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Abstract. We construct symmetric pairs for Drinfeld doubles of pre-Nichols

algebras of diagonal type and determine when they possess an Iwasawa de-
composition. This extends G. Letzter’s theory of quantum symmetric pairs.

Our results can be uniformly applied to Kac–Moody quantum groups for a

generic quantum parameter, for roots of unity in respect to both big and small
quantum groups, to quantum supergroups and to exotic quantum groups of

ufo type. We give a second construction of symmetric pairs for Heisenberg

doubles in the above generality and prove that they always admit an Iwasawa
decomposition.

For symmetric pair coideal subalgebras with Iwasawa decomposition in the

above generality we then address two problems which are fundamental al-
ready in the setting of quantum groups. Firstly, we show that the symmetric

pair coideal subalgebras are isomorphic to intrinsically defined deformations
of partial bosonizations of the corresponding pre-Nichols algebras. To this end

we develop a general notion of star products on N-graded connected algebras

which provides an efficient tool to prove that two deformations of the partial
bosonization are isomorphic. The new perspective also provides an effective

algorithm for determining the defining relations of the coideal subalgebras.

Secondly, for Nichols algebras of diagonal type, we use the linear isomor-
phism between the coideal subalgebra and the partial bosonization to give an

explicit construction of quasi K-matrices as sums over dual bases. We show

that the resulting quasi K-matrices give rise to weakly universal K-matrices
in the above generality.

1. Introduction

1.1. (Pre-)Nichols algebras of diagonal type. Since their inception in the
1980s quantum groups have become an integral part of representation theory with
many deep applications. Quantum groups in particular reinvigorated the general
investigation of Hopf algebras as they provided many new noncommutative, nonco-
commutative examples. In the late 1990s N. Andruskiewitsch and H.-J. Schneider
proposed an approach to the classification of finite dimensional, pointed Hopf al-
gebras [AS02]. In this approach a central role is played by Nichols algebras which
are Hopf algebras in a braided category of Yetter-Drinfeld modules. Important
examples of Nichols algebras include the positive part U+ of quantized enveloping
algebras Uq(g) for q not a root of unity, and the positive part of the small quan-
tum group uq(g) if q is a root of unity. Other examples come from quantum Lie
superalgebras, but there are also large example classes which had not been studied
previously.
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The starting point for the construction of a Nichols algebra B(V ) is a Hopf
algebra H and a Yetter-Drinfeld module V over H. If H is the group algebra
of an abelian group and V is semisimple and finite rank, the B(V ) is called a
Nichols algebra of diagonal type. Nichols algebras of diagonal type are determined
by a bicharacter χ : Zn × Zn → k into the base field k. The finite dimensional
such Nichols algebras were classified by I. Heckenberger in [Hec09]. The Nichols
algebra B(V ) is a quotient of the tensor algebra T (V ) by the uniquely determined
maximal proper biideal Imax ⊂ ⊕∞m=2V

⊗m. If instead one considers any H-stable
biideal I with {0} ⊆ I ⊆ Imax then T (V )/I is a pre-Nichols algebra as introduced
by Angiono in [Ang16]. Prominent examples of pre-Nichols algebras which are not
Nichols algebras are the positive parts of quantized enveloping (super) algebras at
roots of unity.

1.2. Quantum symmetric pairs. Let g be a semisimple complex Lie algebra
and let θ : g → g be an involutive Lie algebra automorphism with pointwise fixed
Lie subalgebra k = {x ∈ g | θ(x) = x}. The theory of quantum symmetric pairs
provides quantum group analogs Bc = U ′q(k) ⊂ Uq(g) of the universal enveloping
algebra U(k). Crucially, Bc ⊂ Uq(g) is not a Hopf subalgebra but satisfies the
weaker coideal property

∆(Bc) ⊂ Bc ⊗ Uq(g)

for the coproduct ∆ of Uq(g). Quantum symmetric pairs for classical g were orig-
inally introduced by M. Noumi, M. Dijkhuizen and T. Sugitani, case by case, to
perform harmonic analysis on quantum group analogs of symmetric spaces, see
[Nou96], [Dij96], [NS95]. Independently, G. Letzter developed a comprehensive
theory of quantum symmetric pairs based on the classification of involutive auto-
morphisms of g in terms of Satake diagrams [Let99], [Let02]. A Satake diagram
(X, τ) consists of a subset X of the nodes of the Dynkin diagram for g and a diagram
automorphism τ satisfying certain compatibility conditions, see [Ara62]. Letzter’s
construction was extended to the Kac-Moody case in [Kol14].

Much is known about the structure of the algebras Bc. Generators and relations
for Bc were determined in [Let03, Section 7], see also [Kol14, Section 7]. Let
pX be the standard parabolic subalgebra corresponding the X. The algebra Bc

has a natural filtration such that the associated graded algebra is isomorphic to a
subalgebra U ′q(pX) of the quantized enveloping algebra Uq(pX). This suggests that
it is possible to interpret Bc as a deformation of U ′q(pX).

Problem I. Explicitly define an associative product ? on U ′q(pX) such that the
algebra (U ′q(pX), ?) is canonically isomorphic to Bc.

In the quasi-split case X = ∅, the algebras Bc were already introduced in [Let97].
In this case the involution θ can be given in terms of the Chevalley generators
{ei, fi, hi | i ∈ I} of g by

θ(ei) = −fτ(i), θ(fi) = −eτ(i), θ(hi) = −hτ(i).

Let Ei, Fi, K
±1
i for i ∈ I denote the standard generators of Uq(g). Then the

quantum symmetric pair coideal subalgebra Bc corresponding to (∅, τ) is generated
by the elements

Bi = Fi + ciEτ(i)K
−1
i , KiK

−1
τ(i) for all i ∈ I(1.1)
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where c = (ci)i∈I ∈ kI are fixed parameters. The parameters ci need to satisfy cer-
tain compatibility conditions which assure that gr(Bc) is canonically isomorphic to
the subalgebra U ′q(b) = k〈Fi,KiK

−1
τ(i) | i ∈ I〉 of Uq(g). This conditions is equivalent

to the fact that the pair (Uq(g), Bc) satisfies a quantum Iwasawa decomposition.
In the quasi-split case this means that the multiplication map

U+ ⊗ U ′0 ⊗Bc → Uq(g)(1.2)

is a linear isomorphism. Here U ′0 is the subalgebra of Uq(g) generated by {K±1i | i ∈
Iτ} where Iτ ⊆ I is a set of representatives of the τ -orbits in I, and U+ ⊂ Uq(g) is
the subalgebra generated by {Ei | i ∈ I}. The central role of the quantum Iwasawa
decomposition was first highlighted in [Let97]. More general versions appeared in
[Let99], [Let04], [Kol14]. In the general case [Let02], [Kol14], the generators Bi may
come with a second parameter si. Here we suppress this parameter for simplicity,
but we note that the theory can be extended by twisting by a character, see for
example [DK18, Section 3.5].

The theory of quantum symmetric pairs received a big push in 2013 when the
preprint versions of [BW18a] and [ES18] introduced the notion of a bar involu-
tion for quantum symmetric pairs. H. Bao and W. Wang showed that much of
G. Lusztig’s theory of canonical bases allows analogs for quantum symmetric pairs
[BW18a], [BW18b]. Of pivotal importance in Lusztig’s theory is the quasi R-matrix
Θ which lives in a completion of U− ⊗ U+ and intertwines two bar involution on
∆(Uq(g)), see [Lus94, Theorem 4.1.2]. For the symmetric pair of type AIII with
X = ∅, Bao and Wang showed in particular that there exists an intertwiner Θθ

in a completion of Bc ⊗ U+ which plays a similar role as the quasi R-matrix Θ.
The existence of the intertwiner Θθ was established in full generality in [Kol17].
Following the program outlined in [BW18a], the intertwiner Θθ was used in [BK],
[Kol17] to construct a universal K-matrix for quantum symmetric pairs. The uni-
versal K-matrix is an analog of the universal R-matrix for Uq(g). For this reason
we call the intertwiner Θθ the quasi K-matrix for Bc.

The construction of the quasi K-matrix in [BW18a], [BK] is recursive and based
on the intertwiner property for the bar involutions on Uq(g) and Bc. This dif-
fers from the situation with (quasi) R-matrices. Drinfeld constructed universal
R-matrices for the doubles of all Hopf algebras as sums of dual bases [Dri87]. In
this direction, the quasi R-matrix Θ has a second description in terms of dual bases
of U− and U+ with respect to a non-degenerate pairing, see [Lus94, Theorem 4.1.2].
It is an open question to give a similar description of the quasi K-matrix Θθ.

Problem II. Give a conceptual, non-recursive description of the quasi K-matrix
Θθ for quantum symmetric pairs in terms of dual bases of U− and U+. This
description should be parallel to the Drinfeld–Lusztig construction of the quasi R-
matrices Θ as sums of dual bases, and should not involve the bar-involutions which
are not applicable in closely related situations, such as roots of unity.

For large classes of examples there exist explicit formulas for the quasi K-matrix,
see [DK18]. However, these formulas do not come from dual bases on U− and U+.

1.3. Goal of this paper. In the present paper we propose a construction of sym-
metric pairs for pre-Nichols algebras which extends Letzter’s construction of quan-
tum symmetric pairs. To keep things manageable, we restrict to pre-Nichols alge-
bras of diagonal type. For quantum symmetric pairs this means that we restrict
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to the case X = ∅. The theory developed in the present paper includes examples
of symmetric pairs for quantized enveloping algebras at roots of unity, quantum
Lie superalgebras, and the more exotic examples which arose from Heckenberger’s
classification [Hec09] of Nichols algebras of diagonal type. We do not place any
restrictions on the Gelfand-Kirillov dimension of the pre-Nichols algebra. The case
of general X will involve Nichols algebras for Yetter-Drinfeld modules over more
general Hopf algebras. We intend to address this more general case in the future.
One of the upshots of this is an intrinsic construction of quantum symmetric pairs
in terms of a base Hopf algebra H, an involutive Hopf algebra automorphism of H,
and an isomorphism between two Yetter-Drinfeld modules for H.

For pre-Nichols algebras of diagonal type we develop a general theory in full
analogy to Letzter’s theory [Let99], [Let02], [Kol14]. For a symmetric bicharacter
χ : Zn × Zn → k, we consider a Hopf algebra U(χ) with triangular decomposition
U(χ) ∼= U+ o H n U− where H = k[Zn] is the group algebra of Zn and U+, U−

are pre-Nichols algebra associated to χ. We call U(χ) the Drinfeld double of U+,
see Remark 2.1. We define a coideal subalgebra Bc ⊂ U(χ) which depends on
parameters c = (ci) ∈ kn and is generated by elements analogous to those given in
(1.1). The coideal subalgebra Bc has a natural filtration and we determine the set
of parameters c for which gr(Bc) is isomorphic to a partial bosonization Hθ nU−.

In this setting we answer Problems I and II from Section 1.2. Lusztig’s quasi R-
matrix Θ also exists in the general setting of the present paper. To answer Problem
I, we define two associative products on HθnU−. First, by a twisting construction,
we define a product ? by a closed formula which only involves the quasi R-matrix
Θ and an explicitly given algebra homomorphism σ : U− ↪→ U+oH. Secondly, we
use a linear isomorphism

ψ : Bc → Hθ n U−,

coming from a triangular decomposition of U(χ), to push forward the algebra struc-
ture on Bc. We develop a general theory of star products on N-graded algebras
generated in degree 0 and 1 to show that the two algebra structures on Hθ n U−

coincide. Hence the map ψ : Bc → (Hθ n U−, ?) is an algebra isomorphism.
To resolve Problem II we need to restrict to the case where U+, U− are Nichols

algebras. We show that the element

Θθ = (ψ−1 ⊗ id)(Θ)(1.3)

which lives in a completion of Bc ⊗ U+, has all the desired properties of a quasi
K-matrix, and indeed coincides with the quasi K-matrix in the case of quantum
symmetric pairs. We then use Θθ to essentially construct a universal K-matrix
for Bc in the setting of Nichols algebras of diagonal type. We do not discuss the
representation theory of U(χ), but follow an approach proposed by N. Reshetikhin
and T. Tanisaki for universal R-matrices in [Tan92], [Res95]. We obtain a weak
notion of a universal K-matrix, which consists of an automorphism of a completion
of Bc⊗U(χ) which satisfies the properties of conjugation by a universal K-matrix.
In the following we discuss the results of the present paper in more detail. All
through this paper the symbol N denotes the natural numbers including 0, that is
N = {0, 1, 2, . . . }.

1.4. Symmetric pairs for pre-Nichols algebras. For the construction of the
Hopf algebra U(χ) we mostly follow [Hec10], which extended Lusztig’s braid group
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action to Nichols algebras of diagonal type, but we allow pre-Nichols algebras as
introduced in [Ang16]. Associated to the bicharacter χ is a Yetter-Drinfeld module
V +(χ) with basis {E1, . . . , En}. We consider the corresponding pre-Nichols algebra
U+ = T (V +(χ))/I where I is a Zn-graded biideal of the tensor algebra T (V +(χ)).
We then form the bosonization U+oH and consider a quotient U(χ) of the quantum
double of U+ oH obtained by identifying the two copies of H. The Hopf algebra
U(χ) is a natural generalisation of Uq(g). In particular, it is generated by elements

Ei, Fi,K
±1
i for i ∈ I = {1, . . . , n}, has a triangular decomposition U(χ) = U+oHn

U−, and satisfies relations similar to those for Uq(g), see Section 2.1. Let {αi | i ∈ I}
be the standard basis of Zn, and let τ : I → I be an involutive bijection such that
χ(ατ(i), ατ(j)) = χ(αi, αj) for all i, j ∈ I. We define Bc to be the subalgebra of
U(χ) generated by the elements given in (1.1) where c = (c1, . . . , cn) ∈ kn are fixed
parameters. Moreover, we let Hθ denote the subalgebra of H generated by the
elements KiK

−1
τ(i) for all i ∈ I. The algebra Bi has a natural filtration given by

the degree function deg(Bi) = 1, deg(KiK
−1
τ(i)) = 0. There is always a surjective

algebra homomorphism

ϕ : gr(Bc)→ Hθ n U−.(1.4)

We use linear projection maps π0,0 : U(χ)→ H and Pµ : U(χ)→ U(χ) for µ ∈ Zn,
which were first defined in [Let02], to show the following result.

Theorem A. (Theorem 2.13) The map ϕ is an algebra isomorphism if and only if
the following condition holds:

(c) The ideal I ⊂ T (V +(χ)) is generated by homogeneous, noncommutative
polynomials pj(E1, . . . , En) for j = 1, . . . , k of degree λj ∈ Nn, respectively,
for which π0,0 ◦ P−λj (pj(B1, . . . , Bn)) = 0.

As in the quantum case, the map ϕ is an isomorphism if and only if the pair
(U(χ), Bc) admits an Iwasawa decomposition analogous to (1.2), see Remark 2.15.

Let U(χ)poly be the subalgebra of U(χ) generated by the elements EiK
−1
i , Fi,

K−1i , KiK
−1
τ(i) for all i ∈ I. The algebra U(χ)poly contains Bc and has a natural

surjection κ : U(χ)poly → Heis(χ) onto a Heisenberg double Heis(χ) associated to
the bicharacter χ. By construction, the kernel of κ is the ideal generated by K−1i
for all i ∈ I. We can consider the image Bc = κ(Bc) inside Heis(χ). Again we have
a natural filtration given by a degree function and a surjection

ϕ : gr(Bc)→ Hθ n U−.

It turns out that map ϕ is an algebra isomorphism irrespective of the choice of

parameters c. Let G
+

be the subalgebra of Heis(χ) generated by the elements
κ(EiK

−1
i ) for all i ∈ I.

Theorem B. (Theorem 2.9) The map ϕ is an isomorphism, that is, the pair

(Heis(χ), Bc) always admits an Iwasawa decomposition Heis(χ) ∼= G
+ ⊗Bc.

The algebra U(χ)poly has an N-filtration given by the degree function defined by

deg(EiK
−1
i ) = deg(Fi) = deg(K−1i ) = 1, deg(KiK

−1
τ(i)) = 0

for all i ∈ I. We call the associated graded algebra Heis(χ)∨ = gr(U(χ)poly)
the negative Heisenberg double associated to U+. We observe that condition (c)
in Theorem A can be verified in the negative Heisenberg double. Indeed, the
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projection map π0,0 has an analog π∨0,0 : Heis(χ)∨ → H. For all i ∈ I set B∨i =

Fi + ciEτ(i)K
−1
i ∈ Heis(χ)∨.

Theorem C. (Theorem 2.17) For any homogeneous, noncommutative polynomial
p(x1, . . . , xn) of degree λ ∈ Nn we have

π0,0 ◦ Pλ(p(B1, . . . , Bn)) = π∨0,0(p(B∨1 , . . . , B
∨
n )).

The point of Theorem C is that calculations in Heis(χ)∨ are easier than calcu-
lations in U(χ). We can summarize the situation in the following diagram:

Bc Heis(χ) Heis(χ)∨

Bc U(χ)poly U(χ)

B̃c Ũ(χ)poly Ũ(χ)

κ

η

gr

Here the tildes ∼ denote the versions of U(χ), Bc, U(χ)poly in the case where the

biideal I is trivial, that is I = {0}. In this case Ũ(χ) = T (V +(χ)) is just the tensor
algebra. The map η denotes the canonical projections.

In Section 3 we apply Theorems A and C to various classes of examples. For
each example class we determine the parameters c ∈ kn for which the maps ϕ in
(1.4) is an algebra isomorphism. In each case the calculation simplifies significantly
because Theorem C allows us to calculate in the negative Heisenberg double. We
first consider quantized enveloping algebras in Section 3.1 extending known results
from [Let02], [Kol14] to the root of unity case. In Section 3.2 we consider the small
quantum groups uζ(sl3) where ζ is an arbitrary root of unity. The calculations for
this example naturally lead us to consider the Al-Salam-Carlitz I discrete orthogonal

polynomials U
(a)
n (x; q) originally defined in [ASC65], see also [KLS10]. As further

examples we consider quantized enveloping algebras of Lie superalgebras of type
sl(m|k) and the distinguished pre-Nichols algebra of type ufo(8) in Sections 3.3 and
3.4, respectively.

1.5. Star products on partial bosonizations. In Section 5 we introduce star
products and apply them to solve Problem I from Section 1.2. We define a star
product on an N-graded k-algebra A =

⊕
j∈NAj to be an associative bilinear

operation

∗ : A×A→ A, (a, b) 7→ a ∗ b

such that

a ∗ b− ab ∈ A<m+n for all a ∈ Am, b ∈ An.

A star product will be called 0-equivariant if

a ∗ h = ah and h ∗ a = ha for all h ∈ A0, a ∈ A.

Star products provide us with an efficient way to prove that two filtered defor-
mations of A are isomorphic. Namely, if A is generated in degrees 0 and 1, and
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A1 =
∑
iA0FiA0 for a subset {Fi} ⊂ A1, then every 0-equivariant star product on

A is uniquely determined by the collection of k-linear maps

u ∈ A 7→ Fi ∗ u− Fiu ∈ A,(1.5)

see Lemma 5.2. The above conditions are satisfied for the algebra A = Hθ n U−

which is graded with A0 = Hθ and A1 = Hθ spank{Fi | i ∈ I}.
We have the decomposition U(χ)poly ∼= (Hθ n U−) ⊗ k〈K−1i , EiK

−1
i | i ∈ I〉.

