property of the propagator significantly reduces
the complexity of the algorithm and provides opportunities for
improving numerical efficiency. For example, the coefficients uα,
satisfying |α| = p, can be solved in parallel because they all
rely only on already computed coefficients uβ with β < α and
|α− β| = 1.

For simplicity and without loss of generality, we consider a
2-dimensional physical domain D. Let Th be a family of triangula-
tions of D with straight edges and h the maximum size of elements
in Th. We assume that the family is regular, in other words, the min-
imal angle of all the triangles is bounded from below by a positive
constant. We define the finite element space as

V K
h =

{
v : v ◦ F−1

K ∈ Pp̂(R)
}
,

and

Vh =
{
v ∈ H1(D) : v|K ∈ V K

h , K ∈ Th
}
,

where FK is the mapping function for the element K which maps
the reference element R to element K and Pp̂(R) denotes the
set of polynomials of degree up to p̂ over R. We assume that
vh|$D = 0,∀vh ∈ Vh. Thus, Vh is an approximation of H1

0 (D) based

Wan et al. PNAS August 25, 2009 vol. 106 no. 34 14191



on piecewise polynomials. There exist many choices of basis func-
tions on the reference elements, such as h-type finite elements
(19), spectral/hp elements (20, 21), etc.

Let JM , p be a finite dimensional subset of J given by JM , p :=
{α|α ∈ NM

0 , |α| ≤ p, p ∈ N} and RM , p be a given set of weights rα ,
α ∈ JM , p. We define

Vc :=




f =
∑

α∈JM , p

fαξα : ‖f‖RM , pL2(F) <∞




 ,

V−1
c :=




f =
∑

α∈JM , p

fαξα : ‖f‖R−1
M , pL2(F) <∞




 .

Then, the stochastic finite element method (sFEM) can be
defined as: Find uM , p

h ∈ Vh ⊗ Vc such that
〈〈

AuM , p
h +

M∑

k=1

δξk

(
MkuM , p

h

)
, v

〉〉

H1
0 (D)

= 〈〈f , v〉〉H1
0 (D), [20]

for any v ∈ Vh ⊗ V−1
c where

〈〈g1, g2〉〉H1
0 (D) = E[(Rg1, R−1g2)H1

0 (D)].

Note that we truncate the expansion of the white noise up to M
terms and the WCE up to polynomial order p.

Let H = H1
0 (D), and rα = qα/

√|α|! as in Theorem 3. The
main result regarding convergence of the stochastic finite element
method (sFEM) is given by the following theorem:

Theorem 4. For u ∈ RL2(F; H) ∩ RL2(F; Hm+1(D)), the error of
approximation of the sFEM is given by

∥∥u− uM , p
h

∥∥
RL2(F; H)

≤ C

(

hm‖u‖RL2(F; Hm+1) +
√

q̂W

(1− q̂)2 + q̂p+1

1− q̂

)

, [21]

where the constant C is independent of h, q̂ = ∑
k≥1 C2

kq2
k < 1,

q̂W = ∑
k>M C2

kq2
k, and Ck are constants defined in Theorem 3.

We remark that the 3 main components of the error O(hm),
O(q̂W ), and O(q̂p+1) are due to the finite element discretization,
the approximation of white noise, and truncation of the WCE,
respectively. We also note that spectral convergence is obtained
in the weighted norm ‖ ·‖ RL2(F;H). Next, we present a sketch of
the proof whereas all technical details can be found in supporting
information (SI) Appendix.

The approximation error can be decomposed as

u− uM , p
h =

∑

α∈JM , p

(uα − ûα)ξα +
∑

α∈J \JM , p

uαξα,

where uα and ûα are the coefficients of chaos expansions of u and
uM , p

h , respectively. Correspondingly, we obtain
∥∥u− uM , p

h

∥∥2
RL2(F;H) ≤

∑

α∈JM , p

‖uα − ûα‖2
H‖ξα‖2

RL2(F)

+
∑

α∈J \JM , p

‖uα‖2
H‖ξα‖2

RL2(F)

= I1 + I2

To obtain the error contribution I1, we need to estimate the finite
element approximation error ‖uα − ûα‖. Since uα depends on uβ

with |α− β| = 1, we should consider the error propagation in the

uncertainty propagator. The key observation is that for |α| > 0,
the following equations are satisfied in the weak sense

Aûα +
M∑

k=1

√
αkMkûα−εk = 0, ∀vh ∈ Vh,

Auα +
M∑

k=1

√
αkMkuα−εk = 0, ∀v ∈ H ,

from which we can obtain a recursive inequality for the error
propagation as

‖uα − ûα‖H ≤ C inf
vh∈Vh

‖uα − vh‖H +
M∑

k=1

ck‖uα−εk − ûα−εk‖H .

