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In this work, we consider a non-standard preconditioning strategy for the numerical approximation of the classical
elliptic equations with log-normal random coefficients. In earlier work, a Wick-type elliptic model was proposed by
modeling the random flux through the Wick product. Due to the lower-triangular structure of the uncertainty prop-
agator, this model can be approximated efficiently using the Wiener chaos expansion in the probability space. Such
a Wick-type model provides, in general, a second-order approximation of the classical one in terms of the standard
deviation of the underlying Gaussian process. Furthermore, when the correlation length of the underlying Gaussian
process goes to infinity, the Wick-type model yields the same solution as the classical one. These observations imply that
the Wick-type elliptic equation can provide an effective preconditioner for the classical random elliptic equation under
appropriate conditions. We use the Wick-type elliptic model to accelerate the Monte Carlo method and the stochastic
Galerkin finite element method. Numerical results are presented and discussed.

KEY WORDS: Wiener chaos expansion, Wick product, stochastic elliptic PDE, uncertainty quantifica-
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1. INTRODUCTION

Numerical approximation of elliptic problems with log-normal random coefficients has received a lot of attention. We
consider the following mathematical model,
—_— . = D
Vodel .~V (a(@ @)Vu(e,w)) = f(2), @€ D, W
u(x, w)=0, x € 0D,

whereln a(x, w) is a second-order homogeneous Gaussian random process, and the force term is assumed to be
deterministic for simplicity. We call problem (1) model | in this paper. Theoretical difficulties of problem (1) are
mainly related to the lack of uniform ellipticity, where the Lax-Milgram lemma is not applicable. The existence and
uniqueness of the solution of problem (1) are usually established with respect to a weighted norm [1-3] or a weighted
measure [4], or by using the Fernique theorem [5,6]. Considering the Wiener chaos approach and Galerkin projection
[1,7], the difficulties of numerical approximation of problem (1) are two-fold: First, if we start from the theoretical
study [2,4], a different test space rather tha{[F; H3 (D)) is required, which may be not easy to construct. Here
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F := (Q, F, P) is the probability space fap; a detailed presentation Bfis given in Section 2. Second, if we choose

Lo(F; H3(D)) as the test space and use Wiener chaos as the basis for the probability space, although no divergence
with respect to the.,(F; H}(D)) norm has been numerically observed (the solution of problem (1) actually belongs

to Lo(F; H3(D)) [6]), the stiffness matrix is full and dense. In other words, an efficient preconditioner is required.
Studies of elliptic problems with other types of random coefficients can be found in [8-10], etc.

The elliptic equation with a log-normal random coefficient has been studied by means of the perturbation tech-
nigue (see, e.g., [11,12]), which has been also employed for other types of random coefficients (see, e.g., [13]).
However, the perturbation method only works for small variability of the random coefficient and a low degree of the
Taylor polynomial [11].

Another approach is to construct an auxiliary problem as some sort of preconditioner of the original problem;
e.g., the idea of using a smoother version of the original problem (generated by a smoothing kernel) in a Monte Carlo
control variate approach has been discussed by Nobile et al. [14,15]. Other known preconditioning skills include the
traditional algebraic preconditioner [16,17] and the bifidelity method [18].

In this paper we take a new approach to construct an auxiliary problem used as a preconditioner of model I. From
the modeling point of view, the randomness can be introduced in different ways. A typical strategy is to replace the
flux aVu asa ¢ Vu with ¢ being the Wick product [19-21], motivated by the observations that the Wick product is
consistent with the Skorokhod stochastic integral in a Hilbert space and can smooth the irregularity induced by white
noise. Once the Wick product is adopted, the equations for the coefficients of Wiener chaos expansion are decoupled
and can be solved one-by-one. Although this is a very nice property for numerical computation, the original equation
is changed and the model difference becomes the main concern. In [22,23], a new Wick-type model was proposed by

modeling the flux aia*l)o(fl) o Vu:

-V ((a‘l)o(_l) (z, w) o Vu(z, w)) = f(x), €D,

)
u(z, w) =0, z € 0D,

Model II: {

which we call model Il in this paper. In general, both fluxes Vu and (a*l)o(fl) o Vu will introduce a second-
order approximation of the solution of model | in terms of the standard deviatienX) of the underlying Gaussian
process. However, the latter choice provides a much smaller difference. Actually, when the correlation length of the
underlying Gaussian process goes to infinity, model 1l has the same solution as model I. In addition, the uncertainty
propagator of model Il is also lower-triangular, which can be solved efficiently. Another way to approximate the flux
aVu using the Wick product is to employ the Mikulevicius-Rozovskii (M-R) formula [24], which shows that the
product of two random variables, s&/andY’, has a Taylor-like expansion,

Xy = xoy 4y AP 3)

n!
n=1

whereD indicates the Malliavin derivative [25]. It is seen th&to Y is the lowest-order term in this expansion.
We can include more terms from the M-R formula to get a better approximatiol 0f[26,27]. It is shown in [27]
that with respect to the truncation ord@rof the Malliavin derivative and the standard deviation of the underlying
Gaussian process such a strategy provides a differen@¢a*@+) from the solution of model I. However, upon
doing so, the corresponding uncertainty propagator will not be lower-triangular anymore, although the coupling in
the upper-triangular part will be weak if the truncation order in the M-R formula is relatively small.

In this work, we will explore the possibility to use model Il as a predictor to improve some algorithms for model
| since model Il can be approximated efficiently and the difference between models | and Il can be very small.
Depending on the properties of the random coefficient, we mainly consider the Monte Carlo method and the Wiener
chaos approach with Galerkin projection for model I.

This paper is organized as follows. In Section 2, we define the Wiener chaos space and the Wick product. Stochas-
tic elliptic models are discussed in Section 3 and the corresponding uncertainty propagators are given in Section 4.
Numerical algorithms are proposed in Section 5. We present numerical results in Section 6, followed by a summary
section.
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2. WIENER CHAOS SPACE AND WICK PRODUCT

Since the underlying random variables of the model are i.i.d. Gaussian, whose corresponding stochastic orthogonal
polynomials are Hermite, we first introduce the basic properties of Hermite polynomials.

2.1 Hermite Polynomials

The one-dimensional (probabilistic) Hermite polynomials of degreee defined as

H,(£) == <—1>“e&2/zd%ef£2/2. @)

H,, (&) are orthogonal with respect to the weigm){\/zme*iz/z, in the sense

/_ HWL(a)H,,L(a)\/%eﬁz/zda S 5)

The values of Hermite polynomials can be evaluated using the following three-term recurrence formula:

HO(&) = 17 Hl(a) = Ew
H7L+1(£) = E;Hn(&) - an—l(&)a n>2.