Consider the k-linear map ψ : U(χ)poly � Hθ n U− which is the identity map on
Hθ nU− and is the algebra homomorphism given by K−1i 7→ 0, EiK

−1
i 7→ 0 on the

second factor. By restriction to Bc we obtain the following commutative diagram:

Bc (Hθ n U−)⊗ k〈K−1i , EiK
−1
i | i ∈ I〉 U(χ)poly

Hθ n U−

∼=

ψ

In the setting of quantized enveloping algebras the map ψ recently appeared in [Let,
Corollary 4.4]. It turns out that the restriction of ψ to Bc is a linear isomorphism
if and only if the map ϕ given by (1.4) is an algebra isomorphism, see Remark 5.4.
We may hence use the map ψ to push forward the algebra structure from Bc to
Hθ n U−.

Theorem D. (Theorem 5.5) If the map ϕ is an algebra isomorphism (i.e. if
(U(χ), Bc) admits an Iwasawa decomposition), then the the restriction ψ : Bc →
Hθ n U− is an algebra isomorphism to the uniquely determined 0-equivariant star
product on Hθ n U− such that

Fi ∗ u = Fiu+ ciqiτ(i)(Kτ(i)K
−1
i )∂Lτ(i)(u) for all i ∈ I, u ∈ U−

where ∂Li are the frequently used skew derivations of U− given by (4.11)–(4.12).

In addition to determining the algebraic structure of Bc, Theorem D also gives
an effective way for the explicit description of the relations among the generators
of Bc. In Proposition 5.9 we prove that the relations among the generators Fi and
KiK

−1
τ(i) of the star product algebra (Hθ n U−, ∗) are the relations with respect to

the usual product on Hθ n U− but re-expressed in terms of the star product, see
Section 5.4 for details and examples.

In Section 4.4 we define a second associative binary operation ? on Hθ n U−.
Denote by U±max the Nichols algebras that are factors of U± and by U(χ)max the
corresponding Drinfeld double. By [Hec10, Theorem 5.8] there exists a pairing of
Hopf algebras

〈 , 〉max : (H n U−max)⊗ (U+
max oH)→ k(1.6)

which is nondegenerate when restricted to U−max⊗U+
max. The pairing induces a left

action . and a right action / of U+
max oH on H nU−, see Section 4.1. The pairing

(1.6) allows us to define quasi R-matrix for U(χ)max as a sum of tensor products
of dual bases of U−max and U+

max. We write formally

(1.7) Θ =
∑
µ

(−1)|µ|Fµ ⊗ Eµ.
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In Sections 4.1 and 4.2 we show that this quasi R-matrix retains essential properties
of the quasi R-matrix for quantum groups in [Lus94]. There exists an algebra
homomorphism σ : U−max ↪→ U+

max oH such that σ(Fi) = cτ(i)KiEτ(i) for all i ∈ I,

see Section 4.3. The associative binary operation ? on Hθ n U− is defined solely
in terms of the quasi R-matrix Θ and the algebra homomorphism σ and exists
irrespective of the choice of parameters c. Let S denote the antipode of U(χ)max.

Theorem E. (Theorem 4.7, Proposition 5.6 and Corollary 5.7) For any c ∈ kn the
operation

f ? g =
∑
ρ

(−1)|ρ|(σ(Fρ).f)Kρ[g / (S−1(Eρ)Kρ)] for all f, g ∈ U−(1.8)

defines a 0-equivariant star product ? on Hθ n U−. The star product ? coincides
with the star product ∗ from Theorem D when the latter is defined.

Theorem E provides the desired explicit formula for the star product on HθnU−
and hence solves Problem I. The main step in the proof of the first part of Theorem
E is to show that the bilinear operation ? defined by (1.8) is associative. The
second statement then follows by comparison of the linear maps (1.5) for the two
star products ? and ∗.

In the situation of Theorem D, the algebra isomorphism ψ turns the algebra
(Hθ n U−, ?) into a U(χ)max-comodule algebra. In Section 4.5 we give an explicit
formula for the corresponding coaction ∆?. This formula again only involves the
quasi R-matrix Θ and the homomorphism σ. The U(χ)max-comodule algebra struc-
ture on (Hθ n U−, ?) again exists irrespective of the choice of parameters c ∈ kn.

1.6. Quasi K-matrices versus quasi R-matrices. In Section 6 we address Prob-
lem II from Section 1.2. We need to restrict to the case that U± = U±max are Nichols
algebras and we assume that the conditions of Theorem D are satisfied. Under these
assumptions the map ψ is an isomorphism and we may define an element Θθ in a
completion of Bc ⊗ U+ by (1.3). In Proposition 6.1 we give explicit formulas for
(∆⊗id)(Θθ) and (id⊗∆)(Θθ) which are analogs of the formulas for (∆⊗id)(Θ) and
(id ⊗∆)(Θ) in [Lus94, 4.2]. We then show in Proposition 6.2 that Θθ satisfies an
intertwiner property which reproduces the intertwiner property for bar involutions
of Bc and Uq(g) from [BW18a, Proposition 3.2] in the case of quantized enveloping
algebras. For this reason we call Θθ the quasi K-matrix for the pair (U(χ)max, Bc).

The following diagram illustrates our double construction for quasi K-matrices
versus the Drinfeld–Lusztig construction for quasi R-matrices:

(Hθ n U−max, ∗)

Bc

ψ

U+
max oH ′

R

K
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The two axes represent the decomposition U(χ)max
∼= (U+

max oH ′)⊗ (Hθ n U−max)
for a Hopf subalgebra H ′ of H, and the corresponding quasi R-matrix is a sum of
dual bases of U−max and U+

max. The diagonal represents the coideal subalgebra Bc

which is isomorphic via the projection ψ to a star product on the horizontal axes,
and the corresponding quasi K-matrix is the pull back under ψ−1⊗ id of the quasi
R-matrix.

In Section 6.3 we review the theory of weakly quasitriangular Hopf algebras from
[Tan92], [Res95], see also [Gav97]. This theory is extended to comodule algebras
in Section 6.5. The notion of a weakly quasitriangular comodule algebra captures
the existence of a universal K-matrix. Using the coproduct identities and the
intertwiner property for Θθ we show the following result.

Theorem F. (Theorem 6.15) Under the above assumptions the coideal subalgebra
Bc of U(χ)max is weakly quasitriangular up to completion.
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of the work on this paper was carried out while S.K. visited Louisiana State Uni-
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2. The size of coideal subalgebras of Heisenberg doubles and
Drinfeld doubles

In this first section we describe the general setting and introduce the coideal
subalgebras Bc which are the main objects of investigation in the present paper.
The algebras Bc have a natural filtration. We determine the parameters c for which
gr(Bc) is of the right size. To this end we use methods first employed for quantized
universal enveloping algebras by G. Letzter in [Let02, Section 7].

2.1. The setting. We review the Drinfeld double Ũ(χ) of the tensor algebra of
a braided vector space of diagonal type, following [Hec10, Section 4]. We will

need in particular the description of ideals of Ũ(χ) which preserve the triangular
decomposition from [Hec10, Proposition 4.17]. This allows us to consider quotients

of Ũ(χ) which are generalizations of Drinfeld-Jimbo quantized enveloping algebras
for deformation parameters including roots of unity.

Let k be a field and set k× = k \ {0}. Let I = {1, . . . , n} and let {αi | i ∈ I}
denote the standard basis of Zn. Let H = k[Ki,K

−1
i | i ∈ I] denote the group

algebra of Zn. Let χ : Zn × Zn → k× be a bicharacter and set qij = χ(αi, αj) for
all i, j ∈ I. In this paper we always assume that the matrix (qij) is symmetric,
that is qij = qji for all i, j ∈ I. Recall that every bicharacter is twist-equivalent to
a symmetric bicharacter, and that the corresponding Nichols algebras are linearly
isomorphic, see [AS02, Proposition 3.9]. Let

V +(χ) ∈ H
HYD, V −(χ) ∈ H

HYD

be the Yetter-Drinfeld modules with linear basis {Ei | i ∈ I} and {Fi | i ∈ I},
respectively, such that the left action · and the left coaction δ of H on V +(χ) and
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on V −(χ) are given by

(2.1)
Ki · Ej = qijEj , δ(Ei) = Ki ⊗ Ei,
Ki · Fj = q−1ji Fj , δ(Fi) = K−1i ⊗ Fi,

respectively. Let T (V +(χ)) and T (V −(χ)) denote the tensor algebras of V +(χ)
and V −(χ), respectively. Recall that T (V +(χ)) and T (V −(χ)) are braided Hopf
algebras in the category H

HYD. Let T (V +(χ)) oH and T (V −(χ)) oH denote the
bosonization of T (V +(χ)) and T (V −(χ)), respectively, which are Hopf algebras,
see [Rad85], [Maj94], [Hec10, (4.5)]. We write (T (V −(χ)) o H)cop to denote the
Hopf algebra structure on T (V −(χ))oH with the opposite coproduct. There exists
a skew Hopf-pairing between T (V +(χ)) oH and (T (V −(χ)) oH)cop, see [Hec10,
Proposition 4.3]. We consider the quotient of the corresponding Drinfeld double by
the ideal identifying the two copies of H

Ũ(χ) =
((
T (V +(χ)) oH

)
⊗
(
T (V −(χ)) oH

)cop)
/(KiLi − 1 | i ∈ I)

where Li denotes the inverse of Ki in the second copy of H, see [Hec10, Definition

4.5, Remark 5.7]. More explicitly, Ũ(χ) is a Hopf algebra generated by the elements
Ei, Fi,Ki,K

−1
i with coproducts

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei,
∆(Fi) = Fi ⊗K−1i + 1⊗ Fi,(2.2)

∆(Ki) = Ki ⊗Ki

for all i ∈ I. Defining algebra relations for Ũ(χ) are given by

KiK
−1
i = 1,

KiEj = qijEjKi, KiFj = q−1ij FjKi,(2.3)

EiFj − FjEi = δi,j(Ki −K−1i ),

for all i, j ∈ I, see [Hec10, Proposition 4.6]. In view of the defining relations (2.3)

of Ũ(χ) it follows that ω extends to an isomorphism of Hopf algebras ω : Ũ(χ) →
Ũ(χ)cop such that

ω(Ki) = Li, ω(Li) = Ki, ω(Ei) = Fi, ω(Fi) = Ei,

for all i ∈ I. The automorphism ω is denoted by φ3 in [Hec10, Proposition 4.9.(6)].

The algebra Ũ(χ) has a triangular decomposition in the sense that the multipli-
cation map

T (V +(χ))⊗H ⊗ T (V −(χ))→ Ũ(χ)(2.4)

is a linear isomorphism, see [Hec10, Proposition 4.14]. We write this as

Ũ(χ) ∼= T (V +(χ)) oH n T (V −(χ))

to indicate that the bosonizations T (V +(χ))oH and HnT (V −(χ)) = (T (V −(χ)o
H)cop are subalgebras of U(χ). We will use similar notation for other triangular

decompositions later in the paper. We are interested in ideals of Ũ(χ) which are
compatible with the triangular decomposition. Let

I ⊆
∞⊕
m=2

T (V +(χ))m
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be a Zn-graded biideal of T (V +(χ)). By [Hec10, Corollary 4.24] the subspace

IHT (V −(χ)) is a Hopf ideal of Ũ(χ). Similarly one shows that the subspace

T (V +(χ))Hω(I) is a Hopf ideal of Ũ(χ). Let (I, ω(I)) denote the ideal of Ũ(χ)
generated by I and ω(I). We define

U(χ) = Ũ(χ)/(I, ω(I)), U+ = T (V +(χ))/I, U− = T (V −(χ))/ω(I).

By [Hec10, Proposition 4.17] the Hopf algebra U(χ) has a triangular decomposition

U(χ) ∼= U+ oH n U−.(2.5)

The subalgebras U+ and U− are pre-Nichols algebras as defined in [Ang16]. Re-
call from [Ang16] that a pre-Nichols algebra of a braided vector space V is any
graded braided Hopf algebra of the form T (V )/I where I is a graded biideal. In
particular, if we choose I = Imax(χ) ⊆ T (V +(χ)) to be the maximal Zn-graded
biideal in

⊕∞
m=2 T (V +(χ))m, then U+ is the Nichols algebra of V +(χ). We allow

more general graded biideals I to cover non-restricted specializations of quantized
universal enveloping algebras at roots of unity [CKP92].

Remark 2.1. The algebra U(χ) is a factor of the Drinfeld double of the bosonization
of U+. For the sake of brevity, we will refer to U(χ) as the Drinfeld double of the
pre-Nichols algebra U+.

We end this introductory section by recalling two projection maps which play an
important role in Letzter’s theory of quantum symmetric pairs, see [Let02, Section
4, Lemma 7.3]. Let G− be the subalgebra of U(χ) generated by the elements FiKi

for all i ∈ I. We can rewrite the triangular decomposition (2.5) as

U(χ) ∼= U+ oH nG−.

As a vector space U(χ) has a direct sum decomposition

U(χ) =
⊕
λ∈Zn

U+KλG
−.(2.6)

Here we write Kλ = Kλ1
1 · · · · ·Kλn

n for any λ = (λ1, . . . , λn) ∈ Zn. For λ ∈ Zn let

Pλ : U(χ)→ U+KλG
−(2.7)

be the canonical projection with respect to the direct sum decomposition (2.6). It
follows from the definition of the coproduct (2.2) that Pλ is a homomorphism of
left U(χ)-comodules, that is

∆(Pλ(x)) = (id⊗ Pλ)(∆(x))(2.8)

for all x ∈ U(χ). The algebras U+ and U− are Zn-graded with deg(Ei) = αi and
deg(Fi) = −αi for all i ∈ I. Degrees of homogeneous elements in U+ and U− lie in
Nn and −Nn, respectively. Hence we obtain a second direct sum decomposition

U(χ) =
⊕

α,β∈Nn
U+
α HU

−
−β .(2.9)

For α, β ∈ Nn let

πα,β : U(χ)→ U+
α HU

−
−β(2.10)

denote the canonical projection with respect to the direct sum decomposition (2.9).
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2.2. The partial bosonization HθnU− and the coideal subalgebra Bc. Let
τ : I → I be a bijection such that τ2 = id and qij = qτ(i)τ(j) for all i, j ∈ I. We

may consider τ as an automorphism of the braided bialgebra T (V +(χ)). We always
assume that the ideal I used to define U(χ) satisfies the relation τ(I) = I. We
also consider τ as a group automorphism of Zn given by τ(αi) = ατ(i) for all i ∈ I.
Let θ : Zn → Zn be the involutive group automorphism given by

θ(λ) = −τ(λ) for all λ ∈ Zn

and set

(2.11) Znθ = {λ ∈ Zn | θ(λ) = λ}.

Define Hθ to be the subalgebra of H generated by the elements KiK
−1
τ(i) for all

i ∈ I. By construction, Hθ is the group algebra of Znθ . We call the subalgebra
Hθ n U− of U(χ) generated by Hθ and U− the partial bosonization of U−. As a
vector space we have Hθ n U− = Hθ ⊗ U−.

For c = (c1, . . . , cn) ∈ kn we define Bc to be the subalgebra of U(χ) generated
by Hθ and the elements

Bi = Fi + ciEτ(i)K
−1
i for all i ∈ I.

The definition of the coproduct ∆ on U(χ) implies that

∆(Bi) = Bi ⊗K−1i + 1⊗ Fi + ciKτ(i)K
−1
i ⊗ Eτ(i)K

−1
i for all i ∈ I(2.12)

and hence Bc ⊂ U(χ) is a right coideal subalgebra, that is

∆(Bc) ⊂ Bc ⊗ U(χ).

The algebra Bc has a filtration F defined by the degree function given by

(2.13)
deg(Bi) = 1 for all i ∈ I,

deg(h) = 0 for all h ∈ Hθ.

In the following we want to compare the associated graded algebra gr(Bc) with
the algebra Hθ nU−. To this end, we first introduce some more notation. For any
multi-index J = (j1, . . . , jm) ∈ Im we write |J | = m, and we write FJ = Fj1 ·· · ··Fjm
and BJ = Bj1 · · · · ·Bjm . The commutation relations (2.3) imply that KiK

−1
τ(i)Bj =

q−1ij qτ(i)jBjKiK
−1
τ(i) for all i, j ∈ I and hence Bc =

∑
J HθBJ . Let p = p(x1, . . . , xn)

be a noncommutative polynomial in variables xi for i ∈ I. To shorten notation
we write p(F ) = p(F1, . . . , Fn), p(E) = p(E1, . . . , En), p(B) = p(B1, . . . , Bn),
p(EτK

−1) = p(Eτ(1)K
−1
1 , . . . , Eτ(n)K

−1
n ), p(KEτ ) = p(K1Eτ(1), . . . ,KnEτ(n)) and

p(FτK
−1) = p(Fτ(1)K

−1
1 , . . . , Fτ(n)K

−1
n ). For any m ∈ N define

U−≤m = spank{Fi1 . . . Fij | j ≤ m}.

By definition of the generators Bi and the defining relations (2.3) of U(χ) we have

Fm−1(Bc) ⊂ U+HU−≤m−1 for any m ∈ N.(2.14)

Hence, if p be a non-commutative, homogeneous polynomial of degree m then

p(B) ∈ Fm−1(Bc) =⇒ p(F ) = 0.

Hence we obtain a surjective homomorphism of graded algebras

ϕ : gr(Bc)→ Hθ n U−(2.15)
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such that ϕ(Bi) = Fi and ϕ(h) = h for all i ∈ I, h ∈ Hθ. We want to know under
which conditions the map ϕ is an isomorphism. To this end, for any homogeneous
noncommutative polynomial p of degree m we consider the following property

p(F ) = 0 =⇒ p(B) ∈ Fm−1(Bc).(Bc-rel)

We consider the set Nrel of all degrees for which homogeneous relations in U− lead
to relations in Bc, that is

Nrel = {k ∈ N | any polynomial p of degree m ≤ k satisfies (Bc-rel) }.(2.16)

By definition of Nrel the map ϕ is injective if and only if Nrel = N.

Proposition 2.2. The map ϕ is an isomorphism of graded algebras if and only if
Nrel = N.

In Section 2.5 we will formulate necessary and sufficient conditions on the pa-
rameters c which imply that Nrel = N. First, however, we show in Section 2.4 that a
quotient of Bc inside a Heisenberg double satisfies the relation Nrel = N irrespective
of the parameters c. For later reference we note the following technical lemma.

Lemma 2.3. Let p be a homogeneous polynomial. The following are equivalent:

(1) p(F ) = 0,
(2) p(E) = 0,
(3) p(EτK

−1) = 0,
(4) p(KEτ ) = 0.

(5) p(FτK
−1) = 0.

Proof. The equivalence between (1) and (2) follows from p(E) = ω(p(F )). As
τ(I) = I, the latter is equivalent to p(Eτ(1), . . . , Eτ(n)) = 0. By the triangular

decomposition (2.5), this is equivalent to the relation p(Eτ(1)K
−1
1 , . . . , Eτ(n)K

−1
n ) =

0 in U(χ). Indeed, the factor which is obtained by commuting all negative Ki-
powers to the very right of any monomial of weight λ ∈ Zn depends only on λ and
not on the monomial because (qij) is symmetric. This shows that (2) and (3) are
equivalent. The equivalence between (2) and (4) is verified analogously, and so is
the equivalence between (1) and (5). �

2.3. The Heisenberg double. Let U(χ)poly be the subalgebra of U(χ) gener-
ated by the elements Fi, EiK

−1
i , K−1i , KiK

−1
τ(i) for all i ∈ I. Let G+ denote the

subalgebra of U(χ) generated by the elements Ẽi = EiK
−1
i for all i ∈ I. The

following description of U(χ)poly in terms of generators and relations follows from
the corresponding description of U(χ).