We then use results from the approximation theory to bound the
finite element approximation error. The error contribution from
I2 is from the truncation of WCE and the approximation of white
noise, which can be estimated using Theorem 3. More details are
given in SI Appendix.

Numerical Results
We consider the 2-dimensional stochastic elliptic problem

{
−∇ · [(E[a](x) + δẆ (∇u(x))] = f (x), x ∈ D,

u(x) = 0, x ∈ ∂D,

where E[a](x) denotes the mean field of coefficient and Ẇ (x)
the random perturbation. For simplicity, we choose the physical
domain D = (0, 1)2, E[a](x) = 1, and f (x) = 1.

To represent the white noise on L2(D), we select the following
orthonormal basis

wm,n(x) =






1, m = n = 0√
2 cos(mπx), n = 0√
2 cos(nπy), m = 0

2 cos(mπx) cos(nπy), m, n = 1, 2, . . . ,∞.

Hence, we approximate the white noise as

Ẇ (x) =
M̂∑

m+n=0

wm,n(x)ξm,n.

For convenience, we use an 1-dimensional index and rewrite the
above equation as

Ẇ (x) =
M∑

k=1

wk(x)ξk.

Let u(x) = ∑p
|α|=0 uαξα be the truncated WCE of the solution up

to polynomial order p. The uncertainty propagator takes the form

−∇ · (E[a](x)∇uα)−
M∑

k=1

√
αk∇ · (wk(x)∇uα−εk ) = fα,

where fα = 0 if |α| > 0, because f (x) is assumed to be determinis-
tic, and the operator Mk is defined as Mku = −∇ · (wk(x)∇u). To
choose proper rα for the weighted Wiener chaos space, we need
to specify the constant Ck defined in Theorem 3. For our case, we
have

Ck = ‖wk(x)‖L∞(D)/A1.

Here, ‖wk(x)‖L∞(D) is uniformly bounded and A1 = 1 because
E[a](x) = 1. Hence, the weights can be defined as rα = qα/

√|α|!
with qα = ∏∞

k=1 qαk
k , if qk is chosen as qk = 1/(k + 1)Ck.

We now examine the convergence of the sFEM. We employ
the spectral/hp element method to solve the uncertainty
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Fig. 1. Convergence of the proposed stochastic finite element method for
the model problem. (A) Weighted L2 norm of approximate white noise. (B)
Spectral convergence of the stochastic finite element method with respect to
the weighted norm. M = 21.

propagator. The physical domain (0, 1)2 is discretized in 64 quadri-
lateral elements, where 12th-order piecewise polynomials are used
in each element. Numerical tests show that errors associated with
the physical discretization are close to machine accuracy and hence
negligible. If we fix the number of random variables in the approx-
imation of white noise and increase the polynomial order of WCE,
the dominant error in the error estimate of Eq. 21 should be the
truncation error of the WCE. In Fig. 1, we plot the convergence
behavior of the approximate white noise in the weighted norm
RL2(F, L2(D)) with respect to M . We also plot the errors of the
approximate solution in the weighted norm RL2(F, H1

0 (D)) with
respect to the polynomial order of WCE. For the numerical sim-
ulation, we choose M = 21, corresponding to m + n ≤ 5. The
errors are approximated as ‖uM , p+1

h − uM , p
h ‖RL2(F;H1

0 (D)). We see
that spectral convergence is obtained, which is consistent with the
error estimate of Eq. 21.

Model Comparison. Next, we present a comparison of the con-
volution and multiplication models by considering the following
1-dimensional problem





− d

dx

(
K(x) ∗ d

dx
u
)

= f (x),

u(0) = 0, u(1) = 0,
[22]

where “∗” indicates stochastic convolution or ordinary multiplica-
tion. We choose f (x) = 1, and we consider first the simple model
KI (x, ξ) = exp(cξ − 1

2 c2), where ξ ∼ N (0, 1) is a normal random
variable and c is a constant indicating the degree of perturbation.
In particular, KI (x) can be regarded as a simplified version of the
lognormal noise eẆ . In addition, we consider a second model KII
with space-dependent lognormal noise of the type

KII (x, ξ) = exp
[
c
(
ξ1 +

√
2 cos(πx)ξ2 +

√
2 cos(2πx)ξ3

)

−1
2

c2 (1 + 2 cos2(πx) + 2 cos2(2πx)
)]

, [23]

where ξi, i = 1, 2, 3, are normal random variables. In other
words, we take the first 3 modes of white noise Ẇ (x) = ξ1 +∑∞

i=2

√
2 cos((i − 1)πx)ξi on L2(0, 1). It is easy to show that

E[KII (x, ξ)] = 1, and that Var(KII (x, ξ)) = exp(c2 +2c2 cos2(πx)+
2c2 cos2(2πx)) − 1. In Fig. 2, we plot the variances of solutions
corresponding to 2 different models obtained from solving both
the convolution and the multiplication cases; results for both KI
and KII are shown. We observe that when the noise is small, the
variances given by the 2 models are about the same; however,
when the noise is large a large difference exists, with the variance
given by the multiplication model increasing much faster than
that given by the convolution model. For KI , when its standard
deviation increases from 0.1003 to 22.7379, the solution variance
increases from O(10−5) to O(106) for the multiplication model,
and from O(10−5) to O(101) for the convolution model—a 5-
order difference in magnitude! For KII the variace achieves larger
values as we include more terms in the expansion for the white
noise. More results and analysis for both models are included in
SI Appendix.