Hermite polynomials satisfy a very simple derivative relation:
H/,(§) =nH,,_1(§), Vn>0. (6)
We list below in Lemma 1 several properties of Hermite polynomials, which will be used later.

Lemma 1. For one-dimensional Hermite polynomials, the following properties hold:

exp (sé — 252> = Z %:Hi(i), (7)
i=0
(et o) = 3 () Hie), ®)
1=0
H;(&)H;(&) = X (4,7, k)H;qj_21(E). 9)
k<iNj

ilj!
k- k) — k)

2.2 Wick Product

Now we list the definition and some basic properties of the Wick product, which can be found in the existing literature
(e.g., [19,28]).

The Wick product of a set of random variables with finite moments is defined recursively as follows:
0(Xa,..., Xk)

0 =1 re

:<X17"'7Xi—1aXi+la'"an>a k217

together with the constraint that the average is zero,

E(X:,...,Xx) =0, k>1
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It follows that
(X) =X —E[X], (X,Y)=XY —E[Y]X —E[X]Y + 2E[X]E[Y] — E[XY].
If X,Y are independent, from the above formula, we know
(X,Y) = (X)(Y).
On the other hand, i = X, we get
(X, X) = X2 - 2E[X]X + 2E[X]? - E[X?].

DefineX oY := (X,Y) and

Po(X) = X°" = (X,..., X),
;\-/_/
n times

thenP! (z) = nP,_1(x).
The Wick product is closely related to Hermite polynomials, 1§ a normally distributed variable with variance
1, then
£ = HTL(E»)’ (10)

and
Hn(a> < Hm<Ev) = Hn+m(‘£>' (11)

Using a Taylor series, one can define the exponential function of the Wick product as

Z“’ 1
eQX = EXQTL (12)
n=0 "

For a normally distributed variablg it can be checked that [19]

e°lot] = 60‘5,—0‘2/27 (13)
o8] o gol—08] — 1 (14)

and the following statistics hold:
E [eo[ca]} =1, Var [eo[c‘g]} =e” — 1. (15)

2.3 Wiener Chaos Space

We defineF := (2, F, P) as a complete probability space, whefes the o-algebra generated by the countably
many i.i.d. Gaussian random variables; }, .. ;. Defineg := (&1, &>, .. .). Let 7 be the collection of multi-indices
with & = (g, &g, . . .) S0 thatoy, € No and|«| := Zkzl o < oo. Fora, B € J, we define

o+ P = (o1 + P12+ P2,...), = H(Xk!’ <g) _ H (gz)

E>1 E>1

We usg(0) to denote the multi-index with all zero entri€6),, = 0for all k. Define the collection of random variables
E as follows:

Z:={hg,x€J}, hq He, (Ek), (16)

1
(&) ':,Qﬁ!
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whereH,, (&) are the one-dimensional (probabilistic) Hermite polynomials. For convenience, we also define

Ha(€) = [ [ Haw (&1). (17)

E>1
For any fixedk-dimensional i.i.d. Gaussian random variaglehe following relations hold:
EHa(E)Hp(E)] = dapax!, E[ha(E)hp(E)] = dap. (18)

The set= forms an orthonormal basis fdn(F) [29]; that is, ifn € Ly(F), then

n= Z Naha, Na = ]E[T]h‘x] (19)
xeJ
and
Em? =) ni (20)
xeJ

The Wick products of multidimensional stochastic Hermite polynomials are

(o+B)

Hu(&) oHg (&) = Hayp (&), ha(&) ohp(§) = TXpl

hotp () (21)

Note that if we consider the expansionI®f (&)Hg (&) using the base s&, it is obvious that there exist low-order
terms in addition td 4 g (&); however, in the definition of the Wick product, all these low-order terms are removed,;
cf. Egs. (9) and (21). Such a difference of the Wick product from the regular multiplication stems from the fact that
the Wick product should be interpreted from the viewpoint of the stochastic integral. The correspondence between
the Wick product and the Ito-Skorokhod integral can be found in [19,21,25,30].

For the numerical approximation, the number of Gaussian random variables and the polynomial order need to be
truncated. We define

\7]\/[4,:{0(|0(:(OC;]_,...,OC]\/[>7 |0(| Sp}, (22)

wherep € Ny is the maximum total degree. (To reduce the number of stochastic bases, one can also consider the
sparse grids or sparse spectral Galerkin method; see, e.g., [13,15,31-33], where the overall procedure is similar.)
Correspondinglyg, is split into two parts:

E=80&=(&,...,Em) B (Emta, - . ).

For simplicity, we use, for both finite-dimensional and infinite-dimensional cases, and the dimensionality will be
indicated by the sef or s, for the index. LetlV,, , be the cardinality of7,s . It is obvious that there exists a
one-to-one correspondence betwéen i < Ny, anda € Jar,,. We usei( ) or «(z) to indicate such a one-to-one
mapping whenever necessary.

Given a real separable Hilbert spa&ke we denote bylL,(FF; X) the Hilbert space of square-integrabfe
measurableX-valued random elements WhenX = R, we write L,(FF) instead ofL,(F; R). Given a collection
R = {r«, a € J} of positive real numbers with an upper bouRdi.e.,r, < R for all «, we define the space
RL,(F; X) as the closure of»(F; X) in the norm

”u”%Lg(F;X) = Z ”'nx||U¢xH§(, (23)
xcJ

whereu = 3 . s uaha(E). The spacéR Ly(IF; X) is called a weighted chaos space, it is a natural norm for the
stochastic space using the Karhunerét® expansion. In this worlX is chosen a#f}(D) for elliptic problems with
homogeneous boundary conditions.
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3. STOCHASTIC ELLIPTIC MODELS

In this paper, we consider the following two stochastic elliptic models:

Model I: — V - (a(z, w)Vu(xz, w)) = f(x), (24a)
Model IIl: —V - ((a‘l)o(fl) (x, w) o Vuy(z, w)) = f(=), (24b)

with boundary condition:(z, w) = 0 on 9D, wherea(x, w) o (a~(w, w))O(_l) = 1. In particular, we assume

that the force ternf (x) is deterministic for simplicity and the random coefficiefii, w) takes the following form:

a(®, w) = eo(0G(z,w)) _ eoG(:c,w),(]_/z)Uz7 o5

whereG(z, w) is a stationary Gaussian random process with zero mean and unit variance, subject to a normalized
covariance kerneK (x;, x;) = K(|x1 — x2|) = E[G(x1, w)G(x2, w)]. According to the Mercer theorem [34],
K(x1,x2) has an expansion as