Lemma 2.4. The algebra U(χ)poly is the factor of the free product of the algebras

G+, U−, k[Kλ |λ ∈ −Nn + Znθ ]

by the relations

(2.17) KλẼi = χ(λ, αi)ẼiKλ, KλFi = χ(λ, αi)
−1FiKλ

for i ∈ I, λ ∈ −Nn + Znθ and the cross relations

(2.18) q−1ij ẼiFj − FjẼi = δij(1−K−2i )

for i, j ∈ I.
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It follows from the above Lemma and from the triangular decomposition (2.5)
of U(χ) that U(χ)poly has a triangular decomposition

U(χ)poly ∼= G+ ⊗ k[Kλ |λ ∈ −Nn + Znθ ]⊗ U−.(2.19)

Observe that U(χ)poly is a sub-bialgebra of U(χ) but not a sub-Hopf algebra. By
construction we have Bc ⊂ U(χ)poly. By definition of the coproduct (2.2) the two
sided ideal I− = 〈K−1i | i ∈ I〉 in U(χ)poly is a right coideal, that is

∆(I−) ⊆ I− ⊗ U(χ)poly.

Hence the quotient Heis(χ) = U(χ)poly/I− is a right U(χ)poly-comodule algebra

with generators Ẽi = EiK
−1
i , Fi,KiK

−1
τ(i) for i ∈ I. We call Heis(χ) the Heisenberg

double associated to bicharacter χ and the pre-Nichols algebra U+. We write

∆ : Heis(χ)→ Heis(χ)⊗ U(χ)poly

to denote the coaction. Let κ : U(χ)poly → Heis(χ) be the projection map and
observe that

∆(κ(x)) = (κ⊗ id)∆(x) for all x ∈ U(χ)poly.(2.20)

Lemma 2.4 implies that Heis(χ) is the factor of the free product of G+, U− and
k[Kλ |λ ∈ Znθ ] by the relations (2.17) for i ∈ I, λ ∈ Znθ and the cross relations

q−1ij ẼiFj − FjẼi = δij

for i, j ∈ I. This implies that Heis(χ) has a triangular decomposition

Heis(χ) ∼= G+ oHθ n U−(2.21)

where G+ = k〈Ẽi | i ∈ I〉.

Remark 2.5. In the special case of the quantized universal enveloping algebra Uq(g)
of a symmetrizable Kac–Moody algebra at a non-root of unity q and τ = id, the
algebra Heis(χ) is isomorphic to Kashiwara’s bosonic algebra Bq(g) [Kas91, Section
3.3]. When g is finite dimensional, in [GY, Theorem 6.2] it was proved that it has
the structure of a quantum cluster algebra; the algebra was denoted by U−op ./ U+

in [GY, Theorem 4.7, Remark 4.8].

The projection maps Pλ for λ ∈ Zn and πα,β for α, β ∈ Zn+ from the end of Section
2.1 have analogs for the Heisenberg double. For α ∈ Zn+ we write G+

α = U+
α H∩G+.

In view of the triangular decomposition (2.21) of the Heisenberg double we get a
direct sum decomposition

Heis(χ) =
⊕

α,β∈Nn,µ∈Znθ

G+
αKµU

−
−β .(2.22)

Now the projection Pλ from (2.7) induces a projection

Pλ : Heis(χ)→
⊕

µ−α−β=λ

G+
αKµU

−
−β .(2.23)

By (2.8) we obtain

∆ ◦ Pλ(x) = (id⊗ Pλ)∆(x) for all x ∈ Heis(χ).(2.24)

Moreover, for α, β ∈ Zn+ let

πα,β : Heis(χ)→ G+
αHθU

−
−β(2.25)
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be the projection with respect to the decomposition (2.22). We consider the partial
order on Zn given by

(j1, . . . , jn) ≤ (j′1, . . . , j
′
n) ⇐⇒ ji ≤ j′i for i = 1, . . . , n.

For later use we note the following property of the projection map (2.25).

Lemma 2.6. Let u ∈ Heis(χ) and let α ∈ Nn be maximal with respect to the partial
order such that πα,β(u) 6= 0 for some β ∈ Nn. Then

0 6= (id⊗ πα,0)∆(u).

Proof. Using the direct sum decomposition (2.22) we write

u =
∑

γ,β∈Nn,i
xγ,iu

0
γ,β,iy−β,i

where xγ,i ∈ G+
γ are linearly independent, and u0γ,β,i ∈ Hθ and y−β,i ∈ U−−β . Let

now α be as in the assumption and set

uα =
∑

β∈Nn,i
xα,iu

0
α,β,iy−β,i

and u6=α = u− uα. By the maximality of α we have

(id⊗ πα,0)∆(u 6=α) = 0.

Hence, using Sweedler notation for the coaction ∆ in the form ∆(u) = u(0) ⊗ u(1)
we obtain

(id⊗ πα,0)∆(u) = (id⊗ πα,0)∆(uα)

=
∑

β∈Nn,i
u0α,β,i(1)y−β,i ⊗ xα,iu

0
α,β,i(2)K−β

and the latter expression is non-zero by the linear independence of the xα,i. �

2.4. Relations in Bc. Recall the projection map κ : U(χ)poly → Heis(χ) and
define Bc = κ(Bc). We also use the notation x = κ(x) for x ∈ U(χ)poly and write
in particular Bi = κ(Bi) for all i ∈ I. We proceed as in Section 2.2. The algebra
Bc is filtered by a degree function with deg(Bi) = 1 for all i ∈ I and deg(h) = 0
for all h ∈ Hθ. Let gr(Bc) denote the associated graded algebra. We obtain a
surjective homomorphism of graded algebras

ϕ : gr(Bc)→ Hθ n U−

such that ϕ(Bi) = F i and ϕ(h) = h for all i ∈ I, h ∈ Hθ. For any non-commutative
polynomial p in variables x1, . . . , xn we write p(B) = p(B1, . . . , Bn). Assume that
the noncommutative polynomial p has degree m. In analogy to property (Bc-rel)
we are interested in the following property

p(F ) = 0 =⇒ p(B) ∈ Fm−1(Bc).(Bc-rel)

We consider the set Nrel of all degrees for which homogeneous relations in U− lead
to relations in Bc, that is

Nrel = {k ∈ N | any polynomial p of degree l ≤ k satisfies (Bc-rel) }.(2.26)

We know that 1 ∈ Nrel. The following lemma provides a main step in the proof
that N = Nrel below.
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Lemma 2.7. Let β ∈ Zn with β > 0 and n ∈ Nrel. Then

κ(G−K−β) ∩
∑
|J|≤n

HθBJ = {0}.

Proof. Let a ∈ κ(G−K−β) ∩
∑
J≤nHθBJ . Choose k ∈ N0 minimal such that

a ∈ κ(G−K−β) ∩
∑
J≤kHθBJ . We want to show that k = 0. Assume on the

contrary that k ≥ 1 and write a = a0 + ak with a0 ∈
∑
|J|≤k−1HθBJ and ak ∈∑

|J|=kHθBJ . By the minimality of k we have ak 6= 0. Write ak =
∑
i hipi(B)

where hi ∈ Hθ are linearly independent and pi = pi(x1, . . . , xn) are homogeneous
polynomials of degree k. The relation a ∈ κ(G−K−β) together with the definition

of the generators Bi of Bc (and the linear independence of the hi) imply that
pi(EτK

−1) = 0. Hence we have pi(F ) = 0 by Lemma 2.3. As k ∈ Nrel we obtain

pi(B) ∈
∑
|J|≤k−1HθBJ . But then a = a0 + ak ∈

∑
|J|≤k−1HθBJ in contradiction

to the minimality of k. Hence the assumption k ≥ 1 was incorrect and we obtain
k = 0. Hence a ∈ κ(G−K−β ∩ Hθ) = {0} which concludes the proof of the
lemma. �

With these preparations we can show that Bc is not too big.

Proposition 2.8. Nrel = N.

Proof. We proceed by induction. Let k ∈ N and assume that {1, . . . , k− 1} ⊆ Nrel.
Let p be a polynomial of degree k such that p(F ) = 0. Without loss of generality we
may assume that p is homogeneous of degree λ ∈ Zn with |λ| = k. Write Y = p(B)
and Z = P−λ(Y ) where P−λ is the projection operator from (2.23). Note that
Z ∈ Bc by (2.24). Relations (2.12) and (2.20) imply that

∆(Y ) ∈ Y ⊗K−λ +
∑

|J|≤k−1

HθBJ ⊗ U(χ)poly.

Hence (2.24) implies that the element Z satisfies the relation

∆(Z) ∈ Y ⊗K−λ +
∑

|J|≤k−1

HθBJ ⊗ P−λ(U(χ)poly).(2.27)

We now prove Z = 0 as in [Kol14, Proposition 5.16]. Assume that Z 6= 0. Let
α ∈ Zn+ be maximal with respect to the partial order such that πα,β(Z) 6= 0 for
some β ∈ Zn+. By Lemma 2.3 we know that α < λ. Moreover, by Lemma 2.6 we
have

0 6= (id⊗ πα,0)∆(Z) ∈ κ(G−K−λ+α)⊗ U+K−λ.(2.28)

If α 6= 0 then (2.27) implies that

(id⊗ πα,0)∆(Z) ∈
(
κ(G−K−λ+α) ∩

∑
|J|≤k−1

HθBJ

)
⊗ U+K−λ.

However, the left hand side of the above expression is {0} by Lemma 2.7 in contra-
diction to (2.28). Hence α = 0 and Z ∈ κ(G−K−λ). But then the relation p(F ) = 0
implies that Z ∈

⊕
β<λ κ(G−−βK−λ) = {0}. Hence Z = 0.

Now we apply the counit ε to the second tensor factor in (2.27) to obtain

Y ∈
∑

|J|≤k−1

HθBJ .
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Hence the polynomial p satisfies property (Bc-rel). This proves that k ∈ Nrel. �

We can now repeat the argument which led to Proposition 2.2 to obtain the
following result.

Theorem 2.9. For all pre-Nichols algebras U+ of diagonal type and c ∈ kn, the
map ϕ : gr(Bc)→ Hθ n U− is an isomorphism of graded algebras.

2.5. Relations in Bc. We now want to see how much of the argument in the
previous section translates from Bc to the algebra Bc. Recall the definition of the
subset Nrel ⊂ N from (2.16). A word by word translation of the proof of Lemma
2.7 gives the following result.

Lemma 2.10. Let β ∈ Zn with β > 0 and n ∈ Nrel. Then

G−K−β ∩
∑
|J|≤n

HθBJ = {0}.

Translating the initial steps of the proof of Proposition 2.8 into the setting of Bc

we obtain the following result.

Proposition 2.11. Let p be a homogeneous polynomial of degree λ ∈ Zn with |λ|
minimal such that p(F ) = 0 but

p(B) /∈
∑
|J|<|λ|

HθBJ .

Then P−λ(p(B)) = π0,0(P−λ(p(B))) = apK−λ for some ap ∈ k× and hence K−λ ∈
Bc.

Proof. Write Y = p(B) and Z = P−λ(Y ). Equation (2.12) for the coproducts of
the generators Bi implies that

∆(Y ) ∈ Y ⊗K−λ +
∑

|J|≤|λ|−1

HθBJ ⊗ U(χ)poly.

Hence (2.8) implies that the element Z satisfies the relation

∆(Z) ∈ Y ⊗K−λ +
∑

|J|≤|λ|−1

HθBJ ⊗ P−λ(U(χ)poly).(2.29)

If Z = 0 then we can apply the counit ε to the second tensor leg of the above
expression and obtain Y ∈

∑
|J|≤|λ|−1HθBJ in contradiction to the assumption.

Hence Z 6= 0.
Let α ∈ Zn+ be maximal such that πα,β(Z) 6= 0 for some β ∈ Zn+. By Lemma 2.3

we know that α < λ. Moreover, in complete analogy to Lemma 2.6, we obtain

0 6= (id⊗ πα,0)∆(Z) ∈ G−K−λ+α ⊗ U+K−λ.(2.30)

If α 6= 0 then (2.29) implies that

(id⊗ πα,0)∆(Z) ∈
(
G−K−λ+α ∩

∑
|J|≤|λ|−1

HθBJ

)
⊗ U+K−λ.

However, the left hand side of the above expression is {0} by Lemma 2.10 in con-
tradiction to (2.30). Hence α = 0 and Z ∈ G−K−λ.
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Now choose β ∈ Zn+ maximal such that π0,β(Z) 6= 0. As p(F ) = 0 we have
β < λ. In analogy to Lemma 2.6 we have

0 6= (id⊗ π0,β)∆(Z) ∈ K−λ+β ⊗G−βK−λ(2.31)

Comparison with (2.29) and application of Lemma 2.10 implies (as before for α)
that β = 0. Hence Z = π0,0(Z) = apK−λ for some ap ∈ k and the claim follows
from the relation Z ∈ Bc \ {0}. �

Recall that I ⊂ T (V +(χ)) denotes the ideal in the tensor algebra such that

U+ = T (V +(χ))/I.

The above proposition provides us with a method to check that condition (Bc-rel)
holds for all polynomials.

Corollary 2.12. Let pj for j = 1, . . . , k be homogeneous, non-commutative poly-
nomials of degree λj ∈ Zn+, respectively, such that the set {pj(E) | j = 1, . . . , k}
generates the ideal I. Assume that

π0,0 ◦ P−λj (pj(B)) = 0 for j = 1, . . . , k.(2.32)

Then Nrel = N.

Proof. We prove this indirectly. Let p be a homogeneous polynomial of minimal
degree λ ∈ Zn+ such that p(E) ∈ I but

p(B) /∈
∑
|J|<|λ|

HθBJ .

We can write

p =

k∑
j=1

∑
`

qj,` pj rj,`

where qj,`, rr,` ∈ T (V +(χ)) are homogeneous polynomials and

deg(qj,`) + λj + deg(rj,`) = λ for all j, `.

By the minimality assumption, any summand s = qj,`pjrj,` with deg(s) > deg(pj)
satisfies s(B) ∈

∑
|J|<|λj |HθBJ and hence may be omitted. Thus we may assume

that

p =

k∑
j=1

ajpj for some aj ∈ k.

However, by Proposition 2.11 this is impossible, because of the assumption (2.32).
�

Corollary 2.12 suggests the following assumption about the parameters c in the
definition of the coideal subalgebra Bc:

The ideal I ⊂ T (V +(χ)) is generated by homogeneous, non-commutative
polynomials pj(E) for j = 1, . . . , k of degree λj ∈ Zn+, respectively, for which
π0,0 ◦ P−λj (pj(B)) = 0.

(c)

Condition (c) provides a reformulation of the condition Nrel = N which can be
verified in explicit examples.
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Theorem 2.13. For all pre-Nichols algebras U+ of diagonal type the following
statements are equivalent:

(1) The map ϕ : gr(Bc)→ Hθ n U− is an isomorphism.
(2) Nrel = N.
(3) Condition (c) holds.

Moreover, if Nrel 6= N then there exists λ ∈ Nn \ {0} such that K−λ ∈ Bc.

Proof. The equivalence between (1) and (2) is the statement of Proposition 2.2.
By Corollary 2.12 we have that (3) implies (2). Conversely, if condition (c) does
not hold, then Proposition 2.11 implies that P−λ(p(B)) = apK−λ with ap ∈ k× for
some homogeneous polynomial p of degree λ for which p(F ) = 0. As

P−λ

 ∑
|J|<|λ|

HθBJ

 = 0,

we see that the polynomial p violates condition (Bc-rel). This proves that (2)
implies (3) and the final statement of the theorem. �

If condition (c) holds then the above theorem allows us to write down a basis

of Bc as a left Hθ-module. Let J ⊂
∞⋃
k=0

Ik be a subset of multiidices such that

{FJ | J ∈ J } is a linear basis of U−. The following corollary is a version of [Kol14,
Proposition 6.2] in our setting. It is a consequence of the implication (3) ⇒ (1) in
the theorem.

Corollary 2.14. Let U+ be a pre-Nichols algebra of diagonal type and assume that
condition (c) holds. Then Bc is a free left Hθ-module with basis {BJ | J ∈ J }.

Remark 2.15. One of the reasons for which the condition in Theorem 2.13 is im-
portant is its relation to Iwasawa decompositions. The definition of the filtration
(2.14) implies at once that for all Bc the following statements are equivalent:

(1) The map ϕ : gr(Bc)→ Hθ n U− is an isomorphism.
(2) The algebra U(χ)poly admits the Iwasawa decomposition

U(χ)poly ∼= G+ ⊗ k[K−1i | i ∈ I]⊗Bc.

(3) The algebra U(χ) admits the Iwasawa decomposition

U(χ) ∼= U+ ⊗ k[K±1i | i ∈ Iτ ]⊗Bc,

where Iτ ⊂ I is a set of representatives of the τ -orbits in I.

2.6. The negative Heisenberg double. Recall the algebra U(χ)poly defined at
the beginning of Section 2.3. In this section we show that condition (c) for Bc to
be of the right size can be verified in a simpler algebra which is closely related to
quantum Weyl algebras. This fact will be applied extensively in Section 3.

The algebra U(χ)poly has an N-filtration F defined by the following degree func-
tion on the generators

deg(Ẽi) = deg(Fi) = deg(K−1i ) = 1, deg(KiK
−1
τ(i)) = 0(2.33)
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for all i ∈ I. It follows from the triangular decomposition (2.19) that the multipli-
cation map ⊕

α,β,γ∈Nn
|α+β+γ|≤m

Hθ ⊗G+
α ⊗ kK−β ⊗ U−−γ → Fm(U(χ)poly)(2.34)

is a linear isomorphism for any m ∈ N. With the notation

(G+ ⊗ k[K−1i | i ∈ I]⊗ U−)m =
⊕

α,β,γ∈Nn
|α+β+γ|=m

G+
α ⊗ kK−β ⊗ U−−γ .

the linear isomorphism (2.34) provides a direct sum decomposition

Fm(U(χ)poly) = Fm−1(U(χ)poly)⊕
(
Hθ ⊗ (G+ ⊗ k[K−1i | i ∈ I]⊗ U−)m

)
.(2.35)

We call the graded algebra

Heis(χ)∨ = grF (U(χ)poly)

associated to the filtration F of U(χ)poly the negative Heisenberg double associated
to the pre-Nichols algebra U+. By (2.35) for any m ∈ N the graded component
Heis(χ)∨m is a free Hθ-module

Heis(χ)∨m
∼= Hθ ⊗ (G+ ⊗ k[K−1i | i ∈ I]⊗ U−)m.

In particular Heis(χ)∨0
∼= Hθ. The above also implies that G+, k[Kλ |λ ∈ −Nn+Znθ ]

and U− are graded subalgebras of Heis(χ)∨ and that the multiplication map

G+ ⊗ k[Kλ |λ ∈ −Nn + Znθ ]⊗ U− → Heis(χ)∨(2.36)

is a linear isomorphism. The presentation of U(χ)poly in Lemma 2.4 and the tri-
angular decomposition (2.36) allow us to describe the negative Heisenberg double
Heis(χ)∨ in terms of generators and relations.

