PROJECT 2

Write a code that solves an $n \times n$ system by Gaussian elimination. Your program should solve the system $A\mathbf{x} = \mathbf{b}$ by (i) computing the LU factoraization of A, (ii) solving $L\mathbf{y} = \mathbf{b}$ by forward substitution and (iii) solving $U\mathbf{x} = \mathbf{y}$ by backward substitution. Define your solver as a function, which should work for any proper A and \mathbf{b} .

Minimize the usage of memory. For example, you only need to store the nonzero entries of L and U. Similar to Project 1, you can solve the sub problems by overwriting **b** for **y** and **x**.

Use your code to solve the following example for verification:

2	4	1	$\begin{bmatrix} x_1 \end{bmatrix}$		1	
4	7	3	x_2	=	1	
2	5	6	x_3		-4	

Matlab or Python is suggested. Email your code to xlwan@math.lsu.edu with the subject math4064_Project_02.