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Abstract

We present a generalized polynomial chaos method to solve the steady
and unsteady heat transfer problems with uncertainty in boundary con-
ditions, diffusivity coefficient and forcing terms. The stochastic inputs
and outputs are represented spectrally by employing the orthogonal poly-
nomial functionals from the Askey scheme, as a generalization of the
original polynomial chaos idea of Wiener [1]. A Galerkin projection in
random space is applied to derive the equations in weak form, and a par-
allel spectral/hp element method is employed to solve the resulting set of
deterministic equations. Simulations in three-dimensional domains with
stochastic dimension 38 and about 150 million unknowns are presented
here for the first time.
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1 Introduction

Traditionally, heat transfer analysis is based on deterministic mathematical
models, where the physical properties and boundary conditions are specified
precisely. In reality, such parameters can be uncertain due to the heterogene-
ity of the medium, inaccurate measurements or small scale variations. To deal
with uncertainty, statistical and non-statistical computational strategies have
been employed. The statistical approaches, e.g. Monte Carlo simulations, can
be prohibitively time-consuming, especially for three-dimensional complex sys-
tems. Non-statistical approaches approximate the stochastic equations in an
analytical manner. Such methods include perturbation methods [2, 3, 4, 5],
Neumann expansions [6, 7, 8], a weighted integral method [9, 10], etc. A com-
mon drawback of these methods is that they are restricted to small random
inputs and outputs.

Another non-statistical approach, called polynomial chaos, is based on the
homogeneous chaos theory of Wiener [1]. It models the uncertainty by a spec-
tral expansion based on Hermite orthogonal polynomials in terms of Gaussian
random variables. This method was applied by Ghanem and co-workers to var-
ious problems in mechanics [11, 12, 13, 14]. A broader framework, called the
“generalized polynomial chaos”, was introduced in [15, 16, 17]. This method
employs a broad family orthogonal polynomials as the expansion basis to rep-
resent non-Gaussian processes more efficiently; it includes the classical Hermite
polynomial chaos as a subset. More recently, work by Babuska and co-workers
further examined the mathematical properties of these expansions [18, 19, 20].

In this work, we focus on the three-dimensional steady and unsteady heat
transfer problems with random heat conductivity. In particular, we assume that
the random input has short correlation length, which results in high-dimensional
polynomial chaos expansion. The semi-discrete systems consists of 780 detem-
inistic three-dimensional heat conduction equations, and thus it is solved on
parallel computers.

2 Generalized polynomial chaos

The generalized polynomial chaos is based on the orthogonal polynomial expan-
sions of random variables. A general second-order random process X(ω) can be
expressed as

X(ω) =
∞∑

j=0

ajΦj(ξ(ω)), (2.1)

where ω is the random event, Φj(ξ) the generalized polynomial chaos of order
p in terms of multi-dimensional random variables ξ = (ξ1, . . . , ξn), and {aj} the
expansion coefficients. The orthogonal basis {Φj} satisfies

〈Φi, Φj〉 = 〈Φ2
i 〉δij , (2.2)

where δij is the Kronecker delta, and 〈f, g〉 = E[fg] is the ensemble average.
Here the ensemble average is defined as the inner product in the Hilbert space
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in terms of the random vector ξ

〈f(ξ), g(ξ)〉 =
∫

f(ξ)g(ξ)w(ξ)dξ, (2.3)

or
〈f(ξ), g(ξ)〉 =

∑
ξ

f(ξ)g(ξ)w(ξ), (2.4)

in the discrete case, where w(ξ) denotes the weight function. For a certain
random vector ξ, the generalized polynomial chaos {Φj} can be chosen in such
a way that its weight function has the same form as the probability distribution
function of ξ(ω).

3 The Karhunen-Loeve decomposition

Let h(x; ω) denotes the random process and Rhh(x,y) the correlation function.
The Karhunen-Loeve(KL) decomposition [21] can be expressed as:

h(x; ω) = h(x) +
∞∑

i=0

√
λiφi(x)ξi(ω), (3.1)

where h(x) denotes the mean, and
{
ξi(ω)

}
is a set of uncorrelated random

variables with zero mean and unit variance. Also, φi(x) and λi are the eigen-
functions and eigenvalues of the correlation function, respectively, i.e.,∫

D

Rhh(x,y)φi(y)dy = λiφi(x). (3.2)

In practice, a truncated N -term decomposition of (3.1) is employed, where N is
determined by the decay of the eigenvalues from (3.2) to ensure that the trun-
cation error is acceptably small. Karhunen-Loeve decomposition thus provides
a means of reducing dimensionality in random space.