Lemma 2.16. The negative Heisenberg double Heis(χ)∨ is canonically isomorphic
to the quotient of the free product of the algebras G+, k[Kλ |λ ∈ Nn + Znθ ] and U−

by the relations (2.17) and the cross relations

q−1ij ẼiFj − FjẼi = −δijK−2i for all i, j ∈ I.(2.37)

Proof. Let Heis(χ)∨
′
be the algebra described in the lemma. The algebra Heis(χ)∨

′

is graded by the degree function (2.33) because the defining relations for Heis(χ)∨
′

are homogeneous. It follows from Lemma 2.4 that there is a surjective homomor-
phism of graded algebras

ϕ : Heis(χ)∨
′ → Heis(χ)∨

which maps Ẽi,K−λ, Fi ∈ Heis(χ)∨
′

to Ẽi,K−λ, Fi ∈ Heis(χ)∨, respectively, for
all i ∈ I, λ ∈ −Nn + Znθ . The defining relations for Heis(χ)∨

′
imply that the

multiplication map

µ′ : Heis(χ)∨ ∼= G+ ⊗ k[Kλ |λ ∈ Nn + Znθ ]⊗ U− → Heis(χ)∨
′

is surjective where we use the triangular decomposition (2.36). With this identi-
fication the composition ϕ ◦ µ′ : Heis(χ)∨ → Heis(χ)∨ is the identity map which
implies that ϕ is also injective. �
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We now show that condition (c) can be verified in the negative Heisenberg dou-
ble. Let G+

+ and U−+ denote the augmentation ideals of G+ and U−, respectively.
The triangular decomposition (2.36) of Heis(χ)∨ implies that

Heis(χ)∨ = k[Kλ | λ ∈ −Nn + Znθ ]⊕
(
G+

+Heis(χ)∨ + Heis(χ)∨U−+
)
.(2.38)

Let π∨0,0 : Heis(χ)∨ → k[Kλ | λ ∈ −Nn + Znθ ] denote the projection onto the

first term in (2.38). For any i ∈ I we define B∨i = Fi + ciẼτ(i)(Kτ (i)K−1i ) ∈
Heis(χ)∨, and for any non-commutative polynomial p(x1, . . . , xn) we write p(B∨) =
p(B∨1 , . . . , B

∨
n ).

Theorem 2.17. Let U+ be a pre-Nichols algebra of diagonal type corresponding to
a bicharacter χ. Let p(x1, . . . , xn) be a homogeneous, non-commutative polynomial
of degree λ ∈ Nn. Then

π0,0 ◦ P−λ(p(B)) = π∨0,0(p(B∨)).(2.39)

Furthermore, if

(2.40) λ /∈ ⊕i∈IN(αi + ατ(i)),

then P−λ ◦ π0,0(p(B)) = 0 in U(χ)poly.

Proof. By Lemma 2.16 the negative Heisenberg double is −N + Znθ graded by the
degree function given by

deg(Ẽi) = deg(Fi) = deg(K−1i ) = −αi, deg(KiK
−1
τ(i)) = αi − ατ(i)

for all i ∈ I. For any µ ∈ Nn+Znθ let P∨−µ : Heis(χ)∨ → Heis(χ)∨−µ be the projection
onto the graded component Heis(χ)∨−µ.

Let λ =
∑
i∈I miαi ∈ Nn and set m = |λ| =

∑
i∈I mi. As Fm−1(U(χ)poly) ⊆

Ker(P−λ) we obtain a commutative diagram

Fm−1(U(χ)poly) �
� // Fm(U(χ)poly)

π0,0◦P−λ
��

// Heis(χ)∨m

π∨0,0◦P
∨
−λww

kK−λ

(2.41)

Let now p(x1, . . . , xn) be a homogeneous non-commutative polynomial of degree λ.
As B∨i ∈ Heis(χ)∨−αi the element p(B∨) ∈ Heis(χ)∨m is homogeneous of degree −λ
and hence π∨0,0 ◦ P∨−λ(p(B∨)) = π∨0,0(p(B∨)). The relation (2.39) now follows from
the commutativity of the diagram (2.41).

To prove the second statement in the theorem write p(B) as a linear combination

of noncommutative monomials in Fi and Ẽi(KiK
−1
τ(i)) for i ∈ I. Here we distribute

parenthesis, but do not commute the Ẽ and F generators. If (2.40) holds, then
there is no monomial of this kind that contains equal number of terms Fi and

Ẽi(KiK
−1
τ(i)) for all i ∈ I. It follows from the cross relations (2.37) that in this case

π∨0,0(p(B∨)) = 0.

Now the second statement of the theorem follows from the relation (2.39). �
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3. Examples of coideal subalgebras

We now consider various classes of pre-Nichols algebras U+ which fall into the
setting of Section 2. In each case, using Theorems 2.13 and 2.17, we determine
all parameters c for which the map ϕ : gr(Bc) → Hθ n U− given by (2.15) is
an isomorphism. It is convenient to work with non-symmetric quantum integers.
Given ξ ∈ k, set [n]ξ = 1 + ξ + · · ·+ ξn−1 and

[n]q! = [n]ξ . . . [1]ξ, [2n− 1]ξ!! = [2n− 1]ξ[2n− 3]ξ . . . [1]ξ

for n ∈ N, and (
n
k

)
ξ

=
[n]ξ!

[k]ξ![n− k]ξ!

for 0 ≤ k ≤ n. Note that the ξ-binomial coefficient is a polynomial in Z[ξ] and
therefore defined even for roots of unity.

3.1. Quantized universal enveloping algebras and nonrestricted special-
izations. Let g be a symmetrizable Kac–Moody algebra with (generalized) Cartan
matrix (aij)i,j∈I where I = {1, . . . , n}. Denote by {di | i ∈ I} a set of relatively
prime positive integers such that the matrix (diaij) is symmetric. Let g′ := [g, g] be
the derived subalgebra of g. Fix ζ ∈ k×, ζ 6= ±1. Denote by Uζ(g

′) the k-algebra

with generators Ei, Fi,K
±1
i , i ∈ I and the following relations for i, j ∈ I:

KiKj = KjKi, KiEj = ζdiaijEjKi, KiFj = ζ−diaijFjKi,

EiFj − FjEi = δij(Ki −K−1i ),(3.1)

pij(Ei, Ej) = pij(Fi, Fj) = 0, i 6= j,

where pij(x, y) are the noncommutative polynomials in two variables given by

pij(x, y) =

1−aij∑
k=0

(−1)kζ−dik(1−aij−k)
(

1− aij
k

)
ζ2di

x1−aij−kyxk.

In the case when ζ is not a root of unity, Uζ(g
′) is the quantized universal enveloping

algebra of g′ for the deformation parameter ζ. If ζ is a root of unity, then Uζ(g
′)

is the big quantum group of g′ at ζ, defined and studied by De Concini, Kac and
Procesi [CKP92]. In either case Uζ(g

′) is a Hopf algebra with coproduct given by

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1i + 1⊗ Fi
for i ∈ I. Denote by U± the unital k-subalgebras of Uζ(g

′) generated by {Ei | i ∈ I}
and {Fi | i ∈ I}, respectively. Set H = k[K±1i | i ∈ I]. Consider the symmetric
bicharacter

χ : Zn × Zn → k× defined by χ(αi, αj) = ζdiaij .

If ζ ∈ k× is not a root of unity, then U+ is isomorphic to the Nichols algebra of the
Yetter–Drinfeld module V (χ). If ζ ∈ k× is a root of unity and g is finite dimensional
(and ζ3 6= 1 if g is of type G2), then U+ is isomorphic to the distinguished pre-
Nichols algebra of V (χ) defined by Angiono [Ang16, Definition 1]. For all ζ ∈
k× \ {±1} and symmetrizable Kac–Moody algebras g, the algebra U+ is a pre-
Nichols algebra of V (χ) and Uζ(g

′) ∼= U(χ) is the Drinfeld double of U+ in the sense
of Remark 2.1. Thus the constructions from the previous section are applicable to
Uζ(g

′).
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Let τ : I → I be a diagram automorphism, that is, it satisfies aτ(i)τ(j) = aij
for all i, j ∈ I. Given c = (c1, . . . cn) ∈ kn, consider the coideal subalgebra Bc of
Uζ(g

′) generated by the elements

Bi = Fi + ciEτ(i)K
−1
i = Fi + ciẼτ(i)(Kτ(i)K

−1
i ), KiK

−1
τ(i) for all i ∈ I.

In the case when ζ is not a root of unity, the following result is contained in [Kol14,
Lemma 5.4, Proposition 5.16 and Theorem 7.3], see also [Let02, Section 7] for a
similar discussion for g of finite type.

Proposition 3.1. Let g be a symmetrizable Kac–Moody algebra, ζ ∈ k× \ {±1},
and let τ : I → I be a diagram automorphism.

(i) If aij 6= 0 or τ(i) 6= j, then π0,0 ◦P−λ(pij(Bi, Bj)) = 0 for λ = (1−aij)αi+
αj. If aij = 0 and τ(i) = j, then

P−αi−αj ◦ π0,0(pij(Bi, Bj)) = (cj − ci)K−1i K−1j .(3.2)

(ii) For the coideal subalgebra Bc of Uζ(g
′) the map ϕ : gr(Bc) → Hθ n U− is

an algebra isomorphism if and only if ci = cτ(i) for all i ∈ I with aiτ(i) = 0.

Proof. (i) We work in the corresponding negative Heisenberg double, which we
denote by Heisζ(g

′)∨, and apply Theorem 2.17 to get the statement in Uζ(g
′).

Let i 6= j ∈ I. If aij 6= 0 or τ(i) 6= j, then λ = (1 − aij)αi + αj satisfies (2.40),
and by the second part of Theorem 2.17 we have

π0,0 ◦ P−λ(pij(Bi, Bj)) = 0

in this case.
Now assume that aij = 0 and τ(i) = j. Then in the notation of Section 2.6 we

have

π∨0,0(pij(B
∨
i , B

∨
j )) = π∨0,0

(
(Fi + ciẼj(KiK

−1
j )−1)(Fj + cjẼi(KjK

−1
i )−1)

− (Fj + cjẼi(KjK
−1
i )−1)(Fi + ciẼj(KiK

−1
j )−1)

)
= (cj − ci)K−1i K−1j

in Heisζ(g
′)∨. Hence Theorem 2.17 implies (3.2). Part (ii) follows from the first

part and Theorem 2.13. �

3.2. The small quantum group uζ(sl3). Consider the Nichols algebra of type
A2 at a root of unity. For this we fix an integer N > 2 and set

(3.3) M :=
N

gcd(N, 2)
·

Let ζ be a primitive N -th root of unity and χ : Z2 × Z2 → k× be the symmetric
bicharacter defined by

q11 = q22 = ζ2, q12 = q21 = ζ−1.

The Nichols algebra B(V +(χ)) is an algebra in H
HYD with braiding c, and it is

generated by elements x1, x2. Recall that the braided commutator is defined by
[x, y]c = µ ◦ (id− c)(x⊗ y) for all x, y ∈ B(V +(χ)) where µ denotes multiplication.
Set x12 = [x1, x2]c = x1x2 − ζ−1x2x1. With this notation defining relations for
B(V +(χ)) are given by [AA17, Equation (4.5)]

xM1 = xM2 = xM12 = 0, [x1, [x1, x2]c]c = 0 = [x2, [x2, x1]c]c.
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Denote by uζ(sl3) the Drinfeld double ofB(V +(χ)). Its factor by the ideal generated
by KN

i − 1 for i = 1, 2 is isomorphic to the small quantum group uζ(sl3) of type
A2.

Consider the diagram automorphism τ given by τ(1) = 2, τ(2) = 1. It follows
from Theorem 2.17 that the only relation which gives a condition on the parameters
c1, c2 of the coideal subalgebra is the relation xM12 = 0 because the other four
relations are homogeneous of a degree λ which satisfies (2.40). This relation gives
a condition for any integer N (even or odd!). Recall that

(3.4)
B1 = F1 + c1E2K

−1
1 = F1 + c1Ẽ2(K1K

−1
2 )−1,

B2 = F2 + c2E1K
−1
2 = F2 + c2Ẽ1(K2K

−1
1 )−1.

We define a non-commutative polynomial p(x1, x2) by

p(x1, x2) = (x1x2 − ζ−1x2x1)M .

Note that p(x1, x2) is homogeneous of degree λ = (M,M) ∈ Z2.

Proposition 3.2. Let N ∈ N with N ≥ 2 and let ζ ∈ k be a primitive N -th root
of unity. Let M be given by (3.3).

(i) In the quantum double uζ(sl3) of the Nichols algebra of type A2 correspond-
ing to the root of unity ζ, we have

[
π0,0 ◦ P−λ(p(B1, B2))

]
Kλ =

{
cM2 + cM1 , if N ≡ 2 mod 4

cM2 − cM1 , otherwise.

(ii) For the coideal subalgebra Bc of uζ(sl3) the map ϕ : gr(Bc)→ Hθ n U− is
an algebra isomorphism if and only if

c1 = υc2

where υ ∈ k is such that υM = −1 if N ≡ 2 mod 4, and υM = 1, otherwise.

For example, when N = 4 we have ζ =
√
−1. Then

π0,0 ◦ P−λ(p(B1, B2)) = (c22 − c21)Kλ

and Bc ⊂ u√−1(sl3) is of the right size if and only if c2 = ±c1.
In the proof of the proposition we will use the Al-Salam-Carlitz I discrete or-

thogonal polynomials U
(a)
n (x; q), see [ASC65] and [KLS10, pp. 534-537]. They have

been used in the related setting of the q-harmonic oscillator in [AS93]. From an

algebraic point of view U
(a)
n (x; q) ∈ Z[a, q, x] is given by

U (a)
n (x; q) =

n∑
k=0

(
n
k

)
q

(−a)kqk(k−1)/2(x− 1) . . . (x− qn−k−1).

The Al-Salam-Carlitz I polynomials satisfy the backward shift recursion

−q−n+1xU (a)
n (x; q) = aU

(a)
n−1(x; q)− (x− 1)(x− a)U

(a)
n−1(q−1x; q)(3.5)

for all n > 0, see [KLS10, Eq. (14.24.8)]. Consider the q-derivative Dqf(x) =
(f(qx)− f(x))/((q− 1)x) for f(x) ∈ k[x]. The recursion (3.5) implies the following
lemma. The proof is left to the reader.
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Lemma 3.3. Consider the polynomials pn(x; t, q) ∈ Z[t, q±1, x] defined recursively
by

p0(x; t, q) = 1, pn(x; t, q) = (x+ tq−2nDq + q−n)pn−1(x; t, q), ∀n > 0.(3.6)

Consider Z[t, q±1, x] as a subring of Z[t±11 , q±1, x] via the map t 7→ (q−1)t1(t1 +1).
Then in Z[t±11 , q±1, x] we have

pn(x; t, q) = tn1 q
−n2

U
(−t−1

1 −1)
n (qnt−11 x; q)

for all n ∈ N.

Define the quantum Weyl algebra Aq1 as the k[q±1]-algebra with generators
X,Y, Z1, Z2 and relations

Y X − q−1XY = Z2, ZiY = qiY Zi, ZiX = q−iXZi, Z1Z2 = Z2Z1.

Inside the localization Aq1[Z−11 ] we have a copy of the first quantized Weyl algebra
A1
q, which is the k[q±1]-algebra with generators y = Y Z−11 , x = XZ−11 , z = qZ2Z

−2
1

and relations

yx− qxy = z, zx = xz, zy = yz.

The algebra A1
q acts on k[q±1, t, x] by x 7→ (x·), y 7→ tDq, z 7→ (t·). Iterating the

recursion (3.6) gives that the polynomials pn(x; z, q) ∈ Z[q±1, t, x] satisfy

(x+ q−2ny + q−n) . . . (x+ q−2y + q−1) · 1 = pn(x; z, q).

Since k[q±1, t, x] ∼= A1
q/(A1

qy) as left A1
q-modules, we have

(X + Y + Z1)n = qn(n+1)/2Zn1 (x+ q−2ny + q−n) . . . (x+ q−2y + q−1)(3.7)

≡ qn(n+1)/2Zn1 pn(x; z, q) mod Aq1Y.

For ξ ∈ k×, let Aξ1 = Aq1/(q − ξ)A
q
1 denote the specialization of Aq1 at ξ.

Proof of Proposition 3.2. (i) We work in the negative Heisenberg double Heisζ(sl3)∨

corresponding to uζ(sl3) and apply Theorem 2.17 to get the statement in uζ(sl3).
Set

E1 := Ẽ1(K1K
−1
2 ) = E1K

−1
2 , E2 := Ẽ2(K2K

−1
1 ) = E2K

−1
1 , K12 = K1K2,

so B∨1 = F1 + c1E2 and B∨2 = F2 + c2E1. Denote also

F12 = F1F2 − ζ−1F2F1, E21 = E2E1 − ζ−1E1E2.

One verifies that

F12Ej = ζ−1EjF12 + δj2F1K
−1
12 for j = 1, 2

from which it follows that

F12E21 = ζ−2E21F12 + (1− ζ−2)2E1F1K
−1
12 + ζ−1(1− ζ−2)K−212 .

In a similar fashion one shows that

F12(E1F1) = ζ−2(E1F1)F12, E21(E1F1) = ζ2(E1F1)E21.
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From the last three identities one derives that we have a homomorphism ρ : Aζ
2

1 →
Heisζ(sl3)∨ given by

ρ(X) = c1c2E21, ρ(Y ) = F12,

ρ(Z1) = (ζ − ζ−1)c2E1F1 + (c2 − ζ−1c1)K−112 ,

ρ(Z2) = (1− ζ−2)2c1c2E1F1K
−1
12 + ζ−1(1− ζ−2)c1c2K

−2
12 .

Equation (3.7) implies that

p(B∨1 , B
∨
2 ) = ρ(X + Y + Z1)M(3.8)

≡ ζM(M+1)ρ(Z1)MpM (ρ(XZ−11 ); ζ2ρ(Z2Z
−1
1 ), ζ2) mod Heisζ(sl3)∨F12.

There are no terms with Z1-denominators in the right hand side because deg pn(x; t, q) =
n when pn(x; t, q) is considered as a polynomial in x and t and the degree is com-
puted with respect to the grading deg x = 1, deg t = 2. This follows from the
recursion (3.6) and the fact that the operator Dζ2 lowers the degree by 1.

