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ABSTRACT. We bring forward the notions of large quantum groups and their relatives.
The starting point is the concept of distinguished pre-Nichols algebra [An3] belonging
to a one-parameter family; we call such an object a large quantum unipotent subalge-
bra. By standard constructions we introduce large quantum groups and large quantum
Borel subalgebras. We first show that each of these three large quantum algebras has
a central Hopf subalgebra giving rise to a Poisson order in the sense of [BG]. We
describe explicitly the underlying Poisson algebraic groups and Poisson homogeneous
spaces in terms of Borel subgroups of complex semisimple algebraic groups of adjoint
type. The geometry of the Poisson algebraic groups and Poisson homogeneous spaces
that are involved and its applications to the irreducible representations of the algebras
Ug; D Uq> D Uq+ are also described. Multiparameter quantum super groups at roots of
unity fit in ou context as well as quantizations in characteristic 0 of the 34-dimensional
Kac-Weisfeler Lie algebras in characteristic 2 and the 10-dimensional Brown Lie alge-
bras in characteristic 3. All steps of our approach are applicable in wider generality
and are carried out using general constructions with restricted and non-restricted in-
tegral forms and Weyl groupoid actions. Our approach provides new proofs to results
in the literature without reductions to rank two cases.
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1. INTRODUCTION

1.1. Quantum groups and Poisson orders. Let g be a complex finite-dimensional
simple Lie algebra and let £ € C be a root of 1 with some restrictions on its order
depending on g. In the papers [DK| [DKP, [DP] a quantized enveloping algebra U (g) at
¢ was introduced and studied; it is a version of the Drinfeld-Jimbo quantized universal
enveloping algebra different from the one defined in [L11 [L2].

The algebra Ug(g) is module-finite over a central Hopf subalgebra Z¢(g) and the corre-
sponding small quantum group of Lusztig [L1, [L2] arises as the quotient Ug(g)//Z¢(g) in
the sense of Hopf algebras. A geometric approach to the representation theory of Ug(g)
was proposed in [DP], based on these facts. The key ingredients of this approach are:

o The existence of a Poisson structure on Z¢(g) so that the algebraic group M corre-
sponding to this algebra is a Poisson algebraic group, whose Lie bialgebra is dual to
the standard Lie bialgebra structure on g.

o The Hamiltonian vector fields on M extend to (explicit) derivations of Ug(g).

The approach consists in packing the irreducible finite-dimensional representations of
Ue(g) along the symplectic leaves of M and predicting their dimensions. These ideas
were distilled in the notion of Poisson order in [BGI, see Section |2l The construction of a
Poisson order structure on an algebra has substantial applications to the representation
theory of the algebra: using this route the irreducible representations of quantum func-
tion algebras were studied in [DL], the Azumaya loci of symplectic reflection algebras was
described in [BG], the irreducible representations of the 3 and 4-dimensional PI Sklyanin
algebras were fully classified in [WWY1, WWY?2]|, the Azumaya loci of the multiplicative
quiver varieties and quantum character varieties were studied in [GJS|. See [BGd, Part
III] for a comprehensive exposition of the applications the notion of Poisson order to the
representation theory of quantum algebras at roots of unity.

1.2. Large quantum groups and pre-Nichols algebras. The main goal of this paper
is to study by means of Poisson orders the representation theory of a larger class of Hopf
algebras introduced by the second author in [An2| and studied in [An3]. The keystone
of the definition of these Hopf algebras is the notion of distinguished pre-Nichols algebra.

Nichols algebras of diagonal type are essential for various classification problems of
Hopf algebras. Those with finite dimension were classified in the celebrated paper [H2|
while the defining relations were provided in [Anll [An2]. Let q be a braiding matrix as
in the list of [H2] and let B, be the corresponding finite-dimensional Nichols algebra of

diagonal type. The distinguished pre-Nichols algebra By of By is a covering of the latter
defined by excluding the powers of the root vectors of Cartan type from its defining
ideal. The Hopf algebras dealt with in the present paper are Drinfeld doubles of the
bosonizations of the distinguished pre-Nichols algebras; they are denoted U,, see
and are module-finite over the central Hopf subalgebra Z; defined in [An3], see §4.51 On
the other hand, the graded dual of gq gives rise to a Lie algebra ng which is either 0 or
the nilpotent part of a semisimple Lie algebra gq that is explicitly determined [AAR3].

We focus on Hopf algebras U, with a further restriction: the related Nichols algebra
By is deformable, i.e. belongs to a one-parameter family of Nichols algebras. We call
them large quantum groups. By inspection, the matrix q is of one of three types:

(a) Cartan type (multiparameter versions of the quantum groups from [DKP] without
restrictions on &);
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(b) super type (multiparameter quantum groups associated to finite dimensional simple
contragredient Lie superalgebras at roots of unity);

(¢) modular types wk(4) or br(2) (quantizations at root of unity of some simple Lie
algebras in characteristics 2 and 3 respectively).

But it stems from the list in [H2] that there are finite-dimensional Nichols algebras of
diagonal type that do not belong to such one-parameter families.

Remark 1.1. To be precise we need three technical assumptions:
(i) The base field is C to have on hand symplectic leaves, although this is not essential,
see for details [BGI.
(ii) Condition is needed for the centrality of Z, in Uj.

(iii) The Non-degeneracy Assumption is used to identify some dual vector spaces
in order to compute some Lie bialgebras.

See the Appendix[A]and the survey [AA] for full details on these algebras. We consider
the chain of subalgebras Uj C Uq2 C Uq where

o Uq>, the large quantum Borel subalgebra, is identified with the bosonization of gq;
) Uq+, the large quantum unipotent subalgebra, is identified with gq.

Intersecting the central subalgebra Z; of Uy gives the chain of central Hopf subalgebras
(1.1) Zi C Z; C Z,.
Each of these central Hopf subalgebras is actually isomorphic to a tensor product of
a polynomial algebra and a Laurent polynomial algebra. The maximal spectra of the
Hopf algebras Zg, ZqZ and ZC‘IIr are the complex algebraic groups Mg, Mq> and Mq"",
respectively. We shall also need the opposite Borel Uq< and its central Hopf subalgebra
qu with maximal spectrum Mf and correspondingly Uy, Z; and M, .

1.3. Main results. As said this paper deals with the geometry of the Poisson algebraic
group M, towards understanding the representation theory of large quantum groups.
This last question contain the description of the irreducible representations of quantum
supergroups at roots of unity, an important problem which is wide open even in the
simplest case of Uy(sl(m|n)). We present a foundation for a thorough investigation of
these representations. We first summarize the main results in the following statement.

Theorem A. Let Uy be a large quantum group as above. Then
(a) The pair (Uq, Zq) has the structure of a Poisson order in the sense of [BG].

(b) The algebraic Poisson group Mg is solvable. The Lie bialgebra of My is dual to the
standard Lie bialgebra structure on gq; hence the symplectic leaves of My are known.

(c) BEvery z € My with corresponding mazximal ideal M. gives rise to a finite-dimensional
algebra H, = Uy/UM,. Then H, ~ H, whenever z and 2" belong to the same
symplectic leave S. By abuse of notation we set Hg = H,. Fvery irreducible repre-
sentation of Uy is finite-dimensional and

Irr Uy = U IrrHg.

S symplectic leave of M

Furthermore, we have analogous results for the pairs (Uy, Z;7) and (U7, Z;). Next
we make more precise the claims of Theorem [A] We fix a large quantum group Uy.
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1.3.1. Poisson orders. We denote by Z(A) the center of an algebra A. Because of the
assumption that By is deformable in the class of Nichols algebras as mentioned above,
we get Poisson order structures on the pairs (Uy, Z(Uy)), (U7, Z2(U;)) and (U5, Z(US"))
by specialization. As these centers are singular, it is more convenient to look at the
central subalgebras in . Part @ of Theorem |A] is included in the following result,
see Theorem [6.2

Theorem B. The pairs (Ug, Zg), (U7, Z7) and (U, Z;) have Poisson order structures
in the sense of [BG| obtained from specialization.

Presently it is not known whether for the remaining braiding matrices q in the list
of [H2] the pair (U, Zq) has the structure of a Poisson order. Indeed the other Nichols
algebras of diagonal type with arithmetic root system in the classification given in [H2]
do not admit such a one-parameter family and for instance our proof of Theorem
does not generalize to them.

1.3.2. Poisson algebraic groups and Lie bialgebras. Recall the semisimple Lie algebra g
determined in [AAR3| and fix a Cartan subalgebra h,. We consider on g4 the Lie bial-
gebra structure with the standard Belavin-Drinfeld triple [BD] that we extend trivially
to gq @ by, see [ES, §4.4]. Let my be the Lie bialgebra dual to gq & by.

Let Gy be the semisimple algebraic group of adjoint type with LieGy ~ g4. For
instance, when U, = Uy(sl(m|n)), Gy ~ PSLy(C) x PSL,(C). Let By be a Borel
subgroup of Gy, Ty < By a maximal torus and N~ < By the unipotent radical; we
identify N, ~ B /Ty. Also By is the opposite Borel subgroup and N, < By
unipotent radical.

Here is a more precise statement of Theorem |A| Part @, see Theorems and

is its

Theorem C. (a) The Poisson algebraic group My is isomorphic to the product of two
Borel subgroups of Gy and Lie My ~ my as Lie bialgebras.

(b) The symplectic leaves of My are in bijective correspondence with the coadjoint orbits
of Gq; each leaf is isomorphic to an open dense subset of the corresponding coadjoint orbit.

Here are the promised versions for Mf and Mq‘|r .

Theorem D. (a) The Poisson algebraic group Mq} is isomorphic to the Borel subgroup
B;', The Poisson structure is invariant under the left and right actions of Ty.

b) The torus orbits of symplectic leaves of MZ are the double Bruhat cells of G that
q q
lie in By .
c) The algebraic group M is isomorphic to the unipotent radical N of B . It has a
q q q
Poisson structure arising from the identification NJ o~ B;r /Ty which is invariant under

the left action of Ty and is a reduction of the Poisson structure on Bc‘r from (a) under
the right action of Tj.

(d) The torus orbits of symplectic leaves of Mq+ are the open Richardson varieties of
the flag variety G/ B that lie inside an open Schubert cell identified with N .
q q q

See Theorems and we refer to [EZ, [KLS] for information on double Bruhat
cells and open Richardson varieties respectively.
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1.3.3. Representations. Since Uy is a free Zg-module of finite rank, it is a PI-algebra. Let
V' be an irreducible representation of Ug; by the preceding V' is finite-dimensional and by
the Schur Lemma, Z; acts on V' by some z € M (a central character) with corresponding
maximal ideal 901,. Now the algebra H, = U, /U9, is non-zero and finite-dimensional
and V becomes a H.-module. In other words the irreps of U; with central character z
are in bijective correspondence with the irreps of H,. Thus

IrrU; = U Irr H,.
z€Mq

This circle of ideas is already present in [DP]. In this way, Part of Theorem |A| boils
down to the following statement.

Theorem E. For every two points z, 2’ in the same symplectic leaf of Mg, the algebras M.
and H, are isomorphic. In particular there is a dimension preserving bijection between
the irreps of Uy with central characters z and 2’

See Theorem @ For instance, let z = e be the identity of M,. Then its symplectic
leaf is S = {e} and Hs = H, is the Drinfeld double of a suitable bosonization of the
Nichols algebra B;. Assume that the matrix q is of Cartan type. Then H, is a variation
of the small quantum group of Lusztig (with an extra copy of the finite torus), with
a notoriously difficult representation theory treated intensively in the literature. Also,
arguing as in [DP] one concludes that Uy is a maximal order, hence for generic z, H. is
semisimple. But for super and modular types, the representation theory of H, is largely
unknown, except for the somewhat standard fact that simple modules are classified by
highest weights (but there is not even a conjecture for their characters). Also, Uy is not
a maximal order because it has nilpotent elements.

We next write down the corresponding formulations for Mf, ng, MJ and M. Let
* € {=,<,+,—}. If 2 € My, then we denote by 90} its maximal ideal in Z; and

(1.2) H, =Ug /Uy (M%)
Clearly these are finite-dimensional algebras.

Theorem F. (a) For every z, 2’ in the same double Bruhat cell of B;, the algebras HZ

and ”Hf, are isomorphic. Analogously for HS and 'Hf,

(b) For every z, 2" in the same open Richardson variety, the algebras H} and ’Hj, are
isomorphic. Analogously for H; and H_,.

See Theorems [R.4] and R.71

Notice also that H is a Hopf-Galois H.-object since Uy is a cleft H.-comodule algebra,
see Analogously, H} is a Hopf-Galois H}-object for x € {>, <, +, —}.

1.4. Strategy and organization. Our proofs of Theorems[CHEF]follow a different strat-
egy from that of [DK| [DKP| [DP]. These papers rely on direct computations of Poisson
brackets in terms of coordinates coming from Cartesian products of one-parameter unipo-
tent groups and subsequent reductions to the rank 2 case. This approach does not work
in the more general context of for several reasons, the simplest of which is that the
quantum Serre relations for quantum supergroups or for quantum groups at —1 involve
more than two Chevalley generators.
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Instead our approach is based on intrinsic properties of pairings between restricted and
non-restricted integral forms of Hopf algebras. It does not rely on reduction to low rank
cases. In particular, this approach provides new proofs of results in [DK| [DKPL [DP|. We
expect that these ideas could be applied to other situations not covered in this paper.

Next we overview briefly the main steps of the strategy:

Step 1. Let C(v) be the field of rational functions on ¢ and A the subalgebra defined in
(5.1)). Since q belongs to a family, there exists a chain of C(v)-algebras

+ =
Uy CUg CUq
and non-restricted integral forms over A
+ >
Ugn C UG CUqgn

such that the algebras UqJr C Uq) C Uy arise as specializations from these integral forms.
This provides Poisson order structures on the pairs (U, Z(U;")), (U7, 2(U7)) and
(Uq, Z2(Uyq)). This step is carried out in Section [5|in the framework of [DP, BG| evoked
in Section 2|

Step 2. We use Theorem (on the restriction of Poisson order structures obtained
from specialization to central subalgebras) to prove that the Poisson order structures
on (Uf, Z(Uy)) and (U7, Z(Ug)) restrict to (U, Z) and (U7, Z7). To get a Poisson
order structure on (Uy, Z,) by restriction from (Uy, Z(Uy)), we need first to establish in
Theorem @ that the Weyl groupoid action preserves the central subalgebras Z;. Along
the way we also obtain that these Poisson structures on the algebras Z; are equivariant
under the Weyl groupoid. This step is carried out in Section [6]

Step 3. This is the matter of Section [7]] We introduce in §5.4] non-restricted integral

forms U, (Tzi of U&t and A-linear perfect pairings U;’?Zi x U i A — A. We prove

(i) the specializations of Uezi are isomorphic to the Lusztig algebras defined in
[AARI], see Proposition ;

(ii) the cobrackets of the tangent Lie bialgebras to Mq> and le are linearizations of
those specializations, see Proposition

In this way we control tangent Lie bialgebras intrinsically and consequently we compute
in Theorems and @ the tangent Lie bialgebras of the Poisson algebraic groups M,,
Mq> and Mg by means of a Manin pair. Since these algebraic groups are connected
we describe them as Poisson algebraic groups in terms of Borel subgroups of complex
semisimple algebraic groups of adjoint type. Also, Mcft are presented as Poisson homo-
geneous spaces.