K(z1,@2) = Z Aidi(z1)bi(x2), (26)
i=1
where{\;, ¢;(x)}5°, are eigenpairs ok (x1, ) satisfying
/ K(z1, z2)§i(x2)dx2 = Aidi(21), / di(x)dj(z)dx = 5;;. (27)
D D

ThenG(x, w) has the following Karhunen-l&ve (K-L) expansion:
Gz, w) = i VAidi ()&, (28)
i=1
whereg, are independent Gaussian random variables. Furthermore,
i)\iqﬁ(w) = K(z,z) = E[G?*(z,w)] =1, VxcD. (29)
i=1

Using Egs. (28), (29), and (7), we can obtain the Wiener chaos expansion of the log-normal random process
a(x, w),
o0 b (@) E— 0% (@ o
a(z, w) = eXim OVAdi(@) &~ (P /DNidi(®) Z gHa(E)v (30)
axcJ

where®(x) = (ov/A1¢1(x), ov/Azda(), .. .).
From Eq. (14), it can be easily derived that

(a—l(mvw))o(—l) — e—azeo(GG(uw))' (31)

Hence, the difference between Wiener chaos expansiofig(af w)*l)o(fl) anda(x, w) is just a scaling factor

2
6—0'

To make the difference between models | and |l clearer, we look at the following two linear systems:

[ - { Vu=atxF, " { Vuy=atoF, (32)

_V'E:fa _v'-FH:fa
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wherex denotes the operation of the regular product. Thus, model Il is basically making the gradient “smoother”
through the Wick product. Then the equation @ w,; can be obtained as

V(w—un)=atx(F — F)+a(x—0)F, (33)
~V-(F—F)=0,
which corresponds to a second-order elliptic equation:fer w), as
—V - (@V(w—un))=-V-(a* (a " (x —0)F)). (34)

Note that we express explicitly the regular products on the right-hand side since the regular and Wick products do not
commute. It is seen that Eq. (34) corresponds to model | while the force term is related to model Il thjjough

Theorem 1([23]). LetF = —V - (a* (a~}(x — ¢)F})), wherex indicates the regular product. Assume tiate
RILA(F; H-Y(D)), whereD € R?, d = 1,2, 3. Then there exists a set of weigis= {7, « € J}, such that

Hul - u““ﬁLz(IF;H%(D)) - C(lc)gz = 0(02)7 (35)
wherel. is the correlation length. Furthermoréi(l.) — 0 asl, — cc.

Remarkl. It can be shown theoretically that for one-dimensional cdses R?, C(I.) — 0 asl. — 0. For high-
dimensional cases, according to the Landau-Lifshitz-Matheron conjecture [35,36] in the homogenization theory for
log-normal random coefficients, whén— 0, C(l.) — 1/2if d = 2, andC(l.) — 1/3if d = 3.

Remark?2. By noting the Mikulevicius-Rozovskii formula [24],

o0

Dhy o D"h
hohg = > "‘Tﬁ (36)
n=0 :

whereD"™ denotes thexth-order Malliavin derivative, model | can be approximated arbitrarily well as

. <Z Da(zx, c;)l)' <>VD”u> ~ ). (37)
n=0 :
Whenn = 0, Eq. (37) recovers the Wick-type model:
-V (a(z, w) ¢ Vu(z,w)) = f(x). (38)

More discussions about the new Wick-type model given by Eq. (37) can be found in [27].

4. STOCHASTIC GALERKIN METHOD
4.1 Uncertainty Propagators

We now look at the uncertainty propagator of model I. Substituting the Wiener chaos expansion

’LM(:I),(U)% Z Ul,a(w)H(x(E)

acInm,p

into Eqg. (24a) and implementing Galerkin projection in the probability space, we obtain the uncertainty propagator
for model | as
— Y V- (Ela(z, 0)HaHy] Vi a(@)) = f(2)8(0).y, YV € Tarp- (39)
x€EJM,p
It is seen that all chaos coefficients in Eq. (39) are coupled together, which means that they must be solved together.
From the numerical point of view, a proper choice would be iterative methods. Before we look into the numerical
algorithms, we now address the properties of the métfix(x, w)H«H, ] for anyx € D.
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Lemma 2. For any givenx € D, the matrixB, ;;(x) = E [a(:m w)Ha(i)Hy(j)] is symmetric and positive definite,
wherea(z, w) is a log-normal random process defined in E26)and &,y € Jasp-

Proof. Apparently, the matrix3,(x) is symmetric for anye € D. For any nonzero vectar = (cy, c2,...,cn,, ) #
0, the following inequality holds for any € D:

N]up NJVI;P

" Bi(@)e =Y cieE [T O o Hyp)| =B | Y ciye S oy Hyg)
i,j=1 .7
2
Moy 1/2
-E Z (eocG(w,w)) H“(i)ci > 0.
i=1

In other words B, is non-negative definite.
We subsequently show thatdf B)(xz)c = 0, thenc = 0. Letb € R, Itis easy to generalize Eq. (8) to the
high-dimensional case:

M M o
He(& 4+ ) = [[Haw (s + 1) = [[ S (";’C>bgkiﬂi(ak) -y (g) b P (E). (40)
k=1 k=1i=0 B<o

Let®(x) = ®1(x) © Po(x), where

= (G\/7\>1¢1(-’B)7 —o o/ Auda () and®a(x) = (o/App1darra(), o/ Arrr2darga(x), - ).

Let& = (Enr+1, Er+2, - - -). We then have

2 2
Num,p

NIM,p o 1/2 T T Ne
CTB|(C[3)C =E Z (60‘T (w,w)) H“(i)ci =E €q> E+dre—(1/ ) Z ch(i)ci
i=1 '

2
Nup

=E [6<1>}£—(1/2)az] E |e®1& Z Haiyci
i=1

2
N,p

= 6(1/2)q>-2r‘1>2—(1/2)026(1/2)4’14’11@ Z H, E, + (I)l

o(7)

N
=E ( ) o P Hg (&)e;
i=1 B<x(i) B

—E (“é”)@f‘“)% He(e) | | = 3 Z(;‘)@;"BCM Bl.