Every pair of the six terms of ρ(X), ρ(Z1) and ρ(Z2) quasi-commute. Therefore

π∨0,0(ρ(XiZj1Z
k
2 )) = δi,0

(
(c2 − ζ−1c1)K−112

)j(
ζ−1(1− ζ−2)c1c2K

−2
12

)k
for all i, j, k ∈ N. Combining this with (3.8) gives that

(3.9) π∨0,0(p(B∨1 , B
∨
2 )) = ζM(M+1)(c2 − ζ−1c1)MpM (0; t, ζ2)K−M12

where

t =
(ζ − ζ−1)c1c2
(c2 − ζ−1c1)2

·

As t = (ζ2 − 1)t1(t1 + 1) for t1 = −c2/(c2 − ζ−1c1) we can apply Lemma 3.3 and
obtain

pM (0; t, ζ2) = tM1 ζ
−2M2

U
(−ζ−1c1/c2)
M (0; ζ2).(3.10)

Since ζ2 is a primitive M -th root of unity,

(
M
k

)
ζ2

= 0 for all 0 < k < M . For the

corresponding Al-Salam-Carlitz I polynomials we hence have

U
(a)
M (0; ζ2) = (−1)MζM(M−1)(1 + aM ).(3.11)

Inserting (3.10) and (3.11) into (3.9) we obtain

π∨0,0(p(B∨1 , B
∨
2 ))KM

12 = ζM(M+1)(c2 − ζ−1c1)M tM1 ζ
−2M2

U
(−ζ−1c1/c2)
M (0; ζ2)

= cM2 + (−1)MζMcM1 ,

which proves part (i). Part (ii) follows directly from the first part. �

3.3. The quantum supergroups of type sl(m|k). Let m, k be positive integers
such that (m, k) 6= (1, 1). Denote n = m+ k − 1. The (super) Dynkin diagrams of
the Lie superalgebra sl(m|k) associated to different choices of Borel subalgebras are
the Dynkin diagrams of type An where each vertex is denoted in two different ways:
by
⊗

if the vertex is odd and by © if it is even, cf. [Kac77, Sections 2.5.5-2.5.6].
(There is a dependence between the number of odd vertices, m and k which will
not play a role below.) All odd simple roots are necessarily isotropic. We label the
vertices in an increasing way from left to right by the elements of I = {1, . . . , n}.
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Define the parity function p : I → {0, 1} by letting p(i) = 0 for even vertices and
p(i) = 1 for odd vertices. The corresponding (super) Cartan matrix is given by

aii =

{
2, p(i) = 0

0, p(i) = −1
and for i 6= j aij =


−1, p(i) = 0 and j = i± 1,

±1, p(i) = 1 and j = i± 1,

0, |i− j| > 1,

cf. [AA17, Section 5.1.5].
Fix ζ ∈ k×, ζ 6= ±1 and consider the bicharacter χ : Zn × Zn → k× given by

χ(αi, αj) = (−1)p(i)p(j)ζaij

for i, j ∈ I. Denote by U+ the k-algebra with generators xi, i ∈ I and relations

[xi, [xi, xi±1]c]c = 0, p(i) = 0, [xi, xj ]c = 0, i < j − i,
[[xi−1, [xi, xi+1]c]c, xi]c = 0, p(i) = 1, x2i = 0, p(i) = 1.

In the case ζ =
√
−1, following [Ang16, Definition 1], we also add the relations

[xi, [xi, xi±1]c]c = 0 for p(i) = 1.

If ζ is not a root of unity, then U+ is isomorphic to the Nichols algebra of V +(χ),
see [AA17, Eq. (5.10)]. If ζ is a root of unity, then U+ is isomorphic to the
distinguished pre-Nichols algebra of V +(χ), see [Ang16, Definition 1] and [AA17,
Eq. (5.10)].

Denote the set of odd vertices J = {i ∈ I | p(i) = 1}. Denote the Drinfeld
double of U+ by U(χ) and form the smash product

Uζ(sl(m|k))J = U(χ) o kZ2

where the generator σ of Z2 acts on U(χ) by

σ(Ei) = (−1)p(i)Ei, σ(Fi) = (−1)p(i)Fi, σ(K±1i ) = K±1i

for all i ∈ I. Our generators differ from those in [Yam94, BKK00]. In terms of the
generators ei, fi, ti of [BKK00], our generators are given by

Ei = σp(i)ei, Fi = fi, K±1i = σp(i)t±1i

for all i ∈ I. The coproduct convention of [BKK00] is also slightly different from
ours. By [Hec10, Theorem 6.11], for different choices of J , the Hopf algebras
Uζ(sl(m|k))J are isomorphic to each other as algebras with isomorphisms provided
by generalized Lusztig isomorphisms (these isomorphisms descend from the actual
Drinfeld double to its quotient U(χ)). However, the Lusztig isomorphisms are not
Hopf algebra isomorphisms, and as a consequence, Uζ(sl(m|k))J are not isomor-
phic to each other as Hopf algebras for different choices of J . The Hopf algebra
Uζ(gl(m|k)) in [BKK00] is our Uζ(sl(m|k)){m} up a slightly different convention for
the coproduct.

If ζ ∈ k× is not a root of unity, then Uζ(sl(m|k))J exhaust all different quantum
supergroups of type sl(m|k). If ζ ∈ k× is a root of unity, then Uζ(sl(m|k))J are the
corresponding nonrestricted specializations at roots of unity.

Let τ : I → I be the identity or the involution τ(i) = n− i+ 1 (for i ∈ n− i) in
the case when the vertices i and n − i + 1 have the same parity for all i ∈ I. For
c = (c1, . . . , cn) ∈ kn, let Bc to be the coideal subalgebra of Uζ(sl(m|k))J generated
by Hθ and the elements

Bi = Fi + ciEτ(i)K
−1
i for all i ∈ I.
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Proposition 3.4. For all choices of odd roots J ⊆ I and ζ ∈ k×, ζ 6= ±1, for the
coideal subalgebra Bc of the the quantum linear supergroup Uζ(sl(m|k))J , the map
ϕ : gr(Bc)→ Hθ n U− is an algebra isomorphism if and only if

(3.12) cτ(i) = ci for i ∈ I such that |τ(i)− i| > 1

and

(3.13) ci = 0 for all odd vertices i fixed by τ .

More precisely, the conditions on c in the proposition are as follows:

(1) If τ = id, then ci = 0 for all odd vertices i ∈ J (there is only one such
vertex for the standard choice of simple roots corresponding to J = {m});

(2) If τ is the flip τ(i) = n− i+ 1, then ci = cn−i+1 for i ∈ {1, . . . , dn/2e − 1}
and c(n+1)/2 = 0 if n is odd and (n+ 1)/2 is an odd vertex.

For the proof of Proposition 3.4 we will need the following lemma.

Lemma 3.5. Let p(x1, . . . , xn) be a homogeneous noncommutative polynomial in
x1, . . . , xn of degree

∑
jmjαj, and i ∈ I be such that mi > 0. For all bicharacters

χ : Zn × Zn → k×, τ : I → I and c = (c1, . . . , cn) ∈ kn such that τ(i) = i and
ci = 0, we have

π0,0(p(B1, . . . , Bn)) = 0

in U(χ).

Proof. After distributing the parenthesis in p(B1, . . . , Bn), we get an expression for
p(B1, . . . , Bn) as a sum of monomials f ∈ U(χ) in Fj , Eτ(j)K

−1
j with j ∈ I. If such

a monomial f contains the factor E−1i Ki, then its coefficient equals 0 because ci = 0.
For all other monomials π0,0(f) = 0 which is obtained by directly commuting the
factors of the monomials. �

Proof of Proposition 3.4. We apply Theorem 2.13 and explicitly compute condition
(c) in Section 2.5. As in the proof of Proposition 3.1(i), the first set of relations of
U+ and the extra relations in the case ζ =

√
−1 give no condition of c, while the

second set of relations of U+ gives condition (3.12). If τ(i) = i for some i ∈ I, then
in the negative Heisenberg double Heis(χ)∨ we have

π∨0,0
(
(B∨i )2

)
= π∨0,0

(
(Fi + ciẼi)

2
)

= ciK
−2
i .

It follows from Theorem 2.17(ii) that the fourth set of relations of U+ gives condition
(3.13) on c. Finally, we consider the third set of relations of U+. If the third relation
of U+ for a given odd vertex i gives a condition on c, then by Theorem 2.17(ii),

τ(αi−1 + 2αi + αi+1) = −(αi−1 + 2αi + αi+1).

This implies that τ(i) = i. If (3.13) is satisfied, then we also have ci = 0. Now it
follows that in the presence of condition (3.13), the third set of relations of U+ do
not give any new condition on c because of Lemma 3.5. �

The techniques of this proof can be used to classify the coideal subalgebras Bc of
the quantized enveloping algebras of all finite dimensional and affine contragredient
Lie superalgebras g with the property that ϕ : gr(Bc) → Hθ n U− is an algebra
isomorphism. This is more technical and will appear in a subsequent publication.
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3.4. The Drinfeld double of the distinguished pre-Nichols algebra of type
ufo(8). Let ζ be a primitive 12-th root of unity and ζ1/2 be a primitive 24-th root
of unity that squares to ζ. Consider the symmetric bicharachter χ given by

q11 = q22 = −ζ2, q12 = q21 = ζ1/2.

It is associated to the first of the three generalized Dynkin diagrams on row 8
of Table 1 in [Hec09]. The corresponding Nichols algebra is one of three such
algebras of type ufo(8). It is one of the non-Cartan type examples that appeared
in Heckenberger’s classification of arithmetic root systems [Hec09].

The generalized Cartan matrix of the bicharacter χ is

Cχ =

(
2 −2
−2 2

)
·

The generalized root system of χ is finite and has three Cartan matrices correspond-
ing to the generalized Dynkin diagrams on row 8 of Table 1 in [Hec09]. We refer
the reader to [Hec06, Sections 3 and 5], [AA17, Section 2.7] and [HY08, Section 4]
for details on this topic and Weyl groupoids.

The relations of the Nichols algebra of χ are given in [AA17, Section 10.8.6].
Let U+ denote the distinguished pre-Nichols algebra of χ defined by Angiono in
[Ang16, Definition 1] as the factor of T (V +(χ)) by removing from the Nichols ideal
the power relations for Cartan roots and adding certain quantum Serre relations.
There are none of the latter in this case and the algebra U+ has two generators
x1, x2 with relations

x31 = x32 = 0 and [x1, xα1+2α2
]c = −(1 + ζ−1 + ζ−2)ζ1/2x212,

the third of which is the last relation in [AA17, Eq. (10.55)]. Here

x12 = [x1, x2]c and xα1+2α2
= [x12, x2]c

in the free algebra in x1, x2.
Consider the diagram automorphism τ(1) = 2, τ(2) = 1 and the coideal subal-

gebra generators B1, B2 given by (3.4).

Proposition 3.6. The following hold for the quantum double U(χ) of the distin-
guished pre-Nichols algebra of type ufo(8):

(i) For p(x1, x2) = [x1, xα1+2α2
]c + (1 + ζ−1 + ζ−2)ζ1/2x212 and λ = 2α1 + 2α2,

P−λ ◦ π0,0(p(B1, B2)) = (1 + ζ)ζ1/2
(
c21 − 2ζ−1/2c1c2 + c22

)
K−λ.

(ii) For the coideal subalgebra Bc of U(χ) the map ϕ : gr(Bc) → Hθ n U− is
an algebra isomorphism if and only if

c1 = (1±
√

1− ζ)ζ−1/2c2.

Proof. (i) We have

(3.14) p(x1, x2) = (x21x
2
2 + x22x

2
1) + a(x1x2x1x2 + x2x1x2x1) + b(x1x

2
2x1 + x2x

2
1x2)

in the free algebra in x1, x2, where

a = (1 + ζ−1)ζ1/2, b = −(1 + ζ−1 + ζ−2)ζ.

From this one directly computes π∨0,0(p(B∨1 , B
∨
2 )) in the negative Heisenberg double

Heisζ(χ)∨ corresponding to U(χ). Now part (i) follows from Theorem 2.17.
(ii) It follows from the second statement in Theorem 2.17 that π∨0,0((B∨1 )3) =

π0,0((B∨2 )3) = 0 in Heisζ(χ)∨. Theorem 2.13 implies the validity of part (ii). �
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4. A twist product on partial bosonizations

Assume that condition (c) from Section 2.5 holds. By Theorem 2.13 the algebra
Bc has a filtration such that the associated graded algebra is isomorphic to the
partial bosonization HθnU−. In the present section we use the quasi R-matrix for
U(χ) to define a twisted algebra structure ? on Hθ n U−. We will see in Section 5
that (Hθ n U−, ?) is canonically isomorphic to Bc.

4.1. The quasi R-matrix for U(χ)max. Recall that Imax(χ) ⊂ T (V +(χ)) denotes
the maximal Zn-graded biideal in the braided Hopf algebra T (V +(χ)). In the
following we use the subscript max to indicate constructions involving Imax. In
particular, we use the notation U+

max, U−max for the Nichols algebras corresponding
to Imax and we write U(χ)max for the corresponding Drinfeld double as defined in
Section 2.1. By [Hec10, Theorem 5.8] there exists a uniquely determined skew-Hopf
pairing

〈 , 〉max : (U−max oH)cop ⊗ (U+
max oH)→ k(4.1)

such that

(4.2)
〈Fi, Ej〉max = δij , 〈Ki,Kj〉max = q−1ij ,

〈Fi,Kj〉max = 0, 〈Ki, Ej〉max = 0

for all i, j ∈ I. Recall that by definition of a skew-Hopf pairing we have

(4.3)
〈y, xx′〉max = 〈y(1), x′〉max〈y(2), x〉max,

〈yy′, x〉max = 〈y, x(1)〉max〈y′, x(2)〉max

for all y, y′ ∈ (U−max oH)cop and x, x′ ∈ U+
max oH. Let

πmax : U− oH → U−max oH

denote the canonical projection. By construction πmax is a surjective Hopf algebra
homomorphism. The pairing (4.1) allows us to define a right and a left U+

max oH
module structure on H n U− = (U− oH)cop by

e.f = 〈πmax(f(1)), e〉maxf(2), f / e = 〈πmax(f(2)), e〉maxf(1)(4.4)

for all e ∈ U+
max o H, f ∈ (U− o H)cop. The properties in (4.3) imply that

(U− oH)cop is a right and a left U+
max oH-module algebra.

The pairing 〈 , 〉max respects the Zn-grading of U−max oH and U+
max oH. More-

over, by [Hec10, Theorem 5.8] the restriction of 〈 , 〉max to U−max ⊗ U+
max is nonde-

generate. This allows us to formulate the notion of a quasi R-matrix for U(χ)max

in complete analogy to [Lus94, Chapter 4]. Let U(χ)max⊗̂U(χ)max denote the com-
pletion of U(χ)max⊗U(χ)max with respect to the descending sequence of subspaces

HN =
(
U+
maxH

∑
|ν|≥N

(U−max)−µ
)
⊗ U(χ)max + U(χ)max ⊗

(
U−maxH

∑
|ν|≥N

(U+
max)µ

)
.

The k-algebra structure on U(χ)max⊗U(χ)max extends to a k-algebra structure on
U(χ)max⊗̂U(χ)max.

For any µ ∈ Nn let {Fµ,j} ⊂ (U−max)−µ and {Eµ,j} ⊂ (U+
max)µ be dual bases with

respect to the nondegenerate pairing 〈 , 〉max and define Θµ =
∑
j(−1)|µ|Fµ,j⊗Eµ,j .

For simplicity we usually suppress the summation and write formally

Θµ = (−1)|µ|Fµ ⊗ Eµ.
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Define an element Θ ∈ U(χ)max⊗̂U(χ)max by

Θ =
∑
µ∈Nn

Θµ =
∑
µ∈Nn

(−1)|µ|Fµ ⊗ Eµ.(4.5)

For quantized enveloping algebras the element Θ coincides with the quasi R-matrix
constructed in [Lus94, Chapter 4]. Analogously to [Lus94, Proposition 4.2.2] we
have the following result.

Lemma 4.1. The following relations hold

(∆⊗ id)(Θµ) = (−1)|µ|
∑

λ+ν=µ

Fλ ⊗ FνK−1λ ⊗ EνEλ,(4.6)

(id⊗∆)(Θµ) = (−1)|µ|
∑

λ+ν=µ

FλFν ⊗ EλKν ⊗ Eν .(4.7)

Proof. By definition of the coproduct of U(χ)max in (2.2) we have

(∆⊗ id)(Θµ) ∈
∑

λ+ν=µ

(U−max)−λ ⊗ (U−max)−νK
−1
λ ⊗ (U+

max)µ.

For e, e′ ∈ U+ the definition of Θ and the properties of a skew pairing (4.3) imply
that

ee′ =
∑
µ

〈Fµ, ee′〉maxEµ =
∑
µ

〈Fµ(1), e′〉max〈Fµ(2), e〉maxEµ.(4.8)

On the other hand

ee′ =
∑
λ,ν

〈Fν , e〉maxEν〈Fλ, e′〉maxEλ =
∑
λ,ν

〈Fλ, e′〉max〈FνK−1λ , e〉maxEνEλ.(4.9)

Comparison of (4.8) and (4.9) implies (4.6), as the componentwise pairing between⊕
λ(U−max)−λ ⊗ U−maxK

−1
λ and U+

max ⊗ U+
max is nondegenerate. Equation (4.7) is

verified analogously. �

4.2. The skew derivations ∂Li and ∂Ri on U−. For quantized universal envelop-
ing algebras Kashiwara [Kas91, 3.4] and Lusztig [Lus94, 1.2.13, 3.1.6] consider
skew-derivations on U+ and U−. As observed in [Hec10, Section 5], these skew
derivations allow a straightforward generalisation to the setting of (pre-)Nichols
algebras of diagonal type. In the case of U−, for any i ∈ I, the skew derivations
are the uniquely determined linear maps ∂Ri , ∂

L
i : U− → U− such that

[Ei, f ] = Ki∂
L
i (f)− ∂Ri (f)K−1i for all f ∈ U−.(4.10)

For later reference we collect the main properties of the skew derivations ∂Li and
∂Ri on U−. It follows from the last relation in (2.3) that

∂Li (Fj) = δij = ∂Ri (Fj) for all j ∈ I.(4.11)

Moreover, Equation (4.10) implies that

(4.12)
∂Li (fµfν) = ∂Li (fµ)fν + χ(µ, αi)fµ∂

L
i (fν),

∂Ri (fµfν) = χ(ν, αi)∂
R
i (fµ)fν + fµ∂

L
i (fν)

for all fµ ∈ U−−µ, fν ∈ U−−ν . In other words, ∂Li is a left skew derivation on U−

while ∂Ri is a right skew derivation. The skew derivations ∂Li and ∂Ri are uniquely
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determined by the properties (4.11) and (4.12). They can also be read off from the
coproduct on U−. Indeed, for any fµ ∈ U−−µ one has

(4.13)

∆(fµ) = fµ ⊗K−1µ +
∑
i

∂Li (fµ)⊗ FiK−1µ−αi + (rest)1,

∆(fµ) = 1⊗ fµ +
∑
i

Fi ⊗ ∂Ri (fµ)K−1i + (rest)1

where (rest)1 ∈
∑
|α|≥2 U

−
α−µ ⊗ U−−αK−1µ−α and (rest)2 ∈

∑
|α|≥2 U

−
−α ⊗ U−α−µK−1α .

The properties (4.13) of the coproduct and the definition (4.4) of the left and the
right action of U+ on H n U− imply that

Ei.f = ∂Ri (f)K−1i , f / Ei = ∂Li (f) for all f ∈ U−, i ∈ I.(4.14)

Let 〈 , 〉 : U− ⊗ U+ → k denote the pairing defined by

〈f, e〉 = 〈πmax(f), πmax(e)〉max for all f ∈ U−, e ∈ U+

where we use πmax to denote both canonical projections U+ → U+
max and U− →

U−max. The relations (4.13) and (4.3) imply that

〈f,Eie〉 = 〈∂Li (f), e〉, 〈f, eEi〉 = 〈∂Ri (f), e〉(4.15)

for all f ∈ U−, e ∈ U+ and i ∈ I. This tells us how the quasi R-matrix Θ behaves
under the skew derivations.

