PROJECT 2

Write a code that solves an $n \times n$ system by Gaussian elimination. Your program should solve the system $A \mathbf{x}=\mathbf{b}$ by (i) computing the LU factoraization of A, (ii) solving $L \mathbf{y}=\mathbf{b}$ by forward substitution and (iii) solving $U \mathbf{x}=\mathbf{y}$ by backward substitution. Define your solver as a function, which should work for any proper A and \mathbf{b}.

Minimize the usage of memory. For example, you only need to store the nonzero entries of L and U. Similar to Project 1, you can solve the sub problems by overwritng \mathbf{b} for \mathbf{y} and x .

Use your code to solve the following example for verification:

$$
\left[\begin{array}{ccc}
2 & 4 & 1 \\
4 & 7 & 3 \\
2 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-4
\end{array}\right] .
$$

Matlab or Python is suggested. Email your code to xlwan@math.lsu.edu with the subject math4064_Project_02.