BeETm,p \x(i)>B

If ¢ By(x)c = 0, we have

Z (g) 3 P(2)cia) =0, VB E Tarp, x € D.

ox>p
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We note that the matrix in the above linear system is an upper-triangular matrix and the entries on the diagonal line
are 1. In other words, the solution of the above linear system=<). To this end, we can conclude that the mafix
is symmetric and positive definite. O

Remark3. In numerical computation, we often take

T E— 2
Byij(x) = E |M®) &2 Hy

which is the truncated version of the mati in Lemma 2. From the proof of Lemma 2, such a matrix is also
symmetric and positive definite.

Actually E [a(x, w)H4Hg] can be computed exactly as in the following lemma.

Lemma 3. Leta(x, w) = exp® (6G(x, w)). We then have

Ela(z, w)HaHp) = Y x(e, B, ) 2% E2(z), (41)

K<aAB
where(x A B = o A Br, k=1,2,....

Proof. First, Eq. (9) can be generalized straightforwardly to the multidimensional case as

HoHp = Z x(, B, K)Hot g2«

k<aAB
with B!
o!B!
x(ex, B, x) = k! — k)!(B — Kk)!
Using Eq. (30), we have
OY(x Y
E[a(@, w)HoHg] = > (' )]E H,HyHg] = Z > (B, K)E [Hayp_26Hy]
YET Y YeT . k<axAB
= Z x(a, B, k)@ FTB=2<,
k< aAB O

Remarkd. Whena = 3, we have

E [a(@, w)HE] = ) x(a, &, )2 * ) () > x(&, 00, &) = &l

k<o

Remarks. Lemma 3 implies that to compula(x, w)Hg ;) Hy ;)] exactly, we require the coefficients of the Wiener
chaos expansion af{(z, w) up to order2B(Nyy ;).

We now look at the uncertainty propagators of model Il. &k, w) = (a—l)o(_l). Using Egs. (30) and (31),
the Wiener chaos expansiondfz, w) can be explicitly derived as

i, w) = Y da@)HaE) = 3 e Ha(e) (42)

xeJ axceJ

Following the same procedure for model I, we can obtain the uncertainty propagator of model Il as

-2V 2)Vuna(z)) = f(2)80),y, V¥ € Tuyp. (43)

a<y
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It is seen thaty, o, only depends on the chaos coefficienis, with a < vy, which introduces a lower-triangular
structure into the matrix3) ;;(€) = G (j)—«(:)(x). In other words, the deterministic PDEs faj ,, are naturally
decoupled and can be solved one-by-one. Furthermore, Eq. (43) can be rewritten as

~V - (a0 (@) Vi ( Z V- z)Vuna(x)) + f(2)50),y-

a<ly

Thus, if we employ the finite element method to solve the PDE system (43), the bilinear form remains the same for
all chaos coefficientsy ,,, which only depends o) ().

4.2 Finite Element Discretization of Uncertainty Propagators

We now look at the finite element discretization of uncertainty propagators of models | and M, lbet a family of
triangulations ofD with straight edges ankl the maximum size of the elements if},. We assume that the family

is regular; in other words, the minimal angle of all the elements is bounded from below by a positive constant. We
define the finite element space as

K _
Vig = {v

whereFk is the mapping function for the elemefitwhich maps the reference elemédfor example, an equilateral
triangle or an isosceles right triangle) to the elen¥€rand %, (R) denotes the set of polynomials of degree at most
on R. We assume thatlsp, = Ofor anyv € V,, ,. Thus,V}, , is an approximation off3(D) by piecewise polynomial
functions. There exist many choices of basis functions on the reference elements, bighafnite elements [37],
spectralkp elements [38,39], etc. Let

Vig = spar{01(x), 02(x), ...,0n, (x)} C H3(D),

whereNN,, is the total number of basis functions in the finite element space
The truncated Wiener chaos spabg, ), is defined as

voFt € Z4(R)}, Vi = {ve HY(D)

olk € Vi, K € T},

Wiy =14 > calla(®) |ca € R, (44)

x€Im,p

The stochastic finite element method for model | can be formulated as followsuFind V;, 4 ® Wy p, such
that for allv € V, ; ® Wy,

Bi(up,v) = L(v), (45)
where the bilinear form is
Bivs,va) = [ Ela(a.w)Vor - Voo da. (46)
D
and the linear form is
L) = / E[ fo]da. @7)
D

Lemma 4. The stiffness matrix for the stochastic finite element method of model | is symmetric and positive definite.

Proof. Consider the approximation

up(x, &) = E U oHa(E) = g Uk, o,i 0 () Hu (8), (48)
x€JM,p 1<i<Ng,
€I M, p

whereu, j, «; # 0for somei ando. We have
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B| (’I.L| h, Ul h Z Z / U|7h7a7i’LL|7h7[37jE [a(m, (,U)H‘XHB] Vel(.’B) . VGJ (:B)d:]?
1<i<Ng, 1<j< Ny,
x€ImM,p BEITM,p

/ Z :If(,UH HB]VU”L“ Vu.hgdw

x,BETM,p
= / Z@rj (ty(z))" Bi(x)0,,0(x) | dz,
b \i4

where the vectofy (x) is defined agty(x)),, = wp ) (), k= 1,..., Nas,. Due to the homogeneous boundary
conditions, a nonzero constant mode does not exist in the $fac&)sing Lemma 2, we know thé (v, 5, w.p) > O,
and the conclusion follows. O
4.3 Structures of Stiffness Matrices of the SFEM

Based on Eq. (48), we define some matrix notations:

uht

Ul h, o (i),1
1,2
u i Ul h, o(i),2 .
u = ] , ut= ) ,t=1...,Nup. (49)
LN
un Ay Ul h, (i), N

Obviously, the total number of unknownss, x Ny ,. The weak form (45) leads to the linear systemy = f
with the block structure

Al Az oo AN, f;
A2 Az oo Aiany, f
AI,NM,pl AI,NM,pZ T ALNM,pNM,p fNM,p

We considering the approximation efz, w) as [see Eq. (30)]

o S Y@
Mg = Y el - 3 T (), 6
x€JM,p x€JM,p

wherep is the polynomial order of the Wiener chaos expansion. Then the bldckscan be expressed as

Ay = Z E [HaHpoHy(h] Sas 455 =1,-.., Narp, (52)
x€JTM,p
where
(S0, = [ ali(@)V8:(a) - VO, (a)de. 9
D
Define matrixC, as
(Cﬁ)ij =E [H“Hﬁ(i)HY(j)]‘ (54)
Then the matrix4, can be rewritten in the tensor-product form as
Y Ca® Sa. (55)
€T, p
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Then the matrix-vector multiplication ofiju; can be computed in a relatively efficient way. We rewrite the vector
Aju of length N, Ny, to anNyy ,-by-N, matrix and denote such a matrix g u]. Then we have

[Aw] = Y [Squ" Squ?... Squ'Nrr|Cy, (56)

[LISVAY R

whereSu"? is theith column vector of adV M p-by-IN,; matrix.