Lemma 4.2. For any i ∈ I the following relations hold:

(∂Li ⊗ id)(Θ) = −(1⊗ Ei)Θ, (∂Ri ⊗ id)(Θ) = −Θ(1⊗ Ei).(4.16)

Proof. For any f ∈ U−max the first relation in (4.15) implies that

∂Li (f) =
∑
µ

〈∂Li (f), Eµ〉Fµ =
∑
µ

〈f,EiEµ〉Fµ

and hence ∑
µ

(−1)|ν|∂Li (Fν)⊗ Eν =
∑
µ,ν

(−1)|ν|〈Fν , EiEµ〉Fµ ⊗ Eν

=
∑
µ

(−1)|µ|+1Fµ ⊗ EiEµ

which proves the first relation in (4.16). The second relation is verified similarly. �

Corollary 4.3. (see [Lus94, Theorem 4.1.2]) The element Θ satisfies the relations

(Ej ⊗ 1 +Kj ⊗ Ej)Θ = Θ(Ej ⊗ 1 +K−1j ⊗ Ej),(4.17)

(Fj ⊗K−1j + 1⊗ Fj)Θ = Θ(Fj ⊗Kj + 1⊗ Fj)(4.18)

for all j ∈ I.

Proof. Relation (4.17) follows from Lemma 4.2 and the defining relation (4.10) of
the skew derivations ∂Li and ∂Ri . The second relation is verified analogously using
skew derivations on U+. �

Remark 4.4. Just as in [Lus94, Theorem 4.1.2] one can show that the element Θ ∈
is the unique element of the form Θ =

∑
µ∈Nn Θµ with Θµ ∈ (U−max)−µ ⊗ (U+

max)µ
for which Θ0 = 1⊗ 1 and the relations in Corollary 4.3 hold.
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4.3. The algebra homomorphism σ : U−max → U+
max oH. By Lemma 2.3 there

exists a well-defined algebra homomorphism σ : U−max → U+
max oH such that

σ(Fi) = cτ(i)KiEτ(i) = cτ(i)Ki ω ◦ τ(Fi) for all i ∈ I.(4.19)

For any fµ ∈ (U−max)−µ we can write

σ(fµ) = aµKµ ω ◦ τ(fµ)(4.20)

for some aµ ∈ k.

Lemma 4.5. The coefficients aµ for µ ∈ Nn are uniquely determined by aαi = cτ(i)
for all i ∈ I and by the recursion

aµ+ν = χ(−ν, τ(µ))aµaν for all µ, ν ∈ Nn.(4.21)

In particular, the coefficient aµ in (4.20) only depends on µ ∈ Nn and not on the
chosen element fµ ∈ (U−max)−µ.

Proof. By (4.19) we have aαi = cτ(i) for all i ∈ I. Let f ∈ (U−max)−µ and g ∈
(U−max)−ν . Then (4.20) implies that

aµ+νKµ+νω ◦ τ(fg) = σ(fg) = σ(f)σ(g)

= aµKµω ◦ τ(f)aνKνω ◦ τ(g)

= χ(−ν, τ(µ))aµaνKµ+νω ◦ τ(fg).

Hence we get the recursive formula (4.21). �

We want to apply the algebra homomorphism ∆ ◦ σ to the first tensor factor
of the quasi R-matrix Θ =

∑
µ Fµ ⊗ Eµ. As ω ◦ τ is a coalgebra antiaumorphism,

Lemma 4.1 implies that∑
µ

∆ ◦ σ(Fµ)⊗ Eµ =
∑
µ

aµKµω ◦ τ(Fµ(2))⊗Kµω ◦ τ(Fµ(1))⊗ Eµ

=
∑
λ,ν

aλ+νKλ+νω ◦ τ(FνK
−1
λ )⊗Kλ+νω ◦ τ(Fλ)⊗ EνEλ.

Hence using the recursion (4.21) we obtain∑
µ

∆ ◦ σ(Fµ)⊗ Eµ =
∑
λ,ν

σ(Fν)KλKτ(λ) ⊗Kνσ(Fλ)⊗ EνEλ.(4.22)

On the other hand, Equation (4.7) implies that∑
µ

σ(Fµ)⊗∆(S−1(Eµ)Kµ)(4.23)

=
∑
ν,ρ

χ(−ν, ρ)σ(FνFρ)⊗ S−1(Eρ)Kν+ρ ⊗ S−1(Eν)Kν .

Formulas (4.22) and (4.23) will be used to verify the associativity of the twist
product in the next section.
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4.4. Definition and associativity of the twist product. We now use the quasi
R-matrix Θ and the algebra homomorphism σ to define a twisted product on the
partial bosonization HθnU−. Recall that we write formally Θ =

∑
ρ(−1)|ρ|Fρ⊗Eρ

and that we write S to denote the antipode of U(χ). For any f, g ∈ U− we define

f ? g =
∑
ρ

(−1)|ρ|(σ(Fρ).f)Kρ[g / (S−1(Eρ)Kρ)].(4.24)

Observe that σ(Fρ).f ∈ U−K−1τ(ρ) and that g / (S−1(Eρ)Kρ) ∈ U− and hence

f ? g ∈ Hθ n U− ⊂ U(χ). For later reference it is convenient to spell out the
formula for the twist product (4.24) explicitly in the case where one of the factors
equals a generator Fi.

Lemma 4.6. For any f, g ∈ U− and any i ∈ I the relations

Fi ? g = Fig + ciqiτ(i)Kτ(i)K
−1
i ∂Lτ(i)(g),(4.25)

f ? Fi = fFi + cτ(i)qiτ(i)∂
R
τ(i)(f)KiK

−1
τ(i)(4.26)

hold in Hθ n U−.

Proof. By (4.24) we have

Fi ? g = Fig − (σ(Fτ(i)).Fi)Kτ(i)[g / (S−1(Eτ(i))Kτ(i))]

= Fig + ci
(
(Kτ(i)Ei).Fi

)
Kτ(i)[g / Eτ(i)]

(4.14)
= Fig + ciqiτ(i)K

−1
i Kτ(i)∂

L
i (g).

This proves (4.25). Equation (4.26) is verified by a similar calculation. �

We now want to extend the definition of the twist product to all of Hθ n U−.
For simplicity we suppress tensor symbols and write elements h⊗ f ∈ Hθ n U− as
hf . We define a bilinear binary operation ? on Hθ n U− by

(Kλf) ? (Kµg) = χ(α, µ)Kλ+µ(f ? g)(4.27)

for all λ, µ ∈ Znθ , f ∈ U−−α, g ∈ U− and where f ? g ∈ Hθ nU− is defined by (4.24).

Theorem 4.7. For all pre-Nichols algebras of diagonal type U+, the bilinear binary
operation on Hθ n U− defined by (4.27) is associative.

Proof. Let λ, µ, ν ∈ Znθ and f ∈ U−−α, g ∈ U−−β , h ∈ U−−γ . By the discussion

following (4.24) we can write

f ? g =
∑
ρ

Kρ−τ(ρ)u
−
ρ (f, g)(4.28)

where u−ρ (f, g) ∈ U−−(α+β−ρ−τ(ρ)). With this notation we calculate(
(Kλf) ? (Kµg)

)
? (Kγh) = χ(α, µ)

∑
ρ

(
Kλ+µ+ρ−τ(ρ)u

−
ρ (f, g)

)
? (Kγh)

= χ(α, µ)χ(α+ β, γ)Kλ+µ+γ

(
(f ? g) ? h

)
where we used the fact that χ(ρ + τ(ρ), γ) = 1 as τ(γ) = −γ. Similarly one
calculates

(Kλf) ?
(
(Kµg) ? (Kγh)

)
= χ(β, γ)χ(α, µ+ γ)Kλ+µ+γ

(
f ? (g ? h)

)
.
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Hence it suffices to show that (f ? g) ? h = f ? (g ? h). Using (4.28) we obtain

(f ? g) ? h =
∑
ρ,σ

Kρ−τ(ρ)Kσ−τ(σ)u
−
σ (u−ρ (f, g), h).(4.29)

By definition of u−ρ (f, g) in (4.28) we have

u−ρ (f, g) = (−1)|ρ|χ(α−τ(ρ), ρ−τ(ρ))
[
(σ(Fρ).f)Kτ(ρ)

][
g / (S−1(Eρ)Kρ)

]
.(4.30)

Inserting the above formula into (4.29) twice, we obtain

(f ? g) ? h =
∑
ρ,σ

Kρ+σ−τ(ρ+σ)(−1)|ρ|+|σ|χ(α−τ(ρ), ρ−τ(ρ))χ(α+β−τ(σ), σ−τ(σ))·

·
[
σ(Fσ).

([
(σ(Fρ).f)Kτ(ρ)

][
g / (S−1(Eρ)Kρ)

])
Kτ(σ)

] [
h / (S−1(Eσ)Kσ)

]
.

Using the fact that U− o H is a left module algebra over U+ o H and formula
(4.22) we obtain

(f ? g) ? h =
∑
ρ,λ,ν

Kθ
ρ,λ,νaα,β,ρ,λ,ν

(
σ(Fν)Kλ+τ(λ)

)
.
[
(σ(Fρ).f)Kτ(ρ)

]
·(4.31)

·
(
Kνσ(Fλ)

)
.
[
g / (S−1(Eρ)Kρ)

]
Kτ(λ+ν)

[
h / (S−1(EνEλ)Kν+λ)

]
where we use the abbreviations Kθ

ρ,λ,ν = Kρ+λ+ν−τ(ρ+λ+ν) and

aα,β,ρ,λ,ν = (−1)|ρ|+|λ|+|ν|χ(α−τ(ρ), ρ−τ(ρ))·(4.32)

· χ(α+β−τ(λ+ν), λ+ν−τ(λ+ν)).

Formula (4.31) can be rewritten as

(f ? g) ? h =
∑
ρ,λ,ν

Kθ
ρ,λ,νaα,β,ρ,λ,νχ(−ν, τ(ρ))2 χ(ν, τ(λ))χ(β−τ(λ), τ(ν))·(4.33)

·
[
(σ(FνFρ).f)Kτ(ρ+ν)

]
·
[(
σ(Fλ).g / (S−1(Eρ)Kρ)

)
Kτ(λ)

]
·

·
[
h / (S−1(EνEλ)Kν+λ)

]
.

Similarly, to obtain an explicit expression for f ? (g ? h), we use (4.28) to write

f ? (g ? h) =
∑
σ,λ

Kσ−τ(σ)Kλ−τ(λ)χ(α, λ−τ(λ))u−σ (f, u−λ (g, h)).

Using again (4.30) we obtain

f ? (g ? h)=
∑
σ,λ

Kσ+λ−τ(σ+λ)(−1)|σ|+|λ|χ(α−τ(σ), σ−τ(σ))χ(α+β−τ(λ), λ−τ(λ))·

·
[
(σ(Fσ).f)Kτ(σ)

][([
(σ(Fλ).g)Kτ(λ)

] [
h / (S−1(Eλ)Kλ)

])
/ (S−1(Eσ)Kσ)

]
.

Using Equation (4.23) and the fact that U− o H is a right module algebra over
U+ oH, we obtain

f ? (g ? h) =
∑
ν,ρ,λ

Kθ
ρ,λ,νbα,β,ρ,λ,ν

[
(σ(FνFρ).f)Kτ(ν+ρ)

]
·(4.34)

·
[
(σ(Fλ).g)Kτ(λ)

]
/ (S−1(Eρ)Kν+ρ)

[
h / (S−1(Eλ)Kλ)

]
/ (S−1(Eν)Kν)
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where as before Kθ
ρ,λ,ν = Kρ+λ+ν−τ(ρ+λ+ν) and

bα,β,ρ,λ,ν = (−1)|ρ|+|λ|+|ν|χ(α−τ(ν+ρ), ν+ρ−τ(ν+ρ))·(4.35)

· χ(α+β−τ(λ), λ−τ(λ))χ(−ν, ρ).

Formula (4.34) can be rewritten as

f ? (g ? h) =
∑
ν,ρ,λ

Kθ
ρ,λ,νbα,β,ρ,λ,νχ(ν, β + λ− τ(λ)− ρ)·(4.36)

·
[
(σ(FνFρ).f)Kτ(ρ+ν)

]
·
[(
σ(Fλ).g / (S−1(Eρ)Kρ)

)
Kτ(λ)

]
·

·
[
h / (S−1(EνEλ)Kν+λ)

]
.

Now the relation f ? (g ? h) = (f ? g) ? h follows from comparison of the Equations
(4.33) and (4.36) and the fact that

aα,β,ρ,λ,νχ(−ν, τ(ρ))2 χ(ν, τ(λ))χ(β−τ(λ), τ(ν)) = bα,β,ρ,λ,νχ(ν, β+λ−τ(λ)−ρ)

which in turn follows from (4.32) and (4.35) by direct calculation. �

It is convenient to invert the formula (4.24). In the following lemma we express
the usual multiplication in U− in terms of the twist product ? on Hθ n U−.

Lemma 4.8. For any f, g ∈ U− the relation

fg =
∑
µ∈Nn

(−1)|µ|
((
σ(Fµ).f

)
Kµ

)
? [g / Eµ]

holds in (Hθ n U−, ?).

Proof. Note first that (4.7) implies that∑
ν,µ∈Nn

(−1)|µ|+|ν|σ(FνFµ)⊗KνKµ ⊗ EµK−1µ S−1(Eν)KνKµ = 1⊗ 1⊗ 1.(4.37)

By bilinearity we may assume that f ∈ U−−α for some α ∈ Nn. We obtain∑
µ

((
σ(Fµ).f

)
Kµ

)
? [g / Eµ]

(4.27)
=

∑
µ

(−1)|µ|χ(α−τ(µ), µ−τ(µ))Kµ−τ(µ)
[(
σ(Fµ).f

)
Kτ(µ)

]
? [g / Eµ]

(4.24)
=

∑
µ,ν

(−1)|µ|+|ν|χ(α−τ(µ), µ−τ(µ))Kµ−τ(µ)

(
σ(Fν).

[(
σ(Fµ).f

)
Kτ(µ)

])
Kν ·

· [g / Eµ] / (S−1(Eν)Kν)

=
∑
µ,ν

(−1)|µ|+|ν|
(
σ(Fν).

(
σ(Fµ).f

))
Kµ+ν

[
g / (EµK

−1
µ S−1(Eν)Kν+µ)

]
(4.37)

= fg

which proves the lemma. �
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4.5. A twisted coaction. Define a linear map ∆? : Hθ n U− → (Hθ n U−) ⊗
U(χ)max by

∆?(Kνfα) =
∑
λ,µ

Kν

(
σ(Fλ).fα / Eµ

)
Kλ ⊗KνFµKµ−αEλ(4.38)

for all ν ∈ Hθ and fα ∈ U−−α. For any f ∈ Hθ ⊗ U− and any ν ∈ Hθ we have

∆?(Kνf) = (Kν ⊗Kν)(?⊗ ·)∆?(f),(4.39)

∆?(fKν) = ∆?(f)(?⊗ ·)(Kν ⊗Kν)(4.40)

as χ(ν, λ+ τ(λ)) = 1 for all λ ∈ Nn. Moreover,

∆?(Fi) = Fi ⊗K−1i + ciK
−1
i Kτ(i) ⊗ Eτ(i)K−1i + 1⊗ Fi(4.41)

for all i ∈ I.

Proposition 4.9. The map ∆? endows (Hθ n U−, ?) with the structure of a right
U(χ)max-comodule algebra.

Proof. Let f ∈ U−−α. It follows from Lemma 4.1 that

(id⊗∆) ◦∆?(f) =
∑
λ,µ

(
σ(Fλ).f / Eµ

)
Kλ ⊗∆(FµKµ−αEλ)

=
∑
ν,ρ,λ,µ

(
σ(FλFµ).f / (EνEρ)

)
Kλ+µ ⊗ FρKρ+ν−αEλKµ ⊗ FνKν−αEµ

=
∑
ν,ρ,λ,µ

(
σ(Fλ).

(
(σ(Fµ).f / Eν)Kτ(µ)

)
/ Eρ

)
Kλ+µ−τ(µ)

⊗ FρKρ+ν+τ(µ)−αEλKµ−τ(µ) ⊗ FνKν−αEµ

(4.40)
=

∑
µ,ν

∆?

(
(σ(Fµ).f / Eν)

)
Kµ

)
⊗ FνKν−αEµ

= (∆? ⊗ id) ◦∆?(f).

Hence the map ∆? is coassociative and (Hθ n U−, ε,∆?) is a right U(χ)max-
comodule. It remains to check that ∆? is an algebra homomorphism. In view
of (4.39) and (4.40) it suffices to show that

∆?(f ? g) = ∆?(f)(?⊗ ·)∆?(g)(4.42)

for all f, g ∈ U−. Moreover, by the associativity of the twisted product ? it suffices
to verify relation (4.42) for f = Fi for all i ∈ I.

Assume that f ∈ U−−α and g ∈ U+
−β . From the definition of ? and ∆?, using the

fact that (H nU−)cop is a left and right (H nU+)-module algebra via the actions
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(4.4), one obtains

∆?(f ? g) =
∑

κ,λ,µ,ν,ρ

(−1)|ρ|χ(κ, α− µ− ρ)χ(ν, β − 2ρ− κ)(4.43)

(
σ(FνFρ).f / Eµ

)
Kν+ρ

(
σ(Fλ).g / (S−1(Eρ)KρEκ)

)
Kλ

⊗ FµFκKµ+κ+2ρ−α−βEνEλ,

∆?(f)(?⊗ ·)∆?(g) =
∑

κ,λ,µ,ν,ρ

(−1)|ρ|χ(−ρ, ν)(4.44)

(
σ(FρFν).f / Eµ

)
Kν+ρ

(
σ(Fλ).g / (EκS

−1(Eρ)Kρ)
)
Kλ

⊗ FµKµ−αEνFκKκ−λEλ.

For f = Fi the first factors in the second line of (4.43) and (4.44) are non-zero if
and only if ν = ρ = µ = 0 or two of ν, ρ, µ vanish while the remaining one is one of
ν = ατ(i), ρ = ατ(i) or µ = αi. Hence we get

∆?(Fi ? g) =
∑
κ,λ

χ(κ, αi)Fi(σ(Fλ).g / Eκ)⊗ FκKκ−αi−βEλ(4.45)

+ (σ(Fτ(i)).Fi)Kτ(i)

(
σ(Fλ).g / Eκ

)
Kλ ⊗K−1i FκEτ(i)Kκ−βEλ

+ χ(κ,−ατ(i))(σ(Fτ(i)).Fi)Kτ(i)

(
σ(Fλ).g / (Eτ(i)Eκ)

)
Kλ

⊗K−1i FκKκ+2ατ(i)−βEλ

+ (Fi / Ei)
(
σ(Fλ).g / Eκ

)
Kλ ⊗ FiFκKκ−βEλ.

Multiplying each summand in U(χ)max ⊗ (U+
max)κ in Equation (4.17) for j = τ(i)

from the right by (−1)|κ|Kκ ⊗ 1, we obtain the relation∑
κ

Eτ(i)FκKκ ⊗ Eκ−χ(κ,−ατ(i))FκKκ+2ατ(i) ⊗ Eτ(i)Eκ

=
∑
κ

FκEτ(i)Kκ ⊗ Eκ − FκKκ ⊗ EκEτ(i).