This exponential increase of the variance with respect to
perturbation can be explained by referring to the aforemen-
tioned Example 2. Specifically, we consider the simple problem
(δa(ux(x, ξ)))x = f (x), x ∈ (x0, x1), u(x0) = u(x1) = 0 with log-
normal but space-independent coefficient a(ω) = exp(cξ − c2

2 );
the corresponding solution is u(x) = θδ−1f (x) with δ being
the Dirichlet Laplacian on (x0, x1) and δa(θ) = 1. Example 2
shows that θ = exp(−cξ − c2

2 ). On the other hand, the solu-
tion to the corresponding multiplication model (a · vx(x, ξ))x =
f (x) is v(x, ξ) = a−1δ−1f (x). Hence, the rapid increase in the
variance observed in the computations is related to the ratio

Fig. 2. Variance versus perturbation at x = 0.5. For model II, it is very
expensive to compute the solution beyond c = 1 for the multiplication model.
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a−1/θ , which is equal to exp(c2). Clearly, v(x) = exp(c2)u(x)
and E[|v(x)|k] = exp(kc2)E[|u(x)|k]. This establishes that solu-
tions of the above equation with lognormal permeability cor-
responding to multiplication model are exceedingly singular as
compared to a similar equation with stochastic convolution based
on MDO.

Summary and Discussion
In this article, we have developed an efficient numerical method
for solving second-order elliptic SPDEs with Gaussian coeffi-
cients. We introduced the concept of “stochastic convolution
model” and employed Malliavin calculus to implement it. The
stochastic solution was represented by a weighted WCE in the
appropriate norm. It was shown that the coefficients of the WCE
can be obtained by solving a lower triangular system of determin-
istic elliptic PDEs, i.e., the uncertainty propagator. We derived a
a priori error estimate to measure the rate of convergence with
respect to appropriately weighted L2 norm. We have also carried
out numerical and theoretical comparisons of the model of Eq. 2
with the direct multiplication model of Eq. 1 for positive (lognor-
mal) coefficient a(ω). To facilitate the theoretical comparison of
these models, we have developed a generalization of the MDO
δε (based on Gaussian noise ε) to a divergence operator with
respect to a class of noises including nonlinear transformations
of Gaussian noise (e.g., lognormal).

It might be instructive to reexamine the differences and simi-
larities between the convolution model Au(x) = δẆ (Mu(x)) and
its multiplication counterpart Au(x) = Mu(x) · Ẇ (x). It is well
understood that the multiplication models are exceedingly singu-
lar. We are not aware of any systematic theoretical or numerical
efforts to investigate such SPDEs. It appears though that the gen-
eral methodology developed in this article could be extended to
address elliptic equations of this type as well. However, in the

multiplication setting, the propagator is not lower triangular, and
the solution spaces are expected to be much larger than in the
setting of this article. In contrast to multiplication models the
convolution models are much more manageable analytically and
numerically and have solid physical meaning. Both models become
much easier if one replaces the white noise forcing by lognormal
(which is a positive noise). We have shown that in the lognormal
setting the SPDE has reasonable solutions for both models. Still,
as the variance of the noise grows, the variance of the solution of
the multiplication equation scales up exponentially as compared
with the convolution model.

In spite of the aforementioned differences, the 2 models are
closely related. In fact, the convolution models could be viewed
as the highest stochastic order approximations to multiplication
models. Indeed, by Remark 2, δHα(ξ)(Hβ(ξ)) = Hα+β(ξ) while
Hα(ξ) ·Hβ(ξ) = Hα+β(ξ)+Rα,β, where Rα,β is a linear combination
of Hermite polynomials of orders lesser than α + β.

Finally, we note that the mean in the multiplication model
for the problems considered here deviate greatly from the corre-
sponding deterministic solution (see SI Appendix). Clearly, linear
systems with additive noise are unbiased perturbations of their
deterministic counterparts with the statistical average of a solution
to randomized system coinciding with the solution of the original
unperturbed system. The convolution bilinear equations consid-
ered in this article also enjoy this important property of linear
systems. However, we stress that this property does not hold and
should not be expected from SPDEs with nonlinear operator A
or/and multiplication in the stochastic terms.
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