4.4 Comments on the Bilinear Form B,

Using the log-normal random coefficientx, w), we have shown that the bilinear fori(-, -) is positive definite.
However, we do not have the ellipticity here becawge, w) is not strictly positive. Instead of using the Lax-Milgram
lemma, the existence and uniqueness of a solutianw) € L,(H3(D)) can be established by the Fernique theorem
with appropriate regularity assumptions for the covariance function of the underlying Gaussian field [6]. The key
observation is that the random variablg!, (w) = mingep a(x, w) € L,(F),p > 0. From the theoretical point of

view, an inf-sup condition can be established for the continuous bilinearBpfm, v2), wherev; € L(F; H3 (D))

andv; € Lo(F = (Q, F,d?;,(w)P(dw)); H}(D)) [4,6]. Note here that the measure of the probability space for test

functionsv;, is weighted by the random variabig ; (w). According to theoretical observations, one choice for the
test functions can be

{ Y :veLz(IF;Hg(D))}.

amin(w)
However, it is not clear how to deal with,,;, (w) numerically. For numerical studies of model | with the Galerkin
projection, we usually choose test functions frosre Ly (F; HE(D)). Since the stiffness matriz, is symmetric and
positive definite, the existence and uniqueness of solutjégmguaranteed. No divergence of the solution with respect
to L,(F; H}(D)) norm has been observed for such a procedure.

5. NUMERICAL ALGORITHMS

Based on the properties of the Wick product and the assumptions of Theorem 1, we have the following asymptotic
results [23] for Eq. (34) satisfied hy — w;,. With respect tar, we have the following power series:

~V - (ax (a7 (x —0)Fy)) = 0 fo(x, &) + 0 fa(w, &) +....

Substituting
a(x, w) = ao(x) + oay(z, w) + o?az(x, w) + .. .,

and the following ansatz af) — vy,
w —un = to(x) + ola(w, &) + 0%lia(x, &) + ...,
into Eq. (34) and comparing the coefficientsodf we obtain

-V (aoVﬁo) = 0,
—~V - (aoViy) = V - (a1 Vi),
—V - (aVip) = V - (a2Viig) + V - (a1Viig) + fo(, &),

which results in
to(x) = tr(x, &) =0, @;(x, &) #£0,i=2,3,....

Thus,u; — uy has the following power series expansion with respect to

w — uy = 0%tp(x, &) + o3u(z, &) + ..., (57)
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which holds for anye € D. Then both the mean and standard deviation,of v are ofO(o?) if they exist.
Whenl,. — oo, the random coefficient becomes

a(z, w) = et (1/D0%, (58)
whereg ~ AN (0,1). In other words, the noise is spatially independent. Model Il becomes
V- (@Yo Vu) = ~(a )Y o Au = f(a), (59)

which is equivalent to model I, since
—Au=a"to f(x) =a tf(x). (60)

We now consider a perturbation of the coefficient given in Eq. (58)
a(z, w) = o(+ed(@)E=(1/2)0”, (61)

wheree is a small positive number. When— 0, v;; — w;. We use the random coefficient (61) to mimic the case
thatl, — oo.

Examplel. Consider a one-dimensional exponential covariance kernel®i0, 1]:
K (1,x3) = e lr1meal/le),

Its eigenvalues satisfy
2 2e— €3\

VI (w? — €?) tan(w) — 2ew = 0, (62)

w

wheree = 1/I.. Its eigenfunctions are

(1) = w cos(wz) + € sin(wz) ' 63
Y = D T ) T (07— ) em(ze) 4w) T (/DI con2w)) ©3)

It can be shown that as— 0, w ~ v/2e%/2, which results in thak; = 1+ O(e) andds(z) = 1+ O(e). Thus itis
reasonable to consider a perturbation given in Eq. (61) with1/I..

We here use a one-dimensional elliptic problem to examine the random coefficient (61) and present a numerical
study of the convergence behaviorgf — u; ase — 0. In Fig. 1 we plot the relative difference betwegrandw,,
defined as
| — UII||L2(Q;H3(D))

r =

b

lwll £ ;3(p))

with respect tar ande. It is seen that the dominant error takes a form
log(e,) = log(e) + 2log(o) + C, (64)

ie.,
€ ~ C€O'2, (65)

whereC' is a general constant. This suggests that although model Il provides a general second-order approximation
of model |, the constant before® goes to zero linearly with respect 1gi. asl. goes to infinity.

To accelerate the numerical algorithms for model I, such as the Monte Carlo method and the Galerkin projec-
tion method, we take advantage of the small difference betweandw,, either wheno is relatively small or the
correlation length is relatively large such that the constafit) is close to 0, and the fact that; can be obtained
effectively. Based on this idea, we use the solutigras a predictor of, or the stiffness matrix,; of model Il as a
preconditioner of4,.
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Relative difference

€ 10°% 102

FIG. 1: Relative difference betweean andw,, with respect tar ande for one-dimensional elliptic problem subject to the random
coefficient (61)

5.1 Variance Reduction for the Monte Carlo Method

When the correlation length is relatively small, eigenvalues of the covariance kernel decay slowly implying that

a relatively large number of Gaussian random variables need to be kept for a good approximation of the log-normal
random coefficient. For such a case, the Monte Carlo method can be more efficient than the Wiener chaos expansion.
We then propose the following two-step methodology:

(i) Predictor given by w 5: We first consider Wiener chaos expansion of model Il to obtain the numerical
solutionuy 1,. Its mean will be just the zeroth-order coefficieft;, (o).