Finally, we discuss in Section [§] the Poisson geometry of the Poisson algebraic groups
My, Mf and the Poisson homogeneous space M, J , and the applications to the irreducible
representations of Uy, U7 and U,

Besides, we discuss in Section [2] Poisson orders and their restrictions to central sub-
algebras, see Theorem [2.3} Section [3]is devoted to preliminaries on Hopf algebra theory
while we present the main actors of this paper in Section [4]

Acknowledgements. This project started in visits of M. Y. to the University of Cor-
doba in September 2017 and December 2018 supported by the program of guest professors
of FaMAF. It was continued during visits of I. A. and N. A. in February 2019 to the
Lousiana State University. Progress on this material was reported at the plenary talk of
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talk of M. Y. at the International conference on Hopf algebras, Nanjing (2019).

Notations. The base field is C; all algebras, Hom’s and tensor products are over C. If
t€Np,neNandt<n, then L, :={t,t+1,...,n}, L, =1 ,.

For each integer N > 1, let Gy be the group of N-th roots of unity in C and let Gy
be its subset of primitive roots (of order N). Also Goo = Uyen G, Gl = Goo — {1}

2. POISSON ORDERS AND RESTRICTIONS TO CENTRAL SUBALGEBRAS

This section contains background on Poisson orders, their construction from special-
izations, and their relations to Hopf algebras. We prove a general result on restrictions
of Poisson orders to central subalgebras, Theorem which plays a key role later.

2.1. Poisson orders. Here we follow the exposition in [DPl, Chapter 3, §11|. Consider

o a commutative C-algebra A and h € A such that A/h ~ C,

o an A-algebra U such that h is not a zero divisor of U. The natural map U — U/(h)
is denoted by = — =.

For any u € U such that w € Z(U/(h)) there is a linear map D,, € Hom U/(h) given by

(2.1) Du(y) =
Proposition 2.1. [DP| 11.7] Let u € U such that w € Z(U/(h)).
(a) D, € DerU/(h).

(b) Let w € U. Ifu = u+ hw so that u = v/, then D, — Dy = ad®w is an inner
derivation. Conversely the inner derivation adwW coincides with Dy, .

(c) Let p € Autg_a15(U) and let @ be the induced automorphism of U/(h). Then

if y=".

PoD, 0P " = Dyu).
(d) There is natural Poisson structure on Z := Z(U/(h)) given by

(2.2) (.} = Du(y) = [u,’f] , ifo =T,y =7

(e) The map ¢ — @ gives a group homomorphism Auts_as(U) — Autpoisson(Z).
(f) L={D,:veU7ue 2} is a Lie subalgebra of Der U/(h). Indeed

[Dus Dy] = Dua, velU,veZ.
h
(g) The Poisson structure gives rise to a Lie subalgebra L' of Der Z that fits into the
complex
(2.3) 0 —— Innder(U/(h)) L L 0.
The sequence (2.3) is exact if and only if the Poisson center of Z is trivial (i.e.,
there are no Casimir elements except 0). g

Brown and Gordon [BG| axiomatized the ingredients of the above setting as follows:
Definition 2.2. A pair of C-algebras (R, Z) is called a Poisson order if Z is a central
subalgebra of R, R is a Z-module of finite rank and the following two conditions hold:

(a) Z is equipped a structure of Poisson algebra {-,-};
(b) There exists a linear map D : Z — Derc(R) such that D,|z = {z,—} for all z € Z.
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Proposition proves that the pair (U/(h), Z(U/(h))) has a canonical structure of
Poisson order when U/(h) is module finite over Z(U/(h)). The Poisson bracket on
Z(U/(h)) is given by (2.2)). The linear map D is the map induced from the one in
by taking a linear section of the canonical projection U — U/(h).

2.2. Restrictions of Poisson orders from specializations. In the setting of Propo-
sition the center Z = Z(U/(h)) can be singular and is more useful to work with
suitable subalgebras Z’. Next we prove a general fact for the construction of Poisson
orders on pairs (U/(h), Z") for subalgebras Z’ defined from algebra automorphisms and
skew-derivations. For this purpose we fix:

e A-algebra endomorphisms ¢; : U — U, i € I. We denote by ¢; the corresponding
C-algebra endomorphisms of U/(h) induced by ;.

e A-linear (id,;)-derivations 9; : U — U, i € I. We denote by 9; the corresponding
C-linear (id,<;)-derivations induced by 0;.

Theorem 2.3. The Poisson order structure on (U/(h), Z(U/(h))) from Proposition|[2.]]
restricts to a Poisson order structure on (U/(h),2'), where

(2.4) zZ'=2n (mie]l ker 51) N (miell ker(fi — ld)) .

Proof. We have to check that {Z’, 2’} C Z'. Let z; € 2’ and u; € U such that z; = 7,

j=1,2. Fixi €l As;(xj) = x; and 0;(z;) = 0, there are vj, w; € U such that
Qi(’LLj):Uj—l-hUj, 8Z(uj) :h’w]’, 73 =1,2.

Now we compute

Si{r1, 12} =5 ([U1,u2]> _ [6i (1), i (u2)]

h h

— [m,huﬂ + [ur, va] + [v1, ug] = {@1, w2} + [21,02] + [U1, 2] = {21, 22},

Fi{z1, 2} = O ([U17U2]> _ Oi(u1)si(u2) + u10;(u2) — 0i(u2)si(u1) — u20;(ur)

h h

= w1 (ug + hva) + urwe — wa(uy + hvy) — ugwy = |21, Wa] + [W1, 22] = 0.
Hence {x1, 22} € ker 9; Nker(g; —id) for all i € I so {z,y} € Z. O

2.3. Poisson-Hopf algebras. Assume that in the above setting U is a Hopf algebra
over A. Then U/(h) has a canonical structure of Hopf algebra over C.
Let u € U such that w € Z(U/(h)) and furthermore A(u) € Z (U/(h) ® U/(h)). Then

(2.5) DawAy) = A(Du(y)), y € U/(h).
Proposition 2.4. [DP, 11.7] Let B be a central Hopf subalgebra of U/(h).Then

T := minimal subalgebra of Z containing B and closed under the Poisson bracket
is a central Hopf subalgebra of U/(h), hence a Poisson-Hopf algebra.

We recall the elegant proof of [DP].

Proof. Apply (2.5) to y € Z and x = u to get A({z,y}) = {A(z),A(y)} for all z,y € Z.
Hence T' = {t € T : A(t) € T ® T'}, which is a subalgebra containing B, is also closed
under Poisson bracket; thus 7'=T'. O
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3. HOPF ALGEBRAS

In this section we collect preliminaries on (braided) Hopf algebras (always with bijec-
tive antipode ), bosonizations, braided vectors spaces of diagonal type, Nichols alge-
bras, Weyl groupoids, distinguished pre-Nichols algebras and Lusztig algebras. We refer
to [R, [A] for more information on Hopf algebras, Nichols algebras, Nichols algebras of
diagonal type, respectively.

3.1. Cleft comodule algebras. Let H be a Hopf algebra with a central Hopf subalgebra
Z. Given z € G = Alg(Z, C) (the pro-algebraic group defined by Z), let

M, = ker z, J, =HM,, H, =H/T,;

thus H, is an algebra (with multiplication m, and unit u,) and the natural projection
py : H — H, is an algebra map. Then H. is a quotient Hopf algebra of H and there
is an exact sequence of Hopf algebras Z < H — H.. Also for any 2,2’ € G there are
well-defined algebra morphisms A, ./ : H,.,» — M, ® H’, and in particular the maps

0z = Az,s cH, = H, @ He, Az = AE,Z tHy = He @ H,
make H, a H.-bicomodule algebra for z € G. Clearly
(3~1) QzPz = (pz ®pE)AH7 Aopz = (ps ®pz)AH-

Recall that a right K-comodule algebra A (over a Hopf algebra K) is cleft if there
exists a convolution-invertible morphism of K-comodules y : K — A.

Lemma 3.1. If the H.-comodule algebra H with coaction o = (id ®p.)Ay is cleft, then
so is H, for any z € G. In particular H, is a Hopf-Galois object over He.
If H is a pointed Hopf algebra, then H, is He-cleft for all z € G.

Proof. If x : H. — H is a morphism of H-comodules, then so is x, :=p.x : He — H.:
(x: ®@id)e; = (p. ®@id)(x ® id) Ay,
= (pZ ® id)(id ®p8)AHX = 02P2X = 0zXz-

If x is convolution-invertible, then so is x, since p, is an algebra map.
For the last statement, H is H.-cleft by [Scl, 4.3], and then we apply the first part. O

We refer to [S] for Hopf-Galois objects. In the setting of Cayley—Hamilton Hopf
algebras, which is a refinement of the above setting for the pair (H, Z), a tensor product
decomposition of the irreducible representations of H, was obtained in [DPRR].

3.2. Braided Hopf algebras and bosonization. Recall that a braided vector space
is a pair (V,c) where V is a vector space and ¢ € GL(V ® V) is a solution of the braid
equation: (c® id)(id ®c)(c ® id) = (id ®c)(c ® id)(id ®c). There are natural notions of
morphisms of braided vector spaces and braided Hopf algebras (braided vector spaces
with compatible algebra and coalgebra structures), see [T] for details. To distinguish
comultiplications of braided Hopf algebras from those of Hopf algebras, we use a variation
of the Sweedler notation for the former: A(r) = r(1) @ r(2),

Let H be a Hopf algebra. Then the category of (left) Yetter-Drinfeld modules £YD is
a braided tensor category and there is a forgetful functor from g)ﬂD to the category of
braided vector spaces, namely V € £YD goes to (V,¢) where ¢ € GL(V ® V) is given by
c(v@w) = v(_1) wRv(y) in Sweedler notation. This forgetful functor sends Hopf algebras
in gyD to braided Hopf algebras. In turn Hopf algebras in gyD are noteworthy because
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of the Radford-Majid bosonization that provides a bijective correspondence between their
s

collection and the collection of triples (A, m,t) where A &= H are morphisms of Hopf

L
algebras with 7t = idg. See |R] for an exposition. More precisely, the correspondence
sends the Hopf algebra R € HYD to the bosonization R#H and the triple (A, ) to
the algebra of right coinvariants R = A7,

Similar notions and results hold for the category of (right) Yetter-Drinfeld modules
ypg consisting of right H-modules and right H-comodules V satisfying the compatibility

(’U . h)(o) & (1) : h)(l) = V(0) * h(2) & S(h(l))v(l)h(3), veV, he H.

For convenience of the reader we spell out the precise definitions. First, any V € ypg
becomes a braided vector space with ¢ € GL(V ® V) and its inverse given by

(32)  clvew)=wge ®@v-wqy), clvew)=w -Sil(v(l)) ®v@), v,weV.
Let (A, m,¢) be a triple as before. Then the subalgebra of left coinvariants

S=CTA={secA: (r®id)A(s) =1® s}

becomes a Hopf algebra in ypg with right action -, right coaction p and comultiplication
A given by

s-h=S8(hay)she), p(s)=(1d@m)A(s), A(s)=s1)®@9I(s2)), s€SheH,

where ¥ : A — S is given by ¥(a) = 7(S(a(1)))a(), a € A. Conversely, the bosonization
HH#S of a Hopf algebra S in ))Dg is the vector space H® .S with the right smash product
and coproduct. That is, given s,s € S and h,h € H,

(h#ts) (h#3) = hhay#(s - h))5,  A(hd#s) = hay#(sW) o) ® by (M) 1) #s?.

3.3. Nichols algebras. Let V € YD. Then the tensor algebra T(V) is naturally a
Hopf algebra in ZYD. A pre-Nichols algebra of V is a factor of T(V) by a graded Hopf
ideal in gyD supported in degrees > 2. The maximal Hopf ideal among those is denoted
by J(V); the Nichols algebra of V is the quotient B(V) =T (V)/T (V).

The tensor algebra of a braided vector space (V,¢) is also a braided Hopf algebra in
the sense of [T]; a pre-Nichols algebra of V is a factor of T'(V) by a braided graded Hopf
ideal supported in degrees > 2. The maximal Hopf ideal among those is denoted J V);
the Nichols algebra of V is the quotient B(V) = T(V)/J (V).

These two structures are compatible, i.e. if V € gyD and (V, ¢) is the corresponding
braided vector space, then J(V) = J (V). But a pre-Nichols algebra of (V,¢) does not
necessarily come as the forgetful functor applied to a pre-Nichols algebra of V € gyp.

Remark 3.2. Let H be cosemisimple, V € £YD and G = B(V)#H = ®pen,G", where
G" = B"(V)#H. By other characterizations of Nichols algebras, we know that

(a) B(V) is coradically graded and generated in degree 1;
(b) G is coradically graded and generated in degree 1.

Since the projection 7 : G — H is graded, the subalgebra of left coinvariants S = “°7G
inherits the grading of G; by a standard argument it is also coradically graded and
generated in degree 1. Thus S is a Nichols algebra in yDg.
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3.4. Hopf skew-pairings of bosonizations. Let (-,-) : M xV — C be a bilinear form
between two vector spaces M and V. We denote by (-,-) : (M @ M) x (V®V) — C the
bilinear form determined by

(3.3) (mem vev) = (mv)m v), m,m’ € M, v,v' € V.

Let H and K be two Hopf algebras. A bilinear form (-,-) : K x H — C is a Hopf
skew-pairing (or skew-pairing of Hopf algebras) if for all for k, k' € K, h,h' € H,
(k,hh')y = (A°P(k),h @ h'), (kK' h) = (k@K A(h)),

B ey = eh), (1.hY = <(h), (S(R). By = (k. S(h)).

A skew-pairing of braided Hopf algebras is defined by (3.4) but with the convention
AP = A,

Let us fix a Hopf skew-pairing (-,-) : K x H — C. A YD-pairing between M € YDE
and V € YD is a bilinear form (-,-) : M x V — C such that

(m - k,v) = <kaU(—1)><m7U(O)>7

(3.5) (m, h-v) = (m), h) (m g, ),

meM,keK, velV, he H.

We recall the following well-known result, whose proof is straightforward.