4 Governing equation and numerical procedure

Let D be a bounded domain and denote by n the unit outward normal direc-
tion on ∂D. Let T = [0,∞) be the time domain, κ = κ(x; ω) the stochastic
diffusivity, and f = f(x, t; ω) the stochastic source term. Let {∂Dd, ∂Dn} be a
partition decomposition of ∂D, where ∂Dd is the Dirichlet boundary and ∂Dn

the Neumann boundary. The general form of the governing equation for the
stochastic heat transfer problem can be expressed as

α
∂u(x, t; ω)

∂t
= ∇ · [κ(x; ω)∇u(x, t; ω)] + f(x, t; ω) (4.1)

u(x, 0; ω) = u0(x; ω) x ∈ D (4.2)

u(x, t; ω) = ud x ∈ ∂Dd
∂u(x, t; ω)

∂n
= q x ∈ ∂Dn, (4.3)
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where (x, t; ω) ∈ D×T×Ω, α = 0, 1 in steady and unsteady case, respectively,
the source term f and the diffusivity κ are prescribed data. Note here that if
α = 0, the initial condition is unnecessary.

By applying the generalized chaos expansion, we can expand the random
process in eqn (4.1) in the following form:

u(x, t; ω) =
M∑
i=0

ui(x, t)Φi(ξ), (4.4)

where ξ = (ξ1, . . . , ξn) with a dimensionality n determined by the random in-
puts. Similar expansion is applied to other random processes, e.g. κ, f , etc. The
number (M +1) is determined by the dimensionality of the chaos expansion (n)
and the highest order (p) of the polynomials {Φi}, where

(M + 1) = (n + p)!/(n!p!). (4.5)

Introducing the chaos expansion into the governing equation (4.1), we obtain

α

M∑
i=0

∂ui(x, t)
∂t

Φi =
M∑
i=0

M∑
j=0

∇ · [κi(x)∇uj(x, t)]ΦiΦj +
M∑
i=0

fi(x, t)Φi. (4.6)

Note M can be different for different processes, but for notational convenience
we will keep the same M in all expansions. A Galerkin projection of the above
equation onto {Φk} is then conducted. Multiplying eqn (4.6) by Φk, evaluating
its expectation and taking into account the orthogonality of the basis, we get

α
∂uk(x, t)

∂t
=

M∑
j=0

∇ · [bjk(x)∇uj(x, t)] + fk(x, t) k = 0, . . . , M (4.7)

where bjk(x) = 1
〈Φ2

k〉
∑M

i=0 κi(x)〈ΦiΦjΦk〉. Upon expanding initial/boundary
conditions in a similar manner, we obtain a complete set of equations for each
expansion coefficient.

4.1 Steady state equation

In this case, α = 0. We employ a block Gauss-Seidel iteration method:

−∇ · (bkk∇un+1
k ) =

M∑
j=0,j �=k

∇ · [bjk∇un
j (x, t)] + fk(x), (4.8)

where the superscript n denotes the iteration step. The converge criterion is
defined as

‖un+1
k (x) − un

k (x)‖
sup ‖u1

k(x) − u0
k(x)‖ ≤ ε k = 0, 1, . . . , M,

where ε > 0 is the error control. In this paper, we use L∞ norm and set
ε = 10−9. The iterations normally converge within about 10 steps.
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4.2 Unsteady equation

Here, α = 1. We employ a mixed explicit-implicit approach and design a high-
order temporal scheme in the following form,

ûk(x) − ∑J−1
q=0 αqu

n−q(x)
Δt

=
J−1∑
q=0

βq

[ M∑
j=0,j �=k

∇ · (bjk∇uj(x)
)]n−q

, (4.9)

γ0u
n+1
k (x) − ûk(x)

Δt
= ∇ · [bkk∇un+1

k (x)] + fn+1
k (x), (4.10)

where J is the order of accuracy in time and the superscript (n+1) and (n− q)
denote the time level tn+1 and tn−q, respectively. The values of the coefficients
αq, βq and γ0 in the scheme can be found in [22]. Spatial discretization can be
obtained by any conventional method, e.g. finite difference, finite elements, etc.
Here we employ the spectral/hp method to achieve high accuracy in space and
flexible element control [22].

5 Numerical results

In this section, we consider the three-dimensional heat conduction in an elec-
tronic chip subject to random conductivity. Due to symmetry half of the com-
putational domain is shown in Fig. 1. The boundary of the domain consists of
four segments: the top ΓT, the bottom ΓB, the sides ΓS and the boundaries of
the cavity ΓC. The correlation function for the stochastic input processes, e.g.
κ, is assumed to have exponential form, i.e.