(if) A predictor-corrector method: Using the solutiony, ;, as a control variate for variance reduction, we further
refine the Monte Carlo simulations of ;, in the following way:

Urn(, &) := wy p,0) () + (win(@; &) — wnn(z; £)), (66)
ch

Eis[win](x) := Emcltn](x) = Nl > (s £, (67)
me =1

where Ny indicates the number of samples?gfanda(“ theith sample.
Based on Eq. (57), we have the following lemma:

Lemma 5. We have the following error estimate:
2 —
| Exs[ui,n] — E[ul,h]HLzmﬂg(m) = / Var(Eis[u,n]) (z)dz = O(c*) Nyt (68)
’ D

Proof. Firstly, it is easy to check th&@ |Eis[u,»]| = E[w4], so the first equal sign holds. Secondly,
Var(Eis[ui,n]) = Npa Var(ii,,) = Npa Var(ur, — wnn) = Npo (El(wn — win)?] — E2wn — wi))

< NoE[(wn — wnn)?) = Nrﬁcl/(ul,h — wi,n)?p(8)dE = O(0*) Npye,

International Journal for Uncertainty Quantification



Numerical Approximation of Elliptic Problems with Log-Normal Random Coefficients 175

where the last step is obtained using Eq. (57). Then the second equal sign of Eq. (68) is obtained by taking integration
of the above equation with respect to spatial variahle O

From Eq. (68), we have

HEIS[UI,h] _E[Ul,h O(O'Z)Nrgcl/z. (69)

H!LZ(F;H&(D)) =

Since a direct Monte Carlo method to calcul&fe, ;] has an erro©(1) N2, so the standard deviation reduction is
guadratic with respect to.

We now look at the computation cost. For the brute-force Monte Carlo method, the €@€ttis+ Tz)ch),
whereT; is the time for construction of the stiffness matrix andthe time for solving a linear system. For the
proposed strategy, the cost@¥ (11 + T2 + T3) Nmc + T4), Wherets is the time for the evaluation af; j, (x; E(i)),
which is much smaller tham; + 1o, andt, is the time to obtainy, ,. To obtainu ,, only one stiffness matrix is
needed. Since the uncertainty propagator is decoupled, T, + Ny, T2. Then the cost for the proposed strategy is
aboutO((t1+ T2) Nmc+ T2Na p +T1). Thus, if a low-order Wiener chaos solutian ;, serves as an effective control
variate, the proposed strategy can be much more efficient than the brute-force Monte Carlo methdd,stacebe
much smaller thaiV,c for the same accuracy.

Remark6. Consider
tp (o, &) = wp(2; &) — o(unn(®; &) — w0 (), (70)

wherew is a real number. It is well known that for all € (—o0, 00), % () provides an unbiased estimator of
E[w 5] through
ch

1 4
E :~ . (2)
Nime = (252 &), 7

IEmc[ﬁl,h} =

which holds for anye € D. For a fixede € D, we know that if we choose* = 0‘|_,||/c7|2 with
0 = E[(uip — wip)2Y% i =111 and oy = E[(uw, — @n) (i — i),
the variance ofy 5, is minimized with respect te such that
Var(ap) (o) = of (1= pii)?,

wherep,;; = oy,1/(oy0y) is the autocorrelation function af; , andw, . Due to the fact given by Eq. (57) and
Theorem 1p,; ~ 1for smallo or largel., whenu, , andw, ;, are almost linear correspondingdd ~ 1 (see more
numerical experiments in [23]). This is the reason we cheosel in Eq. (67).

5.2 Stochastic Galerkin Projection Method

Due to the large number of unknowns and the strong coupling between the chaos coeffjgieiterative numerical
methods are more appropriate for solving the linear system given by the finite element discretization of the uncertainty
propagator (39) of model I. In other words, an effective preconditioner is required. Consider the linear system

A|L1| =f. (72)

Algorithm 1: Variance reduction for Monte Carlo simulations
Solvemodel Il to obtain the Wiener chaos expansion:@f, (x, &).
fori=1,2,..., Nncdo

Samplemodel | to obtainy , (z, £");
Samplethe solution of model Il to obtainy  (x, £*);

Update the statistics using an unbiased estimator as Eq. (67).
end
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Let u;; be a vector consisting of unknowns from the discretizationof based on the same basis as thatdoy.
Define A, as the stiffness matrix corresponding to the discretization of the uncertainty propagator of model Il. Then
the stochastic finite element method for model Il has the following matrix form:

A||ll|| =f. (73)

Based on the structure of the uncertainty propagator of model Il, we knowthiata block lower-triangular matrix,

A||71]_ 0 . 0
An 1 Anz ... 0
Ay = . ) . ; (74)
ANy, ANy 2 oo ANy N,
where the blocksl, ;; are defined as
Aij = Sy@y—agg), 2 J- (75)
with
(Sy(i)fo((j))m,n = /D dY(i),o‘(j)(CC)vem(m) . Ven(sc)das. (76)
Note that
A= Anzz=...= ANy, .Nu, = S0)- (77)
Lemma 6. Consider the stiffness matricels and A,,. We have that the condition number
K (AMA)) <1+ 0(c?). (78)
Proof. Since the difference betweenandu,, is of O(c?), we have in the matrix form
[w — || = A7 = A = O(6), (79)
which holds for anyf. Hence
147 = 45 Y = O(0?). (80)
Then the condition number oﬁ,lA. is
K= A ANAT Anll = | (A = AT+ AT Al (AT = A+ A Aul (81)
= |11+ (A" = A7) A+ (A7 =AY Aull < 1+ A Anl (O(0?) + O(0%)). 0

Remark7. Wheno is relatively small, we expect that,, can provide a good preconditioner for linear system (73).
Instead of solving Eq. (73), we can solve

At A = A (82)
5.2.1 Preconditioned Richardson’s Iteration

One commonly used iterative method for the uncertainty propagator (39) of model | is the block Gauss-Seidel method,
which can be expressed as

k(v)-1

— V- (E[a(z, w)H3] Vul () = Z V- (IE [a(z, w)H ) Hy] Vulgzj)l(m))
i=1
Nu,p
+ 3 v.(E [a(2, W) H g1 Hy ] vu";"gi)(m))+ F(@)80)ys VY E Tntps (83)
i=k(v)+1
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where the superscript indicates the iteration step. It is shown in Lemma 3 ﬂﬂ]@z(m, w)Hi] is strictly positive.
We know that the block Gauss-Seidel method corresponds to a fixed point iteration on a preconditioned system,

M_1A|U| = ]\4_1f7

whereM is the lower-triangular part of matri¥,. Based on the comparability of models | and Il, we can construct
the following preconditioned Richardson’s iterative method [40]:

u* ™ = u®™ Ly A (Au® — ), (84)

wherey is the non-negative acceleration parameter. We know that the Richardson’s iterative method converges when
Y < 2/p(Aﬁ1A|), wherep(-) indicates the spectral radius of a matrix. Based on the relation betdjemmd A, we
expect thap((A;)~1A,) is close to 1 whemw is relatively small.