Lemma 3.3. Let R be a Hopf algebra in 2YD, S be a Hopf algebra in VDK and (-,) :
(K#5S) x (R#H) — C be a bilinear form such that

(3.6) (ky,zh) = (k, h)(y, x), yeS, ke K, ze R, he H.

Then the following are equivalent:

(a) (-,-) is a Hopf skew-pairing.
(b) The restriction of (-,-) to K x H is a Hopf skew-pairing and the restriction of (-,-)
to S X R is both a skew-pairing of braided Hopf algebras and a YD-pairing. O

A YD-pairing between M € J)Dﬁ and V € ZyD extends canonically to a YD-pairing
(-, : T(M) x T(V) — C. This extension is actually a braided Hopf skew-pairing, i.e.,
it satisfies (3.4) with respect to the braided comultiplications. The bilinear form

yeT(M), ke K,zeT(V), h € H is a Hopf skew-pairing by Lemma [3.3

Assume that dim M < oco. Then the radical T(M*)* with respect to (-,-) coincides
with J(M). Hence, for any V YD-paired with M we have

T(V)" 2 J(M).

Consequently, if dim M < oo and dim V < oo, B is a pre-Nichols algebra of M in yD%

and & is a pre-Nichols algebra of V in gyD, then (-,-) descends to Hopf skew-pairings
() :BxE—Cand () : (K#B) x (E#H) — C.
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3.5. Nichols algebras of diagonal type. We fix § € N and set [ = Iy. Let (V,c) be a
(complex) braided vector space of diagonal type with braiding matrix

IxI
(3.7) q = (g) € (C*)
with respect to a basis (z;)ic1, i.e. c(x; ® ;) = gijjx; ®a; for all 4, j € I. We assume that
dim B(V) < oo. These Nichols algebras are classified in [H2]. Throughout the paper
we will also assume that the Dynkin diagram of g is connected, for simplicity of the
exposition.

The canonical basis of Z! is denoted a1, ..., o. The algebra T(V) is ZM-graded, with
grading deg x; = oy, ¢ € . This grading naturally specializes to the standard Ny-grading.

Let q : Z' x Z' — C* be the Z-bilinear forms associated to the matrix g, i.e.
q(oy, ap) == qji, j, k€l lf o, B € Z! and i € I, then we set
(38) qaB = Q(Oéaﬂ), o = CI(OhOé% No = ord qaq, N; = ord Qoo = Nai'
Remark 3.4. Every Z!-graded pre-Nichols algebra of V admits algebra automorphisms
¢} and (id, ¢;')-derivations 9 for each i € I; that is,

0} (zy) = 0] ()] (y) + 0] (y), z,y € T(V).
Indeed the algebra automorphism g7 : T'(V')
sMx) = q(au, B)z, x € T(V) homogeneous of degree 3 € Z!.
The linear endomorphisms 9] : T(V) — T(V) are defined as follows. Let A, ,(z) be
the homogeneous component of A(z) € T(V) @ T(V) of degree (m,n) € N3. Then
Ap-1( Zaq ® i, zeT™(V).
1€l

It is easy to see that 9] is a (id,s])-derivation. If B is a quotient of T(V) by a Z!-
homogeneous ideal, then gf induces an algebra automorphism of B, also denoted by gf',
and 8] induces a (id, ¢;')-derivation of B, also denoted by 9;.

— T(V) is given by
h

3.6. Weyl groupoids. The notions of Weyl groupoid and generalized root Systems were
introduced in [HI, [HYT]. We recall the main features needed later. Let (c} )”611 e 71

be the (generalized Cartan) matrix defined by cj; := 2 and

(3.9) cj; = —min{n € No : (n+1)g;, (1 — ¢53qi;45i) = O}, i # J.
Let i € I. First, the reflection s! € GL(Z") is given by
(3.10) siay) == aj — cq]ozz, jel

Second, the matrix p;(q) is given by

cd

(3.11) (pi(a)jx = a(si(y), s7(ar)) = Qquzk T gl %, jok el
Finally, the braided vector space p;(V') is of diagonal type with matrix p;(q). Set
X :={pj ... pj.(q) s j1,-..,Jn € ,n € N}.
The set X is called the Weyl-equivalence class of q. The set Ai of positive roots

consists of the Z-degrees of the generators of a PBW-basis of By, counted with multi-
plicities. Let A9 := Al U —Al. Then the generalized root system of ¢ is the fibration

A — X, where the fiber of pj, . .. pjy (q) is AP1Pin @ The Weyl groupoid Wy of By acts



POISSON ORDERS ON LARGE QUANTUM GROUPS 13

on this fibration, generalizing the classical Weyl group. Here is another characterization

of Ai, valid because it is finite. Let wj € Wy be an element of maximal length and

b9 9 - .. 4. 3
Wy = 0; Ty =+ T4, be a reduced expression. Then

(3.12) ,Bk = S?l cee Sik—1(aik)7 kel
are pairwise different vectors and A% = {f, : k € I} [CH, Prop. 2.12|, so |AL| =¢.

3.7. Cartan roots [An3|. This important notion is crucial for our purposes. First, i € T
is a Cartan vertex of q if

q

(3.13) 4ijq5i = qici”, for all j # 1.
Then the set of Cartan roots of q is

O = {s] 5, ...5i, () € A7 € Tis a Cartan vertex of py, ... pi,pi, (4)}.
Set O =9O9N NY. Recall (3.8) and set NB = Ng, if B ¢ O9, or else oo if § € OI.
The set of Cartan roots gives rise to a root system up to a rescaling. Set
(3.14) O = {N}p: B € 0%, 01 =9INNY, B=NiB, Beo

Theorem 3.5. [AAR3| Theorem 3.6] The set O is either empty or a root system inside
the real vector space generated by D9. The set I19 of all indecomposable elements of Qi
is a basis of this root system.

Here v € Qﬂ_ is indecomposable if it can not be represented as a non-trivial positive

linear combination of elements of Ql. Let gq be either 0 or the semisimple Lie algebra
with root system as in Theorem [3.5] accordingly. We fix a triangular decomposition

(3.15) gg =1y ©hy D ng

and the Borel subalgebras [Jqi =hy @ nqjE C gq; if g = 0, then n;r =bg=ny =0 We
denote the root lattice by

(3.16) Qq = Z Zry = @ Zry.

q q
vEDT YEIl

3.8. Distinguished pre-Nichols algebras. The finite-dimensional Nichols algebras of
diagonal type admit distinguished pre-Nichols algebras introduced in [An2, [An3]. An
ideal Z(V') of T(V') was introduced in [An3|; it is generated by all the defining relations
of By in [An2, Theorem 3.1], but excluding the power root vectors AN O,, and
adding some quantum Serre relations.

Definition 3.6. [An3| The distinguished pre-Nichols algebra gq of V is the quotient
By =T(V)/Z(V). Since Z(V') is a Hopf ideal, By is a braided Hopf algebra.

By Remark there are automorphisms ;' and skew-derivations 9; of gq, 1€
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3.9. Lusztig algebras. The Lusztig algebra L associated to q is the graded dual of
B, [AARI1]. Thus L; is a braided Hopf algebra equipped with a bilinear form (, ) :
Ly x By — C, which satisfies

(3.17) (y,22") = (¥, 2)(yV,2')  and  (yy,2) = (y,2P)(y,2W)

for all x,2" € gq, v,y € Lq. Let Z = Cowgq be the subalgebra of coinvariants of the
canonical projection

w : By — By.
Then Z; is a normal Hopf subalgebra of gq [An3, Theorems 4.10, 4.13] and we have an

extension of braided Hopf algebras Z < fj;q =5 B,. Taking graded duals, we obtain a
new extension of braided Hopf algebras, cf. [AAR2, Prop. 3.2]:

(3.18) By S Ly 5 3,

Remark 3.7. Assume that (4.23) below holds. Then the braided Hopf algebra 3 is
a Hopf algebra, isomorphic to the enveloping algebra of the Lie algebra P(3,) [AAR2,
3.3]. Moreover P(34) ~ ng as in (3.15) [AARJ].

4. LARGE QUANTUM GROUPS

In this section we describe the large quantum groups i.e. Drinfeld doubles of bozoniza-
tions of the distinguished pre-Nichols algebras belonging to a one-parameter family; these
are the main focus of the paper. The large quantum Borel and unipotent subalgebras are
also introduced here. Throughout the rest of the paper I't and I'~ denote free abelian
groups of rank € with bases denoted respectively (K;);er and (L;);er. Let T =T7 x '™,

4.1. Families of Nichols algebras. From now on we assume that ¢ belongs to a one-
parameter family (except when explicitly stated otherwise). This means that there exists
an indecomposable matrix

(4.1) q = (a;) € (C*)
such that:

o The Nichols algebra of the C(v)-braided vector space of diagonal type Vi (,) with basis
(xi)ier and braiding matrix has finite root system thus listed in [H2].

o There exists an open subset () # O C C* such that for any x € O, the matrix q(x)
obtained by evaluation v — x has the same finite root system as q.

o There exists £ € G/ such that q = q(§).

By inspection in [H2], all one-parameter families are listed in the Appendix We
denote the Nichols algebras of V' and V¢ (,), with braidings given by q, respectively q, by

B, :=B(V) and Bq := B(Ve))-

IxI

The defining relations and PBW-basis of B and Bg are described in [AA] over an alge-
braically closed field of characteristic 0 but the same presentation and PBW-basis are
valid over C(v). Indeed, apply to F = C(v), K = C(v) the following remarks:

o Let K/F be a field extension and (V] ¢) a braided F-vector space. Then (V®rK, c®id) is
a braided K-vector space and B(V)@pK ~ B(V ®rK); use e.g. quantum symmetrizers.
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o Let K/F be a faithfully flat extension of commutative rings. Let U be a F-algebra with
generators (y;)jcs and Ugx = U ®p K which is also generated by (y;)jes. Let (r¢)ier
be a set of elements in the tensor algebra over F of the free module F(*). Then these
are defining relations of U if and only if they are defining relations of Uk.

The discussions in and §3.6/ apply to the matrix q. Let q : Z! x ZI — (C[p*1])*
as in 11 we also have the notation qg for a, 8 € 7! as in ([3.8)). We denote by Wy the

corresponding Weyl groupoid, by p;(q) the related braiding matrices, etc. As in Remark
there are ¢! € Autag(Bq) and (id, ¢1)-derivations 95! : Bq — Bq, for every i € I

Remark 4.1. Crucially, 8 is a Cartan root of q if and only if ord qgg = occ.

4.2. The quantum group Uy. Here we work over C(v). Let Wc(,) the C(v)-vector
space with basis (y;)ier. The group I" acts on V() © We(,) by

(4.2)  Ki-xj=qiz;,  Kicyi=q;'y,  Liowj=duzg, Loy = q;;'y,

i,j € I. The vector space V() ® Wg(,) is I'-graded by

(4.3) degx; = K; degy; = L;, iell.

Thus Vi) @ We) € ggzggjﬂ) with coaction given by the grading. In particular, Wg(,)
is a braided vector space with braiding matrix q’ where q;j = qj_il, 1,7 € L.
We define Uq as the quotient Hopf algebra of the bosonization T'(V(,) @ W) ) #C(v)T
modulo the ideal generated by
T (Vew))s T Wewy), TiyYj — q@'_jliji — 65 (KL — 1), i,jel
The images of x;, y;, K; and L; in Uq will again be denoted by the same symbols. Let
E;,:=ux; F; = yiL;l in Ug, i € I. Then for all 4, j € I we have

(4.4) K;E; = qi; B K;, LiE; = q;iF; L;,

(4.5) KiFj = q;;' FK;, LiFj = q;; Fy Ly,

(4.6) E;F; — FjE; = §;;(K; — L),

(4.7) AE) =K, ®E; + E;®1, AF)=10F+F®L "
We consider the following subalgebras of Ug:

Ud' =Cw)[K; i eT], Ul =Cw)[Lf' :iel], Ul=Cw)K; " L i€l
Us =C(v)(E;:iel), Uqy =Clw)(Fi:iel),

Uz =Cw)(E;, K iel), Us=Cu)(F, L7 iel).

The multiplication map induces linear isomorphisms

~ J7T 0 -~ 72 <
(4.8) Uq = Uq @cw) Ug @cp) Ug = Ug ®ce) Uq-
We have canonical isomorphisms of Hopf algebras
+0 + -0 - 0
Uqg  =C)T, Uy =C), Uq = C(v)T.

C(w)r+

C(V)ﬁyp and there are

The algebra U(T has a canonical structure of a Hopf algebra in
isomorphisms of (braided) Hopf algebras

Ut ~ UZ ~ UT4UT0
a = Ba; a =Uq#Uq
see e.g. [ARS] for details.
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Define the module Vi, € YD)~ with basis {x] : i € I} by

v
x; - Li = qjix], degmf:Li_l, i,j €l
Let 7= U§ — Uq_O be the canonical Hopf algebra morphism; then 7 U; = Ug,

cf. [ARS, Corollary 3.9 (2)]. Hence Uy has a canonical structure of a Hopf algebra in

J)Dgzgi. By Remark we have isomorphisms of (braided) Hopf algebras

_ * < ~ -0 _
Ug =~ B(VC(V)) ~ By-n, Ug =~ Uq #Uq -
Here g~ means the matrix obtained by inverting every entry of q.

Now there is a unique Hopf skew-pairing (-,-) : U§ X U; — C(v) determined by

(Li, Kj) = q;, (£, Ej) = 6ij, (Li, Ej) = (Fi, Kj) = 0, i,j €l
see [ARS|, Theorem 3.7]. By [ARS| Theorem 3.11 (1)], we have
(-g-,2194) = (2—,24)(9-, 9+), T+ € Ugf, g+ €T

The restriction (-,-) : Uy x Uf — C(v) is non-degenerate by [ARS| Theorem 3.11 (3)]
and is a Hopf skew-pairing of braided Hopf algebras by Lemma [3.3]

4.3. The large quantum group U;. Recall that q € ((CX)HX]I belongs to a one param-
eter family given by a matrix q, cf.

Definition 4.2. The large quantum group U, is the Drinfeld double of the bosoniza-
tion of the distinguished pre-Nichols algebra Bj.