This relation can be applied to the second and third summand in (4.45) to give

∆?(Fi ? g) =
∑
κ,λ

χ(κ, αi)Fi(σ(Fλ).g / Eκ)⊗ FκKκ−αi−βEλ

+ (σ(Fτ(i)).Fi)Kτ(i)

(
σ(Fλ).g / Eκ

)
Kλ ⊗K−1i Eτ(i)FκKκ−βEλ

+ (σ(Fτ(i)).Fi)Kτ(i)

(
σ(Fλ).g / (EκEτ(i))

)
Kλ ⊗K−1i FκKκ−βEλ

+ (Fi / Ei)
(
σ(Fλ).g / Eκ

)
Kλ ⊗ FiFκKκ−βEλ

= ∆?(Fi)(?⊗ ·)∆?(g)

where the last equality follows from (4.44) for f = Fi. �

5. Star products on partial bosonizations

In this section we introduce the notion of a star product on a graded algebra. We
show that the twist product ? on the partial bosonization HθnU− from Section 4.4
is a star product which gives rise to an algebra isomorphic to the coideal subalgebra
Bc. In Section 5.4 we employ the star product on Hθ n U− to find a novel way to
obtain defining relations for the algebra Bc.
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5.1. General star products on N-graded algebras. For any N-graded k-algebra
A =

⊕
j∈NAj and any m ∈ N we write A<m =

⊕m−1
j=0 Aj and A≤m =

⊕m
j=0Aj .

Definition 5.1. Let A =
⊕

j∈NAj be a N-graded k-algebra. A star product on A

is an associative bilinear operation ∗ : A×A→ A, (a, b) 7→ a ∗ b such that

a ∗ b− ab ∈ A<m+n for all a ∈ Am, b ∈ An.(5.1)

The star product ∗ on A is called 0-equivariant if

a ∗ h = ah and h ∗ a = ha for all h ∈ A0, a ∈ A.

If ∗ is a star product on an N-graded algebra A then (A, ∗) is a filtered algebra
with Fm(A) := A≤m. By condition (5.1) the associated graded algebra satisfies

gr(A, ∗) ∼= A.

If the graded algebra A is generated in degrees 0 and 1, then every star product
algebra structure (A, ∗) is also generated in degrees 0 and 1.

Lemma 5.2. Let A be an N-graded k-algebra generated in degrees 0 and 1.

(i) Any 0-equivariant star product on A is uniquely determined by the k-linear
map µL : A1 → Endk(A), f 7→ µLf defined by

µLf (a) = f ∗ a− fa for all f ∈ A1, a ∈ A.

(ii) If U is a graded subalgebra of A such that A0U = UA0 = A, then every
0-equivariant star product on A is uniquely determined by the k-linear map
µL : U1 → Homk(U,A), f 7→ µLf defined by

µLf (b) = f ∗ b− fb for all f ∈ U1, b ∈ U .

Proof. Let ∗ be a 0-equivariant star product on A.
(i) Define a k-linear map ML : A≤1 → Endk(A) by

ML
f (a) := f ∗ a =

{
µLf (a) + fa, if f ∈ A1

fa, if f ∈ A0

where in the second case we use the assumption that ∗ is 0-equivariant. The map
ML is uniquely determined by the linear map µL : A1 → Endk(A). Since the
algebra (A, ∗) is generated in degrees 0 and 1, the vector space A is the k-span of
elements of the form a1 ∗ · · · ∗ aj for a1, . . . , aj ∈ A≤1. Since

(a1 ∗ · · · ∗ aj) ∗ a = ML
a1 . . .M

L
aj (a)

for all a ∈ A, a1, . . . aj ∈ A≤1, the bilinear operation ∗ : A × A → A is uniquely
determined by the linear map µL : A1 → Endk(A).

(ii) Similarly to the first part, the assumption that A0U = UA0 = A and the
0-equivariance of ∗ imply that the bilinear operation ∗ : A × A → A is uniquely
determined by its restriction to U1 × U . This restriction is

f ∗ b = fb+ µLf (b)

for f ∈ U1 and b ∈ U , which completes the proof of the lemma. �



40 STEFAN KOLB AND MILEN YAKIMOV

5.2. The first star product on the partial bosonization Hθ n U−. We work
in the setting of Section 2. Throughout Sections 5.2, 5.3 and 5.4 we assume that
c ∈ kn satisfies condition (c) in Section 2.5.

Recall from Section 2.3 that U(χ)poly denotes the subalgebra of U(χ) gener-

ated by Fi, Ẽi = EiK
−1
i , K−1i , KiK

−1
τ(i) for all i ∈ I. Consider the triangular

decomposition (2.5) of U(χ) written in reverse order

U(χ) ∼= U− oH nG+

where G+ denotes the subalgebra of U(χ) generated by {Ẽi | i ∈ I}. The restriction
of this triangular decomposition to the subalgebra U(χ)poly give rise to a linear
isomorphism

U(χ)poly ∼=
(
Hθ n U−

)
⊕
(
U(χ)polyspank{Ẽi,K−1i | i ∈ I}

)
(5.2)

where as before spank denotes the k-linear span. Let

ψ : U(χ)poly � Hθ n U−(5.3)

denote the k-linear projection with respect to the direct sum decomposition (5.2).
Since the kernel of ψ is a left ideal we have that

(5.4) ψ(ab) = ψ(aψ(b)) for all a, b ∈ U(χ)poly.

Recall that Bc is a subalgebra of U(χ)poly. For quantized enveloping algebras the
following Lemma recently appeared in [Let, Corollary 4.4].

Lemma 5.3. The restriction of the map (5.3) to Bc is a k-linear isomorphism

ψ : Bc → Hθ n U−.(5.5)

Proof. For any multi-index J and any a ∈ Hθ we have the relation

ψ(aBJ)− aFJ ∈ HθU
−
≤|J|−1.(5.6)

This shows that the restriction (5.5) is surjective. On the other hand Corollary
2.14 of Theorem 2.13 implies that the restriction (5.5) is also injective. �

Remark 5.4. The statement that the map ψ in (5.5) is a linear isomorphism is
equivalent to any of the statements in Theorem 2.13 or Remark 2.15. Indeed, if say
condition (c) in Section 2.5 does not hold, then the second part of Theorem 2.13 im-
plies that Bc intersects nontrivially with the second summand of the decomposition
(5.2).

We use the isomorphism (5.5) to define an algebra structure ∗ on Hθ n U− by

a ∗ b = ψ(ψ−1(a)ψ−1(b)) for all a, b ∈ Hθ n U−.(5.7)

Relation (5.6) and Corollary 2.14 imply that ∗ is a star product on the partial
bosonization Hθ n U− with the N-grading defined by setting deg(h) = 0 and
deg(Fi) = 1 for all h ∈ Hθ, i ∈ I. Moreover, this star product is 0-equivariant
because ψ is a left and right Hθ-module homomorphism. The subalgebra U− ⊂
Hθ n U− satisfies the assumption of Lemma 5.2(ii). Hence, in view of U−1 =
V −(χ), the 0-equivariant star product is uniquely determined by a k-linear map
µL : V −(χ)→ Homk(U−, Hθ n U−). We summarize the situation in the following
theorem.
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Theorem 5.5. Let U+ be a pre-Nichols algebra of diagonal type and assume that
the parameters c ∈ kn satisfy condition (c) in Section 2.5. Then the algebra struc-
ture ∗ on HθnU− defined by (5.7) is a 0-equivariant star product and the associated
k-linear map

µL : V −(χ)→ Homk(U−, Hθ n U−), f 7→ µLf

from Lemma 5.2(ii) is given by

µLFi(u) = ciqiτ(i)(Kτ(i)K
−1
i )∂Lτ(i)(u)(5.8)

for all i ∈ I, u ∈ U−.

Proof. It remains to compute the map µL. For any b ∈ Bc and any i ∈ I relation
(5.4) implies that

Fi ∗ ψ(b) = ψ(Bib)

= ψ((Fi + ciEτ(i)K
−1
i )ψ(b))

= Fiψ(b) + ciqiτ(i)ψ(K−1i Eτ(i)ψ(b))

= Fiψ(b) + ciqiτ(i)ψ(K−1i [Eτ(i), ψ(b)]).

Hence we get for any u ∈ U− the relation

Fi ∗ u = Fiu+ ciqiτ(i)ψ(K−1i [Eτ(i), u])

which by Equation (4.10) and the definition of ψ implies that

Fi ∗ u = Fiu+ ciqiτ(i)K
−1
i Kτ(i)∂

L
τ(i)(u).(5.9)

Hence µLi is given by (5.8). �

5.3. The second star product on the partial bosonization Hθ n U−. Next
we interpret the associative product ? from Section 4 in terms of star products on
partial bosonizations. It follows from (4.24) and (4.27) that ? is a 0-equivariant
star product on Hθ n U−. By Lemma 4.6 the corresponding k-linear map µL is
also given by (5.8). We summarize these observations in the following proposition.

Proposition 5.6. For all pre-Nichols algebras of diagonal type U+, the binary
operation ? on Hθ n U− given by (4.27) is a 0-equivariant star product for which
the map µL : U− → Homk(U−, Hθ n U−) from Lemma 5.2(ii) is given by

µLFi(u) = ciqiτ(i)(Kτ(i)K
−1
i )∂Lτ(i)(u)

for all i ∈ I, u ∈ U−.

Combining the above proposition with Theorem 5.5 and using Lemma 5.2(ii) we
obtain the following corollary.

Corollary 5.7. For all pre-Nichols algebras of diagonal type U+, the associative
products ∗ and ? on Hθ n U− coincide.

Recall from Proposition 4.9 that (Hθ n U−, ?) is a right U(χ)max-comodule al-
gebra with coaction ∆?. Composing the coproduct ∆ : Bc → Bc ⊗ U(χ) on Bc

with the projection U(χ)→ U(χ)max on the second tensor factor, one also obtains
a U(χ)max-comodule algebra structure on Bc.
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Corollary 5.8. For all pre-Nichols algebras of diagonal type U+, the map

ψ : Bc → (Hθ n U−, ?)(5.10)

is an isomorphism of right U(χ)max-comodule algebras.

Proof. It follows from Lemma 5.3 and the definition of the star product ∗ that
ψ : Bc → (Hθ n U−, ∗) is an isomorphism of algebras. By Corollary 5.7 the map
(5.10) is also an isomorphism of algebras. Moreover, by (4.41) the map (5.10)
respects the right U(χ)max-coaction. �

5.4. Generators and relations for Bc, revisited. We can apply the construc-
tions of Sections 5.2 and 5.3 in particular in the case where the biideal I which
defines U+, U− and U(χ) is trivial, that is I = {0}. In this case we have HθnU− =
Hθ n T (V −(χ)). We write ~ to denote the star product ∗ on Hθ n T (V −(χ)), and

we write B̃c, Ũ(χ)poly, and ψ̃ to denote Bc, U(χ)poly and ψ, respectively, in the
case I = {0}. For a general biideal I ⊂ T (V +(χ)) and parameters c ∈ kn satisfying
condition (c) in Section 2.5 we hence obtain a commutative diagram

B̃c Ũ(χ)poly (Hθ n T (V −(χ)),~)

Bc U(χ)poly (Hθ n U−, ∗)

ψ̃

ψ

η η η

b̃

b

where b = ψ|Bc and b̃ = ψ̃|B̃c
. In the above diagram the vertical arrows are sur-

jective algebra homomorphisms. The rightmost vertical arrow is a homomorphism
both of the undeformed partial bosonizations Hθ n T (V −(χ)) → Hθ n U− and
of the transferred algebra structures (Hθ n T (V −(χ)),~) → (Hθ n U−, ∗). The

maps ψ and ψ̃ are k-linear maps, while the other two horizontal maps are algebra

embeddings. The maps b and b̃ are algebra isomorphisms.
The following proposition provides a procedure to determine the defining rela-

tions of (Hθ n U−, ∗) from the defining relations of U−.

Proposition 5.9. Let U+ be a pre-Nichols algebras of diagonal type and assume
that the parameters c ∈ kn satisfy condition (c) in Section 2.5. If S is a generating
set for the kernel of the homomorphism η : T (V −(χ)) → U− for the undeformed
algebra structures, then it is a generating set also for the kernel of the homomor-
phism

η : (Hθ n T (V −(χ)),~)→ (Hθ n U−, ∗)
with respect to the transferred algebra structures.

Proof. Consider the projection η : Hθ n T (V −(χ)) → Hθ n U−. By the definition
of S we have

ker(η) = (Hθ n T (V −(χ))) · S · (Hθ n T (V −(χ))).
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We need to prove that

ker(η) = (Hθ n T (V −(χ)))~ S ~ (Hθ n T (V −(χ))).(5.11)

As η : (Hθ n T (V −(χ),~)→ (Hθ n U−, ∗) is an algebra homomorphism, the right
hand side of (5.11) is contained in ker(η). The map η is graded and we show by
induction on j ∈ N that

ker(η)j ⊆ (Hθ n T (V −(χ)))~ S ~ (Hθ n T (V −(χ))).

Indeed, for a ∈ ker(η)j+1 there exist homogeneous elements b′l, b
′′
l ∈ HθnT (V −(χ)),

sl ∈ S such that a =
∑
l a
′
lslb
′′
l . Property (5.1) of the star product implies that

a−
∑
l

a′l ~ sl ~ b
′′
l ∈ ker(η)≤j ,

and by induction hypothesis we have

ker(η)≤j ⊆ (Hθ n T (V −(χ)))~ S ~ (Hθ n T (V −(χ))).

This shows that ker(η)j+1 ⊆ (Hθ n T (V −(χ)))~ S ~ (Hθ n T (V −(χ))) and hence
completes the proof of (5.11). �

For any noncommutative polynomial r(x1, . . . , xn) =
∑
J aJxj1 . . . xjn in n vari-

ables with coefficients aJ ∈ Hθ and any elements u1, . . . , un in Hθ n T (V −(χ)) we
write

r(u1 ~, . . . ,~, un) =
∑
J

aJuj1 ~ · · ·~ ujn .

Proposition 5.9 has the following immediate corollary giving an effective way to
determine the relations of the coideal subalgebra Bc of U(χ).

Procedure for determining the relations of Bc :

(1) Let S = {pm(x1, . . . , xm) | m ∈ S} be a set of homogeneous noncommu-
tative polynomials such that {pm(E) | m ∈ S} generates the kernel of the
projection η : T (V +(χ)) → U+. In other words, S provides the defining
relations of U+. Let dm denote the degree of the polynomial pm for all
m ∈ S.

(2) Let

rm(x1, . . . , xn) =
∑
J

aJxj1 . . . xjl

be the noncommutative polynomials with coefficients in aJ ∈ Hθ such that

pm(F1, . . . , Fn) = r(F1
~, . . . ,~, Fn)

where the left hand side uses the undeformed product in T (V −(χ)). It
follows from (5.1) that rm has degree dm and leading term pm.

(3) The algebra Bc is generated by Hθ and Bi for i ∈ I subject to the relations

KλBi = χ(λ, αi)
−1BiKλ for all λ ∈ Znθ , i ∈ I,(5.12)

rm(B) = 0 for all m ∈ S.

Example 5.10. Consider the quantized universal enveloping algebra Uζ(sl3) for

ζ ∈ k× as described in Section 3.1. It has generators Ei, Fi,K
±1
i for i ∈ I = {1, 2}

and relations given by (3.1). We apply the above procedure to the coideal subalgebra
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Bc of Uζ(sl3) corresponding to the bijection τ : I → I given by τ(1) = 2, τ(2) = 1.
The quantum Serre relations are given by p12(F1, F2) = p21(F1, F2) = 0 where

p12(x, y) = x2y − (ζ + ζ−1)xyx+ yx2, p21(x, y) = p12(y, x).

Using relation (5.9) one obtains

F1 ~ F2 = F1F2 + c1ζ
−1K2K

−1
1 , F1 ~ (F1F2) = F 2

1F2 + c1ζF1K2K
−1
1

and hence

F 2
1F2 = F1 ~ F1 ~ F2 − c1(ζ + ζ−1)F1K2K

−1
1 .(5.13)

Similarly one calculates

F1F2F1 = F1 ~ F2 ~ F1 − c1ζ2F1K2K
−1
1 − c2ζ−1F1K1K

−1
2(5.14)

F2F
2
1 = F2 ~ F1 ~ F1 − c2(ζ + ζ−1)ζ−3F1K1K

−1
2 .(5.15)

Combining (5.13), (5.14) and (5.15) one obtains

p12(F1, F2) = p12(F1
~, F2) + (ζ2 − ζ−2)F1[c1ζK2K

−1
1 + c2ζ

−2K1K
−1
2 ].

Hence the noncommutative polynomial r12(x, y) describing the corresponding defin-
ing relation of the coideal subalgebra Bc is given by

r12(x, y) = p12(x, y) + (ζ2 − ζ−2)[c1ζ
−2aK2K

−1
1 + c2ζK1K

−1
2 ]x.

Similarly one obtains

r21(x, y) = p21(x, y) + (ζ2 − ζ−2)[c2ζ
−2aK1K

−1
2 + c1ζK2K

−1
1 ]y.

By the above procedure the algebra Bc is generated by B1, B2 and Hθ subject to
the relations (5.12) and r12(B1, B2) = r21(B1, B2) = 0. The latter two relations
coincide with the relations given in [Let03, Theorem 7.1 (iv)].

Remark 5.11. For quantum symmetric pair coideal subalgebras a different method
to determine defining relations was devised by G. Letzter in [Let03, Theorem 7.1],
see also [Kol14, Section 7]. This method also works in the general setting of the
present paper. Letzter’s method relies on relation (2.29) which holds with Z = 0 by
choice of parameters. With Letzter’s method individual monomials in the quantum
Serre relations lead to completely different lower order terms in the relations for Bc

than with the procedure described above. This shows that the procedure described
above is not a mere reformulation of Letzter’s method.

Example 5.12. As a second example we consider the coideal subalgebra Bc of the
Drinfeld double of the distinguished pre-Nichols algebra of type ufo(8) from Section
3.4. The algebra Bc has generators K±1, B1, B2 where

K = K1K
−1
2 , B1 = F1 + c1E2K

−1
1 , B2 = F2 + c2E1K

−1
2 .

Calculating recursively as in Example 5.10 on obtains that

Fmi = F~m
i for all i = 1, 2 and m ∈ N,

and that for the polynomial p(x1, x2) from (3.14) one has p(F1, F2) = r(F1
~, F2)

where

r(x1, x2) =p(x1, x2)− (3ζ + 2)(c1K
−1x1x2 + c2Kx2x1)

+ ζ−1/2(2ζ + 3)(c1K
−1x2x1 + c2Kx1x2)

+ ζ−1/2(ζ2 + ζ + 1)(c21K
−2 + c22K

2)− 2(ζ + 1)c1c2.
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Assume that the parameters c1, c2 ∈ k satisfy the relation in Proposition 3.6(ii).
By the above procedure, the algebra Bc has generators K±1, B1, B2 and relations

KK−1 = 1,

KB1 = −ζ−3/2B1K, KB2 = −ζ3/2B2K,

B3
1 = B3

2 = 0, r(B1, B2) = 0.

We have checked the above relations also with Letzter’s method referred to in Remark
5.11, and this produces the same relation r(B1, B2) = 0.

6. The quasi K-matrix for Bc

From now on we restrict to the case where the graded biideal is maximal I = Imax

and hence U± = U±max are Nichols algebras. We also retain the assumption that
c ∈ kn satisfies condition (c) in Section 2.5. Recall the isomorphism of U(χ)max-
comodule algebras ψ : Bc → (Hθ n U−max, ?,∆?) from Corollary 5.8 and the quasi
R-matrix Θ =

∑
µ(−1)|µ|Fµ ⊗ Eµ from Section 4.1. We call the formal sum

Θθ = (ψ−1 ⊗ id)(Θ) =
∑
µ

(−1)|µ|ψ−1(Fµ)⊗ Eµ ∈
∏
µ

Bc ⊗ (U+
max)µ(6.1)

the quasi K-matrix for Bc. Here we consider the infinite product
∏
µBc⊗ (U+

max)µ

as a subalgebra of the completion U(χ)max⊗̂U(χ)max from Section 4.1. We multiply
elements in

∏
µBc ⊗ (U+

max)µ as infinite sums.