5.2.2 Preconditioned GMRES Method

We also consider Krylov subspace methods. Sifide symmetric and positive definite, a common choice to solve the
linear system is the preconditioned conjugate gradient (CG) method. We here considedoasse preconditioner,
which is not symmetric. Hence we use a preconditioned GMRES method [40] instead of the CG method.

6. NUMERICAL RESULTS

We consider both one-dimensional and two-dimensiofal=£ [-1,1]¢ d = 1,2) elliptic problem with random
coefficient subject to a nonzero force term

d
f(x) =[] + 4w + De, (85)

i=1

and homogeneous boundary conditions. Assume the underlying Gaussian random field of the log-normal coefficient
a(x,w) = eoG(@.@)=39" \ith G's correlation function is given by

K (w1, @) = e~ 1=l /2, (86)

or
K (@1, @) = e~ |21 oal/te, (87)

wherel, is the correlation length and the standard deviation. Due to the analyticity of the Gaussian kernel, the
eigenvalues decay exponentially [9]. The decay rate is determined by the value of the correlation length, where a
larger!. corresponds to a faster decay rate. The physical discretization is giveh unyiform finite elements with

orderq = 4 for the one-dimensional case, andx32 uniform quadratic finite elements for the two-dimensional
cases. We test the parameters- 0.2,0.6,1 and/. = 20, 2,0.2. The solution differences of model | and model Il are
similar to the results in [23,27], so we only sketch the results for the two-dimensional case here.

The results for the two-dimensional case with Gaussian type kernel are given in Figs. 2-4=f&0, 2, 0.2,
respectively. The results for the two-dimensional exponential kernel jvith 20,2, 0.2 are given in Figs. 5-7,
respectively. The truncation errors of the K-L expansion for the Gaussian kernel and exponential kernel are set to be
2 x 10~% and3 x 102, respectively. For model |, if the dimension of the stochastic spdds less than 20, we use
the stochastic Galerkin method, otherwise we use the Monte Carlo method. From these figures, we say dor small
values, the results of model Il agree very well with the results of model I. A larger correlation I&rgfo makes a
better agreement between the results of models | and Il. This is consistent with the theoretical results.
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FIG. 2: The average (left) and standard deviation (right) of models | and Il at the horizonta) kaed: Gaussian kernel with

l. =20, M =1, andp = 16is used for the stochastic Galerkin approximation of both models | and I
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FIG. 3: The average (left) and standard deviation (right) of models | and Il at the horizonta) kaed: Gaussian kernel with
l. =2, M = 6, andp = 6is used for the stochastic Galerkin approximation of both models | and Il

6.1 Using uy,p as a Control Variate

When the correlation length is relatively small, a large number of random variables are required to represent the
random coefficient and the Monte Carlo method would be a better choice for computation. The mean and variance
are given by the following unbiased estimators, respectively:

ch

1 .
§ : (4)
ch prt ’u’lvh(xv Ev )7

Ul p =
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for the Monte Carlo method of model |
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FIG. 5: The average (left) and standard deviation (right) of models | and Il at the horizontal #n@: exponential kernel with
l. =20, M = 3, andp = 8is used for the stochastic Galerkin approximation of both models I and Il

N,
1 mc )
Var(uhh) ~ m E (uhh(w, E,(l)) — ﬁl,h(iﬁ))z.
i=1

The average and standard deviations of Monte Carlo solutions aj ka® for model | with and without using
model Il as a control variate are given in Fig. 8 (exponential kernel in 1D), and Fig. 9 (exponential kernel in 2D). The
results for a Gaussian kernel are similar but easier to obtain. It is seen that variance reduction is achievediar all
for a smallo value, the reduction is significant. To numerically verify how the variance reduction is relateainid
l., we solved the two models with different parametérs= 0.2,0.4,0.6,0.8,1.0,1.2 and/, = 8,4,2,1,0.5,0.25.
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for the Monte Carlo method of model |
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FIG. 7: The average (left) and standard deviation (right) of models | and Il at the horizontal n€: exponential kernel with
. = 0.2, M = 86andp = lis used for the stochastic Galerkin approximation of modeldl= 86 and N, = 10,000are used
for the Monte Carlo method of model |

The corresponding results for one-dimensional and two-dimensional cases with exponential kernel are given in Figs.
10 and 11, respectively. The standard deviation reduction (69) derived from Lemma 5 is clearly verified.

6.2 Using A, as a Preconditioner

The results of using model Il to precondition model | is given in Tables 1 and 2 (for 1D cases) and Tables 3 and 4 (for
2D cases). We set the default relaxation parameter in the Richardson iteratien 1g(1 + 302).
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FIG. 8: The mean and standard deviation of the Monte Carlo method for model | with and without important sampling in one-
dimensional case. The exponential kernel with correlation lehgts 1 is used.M = 12 p = 4 for the stochastic Galerkin
approximation of model 1M = 12, Nm¢ = 10,000 for the Monte Carlo method. Note thkig scale is used for the standard
deviation
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FIG. 9: The mean and standard deviation of the Monte Carlo method for model | with and without important sampling in the
two-dimensional case. The exponential kernel with correlation lehgth 2 is used. M = 19, p = 2 for the stochastic Galerkin
approximation of model IM = 19, Nme = 1000for the Monte Carlo method. Note thhig scale is used for the standard
deviation

For almost all the cases, the preconditioned Richardson iteration and GMRES are both better than the commonly
used Gauss-Seidel iteration, especially for lakger small 0. The iteration numbers of the Richardson method
and GMRES are much smaller than the Gauss-Seidel method; meanwhile their increases with respect to the standard
deviation parameter are also slower, except for the cases witk 1. For large variance, the preconditioned GMRES
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FIG. 11: The variance reduction for the two-dimensional case with an exponential kernel having different correlation lengths
and different values of. They axes ard| Var(as,n) || g o)/l Var(ur,n)ll g(p)- Nmc = 1000samples are used for the Monte