The complex Hopf algebra U; was defined in [An3| for arbitrary q with dim B, < oo.
Explicitly, let W the C-vector space with basis (y;)ie1. The group I' acts on V@& W by
Ki-xj =gy, Ki-yi=q;'y, Li-wj =g, Loy =q;'y;, i,j€l
Now V @ W is I'-graded by (4.3]), so W is a braided vector space with braiding matrix
q" with entries ¢j; = qj_l-1 for 7,7 € I. Recall the defining ideal Z(V') of By. Then Uj is

the bosonization T'(V & W)#CI" modulo the ideal generated by
Z(Vv), (W), w3y — ;5 i — 0ij (KiLi — 1), i,jeL
The images of x;, y;, K; and L; in Uy will again be denoted by the same symbols. Let
e =xi, fi = yiLZ-_1 in Uy, 7 € . Then for all 7,5 € I we have

(4.9) Kie; = qijej K;, Lie; = qj_ilejLi,
(4.10) Kif; = q;' 1 Ki, Lifj = qjif;Li,
(4.11) eifj — fiei = 0ij(K; — L 1),
(4.12) Ale)) = K;i®ei +e; @1, Alf)=1® fi + fi® L7,
We consider the following subalgebras of Uy:
U =C[K iel], U =C[L;' i 1], U =CIK;™ L' i 1),
U =Cle;:iel), Uy =C(fi:iel),
UZ =Cle;, K i €l), US=C{f;, L' i €).

Definition 4.3. The algebras U;” and Uy will be called large quantum Borel alge-
bras and the algebras qu large quantum unipotent algebras.



POISSON ORDERS ON LARGE QUANTUM GROUPS 17

The multiplication map induces the linear isomorphisms

(4.13) Uy~ U @c U @c Uy ) =~ UZ @c US.
We have canonical isomorphisms of Hopf algebras
Ut?~Crt, U % ~Cr-, U ~ CT.

The algebra U, q+ has a canonical structure of a Hopf algebra in g?i YD. We have isomor-
phisms of (braided) Hopf algebras:

+~ B > o [JF R0
U ~ B, Uz ~ U #U;°,

see [An3]. Define the module V* € YDEL” with basis {x} : i € I} by

o} Li = qjix], degx} = L; !, i,j el

Let 7= : Uq< — Uq_0 be the canonical Hopf algebra projection; then ™ U‘f = Uy
as in [ARS, Corollary 3.9 (2)]. Hence U, is a Hopf algebra in ypgi and because of

the defining relations of U, it is isomorphic to the distinguished pre-Nichols algebra of
V* e yDgi. Combining the above, we get isomorphisms of (braided) Hopf algebras:
(4.14) Uy ~ By, Us ~ U #U, .

Here, again, g~ denotes the matrix obtained by inverting every entry of .

4.4. Lusztig isomorphisms and root vectors. As in [H3, §3| we consider

—c a .,
(4.15) AL = (a7 i) (—ch)g, H (afaijaji — 1) e Clv™')*, i#jel

0§s<—c?j
By [H3|, Proposition 6.8], there exist algebra isomorphisms T} : U, pi(q) — Uq such that
_.a F.L. =
T;Q(K]) — K]KZ Cz]; T;q(ﬂl) — 11 . ,7 7t;
(adCEi) By, J 7&27
(4.16) X ’
Ki_ E’i? j = Z.7

_C‘il_
TH(Ly) = LiL; 5 Tiq(Fi):{

_d .,
(A Nade )"0y, j # 1,
where the underlined letters denote the generators of U, (q)-

Let wg be the element of Wy of maximal lenght ending at q and wg = ojloy, -~ 0;
be a reduced expression. By [H3, Theorem 6.20],

(417)  Eg :=T3.. . T (E;) €U, Fg =T ..T, (F,) €Uy,
By [HY2, Theorem 4.5] the sets

(4.18)

{EgllEgj...Eg; Zogn]’<j\7@j,j6]lg}, {Fgleggz,..ngf ;ogmj<ﬁgj,jellg}

4

ke 1,.

are bases of U(Jf and Uy, respectively. Indeed, this follows from Property in the
Appendix [A] and Remark [£.1} Thus the following set is a basis of Ug:

(4.19) {ER . ERK{ KLY L LYFR.FR 0 <my,ny < Np, ai, b € Z}.
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We now turn to the algebras Uy. Let )\gj is defined as (4.15)) with q in place of q. By

[An3l Proposition 10|, there exist algebra isomorphisms 7T} : U .(q) — Uq such that

p

fiLia .] = i?
q

(adce;) " ej, j#1,

7

—cd.
T'q(Kj) =KGK, V5 Tiq(Qi) = {

(4.20)
—cl. K te; J=1
TNL,) = L;L, “; T(f)=4 & ™ 4 o
7 J J 1\ 4 ()‘gj)71<adc fz) Cijfj’ j 7& i,
The underlined letters denote the generators of Uy, (q).-
Analogously, eg, = Tqu ... Ty, (e;,) and fg, = Tqu ... Ty, (fi),) belong to U, and U,
respectively and by [An3, Theorem 11] the sets

(4.21) {egiegj...egj 10 <y <Nﬁi} and {fgl“ 5 St 10 <my <Nﬁj}

are bases of UqJr and Uy, respectively. Thus the following set is a basis of Uy:
(4.22) {egnll .. .€gZZKf1 .. .ngLlil Ce ngfnll c. fgf :0< mj, n; < Ngj, a;, bj € Z}.

4.5. The central subalgebras Z, Zf, Zq>, qu. In this subsection and the next g

does not need to be in a family, just dim B; < oo is assumed. To start with, we consider
the subalgebra Z; of Uy introduced right after (3.17)); as shown in [An3, p. 18|, Z is

generated by
Ng Ng +Ng +Ng q.
65 ) fﬁ ) Kﬁ ) Lﬁ ) /B € D 9

this is a normal Qg-graded Hopf subalgebra of U, [An3, Proposition 21, Theorem 33].
For Z4 to be central in U, we need the following condition that we assume from now on:

(4.23) G =1, a €Al Beon.

Remark 4.4. (a) If (4.23) holds, then qgs = 1 [An3l Lemma 24].
(b) Condition (4.23) is equivalent to the following one:
(4.24) g =1, for all i € 1, § € IT°.

The reduction to simple roots is clear. Since qivg = qop and 1 is a basis of the root
system 99, the reduction from Dl to I19 holds.

(c) Let ¢ € I. Condition (4.23)) holds for q if and only if it holds for p;(q).
Indeed, pi(q)ap = q59(a)s7(g) for all a, B € 7? by (3.11)), and by [AAR3, Lemma 2.3

we have sJ(O%) = Ori(®), NSJ((;)) = Ng, for all .

When q is symmetric, we can quotient the large quantum by a central group subalgebra
to remove the extra Cartan generators as in quantum groups. However the condition of
q being symmetric is not always compatible with (4.23)) as we see next.

oL EeGhy, N >2: it is

Example 4.5. Assume that q has Dynkin diagram 5
of super type A(1]|0). In this case,

Al ={a1,a1 + ag, a2}, Dl ={a + as}.
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Condition (4.24]) becomes
1= (gma2)" = (—q2)", 1=(g21922)" = (=g2)" = ar=(-D" = g3,

We have two possibilities: if N is even, then gio = &* for some k € Iy, so g2 = &%,
and q is not symmetric. If N is odd, then g3 = —&* for some k € Iy, so qo1 = —€17F.
In this case q is symmetric only when k = %

We consider also the Hopf subalgebras

+Ng |

+N, _ _
ZP=Clk; " pedl), Z;=C(Ly " pedl), Z20=277",
Ng

Ng . - ) > _ 0 7< _ 7—r—0
Z;:C<eﬂﬁ.56531>, Zq —(C<f,6, : 8 eDl), ZCT—ZJZ;F, Zq<_Zq Zg.
Remark 4.6. The following properties hold:

(a) [An3l Th. 23]. ZC?: is a polynomial ring in variables egﬁ, respectively févﬁ, Be Ol
(b) The multiplication gives linear isomorphisms Z ® Z/ ' Z, '@ Zy ~ Zy ~ ZZ @ Zs.
(c) Recall the skew-derivations 0], 8?“” of U;E, cf. (4.14). By [An3, Theorem 31|,

(4.25) Z;' = ﬂker@?, Zy = mkerﬁf(_l).
i€l €l
(d) The algebras Uy, Uf, Uq< and qu are module finite over their central subalgebras
Zy, Zq?, Z‘f and Z&t; just consider the PBW-bases in

4.6. Action of the Weyl groupoid on Z;. Next we prove invariance of the central
Hopf subalgebras Z, under the Lusztig isomorphisms T} : U, ) — Uy, cf. §4.4]

Theorem 4.7. Leti € I. Then Tiq restricts to an algebra isomorphism Tiq 2 Zpi(q) = Ly

Proof. By (4.25)), Z; does not depend on the expression of w(; in particular we may
choose w] = 0?1 ...0j, such that iy = i. For simplicity we set p = p;(q). As U% ...0;, 18
reduced, we may extend it to a reduced expression of w? [HY1l Corollary 3|:

L

wg = an ... 03,05 for some j € I.

We set 3, = 0, (Bk) = Ufz .0, (a4,), k €y Hence
{Br + k € I} = s} (AL — {oi}) = A% — {as}.
As 052 o (aj) € AR an ...oi,(aj) # By, for k € Iy o, we have that an o (a) = a;.
Let 8 € O, If B =0, for some k € Iy 4, then s](f}) = B and Ng = Ng,, hence

NB;C

Ng
") =TT Ty (e, ") = e € Zg.

+Ng +Ng
8 8 +Ng
THEy ™) =Kyt =Ks ™ €2y, T

Otherwise § = a4, so ¢ is a Cartan vertex and

Na, N Na. Nai) N..  N..
= KTV ez, TN = T ) = (L) Ve = gl ) Y LY € 7,

(2 K3 K3

TR EV

i\ B
Analogously, Tz-q(L?;N’B),Z/}q(féVﬁ) € Zy for all B € O, (q), 50 T}(Z,,q)) € Zq. Applying

p . . .
T; we get the opposite inclusion. O
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5. THE SPECIALIZATION SETTING FOR LARGE QUANTUM GROUPS

In this section we construct the non-restricted integral form of Uq and prove that the
large quantum group Uy is a specialization of it. We also construct restricted integral
forms of the subalgebras U&t and establish pairing results for the corresponding special-
izations. The latter integral forms will play a key role in our treatment of Poisson order
structures on the large quantum groups Uy and their Borel and unipotent subalgebras.

5.1. Integral forms. In order to implement the ideas of Section [2] we need to consider
forms over suitable rings, generalizing [DP]. For simplicity, we set

(5.1) A :=C[y*!, (afqiqi — 1) ii#je0< s < —¢ ] c C(v).

We now define the (non-restricted) integral forms as the A-subalgebras

Uia=A(Ei:iel) C U, Ula=AKF L (i el c U,
Ugn =AlFi:i€l) C Ug, Uq,A=A<Kjﬂ,L;“,EZ-,ﬂ:z‘eﬂ)ch,
Ugn=Ugp@n A i ], A= Uga ®a AL i €T,

These are crucial for our purposes. We have again a triangular decomposition
0 —
(5.2) U(IA Qn Uq,A QA Uq,A ~ UgA-

The surjectivity of this multiplication map follows from the cross relations (4.4), (4.5
and (4.6]), while the injectivity follows from (4.8)). Recall (4.15)) for the next result.

Lemma 5.1. For all i # j, ()\%)_1 €A.

Proof. 1f q” 'q;;q;i = 1, then using that q;; € C[v!]* we have
- a c(c—1) —A _
A= (D% -1 [ (Gagai—1) €A
O§s<—c?j

!
so because (—cit)q,. € C*, we have

Otherwise qg; is a root of unity of order 1 — ¢ ii)a

a
i)

—1 —cd
_ q q q ij B
(A~ = (9 i) 7 [T (aaga;i-1D"eA O

q!
(=€ij)a. 0<s<—c

Example 5.2. Let g be of modular type br(2), respectively wk(4), see §A.3l Then
A=C[vt, (v —1)7"1, (v — )71, respectively A = C[v*!, (v — 1)1, (v +1)71].

We now define restricted integral forms that also play a central role in this paper.
Recall the Hopf skew-pairing from The A-submodules

(5.3)  US = {yeUglw Uty CAY  UIS' = {z € UF|(Uga.) C A}

are A-subalgebras of Uy and U;r , respectively. This follows from the fact that UT QA are
braided Hopf subalgebras of qu over A and the properties of Hopf skew—palrlngs
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5.2. PBW-bases of integral forms. Recall the Lusztig isomorphisms 7 from

Lemma 5.3. (a) T} restricts to an A-algebra isomorphism T} Upi,A = Uga, i €L
(b) Let B € A+. Then E/B,F/g S Uq,A'

Proof. [(a)] follows from ([4.20) and Lemma while from [(a)| and (4.17)). 0
Proposition 5.4. The sets (4.18) and (4.19)) are A-bases of UcTA and Uqa, respectively.

Proof. We consider the case of U, ;’ A the other being analogous. Let Y be the set of
PBW monomials of U(J{ from (4.18]). By Lemma Y C U(;L,A' The defining relations
of UJ involve products of E; with coefficients in A, hence we may prove recursively that,
for j > k, Eg,Ep, € AY, the A-module generated by Y, where each monomial in the
expansion has letters Eg,, j > t > k; see the proof of [HY2, Theorem 4.8]. Thus AY
is a left ideal containing 1, so AY = U, .I A This fact and the direct sum decomposition

Ud = ©yeyC(v)y imply that U(IA = Byey Ay. O
Recall the notation N, 3 in Next we consider the quantum divided powers

mn
’ 2 _ L?Bj

FZ
(n) _ Bi
Fg ' = 5

, 0<n< Nﬁ..
’ (n)!‘wz‘ﬁj '

Proposition 5.5. For j € I, let nj, m; be such that 0 < nj,m; < Nﬁj. Then

(F L FS BB = Sy - O
Proof. Let n; = (Fg;, Eg,), j € I;. The same proof as [AnY], Proposition 4.6] shows that
(S FSY BT B = Sy - O )

As in [AnY], 4.7], we see that n; = 1: here (F;, E;) = 1, there (Fj, E;) = —1fori e . O

Propositions and imply the following:

Ures +

aA respectively:

Corollary 5.6. The following sets are A-basis of Uéezf and

(5.4) {FS L FSY 00 < Ny b oand {BE B 00 <my < Ny}

5.3. The specialization of Uy a. We consider the setting in Sectionassuming R=A,
h = v —¢ and the R-algebra A being either Ug a or its subalgebras U, QA We claim that

the map C[vt!] — C, ¢ + € extends to an isomorphism A/(v — &) ~ C. For, if

a

i

then 0 < —c?j <s < —c%-, which contradicts Property in the Appendix . Here and
below we will use the bar notation x + T for specializations.

q59i;95: — 1 — ¢5;qijq5i —1 =0 for some i # j, 0 < s < —c¢

Theorem 5.7. There are Hopf algebra (respectively, braided Hopf algebra) isomorphisms

Eq: Uy — Uga/(v =€) and Ealyz : Uy = Uga/ (v =€)
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given by e; — E;, fi — Fi,Kiﬂ — Fiﬂ,Lgﬂ — fiﬂ for all i € 1. For each i € 1, the
following diagram is commutative:

Epi(a)

Upi(a) Upiayral (v —8)
(5.5) Tiﬂi iTiq
Uy———"—= Uqn/(v = €).