C(x1,x2) = e−|x1−x2|/b (5.1)

where b is the correlation length. Since no analytical solution is available for
the eigen-problem (3.2) in 3D, we developed a parallel numerical solver based
on Nyström method and implicitly restarted Arnoldi method [23, 24]. In Fig.
2, we show the first 50 eigenvalues for b = 1.0. For the parallel spectral/hp ele-
ment solver in space, 832 hexahedral elements are used in the domain. Within
each element, sixth-order(Jacobi) polynomials are employed resulting in 190,825
degrees-of-freedom for one deterministic simulation. Second-order chaos and 38-
term Karhunen-Loeve decomposition were employed, with the smallest eigen-
value being 4.4% of the largest one. This results in a 780-term expansion (see
(4.5); for n = 38, p = 2); thus the total number of unknowns of the stochastic
problem is 148,843,500. All simulations were run on 256 processors at the SGI
3800 (Department of Defense, ERDC).

5.1 Steady simulation: Hermite-chaos and Gaussian in-
puts

We now consider the 3D steady state heat conduction with random conductivity.
Adiabatic boundary conditions are prescribed on ΓS and ΓB. The temperature
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Figure 1: Left: Half of the computational domain. Right: Reference points on
planes y=0 and y=1.
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Figure 2: Left: First 50 eigenvalues of exponential kernel with b = 1. Right:
Standard deviation along the vertical centerline.
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is set to be 0 on ΓT and 1.0 on ΓC. We assume that the source force is zero and
the random field κ(x; ω) is a Gaussian process from the 38-term Karhunen-Loeve
decomposition with σκ = 0.2. A second-order Hermite-chaos is employed for
this case. The contours of the stochastic solution of the temperature field are
plotted in Fig. 3. It is seen that the largest uncertainty, indicated by the
standard deviation, occurs between the top and the cavity surface. Monte Carlo
simulations are also conducted to verify the results from Hermite-chaos. To
reach good agreement, 10,000 relizations are empolyed. In Fig. 2, the standard
deviation along the vertical centerline is shown.
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Figure 3: Contours on y = 0. Left: mean field. Right: standard deviation.

5.2 Unsteady simulation: Legendre-chaos and non-Gaussian
inputs

Here we set flux boundary condition on ΓC with q|ΓC = 1 and adiabatic bound-
ary condition on ΓB, ΓS and ΓT. Again, a zero source force is prescribed. We
assume that κ(x; ω) is a random field resulted from the 38-term Karhunen-Loeve
decomposition with the underlying random variables having uniform distribu-
tion, and σκ = 0.2. A second-order Legendre-chaos is employed for this case.
Some reference points are shown in Fig. 1, where points without prime are lo-
cated on y = 0 while their projection on y = 1 are the rest with prime. We are
interested in the stochastic solution at these points and their cross-correlation
coefficients. In Fig. 4, we show the evolution of the stochastic solution at ref-
erence points on y = 0, with mean on the left and COV(coefficient of variance)
defined as COV(x, t) = σu(x, t)/E[u(x, t; ω)] on the right. It is seen that the
mean temperature keeps growing over time while the COVs approach steady-
state quickly. Relatively strong variation of COV is observed during the early
transient period. In Fig. 5, the cross-correlation coefficients between reference
points are plotted. It is observed that the statistics approach steady-state. Since
the correlation length b of stochastic conductivity κ is 1.0, which is relatively
small, we can observe that as the distance away from A increases, its influence
to B − F decreases up to about 20%. In Fig. 6, we show the evolution of mean
temperature at some reference points on y = 0 with error bars indicating stan-
dard deviations. Since for this particluar problem the influence of flux boundary
condition on the cavity surface acts as a sphere centered at the origin, only four
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reference points are considered.
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Figure 4: Temperature evolution at reference points on y = 0. Left: mean
temperature. Right: COV.
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Figure 5: Cross-correlation coefficients on reference points. Left: with respect
to point A on y = 0. Right: between y = 0 and y = 1 along the vertical
centerline.

6 Summary

A three-dimensional parallel stochastic spectral method based on generalized
polynomial chaos is developed for steady and unsteady heat conduction prob-
lems. The algorithm takes advantage of parallel computing to deal with the
large system with about 150 million unknowns resulted from a relatively small
correlation length in the Karhunen-Loeve decomposition. For the steady case,
polynomial chaos is more than 10 (10,000/780) times faster than Monte Carlo
simulations. For the unsteady case, the expected speed-up is even more as was
indicated in two-dimensional simulations in [25]. The efficiency of polynomial
chaos depends greatly on the dimensionality of the random space. The size of
the system of equations that needs to be solved grows rapidly as the number
of stochastic dimensions and polynomial order increases. We will address this
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Figure 6: Temperature evolution at reference points on y = 0.

problem in detail in future work. This work is supported by NSF and a DoD
supercomputing grant.
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