Carlo method. The tolerance of the K-L expansion is s&t%0l0~2. The values of\/, p corresponding to the stochastic Galerkin
approximation of model Il withi. = 8,4,2,1,0.5,0.25are(5,5), (11,4), (19, 3), (28, 3), (35, 2), (40, 2), respectively. Note that
log scales are used for bothandy axes

method behaves much better than Gauss-Seidel and Richardson methods. Note that we use the solution of model I
as initial values for the Richardson and GMRES iterations, so in the cases that model Il is a very good approximation
of model |, the corresponding iteration numbers are 0.
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TABLE 1: Preconditioning results of one-dimensional problem with a Gaus-
sian kernel.ngs, ny, nemres Mean the iteration number of Gauss-Seidel,
Richardson, and GMRES, respectively. We take= 1/(1 + 30?) for the
Richardson method. The tolerance of K-L expansion is s@t;tol0~3. The
relative tolerance for the iteration solvers is set @

lc o M P Nprp nGs Ty T GMRES
20 0.2 1 10 11 3 0 0
20 0.6 1 10 11 27 0 0
20 1 1 10 11 > 100 22 5

2 0.2 3 10 286 3 1 1

2 0.6 3 10 286 22 3 1

2 1 3 10 286 > 100 19 9
0.2 0.2 11 3 364 3 1 1
0.2 0.6 11 3 364 10 5 5
0.2 1 11 3 364 29 12 9

TABLE 2: Preconditioning results of one-dimensional problem with an expo-
nential kernelngs, n, nevres Mean the iteration number of Gauss-Seidel,
Richardson, and GMRES, respectively. We take= 1/(1 + 30?) for the
Richardson method. The tolerance of K-L expansion is s8tal0~2. The
relative tolerance for the iteration solvers is set@o®

le (o) M P Npg,p nGs Ty TLGMRES
20 0.2 2 10 66 3 0 0
20 0.6 2 10 66 24 2 1
20 1 2 10 66 > 100 16 9

2 0.2 8 5 1287 3 1 1

2 0.6 8 5 1287 17 4 3

2 1 8 5 1287 > 100 9 9
0.2 0.2 51 2 1378 3 1 1
0.2 0.6 51 2 1378 7 5 3
0.2 1 51 2 1378 15 7 6

According to our understanding af;, the worst scenario for the proposed preconditioners is ihensmall
ando is large. In a very few cases (e.§.,= 0.2 ando = 0.6,1 in Tables 3 and 4), the preconditioned Richardson
iteration requires more iterations to converge than Gauss-Seidel. This is probably because a first-order Wiener chaos
approximation is used; the big approximation error together with the big modeling error deteriorate the performance
of the preconditioning and the parametein the Richardson method is not optimal.

Based on the above observations, we advocate to use GMRES with model 1l as a preconditioner for solving
model I.

In the end, we compare our approach with some existing methods by solving a test problem studied in [17].
The physical domain is set {0, 1]2, and the force ternf(x) = 1. The underlying Gaussian field of the log-normal
coefficienta(z, w) has a correlation functio (1, x2) = o?rKi(r), wherer = ||z; — || andK; is the modified
Bessel function of the second kind with order one. Bet= 5 in the K-L expansion, such that 97% of the Gaussian
field’s total variance is captured. The iteration numbers of the Richardson and GMRES methods for the stochastic
Galerkin method of model | with model 1l as preconditioner for differeindp are given in Table 5. From the table,

Volume 9, Issue 2, 2019



184

TABLE 3: Preconditioning results of two-dimensional problem with Gaus-

sian kernelngs, n, negmres Mean the iteration number of Gauss-Seidel,

Richardson, and GMRES, respectively. We take- 1/(1 + 30?) for the
Richardson method. The tolerance of K-L expansion is sdtOt@?. The
relative tolerance for the iteration solvers is set @3

lc o M P Nugp nGs Ty TLGMRES
20 0.2 1 16 17 3 0 0
20 0.6 1 16 17 25 0 0
20 1 1 16 17 29 1 1

2 0.2 4 5 126 3 0 0

2 0.6 4 5 126 17 5 4

2 1 4 5 126 48 14 7
0.2 0.2 80 1 81 2 1 1
0.2 0.6 80 1 81 3 4 2
0.2 1 80 1 81 4 7 3

TABLE 4: Preconditioning results of two-dimensional problem with ex-
ponential kernelngs, 7y, nemres Mean the iteration number of Gauss-

Seidel, Richardson, and GMRES, respectively. We take 1/(1 + 30?)
for the Richardson method. The tolerance of K-L expansion is set to

3 x 10~2. The relative tolerance for the iteration solvers is setGo®

le o M | p Ny nGs Ty TLGMRES
20 0.2 3 8 165 3 0 0
20 0.6 3 8 165 12 1 1
20 1 3 8 165 41 14 10

2 0.2 28 2 435 3 1 1

2 0.6 28 2 435 4 3 3

2 1 28 2 435 10 9 4
0.2 0.2 86 1 87 2 1 1
0.2 0.6 86 1 87 2 3 2
0.2 1 86 1 87 4 7 3

Wan & Yu

TABLE 5: The iteration numbers of Richardson and GMRES method solving the two-dimensional problem with
Matern-tye kernel studied in [17]. We take= 1/(1 + 30?) for the Richardson method. The relative tolerance for
the iteration solvers is set 8. M =5

Richardson GMRES
o | p= p=2 | p=3 | p=4 | p=5 || p=1 | p= p=3 = pP=5
0.2 5 6 5 6 6 3 3 4 4 4
0.4 10 10 11 10 10 3 4 5 6 7
0.6 14 16 17 18 19 4 5 6 7 8
0.8 16 19 21 23 25 5 6 7 8 9
1.0 16 19 21 24 26 5 7 8 9 11
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we see that both the Richardson and GMRES methods are efficieptingseases, the iteration numbers increase
slowly. As o increases, the iteration numbers also increase slowly. The preconditioning effects are still very good for
the cases witlo = 1. These results are very competitive comparing to the algebraic preconditioners studied in [17]
for this test example.

7. SUMMARY

In this work, we consider the Wick approximation of two stochastic elliptic problems with log-normal random co-
efficients, where model Il is a second-order approximation of model | with respectNtmdel Il can be used as a
precondition for model | in a stochastic Galerkin method. The numerical results show that the preconditioned Richard-
son iteration is better than the commonly used Gauss-Seidel methodonkesmall ori.. is large. Meanwhile, the

former method has a parameter to tune. The preconditioned GMRES method works very well for all the values of
andl. tested using default parameters. Model Il can also be used as an efficient important sampling process for model
| to reduce the variance of a Monte Carlo approach when the stochastic dimension in a Karhanemstgansion is

very high.
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