Proof. The defining relations of Uy hold in Ugqa/(v — &) by the definition of Uy in [An3)

and the presentation of Uq in [An2|. Therefore, the map Z; as above is well-defined.

+1

+=+1
Moreover = is surJectlve since E;, F;, K; Lii generate Uga/(v — &) as C-algebra.

Now we check that ( is a commutatlve dlagram. Indeed, since Property in the

Appendix [A] holds and q — q under the evaluation map, we have that

— = \—cl -

=q 0 Tiq(ej) — (adc Ez) ngEj = Tiq o :Pi(q)(ej)7

— = \—cl= —

=g © T‘q(fj) = (ad. F) C”Fj = Tiq © ‘:pi(q)(fj)
for j # i. Since EqoT}H(X) = T{0E,,(q)(X) for X € {e;, fi, K;H, L]il}, the claim follows.
By (5.5), 2¢(Es) = Eg and uq(F/g) Fg for all B € Ay. Hence Eq sends the PBW

basis of Uy to that of Uga/(v — &), so Zq, and its restrictions to qu, are isomorphisms.
Clearly 24 (and its restrictions) are isomorphisms of (braided) Hopf algebras. O

5.4. The specialization of U?Zi. Recall the Lusztig algebra L % and the identifi-

cation of gq with Uq+ as in For g € D9, n € Ny, define nén) € Lq such that

(m) m mey 17 ms; =mn, mp = 0 for k ;é j,
5.6 e M) —
>0 (nﬁj % o) {0, otherwise,

By [AARI] Proposition 4.6], the set

{509 0 <y < N}
is a basis of £ and the algebra L is generated by

{na, s €Ty U{n™ : p e 7.

The Lie algebra ng from (3.15) has a C-basis {¢* (ngvﬁ )) : f € O} and set of simple

root vectors {v* (néNB)) : B € II"}. Similar results hold for the Lusztig algebra L1

associated to qu ~ Uy . The corresponding elements of £;(-1), defined as in (5.6)) using
f3 instead of e, will be denoted by 0", where § € O and n € Np.

Remark 5.8. The Lie algebras associated to £y and Eq( 1 as in Remark [3.7] are iso-
morphic to each other, see the list in the Appendix [A] Hence we have a L1e algebra
isomorphism

(5.7) noy n:

where L*(GéN/B)) € nq+(_1), B € II" are mapped to the simple root vectors of n .

For a braided Hopf algebra B denote the braided opposite algebra B2 with product
p°P := puc~! where p : B x B — B is the product in B.
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Proposition 5.9. There are C-algebra anti-isomorphisms

¢ USA /(v =8) = Ly, FI s ),
+ res + op given by 5 S Dq, n e N().
6" (U /(v = ©) = Lyn, B s g,

Proof. We prove the statement in the minus case, the plus case is analogous. By Propo-
sition the Hopf skew-pairing (, ) : Uy x Uy — C(v) restricts to a perfect pairing

<,):U:f2’ XU;A—>A.
Since Uq+ A/ (V=& ~ Uq+ as braided Hopf algebras, the latter pairing induces a non-

degenerate pairing (, ) : (Uéf’z_/(z/ —¢)) x Ut — C such that

(5.8) (yy . z) = (y@y, Az)), vy €Ugn /(v —8), 2 €U

and we have the commutative diagram

Uy < Ugn I
(U(‘f,s;/(u — 5)) X UqJr C
By the definition of £, we have a canonical vector space isomorphism
¢ Ugn /(v =&) = Lq such that (Yx)y = (¢~ (Y),2)

for all Y € U /(v — &),z € U,". Comparing (3.17) and (5.8)), we see that ¢~ is an
algebra anti-isomorphism. Using again Proposition and the definition (5.6) of nén),

we get that ¢~ is given by Fﬁ(n) — nén) for 8 € D% n € Ny. O

6. POISSON ORDERS ON LARGE QUANTUM GROUPS

By Theorem [5.7, the large quantum group Uy fits in the context of Section 2] and
consequently the pair (Uy, Z(U,)) inherits a structure of Poisson order from deformation
theory. However the Poisson algebra Z(Uy) is often singular. We prove that the central
Hopf subalgebra Z; introduced in (which is of course regular) is a Poisson subalgebra
of Z(Uy) of the same dimension. Thus (U, Z4) has a structure of Poisson order that
restricts to the corresponding large quantum Borel and unipotent algebras.

6.1. Poisson structure on Z;. We show that Zg, Zq?, qu, Z&* and Z; are Poisson
subalgebras of Z(Uy), respectively Z(UZ), Z(Uy), Z(US) and 2(Uy).

We need first to introduce the matrix 229 € CHT"™*1" Let 3,y € Di. As qgy = qp4(§),
(4.23) implies that there exists pgv(u) € A such that

NgN.
(6.1) - g™ = (v - 0 ().
Recall the notation 3 from (3.14)) and the set 9% from Theorem Then we define
(6.2) P9 = (@27(5))@1617»

Lemma 6.1. Leti € I. Then 2ri(d) = 24,

Proof. First, 117V = s3(I1%). Thus pgé((?g))sq(v)(u) = pgw(u) for B, € II9 by (3.11). O



24 NICOLAS ANDRUSKIEWITSCH, IVAN ANGIONO, AND MILEN YAKIMOV

The next theorem is the main result of this section.

Theorem 6.2. There are structures of Poisson order on the pairs
(63) (U‘TI?ZCI)’ (Uc]}an})a (Uq<7Zq<)7 (U;_aZcT) and (Uq_vzq_)

arising by restriction from the Poisson order on the corresponding algebra and its center
with Poisson bracket (2.2). The central algebras Z, Zq> and qu are Poisson-Hopf while
Z;It are coideal Poisson subalgebras over the former.

Because of Theorem and Proposition [2.4] we are reduced to prove:

Proposition 6.3. The subalgebras Zqi, Zf, qu and Zy are Poisson subalgebras of

Z(UF), 2(U7), Z(Uy) and Z(Uy), respectively, under the Poisson bracket (2.2).
Observe that Zét, Zq> and qu are Poisson subalgebras of Z;.

Proof. We apply Theoremto the algebra U (I A» the automorphisms ¢! and the (id, ¢;)-
derivations 93, i € I to conclude that Z’ defined as in (2.4) is a Poisson subalgebra of

Z(U,). Now we have that
AL, A Z5 C Nierker(] —id).

The equality x holds since q = q(&), while * follows by a direct computation on the
generators of U,". The inclusion holds since Z5 C Z(Uy): indeed ¢f(z) = Kz K, l—g
for all x € ZCT . From this inclusion and (4.25)), Z’ = Zq+ . The proof for Z;" is analogous.
The restriction of the Poisson structure to Zgi vanishes by the definition ([2.2)).

Next we prove the statement for Zq;. Let 8,7 € Di_. We compute

NB N.y NBN’Y
N, N [E5", Ky l1-q Ng ..N., (6.1) Ng ,.N
{eg” Ky} = 51/_5 = V_ﬁjé By K= o8 (€)ey Ky € Z7

This proves the claim since it suffices to check the bracket between generators. Similarly,

N, N. Ng  N. N, N. N, N. N, N.
{eg” Ly} € Aeg” Ly, {£57 K57} € Aeg” Ky 7, {f3°, L5} € Z3.
This finishes the proof for qu and reduces that of Z; to prove that {egﬂ , fév "} e Z,. For
this we use the enumeration of the positive roots using the longest element of the Weyl
groupoid. First we assume that 3 = 3;, v = By for 1 <j <k < L. Let p = p;; ... p;, (q),
v = sgj ... 83, (7), so Nyy = N,. We have that

Ny . [ENLENY TOLT (K, UE, L E))
{6 B f w}: g — J J
o v—¢ v—¢
N; N; N/
(K, F 7 F,7] ~Ni; Ni, N
— 7 ¢ L. o 79 i i ’
=TTy | =10 T ({K 08, )

—N;. N;. N_,
By the statements already proved, {Kij ’ fl-j Yo } € Zy. Hence

Theorim 78

N N.
{eg” [y} €T} ... T (Zy) Zy.
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The case j > k is proved analogously. Now assume that g = . We start with the case
B = «; for some ¢ €1 (a simple Cartan root). Using (4.6 we prove recursively that

2
64) [EN,FN) = Z q“< ) FN- tH(qut W) ENTL O Nen.
t=1 Qii

Let t € In,—1. As g;; is a primitive N;-th root of unity and q;; = ¢,

N2 : N;(N;— 1 N
od (€)= l-q; (- an )1 +ay + gy Y BN 1
el T T € -
Hence,
(6 5) (Nz)ll” _ 1- qu . (1 - Qii) s (1 - qgiil) o g‘)giai(g) .

v—§¢  v—¢ (1 — gii) i (1= ga)
From this we obtain,

Ni 1N; ' q
N; Niv [E 7F' ] q” _ —Ra,a; (5) N; —N;
{ei 7fi }_ Zy_g - V—f H Zzz B _(qu—l)Nl(Kl _Li )GZ‘]'
Next, if 8 is not simple, say 3 = 3; for some j € Iy, then using Theorem again
s L N N N AR
oY _ B B
(6.6) fes”, /3"y =T3...T; 1( - >_(qm_1)N5(Kﬁ ~ L)) eZy O

7. THE ASSOCIATED POISSON ALGEBRAIC GROUPS

In this section we describe the Poisson algebraic groups that correspond to the Poisson-
Hopf algebras Zg, Zq> and qu. We prove that, as algebraic groups, they are isomorphic
to Borel subgroups of connected semisimple algebraic groups but of adjoint type (and
not of simply connected type as in previous works) and direct products of such Borel
subgroups. The dual Lie bialgebras of the three tangent Lie algebras are proved to
constitute a Manin triple, the ample Lie algebra in which is reductive. It is shown that
the resulting Lie bialgebra structures are the ones from the Belavin—Drinfeld classification
[BD] for the standard BD-triple (containing the empty subsets of the Dynkin graph)
and arbitrary choice of the continuous parameters The results completely determine the
Poisson structures on the three kinds of algebraic groups in question.

7.1. The positive and negative parts of the dual tangent Lie bialgebra of M.
Let M, Mqi, M;EO, Mq2 and ng be the complex algebraic groups which are equal
to the maximal spectra of the commutative Hopf algebras Z, Zlflt, Zglto, Zq> and qu,
respectively. Here the Hopf algebra structures on ZqjE are the restrictions of the braided
Hopf algebra structures on Ui to Z; * [An3].

Since Zj is a finitely generated P01sson Hopf algebra which is an integral domain, M
is a Connected Poisson algebraic group (see . for background). Analogously, M,
Mg < and M’qjEO are connected Poisson algebraic groups, and M; * are connected unlpotent
algebralc groups. The latter are not Poisson algebraic groups they are isomorphic to
certain Poisson homogeneous spaces for MC% and ng (see . The tensor product
decompositions Z; ~ Zq> ® qu from 1 give rise to the decomposition of algebraic
groups

(7.1) My~ M7 x Mg.
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This is not a direct product decomposition of Poisson algebraic groups (because Z; ~
Zq> ® qu is a tensor product decomposition of commutative but not Poisson algebras).
However, the canonical projections My —» Mq2 and My — M‘f are homomorphisms of
Poisson algebraic groups because Zq> and qu are Poisson-Hopf subalgebras of Z.

Denote by my, mq> and mqg the tangent Lie bialgebras of My, Mf and ng (see
for background and notations). Eq. gives rise to the direct sum decomposition of
Lie algebras

my =~ mq< D m?.

The Lie coalgebra structure on mg, fully described below, has cross terms. The dual of
the tangent Lie bialgebra my = T7 M, is computed as the linearization at the identity
element 1 of M of its Poisson structure by using . The maximal ideal 90t; of
C[M,] ~ Z4 of functions vanishing at 1 coincides with the augmentation ideal of Z;. In
the proofs below we will use the identification T} M ~ 90t; /9?2 where the differential
di(g) of a function g € C[My] at 1 € M, is sent to the class of g — g(1) in 9ty /M3 for
g € C[M,]. The Lie algebra mj has the C-basis:

N, N,
(7.2) {di(es?),di(f5 "), da(K37),di(LY") - B € O,y € 17},
By Proposition [6.3] the subspaces

(mg)" = Bpeos Cdi(eg”) and  (mg)" :=@pcon Cdi(f5")

are Lie subalgebras of m{. The dual Lie bialgebras (mz)* := (mz")* and (m$)* := (m3)*

are canonically identified with the Lie sub-bialgebras of mg

(m;_)* D (@leﬂq dl(K’i’V’Y)) and (mq_)* ©® (@leﬂq dl(L»]yV’y)).

Recall the notation from

It follows from the triangular decomposition of the semisimple Lie algebra g
associated to the large quantum group Uy that the set of simple root of g4 can be identified
with II%. Denote the entries of the Cartan matrix of gq by

CB s B,y € 11,

Throughout the section we will assume the identification nq?_l) ~ n;:‘ from (5.7)), so
g9q = n;l" ® bq @ n; will be identified with nq_(,l) ® bhq @ ny. By the definitions of "q_(ﬂ)

and ng’, gq has a set of Chevalley generators
{zg,yp,hp : B € 117}

such that 3 € C**(65) and yg € C*1*(ng), respectively. In this way the root lattice of
gq is identified with Qg by setting degrg = —degys = NgB, deghg = 0 for 8 € I11.

Proposition 7.1. We have a Qq-graded Lie algebra isomorphism (m3)* ~ nF given by
dq (egﬁ) — Sﬁb*(eéf\fﬁ)% respectively dl(févﬁ) s —SBL* (UéN'B))
9858

forall B € Di, where sg 1= 0= g In the plus case we use the identification (5.7)).
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Proof. First we prove the minus case. Let 3,7 € O%. Since Févﬁ = f FN” = f
and the subalgebra Z; is closed under the Poisson bracket {-,-} by Proposmon usmg
Proposition [5.4] we obtain

(7.3) (F7 B = Y (v = €)ad, ) FY + (v — €)gs, mod (v — €)*Ugp,
5qu

where a% (v) € A and g, is a non-commutative polynomial in {Fj Noi 5 e O % } involving

monomials of degree > 2. Since Uy is ZM-graded, the sum in the right-hand side has at
most one non-zero term, when N, 55 + N,y = Nsé for some 6 € Dq . Therefore

[F5? Fy]
G4 )] = (D fw})_ch(_g)
= 3" @ (O (F) +dilgsy) = Y ad (A (),

6eDl 6e0

because gg, € 9,2, From (7.3]) and since U QA is Nyp-graded connected, we see that

F(NB) F(N'v) = 5 ( 5)(N5)%6 F(N6) d —OuUres—.
= 2 O e O

It follows from (6.5)) that

(Nﬁ)qﬁﬁ _ pgﬁ(ﬁ) = s5.
v—&  (1-qpp)™
Hence in U™ /(v — &) we have
N, N.
(75) [SﬁF( 6)7 A/FW( ’y)] _ Z a%({)saF(;(Né)-

60l

The statement of the lemma follows from this identity, (7.4) and Proposition The
plus case is proved analogously, using Remark and that qgs = 1 for all 8,y € Qi. O

The last part of the proof gives the following fact about the structure of Lusztig
algebras which is of independent interest:

Corollary 7.2. The braided Hopf algebra projection * : Lqg — U(n;) (recall (3.18] -) has
an algebra section U(ng') — Ly given by

N,
c5 ) g, Bedl.
7.2. The dual tangent Lie bialgebra of 1.
Lemma 7.3. The following hold in the Lie algebra my:

35
[di(es?), da(fy )]Z—%vm(dl( #) +di (L)), By € 11,
and
[ (K5 ),di(e3™)] = —ph (©)di(e)”),  [d(K5 "), di(f7)] = o2 (©)di(f17),
Npg q

[ (Ly "), di(e))] = —p%5(O)dn(ey™),  [da(Ly"),da(f7)) = p%5(E)dr (77
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for all B,~ € Di.

Proof. The case of 3 # v € II9 of the first identity follows from the fact that (7.2)) is a
basis of the Lie algebra my and that the latter is Qq-graded. The case B =~y € II%is a

consequence of since dy (Lgﬁ )= —d; (L ) which in turn follows since the value of

Lgﬁ at the identity of Mj equals 1. The other four identities follow from 7-.

Since the polynomials v™ — a are separable over C for a # 0, we infer from (6.1)) that
pgﬁ(ﬁ) #0 for all g€ O1.
Theorem 7.4. (a) The Cartan matriz of the semisimple Lie algebra gq is given by
@gg (€)
(b) There is a (Qq-graded) Lie algebra isomorphism gq @ hq =~ my such that

gy = , B,y € II.

xngl(féVB), yﬁH((];_l)dl(eﬁﬁ), hg ! —a 5 (di (K )+d1(LgB))

55(5) @55(5)
for B € II% and hq maps to the subspace
{ Z agdy(Kgz") + bﬁdl( : Z @37(5)% + pf:ﬁ(f)b/g =0,Vy e I}
Belle Belle

of the abelian Lie algebra ®perra(Cdi(Ky ) + Cdy (L NB)).

B

Proof. (a) For 8 € I11, define the following elements of mg:
~ Ny~ (gg=1)Ns = 1

Tg = di(fy), s =g pydi(e”), hpi= —q

’ T e (€ ESRG

and the Lie subalgebra gq(5) := C?U’g@@l;g@@ﬂg. Lemmaimplies that [ﬁg, Tg] = 273,

(hs, 8] = —20s, [3,] = hg, 50 gq(B) =~ sla.
Now take B # v € II% and consider g4 as a gq(3)-module under the adjoint action. It
follows from Lemma [7.3] that

(di(K5?) +dy (L))

L (€) + p,(6)
@55(5)

[5/3, g’y] =0 and [hﬁ’g’v] = - Loy,
@gﬂ,(g)‘kpgg(f)
denotes the fundamental weight of sls. The isomorphism of Proposition and the

Serre relations in ng" imply that

cgyt+1 i~ .
adyﬂﬁw (¥y) =0 and ad?gﬂ(yv) #0 for j < —cg,.

so Y is a highest weight vector for gq(f) ~ sl of weight — w where w

Hence, adg_;ﬁ () is the lowest weight vector of the (irreducible) gq(3)-module generated
by ¥, which forces

This proves part (a). It also proves that the assignment x5 — Zg, yg — yg, hg — Eﬁ
for g € II defines a Qq-graded Lie algebra homomorphism 7 : g; — my which is an
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embedding by Proposition and the linear independence of {d; (Kévﬁ ) dl(L]BVB ): B €

£ 5 nT obtained by restricting the

©O%1}. Here we use the canonical isomorphism ng q

Chevalley involution of gat. Denote
X N N,
()" 1= @genra (Cdi (K3") @ Cai (137) ).

Let (mg)’ be the intersection of the kernels of the functionals {lg : B € II%} on (mg)*
given by

N. N.
Ig(di(K57)) = p35(8), I3(di(Ly7)) = g5, (§)-
Proposition and Lemma imply that [(mg)’ ,Imn] = 0. Since the number of the

above functionals equals [O% | = dim by, we have dim(mg)’ > dim bg. It follows from part

(a) that dim(mg)’ < dim bg, Hence, dim b = dim(mg)’ and taking a linear isomorphism
by ~ (mg)’ extends 7 to the needed Lie algebra isomorphism for part (b). O

Let (-,-) be the invariant symmetric bilinear form on gq for which the induced form
on the dual of the Cartan subalgebra of gq satisfies (3, 3) = 2 for short roots 8. As it is
common, we will identify b with by via this form. The scalar

rp = 208568, 8) 7
only depends on the simple factor of g4 of which 3 is a root, because by Theorem au)7

_ 95,0 + 0556 _2(8,9)

p5(€) (B.8)

Proposition (i) tells us that each large quantum group Uj is realized as a specil-
iazation of an integral form of a one-parameter quantum group Ug in infinitely many
different ways parametrized by integers t;; € Z for ¢ < j € I. Furthermore, by part (ii)
of that proposition, for a generic choice of the parameters t;; € Z, i < j € I, the matrix
with entries pgy(f) for 8, € II is non-degenerate. In the remaining part of the paper
we will assume the following:

(7.6) CBy

Non-degeneracy Assumption 7.5. The specialization parameters ¢;; € Z, i < j € I'in
Proposition are chosen in such a way that the matrix 9 in (6.2)) is non-degenerate.

Remark 7.6. In what follows we will identify the Lie algebras
(7.7) mg =~ gq D by

via the isomorphism from Theorem In particular, xg,yg, hg for 8 € I will be
viewed as elements of my. We also fix the identification of abelian Lie algebras

(7.8) { D asdi(K5") +bsdi (L") Y 0 (ap + p3s(©)bs = 0,vy € '} = b,
Bela Be

for Theorem b) by sending > sc r7q agdl(KéVﬁ) + bﬁdl(LJﬁvﬁ) = > gera bk, using
the identification of hq with by via the form (.,.). Since both Lie algebras in have
the same dimensions, we only need to show that this map is injective. An element in
the kernel has bg = 0 for 8 € II% and thus, Zpgv(f)aﬂ = 0. The Non-degeneracy
Assumption [7.5] implies that ag = 0 for 5 € I19.
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Let bat be the Borel subalgebras of gq with respect to these Chevalley generators. Then
(7.9) (m7)* Cb, @by and (m5)" C b & by.

Using the Non-degeneracy Assumption one more time, we obtain that the projection
into the first component mg ~ gq @ by — gq restricts to the Lie algebra isomorphisms

(7.10) (m /) ~b, and (mqg)* ~ by
We next describe the embeddings (|7 . Denote the linear maps &, 2T € End(h,):
(7.11) 2B) = 03,6, 2T(B) = 03O

y€elld y€EIld

Because of the Non-degeneracy Assumption both endomorphisms are invertible.
Denote by ((-,-)) the invariant symmetric bilinear form on gq which is a rescaling of
(+,-) on each simple factor of gq by /4;_1. It satisfies

(dr(K5") +di(Ly"), dr (K57 + da(L37)) = 935 (©)9%, (€) (s, ho)

2
= p35() 0L, (E)ry 2 = o3 (€) + p,(€)-

This implies that the form ((-, -)) has a unique extension to an invariant symmetric bilinear

form on m; such that

(7.12) (di(K57), di(LY7)) = 9;37(5)

N, N,
(7.13) (di(K57), dy (L") = (da(K37), di(L37)) =0
for 3, € I19. The Non-degeneracy Assumption implies that the bilinear form ((-,-))

on my is non-degenerate.

One easily verifies that the orthogonal complement in mg of gq equals by.

Proposition 7.7. For all large quantum groups Uy satisfying the Non-degeneracy As-
sumption the subalgebras (m/) C by @ bhg and (m\) - b; ® bq are given by

(m) ={(y+h,—h):yen,hebg}, (m5) ={(x+h 2P (h):xenl heb}

Proof. Denote the first (abelian) Lie algebra in (7.8 by th). Fix
hi= 3" epldi(K57) +di(Ly")), b= Y agdi(Ky7), ha= Y bsdi(Ly”

Belln Bella Bella

If hy +ho € l‘)gQ), then I (h1) = —I,(h2) for all v € II, which is equivalent to
(7.14) P( D agB) ==21( 3 bsf).

Bella @eﬂq

By Theorem ( in the identification (7.7), di (K )+d1( ) corresponds to kg[3.
Hence, the first statement of the proposition is equwalent to provmg that for all h, hy,

ho as above, if h1 + hy € f)g2) and h+ hy + ha € (m>)* then cg = —bg for 8 € I19. From
the condition hjy + hg € f)g2) we obtain ((dq (L~ ) h + hz)) = 0 for all v € I1%. Thus

> 0% (©)(cp+b) =0, Yy € I1°.
pels
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Now the first statement follows from the Assumption [7.5] The second follows from the
first by interchanging the roles of (mq?)* and (m, \)* and applying ((7.14]). O

We next describe the Lie coalgebra structure on m} and the corresponding Manin

q
triple; see for background.

Theorem 7.8. For every choice of the specialization parameters t;; € Z satisfying the
Non-degeneracy Assumption the following hold:

(a) The Lie coalgebra structure of the Lie bialgebra my is given by

8(zg) = di(Ly") Nwg,  O(ys) = di(K5") Ay, 6(da(Ly7)) = 8(dr(Ly7)) =0
for all B € II9.

. a7 * g * 2 * . . .
(b) With respect to the bilinear form ((-,-)), (mg, (mg)*, (m7)*) is a Manin triple.

(¢) The Lie coalgebra structures of (mq;)* and (mg)* satisfy

(7.15) (6(y), 21 ® 22)) = —((y, [1, 22])), (6(z), 1 @ y2)) = (=, [y1,92]))
for all x, 1,29 € (mcf)* and y,y1,Yy2 € (mf)*

Remark 7.9. (a) Part (a) of the theorem uniquely determines the Lie coalgebra struc-

tures of my, (mgy)* and (m7)*, since the set {xg,yg,dl(L ), di(Lg ) B € 11}

and its appropriate subsets generate my, (m5)* and (mg)*.
(b) By part (c) of the theorem, the Lie coalgebra structures of m¢, (ms)* and (m7")*,
are precisely the ones that are associated to a Manin triple as 1n Remark |B.1} - c). In

particular, we have the isomorphism of Lie bialgebras
(7.16) my = D((m)"), (mg)" = (((m3)")")P = (m3)°P.

(¢) The Lie bialgebra structures on the reductive Lie algebras mg ~ g4 @ b4 from part
(a) of the theorem correspond to standard Belavin—Drinfeld triples (containing the
empty subsets of the Dynkin graph) and arbitrary choice of the continuous param-
eters in their classification [BDJ.

Proof of Theorem[7.8 Part (a) follows from Lemma and the identities
(717)  Aley) =K, @€y’ +ey’ @1, Afy")=1@f," +f3  @L;"

for 8 € II1 and the fact that Kévﬁ and Lgﬁ are group-like elements.

(b) The subalgebras (mg)* and (mg)* are orthogonal to their nilradicals because of the
embeddings . This, combined with , implies that they are isotropic subalgebras
of m; with respect to the form ((,-)). The direct sum decomposition mgq ~ ms @ m
yields the desired result.

(c) Part (a) of the theorem and the isomorphism in Theorem [7.4b) imply at once the

5N N, N
vahdityoftheidentities-fory—dl( ), y=di(K, 7, a::dl(fﬁﬁ),az:dl(LﬁB),
B € II and all possible choices of ml,mg,yg,yg The general case follows by induction
on root height when z, y are chosen to be root vectors by using the invariance of the
bilinear form ((-,-)). O
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73 The P01sson algebraic groups M > and Mg <. Combining the isomorphisms

and , we get the Lie algebra 1somorphlsms

(7.18) mq/ ~ ((mq\) Jop = (b+)0p o b+ and mq< o~ (m/) ~ by,

where (.)op stands for the opposite Lie algebra structure and (bl )op =~ by is the stan-

dard Lie algebra isomorphism z — —z. The proof of Proposition [7.7] shows that the
corresponding pull back maps on the level of duals send

(7.19) B —di(K57), B di(Ly7), V8 e II9.

The scalars kg do not appear here because the form ((-,-)) is a rescaling of the form (-, -)
on each simple factor of gq by ﬂgl.

Denote by Gy the adjoint semisimple algebraic group with Lie algebra g, and by Bét
its Borel subgroups corresponding to bat. Let Ty := B(T N By be the corresponding

maximal torus of G;. Denote by Nqi the unipotent radicals of Bc:lt.
The groups of group-like elements of Zq> and qu are the free abelian groups on K;ENB ,

+N, .
B €1l and Ly 7, B € I, respectively.

Theorem 7.10. For every choice of the specialization parameters t;; € 7 satisfying
the Non-degeneracy Assumption the Lie algebra isomorphisms (7.18) integrate to
isomorphisms of algebraic groups.

T M7 = Bf and T_:MS =5 By

Theorem describes explicitly the algebraic groups Mf and Mf As an algebraic
group, M, ~ Bq+ x By. The Poisson structures on Mf, ng and M, are the unique
Poisson algebraic group structures that integrate the Lie bialgebras mZ, mcf and mg,
whose dual Lie bialgebras are described in Theorem [7.8]

Proof. We prove the first statement, the second being analogous. Since G| is of adjoint
type, the Borel subgroup B;r is canonically identified with the identity component of
Aut(bf). The adjoint action of Mg on mg ~ bl induces a surjective homomorphism
+ : M2 — Bf. The latter restricts to an isomorphism 7, : N(M7) — N, where
N (Mf) is the unipotent radical of M. The homomorphism 7, also restricts to a
surjective homomorphism

(7.20) T T(M;) — Ty,

where T(M;”) is a maximal torus of M. The tori T(My) and Ty are connected because
Mf and B;r are connected algebraic groups. Invoking the Levi decompositions of Mf
and BCT , to show that 7 is an isomorphism, it is sufficient to show that the restriction

(7.20) is an isomorphism. However,

CIT(M7)] = C[Mg /N (M{)] ~ CIG(C[M))],  ClTy] ~ C[By /Ny~ CIG(C[BI ),

where G(H) denotes the group of group-like elements of a Hopf algebra H.
The group of group-like elements of (C[M Z] ~ Z2 is the free abelian group with

generators K 55 , B € II" and the group of group-like elements of B+ is canonically
identified with the roots lattice ZII of Gj. The differentials at the 1dent1ty element of

the two generating sets are respectively dl( ) and 3, where 3 € I19. Eq. (7.19) implies
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that 77 : G(C[B{]) = G(C[M{]) is an isomorphism. Hence, 7} : C[Ty] — C[T'(M;))] is
an isomorphism and same holds for ([7.20]). This completes the proof of the theorem. [

Example 7.11. Let q be of type wk(4) and fix N = ordgq, M = ord(—q), see §A.3| Let
v = aq + 2ag + 3az +ay. Then Ny, = Ny, = N, Noy = Ny = M,

O ={ay, a9, 1 + ay, 4,7, 04 + 7}

As shown previously, A(egﬁ) = egﬁ ®1+ Kévﬂ ® ezﬁvﬂ for B € II" = {ay, a9, 04,7} We
can check that eq, 1a, = [€1,€2]c, €ay+y = [€4,€4]c and

A(egﬁ_%) = e§1+a2 ®1+(¢— 1)]\/(30])]1[(5:[2 ®eg2 + KOJXKO% ® el

alta?
M M M M g-M M M g -M M
Aleg, i) = €aupy @1+ (g + 1) e Ky, @ ey, + Ko, K7 ® e, o

We now construct an explicit isomorphism between Zq> and the algebra of functions
over the Borel subgroup of PSL3(C) x PSL3(C). Consider the Levi decomposition Bs ~
N3 x T3 of the Borel subgroup of SL3(C), where

_ 1 ti2 ti3
T3 = {diag(al,ag,ag) ta; € (Cx,alagag = 1}, N3 = { 0 1 t19]: lij € C}
0 0 1

The coproducts of these coordinate functions are given by A(a;) = a; ® a; and
Az12) = 12 ® 1 +ajay ' @ o1, A(w23) = 23 ® 1 + azaz ' @ w23,
A(r13) = 713 ® 1 + z12a0a5 " @ w93 + ajaz " @ 213.
Denote Zsz = (((, ¢, ()), where ( is a primitive 3rd root of unity. The Borel subgroup Bj
of SL3(C) has Levi decomposition Bg ~ N3 x T3 where T5 = T'/Z3, so
C[Bs] = C[N3] ® C[T3)%* = Cl12, 223, 13, afy , azy ],

where a9 := alagl and asg = agagl. The coproducts of the coordinate functions on Bg
are given by A(aji+1) = @41 ® a1 and

A(z12) = 212 ® 1 + a12 ® 219, A(x93) = 223 ® 1 + a23 ® T23,

A(x13) = 13 ® 1 + 212023 ® T23 + a12023 ® 213.
The Borel subgroup of PSL3(C) x PSL3(C) is isomorphic to B3z x Bs. We denote the

coordinate functions a;11 and x;; on the first and second copy of B3 by superscripts 1
and 2. Now, clearly the map 7 : Z‘f — C[B3 x Bs] given by

N 1 N 1 N 2 M 2
Ka1 —> aq19, KOCQ — Qo3, Ka3 — ai9, I(,y — a93
and
N 1 N 1 altag 1
€ay T T125 €ay 77 T23, q— N = T13,
e
M 2 M 2 oty 2
€ay T 125 €y > Tag, (q+ DM = 273

is a Hopf algebra isomorphism.
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8. POISSON GEOMETRY AND REPRESENTATIONS

In this section we describe the symplectic foliations and the torus orbits of symplectic
leaves of the Poisson algebraic groups Mg, Mf and ng, and the Poisson homogeneous
spaces M;“ and Mg . Previous work in this direction dealt with the so called standard
Poisson structures on simple algebraic groups (and their Borel subgroups) [HL], the
dual Poisson algebraic groups [DKP| and the related flag varieties [GY]. The Poisson
structures in Remark [7.9] are not of standard type in general and the results in this
section can not be deduced from [HL, DKP, [GY]. For z € My, respectively Mg >
M , My, let H., respectively HZ, HS, HE, H, be the algebra defined in Theoreml
respectlvely . The Poisson geometric results described above provide information
on the irreducible representations of the large quantum groups U, by reduction to the
sheaf of algebras H., z € M,. Analogous results hold for UZ, Uqg, and qu.

l Y

8.1. Representations of the large quantum groups and symplectic foliations.
The Manin triple described in Theorem and the identification my =~ gq @ by equip
gq @ bg with a quasitriangular Lie bialgebra structure, which turns G4 x Ty into a Poisson
algebraic group. The Poisson structure on Gq x Ty equals Ly(r) — Ry(r) for g € Gq x Ty,
where r € A%(gq @ bg) is the r-matrix for the Lie bialgebra structure on gq & bg, and
Ly(—) and Ry(—) refer to the left and right-invariant bivector fields on G4 x Tj.

Let M> and M< be the connected Lie subgroups of Gy x Ty with Lie algebras (mq\)

and (m ) Proposition implies that Mg MS is an algebraic subgroup, while M is not
necessarlly a closed Lie subgroup The prOJeCtIOH onto the first component 7 : G X Ty —
G gives the surjective Lie group homomorphisms

7r+:Mq2—»B;I", ﬂ_:M‘f—»Bq_.

Since G is of adjoint type, the kernel of the exponential map exp : by — Ty equals
27T’L'Pc;/ , where P‘;/ denotes the coweight lattice of gq. Denote the subgroup

(8.1) Cq:=exp (2miz ' 2T (P))) C Ty,
cf. . Proposition and the solvability of ]qu? and Mf give that

M? = (N7 x {1}) x {exp(h, 27 2T (h)) : h € b},

ME = (N7 x (1) x {(Lt7) st € Ty},
from which one obtains that

Kermy = {1}, Kerm_ = {1} x Cj.
Composing 74 with the isomorphisms from Theorem leads to the isomorphisms

Y M/—>M> T:lﬂ_iﬂf/Kerﬂ_i)ng.

Their inverses give the canonical embeddings
(8.2) J i M7 = Gy x (T,/Cy), Jot My = Gy x (T, /Cy).
Here we use that Gq x (Ty/Cq) ~ (G4 x T)/ Ker7_ and ]\/qu NKerm_ = {1}.

Remark 8.1. If the matrix q is symmetric, then so is the matrix 4#9. This implies that
P = 27 and that the group Cq is trivial. Then the continuous parameter accompanying
the BD triple is trivial and the Poisson structure is the standard one.
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Theorem 8.2. Let Uy be a large quantum group. For every choice of the specialization
parameters t;; € Z satisfying the Non-degeneracy Assumption@ the following hold:

(a) The symplectic leaves of the Poisson algebraic group Mg ~ Mf X ng are the inverse
images j~1(O x t) under the map

i Mg — Gy x (Ty/Cq), j(my,m_):=ji(my) j(m_), my €M7 m € ngv

where O is a conjugacy class of Gq and t € Tq/Cy. The dimension of the symplectic
leaf ;71O x {t}) equals dim O.
(b) If j(2) and j(2') are in the same conjugacy class of Gq x (Ty/Cy), then there is an
algebra isomorphism
H, ~H,.
Note that, since Ty/Cy is abelian, each conjugacy class of G4 x (Tq / C'q) has the form
O x {t}, where O is a conjugacy class of G4 and t € (Tq/C’q).

Proof. (a) By [RSTS], since the Poisson algebraic group G4 x Ty is quasitriangular, its
double Poisson algebraic group is canonically isomorphic to

D(Gq x Ty) ~ (Gq x Ty) x (Gq x Ty).
Theorem [7.8|(b) implies that the dual Poisson Lie group of Gq x T is

M7 x My < (Gq x Ty) x (Gq x Tp)
with the opposite Poisson structure to the restriction of the one of the double. Both
Mq> X Mf and My ~ Mf X Mf have the same tangent Lie bialgebra, hence the map

T = (7;17'['4_,7'__171'_) : Mf X Mf — Mf X ng ~ M,

is a Poisson covering map. By the Semenov-Tian-Shansky dressing method [STS], we get
that the symplectic leaves of M q> X M q< are the connected components of the intersections

J\Aff N (diag(Gq x Ty) - g - diag(Gq x Ty)),

where diag (Gq x T) denotes the diagonal of (Gq x Tg)*? and g € (Gq x Ty)*2. Now
we apply [YL Theorem 1.10] to obtain that each such intersection is a dense, open and
connected subset of diag (Gq X Tq) - g - diag (Gq X Tq). Consider the map

jﬂf fo%Gq x Ty, }(m+,m,) = mllm,, my qu},m, EJ\AJJq<
By a direct argument we conclude that each symplectic leaf of ]\A/ff X Mf is of the form
Sor = (Z,\Zq2 X M‘f) no',
where O’ is a conjugacy class of G4 x Ty, and that
dim Spr = dim O'.

Since T : Mf X Mf —» My is a covering of Poisson Lie groups, each symplectic leaf of
My is of the form 7(Ser). One easily verifies that the diagram

Y AT J

Mq> ng Gy x T,

[

Gy % (Ty/Cy)
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commutes, where ¢ : Gq x Ty — Gq X (Tq / Cq) is the canonical projection. Clearly,
Y(O') = O x {t}, where O is a conjugacy class of Gy and t € T,/C,. Therefore
all symplectic leaves of My are of the form 7(Spr) = j71(0') = j71(O x {t}) and
dim ;71O x {t}) = dim O’ = dim O.

Part (b) follows from part (a), Theorem and the theorem for isomorphisms of
central quotients across symplectic leaves [BG, Theorem 4.1]. O

In regard to the irreducible representations of Uy we wonder whether the De Concini-
Kac-Procesi conjecture could be extended to the setting of Theorem , see [DKPJ.

Question 8.3. Let O be a conjugacy class of Gq, t € Ty/Cq and z € j7(O x {t}). Does
(dimO/2 givide the dimension of any irreducible representation of H.,?

8.2. The torus orbits of symplectic leaves and the representations of the large
quantum Borel algebras. The algebras Uy, Uq>, Uq< and qu are Z!-graded with grad-
ing dege; = —deg fi = «;, deg K; = deg L; = 0 for ¢« € I. This leads to a canonical
action of the torus (C*)! on these algebras by algebra automorphisms, which preserves
the central subalgebras Zj, Zq>, qu and Zét.

By a direct comparison, one obtains that the (CX)H—action on Zq> corresponds to the
left action of 71 !(Ty) on Mg in the sense that every automorphism from the first one
corresponds to an automorphism from the second and vice versa. Similarly, the (C*)I-
action on Z corresponds to the left action of 7-YT,) on Mg, Theorem (a) implies
that the induced action of (C*)! on M, preserves the symplectic leaves of M. So, in
regard to irreps of Uy, the ((CX)H—automorphisms of Uy do not provide any additional
information to that in Theorem [8.2fa).

But for Uq> and Uqg, we do obtain additional representation theoretic information from

the (C*)L-action, as stated in next theorem. Let Wy be the Weyl group of G

Theorem 8.4. For every choice of the specialization parameters t;; € Z satisfying the

Non-degeneracy Assumption [7.5] the following hold:

(a) The Poisson structure on Mq> is invariant under the left and right actions ofn:l (Ty)-
The Tll(Tq)—orbz'ts of symplectic leaves of Mf are the double Bruhat cells

T (Bf nBywBy), w e W,
(b) If 74(2) and 74(2") are in the same double Bruhat cell, then there is an algebra
isomorphism
HZ ~ fHZ

Proof. (a) For a Lie subalgebra of g4 @ bg, denote by N(—) its normalizer in Gq x Tj.
By [LY, Lemma 2.12|, the left and right actions of ]\A/.é NN ((mg)*) on the Lie group ]Téé
preserve its Poisson structure. By the definition of 7, these actions correspond to the
left and right actions of T_;l(Tq) on M‘f, so the latter preserve the Poisson structure on
Mf, because Mq? —» Mf is a Poisson map.

Applying [LY], Theorem 2.7 and Proposition 2.15] and the Bruhat decomposition of
Gy, we obtain that the ]/\\/_f; N N((m7)*)-orbits of symplectic leaves of ]/\\4; (with respect
to either action) are the intersections

M 0 ((Gq x Ty)w(Gq x Ty))
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for w € Wy. Since Mq? — M7 is a Poisson covering map and 7, : M7 —» B is
an isomorphism (Theorem , the 7, ' (T;)-orbits of symplectic leaves of Mg (with

respect to either action) are the double Bruhat cells 7';1(36F N BywBy) for w € W
Part (b) follows from part (a), the constructed Poisson orders in Theorem IBG,

Theorem 4.1] and the fact that the left action of ijl(Tq) on M7 comes from the (C)-

action on Uq2 by algebra automorphisms. O

Example 8.5. Let q be of type wk(4). By Example the corresponding algebraic
group Gy is isomorphic to PSL3(C) x PSL3(C) whose Weyl groups is S3x.S3. Theorem 8.4
implies that among the quotients Uq} /NS Uq} for z in the maximal spectrum of ZZ, there
are at most |S3 x S3| = (3!)? = 36 isomorphism classes of finite dimensional algebras.

Analogously to Theorem [8.4] one proves the following:
Proposition 8.6. For every choice of the specialization parameters t;; € 7 satisfying
the Non-degeneracy Assumption the following hold:

(a) The Poisson structure on M is invariant under the left and right actions of T_1(Ty).
The le(Tq)—orbits of symplectic leaves of ng are the double Bruhat cells

1By N BfwB), w € Wy,

(b) If 7_(2) and 7_(2') are in the same double Bruhat cell, then HS ~ f, as algebras.
8.3. Poisson homogeneous spaces and irreps of large quantum unipotent al-
gebras. Since Z‘j is the algebra of coinvariants for the coaction of ZSJF on Zq> obtained
by restricting the coaction of UC?Jr on Zf, and analogously for the negative part, we have
isomorphisms of Poisson algebras

(8.3) Z5 ~C[Mz /m N (Ty)], Z; ~ C[Ms/m=(Ty)].

As shown in the previous subsection, the left and right actions of 7! (Ty) and 7= (T}) on
the Poisson algebraic groups M7 and ng preserve their Poisson structures. The right
hand sides of the isomorphisms involve the coordinate rings of the resulting Poisson
homogeneous spaces M,/ T_:l(Tq) and Mgy /7=Y(T,) obtained by taking quotients with
respect to the right actions. The Poisson structures on Mg /71 (Ty) and Mg /=Ty
are invariant under the induced left actions of 7} '(7y) and 7-'(T;). By Theorem
74 restricts to the isomorphism of homogeneous spaces 74 : Mg/ j;l(Tq) = By /Ty
Denote the canonical isomorphism
v:Bf /Ty = Bl B, /By C Gy/B; .

Theorem 8.7. For every choice of the specialization parameters t;; € 7 satisfying the
Non-degeneracy Assumption the following hold:

(a) The T;l(Tq>—0’l“bits of symplectic leaves of Mf/T;l(Tq) are the open Richardson

varieties
~-1 -1 + - — — _
o (B By N By wBy)/B, ) w e Wy

(b) If vr4(z) and v7y(2') are in the same open Richardson variety, then there is an
isomorphism of algebras
H ~ ”Hj,.

Proof. Part (a) is proved arguing as in the proof of Theorem [8.4(a). Then (b) is a
consequence of (a), Theorem |6.2{ and [BG, Theorem 4.1]. O
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An analogous result holds for the large quantum unipotent algebra U, and the torus
orbits of symplectic leaves of the Poisson homogeneous space le / T:l(Tq).

APPENDIX A. FAMILIES OF FINITE-DIMENSIONAL NICHOLS ALGEBRAS
Let § € N, I =Iy. We fix a matrix q = (g;;) € C'*" such that dim B, < co. To insure
centrality of Z; we require
. . . N .
(a). The matriz q satisfies (4.24), i.e. qai% =1, forallicl, g eIl

Remark A.1l. If the Dynkin diagram of ¢’ is as in Tables and |3 then there is q
with the same Dynkin diagram that satisfies (4.24)); the proof is straightforward.

If q satisfies (4.24)), then any matrix in its Weyl-equivalence class also does. Let C[v*1]
be the algebra of Laurent polynomials; its group of units is C[p*!]* = C*v?. Let

(A1) a=(ay) € (Cp* )™

For 2 € C*, we denote by q(z) the matrix obtained by the evaluation ev : C[v*!] — C,
ev(rv) = x. We seek for matrices (A.1)) with the following properties @ and @

(b). The Nichols algebra of the C(v)-braided vector space of diagonal type with braiding
matriz (A.l) has the same arithmetic root system as q.

By inspection of the list in [H2]|-see also the exposition in [AA]-we conclude that the
only possible matrices ((A.1)) are those Weyl-equivalent to the ones with Dynkin diagrams

as in Tables and [3] and that the following property holds.

(c). There exists an open subset ) # O C C* such that for any x € O, the root systems
and Weyl groupoids associated to q and q(x) are isomorphic. Also there exists € € GL ,NO
with N := ord £ € [2,00) such that q = q(§).

Remark A.2. (i). The Dynkin diagrams of the matrices q and q locally have the

Qi Qij  djj i Qij djj
O

form o', respectively kS o , where q;; = qi;qji, ¢ij = Gijqji; i-e. the

Dynkin diagram does not determine completely the braiding matrix. We deal with this
as follows. Let p = (pij) € C™I with the same Dynkin diagram as q. Then there exists
p € ((C[l/ﬂ]X)HX]I with the same Dynkin diagram as q such that p = p(&). For, take
Pii = ;i and p;j € (C[I/jﬂ]X such that p;; = ps;(&) for ¢ < j; then pj; = aijp;jl.

(ii). Assume that q satisfies Let p be another matrix with the same Dynkin
diagram as (A.1)). Then q;; = p;;q"", i < j for a unique family (hij)icjer with hyj € Z.
(d). 29 defined in (6.2)) is invertible.

Let NV be the diagonal matrix with entries Ng, § € II9. The matrix &9 is invertible
if and only if the auxiliary matrix 79 is so, where

P = ¢ INTIN.

Proposition A.3. There exist matrices C = (c;;) € Z™ and (pij) € (C*)™ such that
C is symmetric and:

(i) There are infinitely many matrices T = (t;;) € ZY fulfilling
(A.Q) tii = Cij, ti; + 15 = cij foralli#£j€l
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such that the matriz q = (q;;) defined by
(A3) qij = pijl/tij, fOT all Z,] el

satisfies .
(ii) Among those T in there infinitely many such that q satisfies|(d)

Proof. Tt suffices to fix one matrix for each Weyl-equivalence class, see Lemma We
check below |(i)| by case-by-case considerations computing also 72 and proving that it is
invertible for infinitely many 7.

A.1. Cartan type. Let q be in this class; then there is a Cartan matrix A = (a;;); jer
such that g;jqj; = qZ.”. We fix d; € I3 such that d;a;; = djaj; for all i,j € I. The Lie
algebra gq has the same type except when IV is even and A is of type By or Cp, when
they are interchanged. In this case IT% = {N;«v; : i € I}, so (4.24) becomes:

(A.4) qgj =1, for all 4,5 € 1.

The matrix q we are looking for should also satisfy q;;q;j; = q?iij for all i # j. In all cases
we take £ = q11 except for By, where & = qgg; see Table Set t; = d; and qi = v,
Thus q;;(§) = ¢ for all i € I. Recall that

N;N;
: q 1—VdiNi2
For instance @g;a,(v) = == hence
(A5) §8i0:(§) = —€ T diNE = —€ i N7,

Let ¢ < j. We see that there exists d; € I3 such that N; = N/d;. By (A.4), ¢
is a power of £%; choose t;; € d;Z such that q;; = v satisfies q;;(§) = & = g;5.
Set tj; = dija;j — t;j and qj; = v'i. We have defined T satisfying (A.2) and q turns
out to be given by (A.3) with p;; = 1 for all 4,j, ie. holds. Also for all ¢ # 7,
(v = O, (v) = 1 — V% amd
(A.6) @giaj (&) = =€ N;N;.

Therefore 79 = T'. Observe that if ¢;; = 0 for « < j, then det 79 # 0. By a standard
argument, holds.

A.2. Super type. Assume that the braiding matrix q is of super type; see [AA] for
details (see [AA] for details and below for D(2,1;«a)). Going over the list, we see that
there exist

o £ e C*, aroot of 1 of order N > 1;
o a symmetric matrix B = (b;;); jer € Z”! with b;; = 1 for at least one pair (i, j);

o a parity vector p = (p1,...,ps) € {£1}! with p; = —1 when b; = 0; such that

aijqji = €, i # qii = pil", el
We describe in Table [2| matrices q of super type, one for each Weyl-equivalence class
(here a(;;) = a; + -+ + aj for i < j). Since the matrix q has an analogous shape, we
may assume that
o there exists k € I such that {i € I:p;, = -1} = {k};
o there exists h € I, h # k, such that & = gpp.
Therefore we have:
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TABLE 1. Cartan type

Type q N
v yp—1 v -1 v yp—1 v
Ap oL 02 0% o2 o
2 -2 2 v -2 v
By, 6 > 2 o -~ o o X —o > 2
v -1 v -1y v -2 2
Cyp,0>3 oL —o0L—0 oYX 56 >2
v
Dy, 0 >4 o
-1
v
v p—1 v v p=1 v -1 v
O o O O o
v
By, 0 €lgs o
-1
v
v p—1 v v p=1 v -1 v
O o O O o
v -1y -2 2 -2 2
Fy o~ o~ o~ o > 2
14 11_3 V3
Go o o >3

o either IT" = {N;cy; : i € 1,7 # k} for type A(k — 1|0 — k) or else there exists a unique
positive non-simple root f such that I19 = {N;o; : i € I,i # k} U {N3fG};
o fori €1, i # k, we may (and do) choose b;; € {£1,£2,4+3}. Then N; = LCD(b;;, N);
set d; = N/N;j.
We start defining the matrix q. First we take t;; = b;; and qz; = piq” for all i € L.
Condition (4.24)) says that qgj =1, foralli e, j € I\{k}. Let i < j with j # k;
choose t;; € d;Z and set t;; = bj; — t;;. Then q;; = V' and qj; = V% satisfy q;;(£) =
¢lii = q;; and q;;q;; = 1°
Similarly, qé\g" =1 for k > i, so choose t;; € d;Z and set ty; = by; — ik, Qi = Vori~tik
and q; = ' so that qui(€) = £ = qi;. We have defined T satisfying (A.2) and q
turns out to be given by (A.3) with p;; = p; and p;; = 1 for all i # j, i.e. @ holds.

It remains to compute the matrix 79. Arguing as in the Cartan case we see that
030, (€) = =€ pibuNZ, 930, (&) = =€ 1 NiN;, i,j € I\{k}.

Assume that there exists v € II9\I (a non-simple Cartan root). Then there exist
py € {£1} and by, b, € Z such that

ij

b b;
Qyy = Pyq 7, qQinQy; = V7.

Extend (;;) to a bilinear form ¢ : Z! x Z' — Z. Then for k #i € 1,

0L (&) = =€ pyby N2, 93 () = —E iy NNy, (v — ), (v) = =€ 14 Ni N,
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All in all, 79 is of the form (t,g) € ZIXIE where toa = Pabaas trag + tga = bapg for
a # B. Arguing as in the Cartan case, we conclude that holds.

TABLE 2. Super type

Type a N 179 9q
vl vl — vy1luv
Ak =10-k), "o 2o 0 8Yo8 52 (Nagli AR} Artx Ag
keljon,
_ —2 o 2
B —k), Yo LV o %Y Loy &7) Ch % By_r
kEelg_ g Cr x Co—p
vl vt —1 v =212
D(k|0 — k), o — o ° o—o  >2 (A.8) Dy, x Cyy,
k<? Dy X Bg_g
2
Vd —d _ —d d
D(2,1;a), Py s v {1,3,1223)  A; x A; x 4,
di,ds €N
V2 =2 12,2 p ,-1-1
F(4) 0O — o0 —o0o—o0 > 2 (A.9) Aj x Bs
-1, v -3 3
G(3) o o o, N >3 (A.10) Ay x G
(A7) {N]a] ’j 7& k} U {Na(k9>a(k9)}7
(A.8) {Njaj I # k} U {Noqk,l 9)+Oé(k971)(a(k*1 0) + a(kefl))}a
(A.9) {N1a1, Naag, N3z, Nay+2a0+3as+2a4 (01 + 202 + 3z + 204) },
(A.IO) {Na1+2a2+a3 (041 + 209 + ag), Noas, Ngag}.

Type D(2,1; ). The diagrams of this type are Weyl equivalent to the following one

T 7‘71 —1 571

o o 3 , with r,s,7s # 1. The corresponding Nichols algebra has finite di-
mension if and only if r,s € G, rs # 1. Let q be a braiding matrix with this diagram
satisfying . Fix a generator ¢ of the subgroup of G, generated by 7, s; we choose
di,ds € N minimal such that r = £%, s = £93. Then there exists a braiding matrix q as
in Table |2/ such that q = q(¢).

A.3. Modular type. The Nichols algebras in this family could be thought of as quan-
tizations in char 0 of the 34-dimensional Lie algebras in char 2 from [KaW]|, respectively
the 10-dimensional Lie algebras in char3 introduced in [Br]. The information on this
type is given in Table 2l The matrices T" and 79 are worked out as in the super case. [

APPENDIX B. LIE BIALGEBRAS AND POISSON ALGEBRAIC GROUPS

We gather minimal background material on Lie bialgebras and Poisson algebraic
groups for Sections |7| and . We refer to [ES, Section 2-7] for a full treatment.
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TABLE 3. Modular type

Type q N I71 9q
1, =1 1 .1

wk(1) 8810 1L 5o (A1) Ay x A
cele ,

br(2) 0—o, (e Gh #3 {2May + Mag, Nas} A x Ay

(A.11) {Nai, Nag, Mayy, Moy + 2Mag + 3Mas + May}.

B.1. Lie bialgebras. Recall that a Lie bialgebra is a Lie algebra g equipped with a
linear map 6 : g — A%g such that

(i) the dual of the map ¢ defines a Lie algebra structure of g* and

(ii) § is a l-cocycle, i.e., d([a,b]) = ad,(0(b)) — ady(d(a)) for all a,b € g.

The Lie bialgebras with opposite cobracket (same bracket) and opposite bracket (same
cobracket) will be denoted by gop and g°P, respectively. The dual Lie bialgebra g* of g
is the Lie bialgebra with Lie bracket and cobracket given by

The Drinfeld double D(g) of the Lie bialgebra g is a Lie bialgebra which is isomorphic
to g ® g* as a vector space and is uniquely defined by the conditions:

(a) The canonical embeddings ¢ : g < D(g) and ¢* : (g*)°? — D(g) are embeddings of
Lie bialgebras;

(b) Fora € g C D(g), f € " C D(g), [z, f] = ad;(f) —ad}(z) in terms of the coadjoint
actions of g and g*.

A quadratic Lie algebra is a Lie algebra g equipped with an non-degenerate invariant
symmetric bilinear form (.,.). A Manin triple is a triple (g,g+,9—) consisting of a
quadratic Lie algebra (g, (.,.)) and a pair of isotropic Lie subalgebras g+ C g.

Remark B.1. The notions of Drinfeld double and Manin triple are equivalent in the
case of finite dimensional Lie algebras:

(a) Each Drinfeld double D(g) is a quadratic Lie algebra with symmetric bilinear form

(a+ f,b+g) = (f,b) + (g, a), a,beg, f,geg”

With respect to this form, (D(g), g, ¢*) is a Manin triple.
(b) For a Manin triple (g, g+, 9—), g+ have canonical Lie bialgebra structures given by

0(a), f@g) = (a,[f,9]),  (6(f);a®@b) = —=(f,[a,b]), Va,b e gy, f.g €9

Then g, equipped with the Lie cobracket dq, + dq_, is isomorphic to the Drinfeld
double of g, and g_ ~ (g% )°P.

B.2. Poisson algebraic groups. A (complex) Poisson algebraic group is an algebraic
group G equipped with a bivector field 7 such that the product map

(G,7) x (G,m) — (G, )

is Poisson. The coordinate ring C[G] has a canonical structure of commutative Poisson-
Hopf algebra with Poisson bracket given by

{f, g} = (df ® dg,7), f,9 € C[G],
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where df denotes the differential of f. Conversely, every finitely generated commutative
Poisson-Hopf algebra H gives rise to the Poisson algebraic group MaxSpec H.

The tangent Lie algebra g = T1G of every Poisson algebraic group G has a canonical
Lie bialgebra structure. The Poisson structure m automatically vanishes at the identity
element 1 of G. The Lie cobracket on g, or equivalently the Lie bracket on g* ~ TG, is
defined as the linearization of 7 at 1:

(B.1) [d1(f), du(9)] == di({f, 9}), f,9 € ClG].

In Hopf algebra situations it is advantageous to describe the tangent Lie algebra g of
an algebraic group G by describing the corresponding Lie cobracket on g* = T7G.

Lemma B.2. Let G be a complex algebraic group; as usual A(f) = fu) ® f) for
f € C|G]. Then the canonical Lie coalgebra structure on Ty G ~ g* is given by

6(dif) = difay Adifi), feClG].
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