6.1. The coproducts of the quasi K-matrix. Similarly to Lemma 4.1 we are
interested in the behavior of Θθ under the coproduct of U(χ)max in each tensor
factor. To this end we introduce elements

Θθ
12 = Θθ ⊗ 1, Θ23 = 1⊗Θ,

Θθ
1K3 =

∑
µ

(−1)|µ|ψ−1(Fµ)⊗Kµ ⊗ Eµ,

Θθ−
1K3 =

∑
µ

(−1)|µ|ψ−1(Fµ)⊗K−1µ ⊗ Eµ,

Θσ
K23 =

∑
µ

(−1)|µ|Kµ−τ(µ) ⊗ σ(Fµ)⊗ Eµ,

ΘσK
K32 =

∑
µ

(−1)|µ|Kµ−τ(µ) ⊗ EµK−1τ(µ) ⊗K
−1
µ σ(Fµ)

in
∏
µ,ν Bc ⊗H(U+

max)µ ⊗ (U+
max)ν . As before, we multiply elements in

∏
µ,ν Bc ⊗

H(U+
max)µ⊗(U+

max)ν infinite sums. A formal completion of Bc⊗U(χ)max⊗U(χ)max

containing the above product will be given in Section 6.3. With the above notation
we can express the desired analog of Lemma 4.1.

Proposition 6.1. The quasi K-matrix Θθ satisfies the relation

(id⊗∆)(Θθ) = Θθ
12 ·Θσ

K23 ·Θθ
1K3(6.2)

in
∏
µ,ν Bc ⊗H(U+

max)µ ⊗ (U+
max)ν , and the relation

(∆⊗ id)(Θθ) = Θ23 ·Θθ−
1K3 ·Θ

σK
K32(6.3)

in
∏
µBc ⊗ U(χ)max ⊗ (U+

max)µ.
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Proof. To prove Equation (6.2) first observe that (4.4) and (4.6) imply that∑
µ,ν

(−1)|ν|Fµ ⊗ (Fν / Eµ)⊗Kν ⊗ Eν(6.4)

=
∑
µ,λ

(−1)|µ|+|λ|Fµ ⊗ Fλ ⊗Kλ+µ ⊗ EµEλ.

Similarly, also taking into account (4.20), one obtains∑
µ,λ

(−1)|µ|+|λ|(σ(Fµ).Fλ)Kµ ⊗ Eµ ⊗ Eλ(6.5)

=
∑
µ,κ

(−1)|κ|FκKµ−τ(µ) ⊗ Eµ ⊗ Eκσ(Fµ)K−1µ .

With this preparation we use Equation (4.7), Lemma 4.8, and the fact that ψ is an
isomorphism of algebras, to calculate

(id⊗∆)(Θθ) =
∑
λ,ν

(−1)|λ|+|ν|ψ−1(FλFν)⊗ EλKν ⊗ Eν

=
∑
λ,µ,ν

(−1)|λ|+|µ|+|ν|ψ−1
(
(σ(Fµ).Fλ)Kµ

)
ψ−1

(
Fν / Eµ

)
⊗ EλKν ⊗ Eν

(6.5)
=

∑
µ,ν,κ

(−1)|ν|+|κ|ψ−1
(
FκKµ−τ(µ)

)
ψ−1

(
Fν / Eµ

)
⊗ Eκσ(Fµ)K−1µ Kν ⊗ Eν

(6.4)
=

∑
µ,κ,λ

(−1)|λ|+|µ|+|κ|ψ−1(Fκ)Kµ−τ(µ)ψ
−1(Fλ)⊗ Eκσ(Fµ)Kλ ⊗ EνEλ

= Θθ
12 ·Θσ

K23 ·Θθ
1K3

which proves Equation (6.2). Equations (2.12) and (4.41), the fact that Bc is a
coideal subalgebra of U(χ)max and Proposition 4.9 imply that ψ is an isomorphism
of U(χ)max-comodules. Therefore

(∆⊗ id)(Θθ) =
∑
ν

(−1)|ν|(ψ−1 ⊗ id⊗ id)(∆?(Fν)⊗ Eν)

(4.38)
=

∑
λ,µ,ν

(−1)|ν|ψ−1
(
(σ(Fλ).Fν / Eµ)Kλ

)
⊗ FµKµ−νEλ ⊗ Eν

(6.4)
=

∑
λ,ρ,µ

(−1)|µ|+|ρ|ψ−1
(
(σ(Fλ).Fρ)Kλ)⊗ FµKρEλ ⊗ EµEρ

(6.5)
=

∑
λ,κ,µ

(−1)|µ|+|κ|+|λ|ψ−1
(
Fκ)Kλ−τ(λ) ⊗ FµK−κ−τ(λ)Eλ ⊗ EµEκσ(Fλ)K−1λ

= Θ23 ·Θθ−
1K3 ·Θ

σK
K32

which proves Equation (6.3). �

6.2. The intertwiner property of the quasi K-matrix. The quasi K-matrix
Θθ also satisfies an analog of Corollary 4.3.
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Proposition 6.2. The element Θθ satisfies the relations

∆(Bi) ·Θθ = Θθ ·
(
Bi ⊗Ki + cτ(i)qiτ(i)K

−1
τ(i)Ki ⊗ Eτ(i)Ki + 1⊗ Fi

)
,(6.6)

∆(Kλ) ·Θθ = Θθ ·∆(Kλ)(6.7)

for all i ∈ I, λ ∈ Znθ .

Proof. We rewrite (Fi ⊗K−1i ) ·Θ in terms of the twisted product

(Fi ⊗K−1i ) ·Θ
(4.25)

=
∑
µ

(−1|µ|)(Fi ? Fµ)⊗K−1i Eµ − ciqiτ(i)
∑
µ

(−1)|µ|Kτ(i)K
−1
i ∂Lτ(i)(Fµ)⊗K−1i Eµ

(4.16)
=

∑
µ

(−1)|µ|(Fi ? Fµ)⊗K−1i Eµ + ci(Kτ(i)K
−1
i ⊗ Eτ(i)K

−1
i ) ·Θ.

Similarly we rewrite Θ · (Fi ⊗Ki) in terms of the twisted product

Θ · (Fi ⊗Ki)

(4.26)
=

∑
µ

(−1|µ|)(Fµ ? Fi)⊗ EµKi − cτ(i)qiτ(i)
∑
µ

(−1)|µ|∂Rτ(i)(Fµ)KiK
−1
τ(i) ⊗ EµKi)

(4.16)
=

∑
µ

(−1)|µ|(Fµ ? Fi)⊗ EµKi + cτ(i)qiτ(i)Θ · (KiK
−1
τ(i) ⊗ Eτ(i)Ki).

Now Equation (6.6) follows from the above two relations, and the fact that ψ−1 :
(Hθ n U−, ?) → Bc is an algebra isomorphism, by application of ψ−1 to the first
tensor factor of Equation (4.18). Similarly, Equation (6.7) follows from the relation
∆(Kλ) ·Θ = Θ ·∆(Kλ) by application of ψ−1 to the first tensor factor. �

Remark 6.3. The statement of Proposition 6.2 is known in the theory of quantum
symmetric pairs as the intertwiner property for the quasi K-matrix (called quasi
R-matrix in [BW18a, Section 3]). In [BW18a, Proposition 3.2] and [Kol17, Propo-
sition 3.5] this property is formulated in terms of the bar-involution for quantum
symmetric pair coideal subalgebras. For general Nichols algebras and their coideal
subalgebras there is no bar-involution. Proposition 6.2 achieves a bar-involution
free formulation of the intertwiner property in the same way as Corollary 4.3 pro-
vides a bar-involution free formulation of the intertwiner property for the quasi
R-matrix.

6.3. Weakly quasitriangular Hopf algebras. We now want to show that the
quasiK-matrix (6.1) gives rise to a universalK-matrix for the coideal subalgebraBc

of U(χ)max. In [BK] and [Kol17] universal K-matrices are constructed on suitable
categories of representations. Due to the generality of our setting we do not know
much about the representation theory of U(χ)max. Instead we follow an approach
used in [Tan92], [Res95], [Gav97] and consider a weak notion of quasitriangularity.
In the present section we recall this approach. In Section 6.5 we introduce the
corresponding notion of weakly quasitriangular coideal subagebras and show that
Bc is weakly quasitriangular up to completion.

Definition 6.4. ([Res95, Definition 3], [Gav97, Definition 1.2]) A weakly quasitri-
angular Hopf algebra is a pair (U,R) consisting of a Hopf algebra U and an algebra
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automorphism R ∈ Aut(U⊗2) satisfying the relations

R ◦∆ = ∆op on U,(6.8)

(∆⊗ id) ◦ R = R13 ◦ R23 ◦ (∆⊗ id) on U⊗2,(6.9)

(id⊗∆) ◦ R = R13 ◦ R12 ◦ (id⊗∆) on U⊗2.(6.10)

Here we use the usual leg notation where Rij denotes the operation of R on the i-th
and j-th tensor factor.

For any invertible element u of a unital algebra A let Ad(u) denote the inner
automorphism of A defined by

Ad(u)(a) = uau−1 for all a ∈ A.

Remark 6.5. Recall the notion of a quasitriangular Hopf algebra from [Dri87]. If
U is a quasitriangular Hopf algebra with universal R-matrix R, then U is weakly
quasitriangular with the automorphism R defined by conjugation R = Ad(R).

Remark 6.6. By [Res95, (7)] the automorphism R of a weakly quasitriangular Hopf
algebra satisfies the quantum Yang-Baxter equation

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12.(6.11)

Indeed, (6.8) and (6.9) imply that both sides of (6.11) coincide on the image of
∆⊗ id, while (6.8) and (6.10) imply that both sides of (6.11) coincide on the image
of id⊗∆. Now the quantum Yang-Baxter equation (6.11) follows from the fact that
if U is a Hopf algebra then Im(∆⊗ id) + Im(id⊗∆) generates U⊗3 as an algebra.

Remark 6.7. In [Res95] a weakly quasitriangular Hopf algebra is called a braided
Hopf algebra, see also [Gav97, Definition 1.2]. We avoid this terminology because it
is often used for Hopf algebras in a braided category. In [Tan92, 4.3] weakly quasi-
triangular Hopf algebras are realized under the name pre-triangular Hopf algebras
via a construction similar to the following lemma.

Lemma 6.8. ([Res95, Definition 3], [Gav97, Definition 1.3]) Let U be a Hopf alge-
bra, R(0) ∈ Aut(U ⊗ U) an algebra automorphism, and R(1) ∈ U ⊗ U an invertible
element such that the following relations hold(

Ad(R(1)) ◦ R(0)
)
◦∆ = ∆op,(6.12)

(∆⊗ id) ◦ R(0) = R(0)
13 ◦ R

(0)
23 ◦ (∆⊗ id),(6.13)

(id⊗∆) ◦ R(0) = R(0)
13 ◦ R

(0)
12 ◦ (∆⊗ id),(6.14)

(∆⊗ id)(R(1)) = R
(1)
13 · R

(0)
13 (R

(1)
23 ),(6.15)

(id⊗∆)(R(1)) = R
(1)
13 · R

(0)
13 (R

(1)
12 ).(6.16)

Then (U,Ad(R(1)) ◦ R(0)) is a weakly quasitriangular Hopf algebra.

The construction of weakly quasitriangular Hopf algebras in the theory of quan-
tum groups involve completions, see [Tan92, 4.3], [Res95, 1.3]. We set up these
completions in a way which also works for the weakly quasitriangular coideal sub-
algebras in Section 6.5. Recall that U(χ) = U(χ)max is the Drinfeld double of a
Nichols algebra of diagonal type U+ = U+

max. Let B be an arbitrary algebra and
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consider a finite sequence of signs s1, . . . , sm ∈ {+,−} for some m ∈ N. For any
j ∈ N define(
B ⊗ U(χ)Us1 ⊗ · · · ⊗ U(χ)Usm

)
j

=
⊕

β1,...,βm∈Nn,∑m
i=1
|βi|≥j

U(χ)Us1s1β1
⊗ · · · ⊗ U(χ)Usmsmβm .

Then the inverse limit

̂(B ⊗ U(χ)⊗m)s1...sm := lim←−
j∈N

((
B ⊗ U(χ)⊗m

)
/
(
B ⊗ U(χ)Us1 ⊗ · · · ⊗ U(χ)Usm

)
j

)
is an algebra which contains B⊗U(χ)⊗m as a subalgebra. If the algebra B coincides

with the field k then we write ̂(U(χ)⊗m)s1...sm instead of ̂(k ⊗ U(χ)⊗m)s1...sm . The
coproduct ∆ extends to the inverse limits. For example, we have algebra homo-
morphisms

(∆⊗ id) : ̂(U(χ)⊗2)s1s2 →
̂(U(χ)⊗3)s1s1s2 ,

(id⊗∆) : ̂(U(χ)⊗2)s1s2 →
̂(U(χ)⊗3)s1s2s2

which canonically extend ∆⊗ id, id⊗∆ : U(χ)⊗2 → U(χ)⊗3. Recall that Θ denotes
the quasi R-matrix defined by (4.5). For s1s2 ∈ {++,+−,−−} we may consider

Θ21 =
∑
µ(−1)|µ|Eµ⊗Fµ as an invertible element of ̂(U(χ)⊗2)s1s2 . Moreover, there

is a well defined algebra automorphism R(0) ∈ Aut(U(χ)⊗2) such that

R(0)|U(χ)β⊗U(χ)γ = χ(β, γ)(K−γ ·)⊗ (K−β ·)(6.17)

for all β, γ ∈ Zn. Here K−γ · and K−β · denote the operators of left multiplication
by K−γ and K−β , respectively. In terms of generators of the algebra U(χ)⊗2 the

algebra automorphism R(0) is given by R(0)|H⊗H = idH⊗H and

R(0)(Ei ⊗ 1) = Ei ⊗K−1i , R(0)(1⊗ Ei) = K−1i ⊗ Ei,

R(0)(Fi ⊗ 1) = Fi ⊗Ki, R(0)(1⊗ Fi) = Ki ⊗ Fi

for all i ∈ I. The automorphism R(0) extends canonically to an automorphism of

the completion ̂(U(χ)⊗2)s1s2 . We can also make use of the leg notation to obtain

algebra automorphism R(0)
ij of ̂(U(χ)⊗m)s1...sm .

The following theorem states that the Drinfeld double U(χ)max is weakly quasi-
triangular up to completion. The theorem hence extends [Res95, Proposition 1.3.1],
[Gav97, Theorem 3.1] from the setting of quantum groups to Drinfeld doubles of
general Nichols algebras of diagonal type. To simplify notation, we mostly drop the
subscript max.

Theorem 6.9. Let s1s2 ∈ {++,+−,−−} and let U+ be a Nichols algebra of
diagonal type with Drinfeld double U(χ).

(1) The element R(1) = Θ21 and the automorphism R(0) ∈ Aut( ̂(U(χ)⊗2)s1s2)

defined by (6.17) satisfy the relations (6.12) – (6.16).

(2) Define an algebra automorphism Rs1s2 ∈ Aut( ̂(U(χ)⊗2)s1s2) by Rs1s2 =

Ad(Θ21) ◦ R(0). Then Rs1s2 satisfies relations (6.8) – (6.10).

Proof. (1) It suffices to check (6.12) on the generators Ei, Fi,Ki. Hence property
(6.12) follows from Corollary 4.3. Properties (6.13) and (6.14) hold because the
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coproduct preserves weights. Finally, properties (6.15) and (6.16) hold by Lemma
4.1.

(2) This follows from (1) analogously to the proof of Lemma 6.8. �

Analogously to Remark 6.6, the second part of Theorem 6.9 implies that for
s1s2s3 ∈ {+ + +,+ +−,+−−,−−−} the quantum Yang-Baxter equation

Rs1s212 ◦ Rs1s313 ◦ Rs2s323 = Rs2s323 ◦ Rs1s313 ◦ Rs1s212

holds on ̂(U(χ)⊗3)s1s2s3 .

6.4. Extending σ to an algebra automorphism. From now on we assume that
the parameters satisfy ci 6= 0 for all i ∈ I. Under this assumption the algebra
homomorphism σ : U− → U+ oH from Section 4.3 can be extended to an algebra
automorphism of U(χ). Indeed, it follows from the defining relations (2.3) and from
Lemma 2.3 that there is a well-defined algebra automorphism σ : U(χ) → U(χ)
such that

σ(Ei) = c−1τ(i)Fτ(i)K
−1
i , σ(Fi) = cτ(i)KiEτ(i), σ(Ki) = K−1τ(i)(6.18)

for all i ∈ I. We are interested in the compatibility between σ and the coproduct.
In the following lemma R(0) denotes the algebra automorphism of U(χ)⊗2 given by
(6.17) and Θ denotes the quasi R-matrix for U(χ).

Lemma 6.10. Let U+ be a Nichols algebra of diagonal type with Drinfeld double
U(χ). Assume that c ∈ (k×)n. The algebra automorphism σ satisfies the relation

∆ ◦ σ = (σ ⊗ id) ◦ R(0)
21 ◦ (id⊗ σ) ◦Ad(Θ21) ◦ R(0) ◦∆.(6.19)

Proof. It suffices to show that both sides of (6.19) coincide when evaluated on
Ki, Ei and Fi. Evaluated on Ki both sides give K−1τ(i) ⊗K

−1
τ(i). By Equation (4.17)

we have

(σ ⊗ id) ◦ R(0)
21 ◦ (id⊗ σ) ◦Ad(Θ21) ◦ R(0) ◦∆(Ei)

= (σ ⊗ id) ◦ R(0)
21 ◦ (id⊗ σ)

(
Ei ⊗Ki + 1⊗ Ei

)
= σ(Ei)⊗KiK

−1
τ(i) +K−1i ⊗ σ(Ei)

= ∆ ◦ σ(Ei).

The calculation for Fi is similar. �

6.5. Weakly quasitriangular comodule algebras. We now introduce a weak
version of quasitriangularity for comodule algebras over weakly quasitriangular
Hopf algebras.

Definition 6.11. Let (U,R) be a weakly quasitriangular Hopf algebra. A weakly
quasitriangular right comodule algebra over (U,R) is a triple (B,∆B ,K) where B
is a right U -comodule algebra with coaction ∆B : B → B ⊗ U and K is an algebra
automorphism of B ⊗ U which satisfies the following properties

K ◦∆B = ∆B on B,(6.20)

(∆B ⊗ id) ◦ K = R32 ◦ K13 ◦ R23 ◦ (∆B ⊗ id) on B ⊗ U ,(6.21)

(id⊗∆) ◦ K = R32 ◦ K13 ◦ R23 ◦ K12 ◦ (id⊗∆) on B ⊗ U .(6.22)

We say that the comodule algebra B is weakly quasitriangular if the coaction ∆B

and the automorphism K are understood.
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Remarks 6.5 and 6.6 have analogs for comodule algebras over a Hopf algebra.

Remark 6.12. Let U be a quasitriangular Hopf algebra with universal R-matrix
R. By Remark 6.5 the pair (U,Ad(R)) is a weakly quasitriangular Hopf algebra.
Recall the definition of a quasitriangular comodule algebra B over U with universal
K-matrix K ∈ B ⊗ U from [Kol17, Definition 2.7]. If the U -comodule algebra B
is quasitriangular then B is weakly quasitriangular with the automorphism K =
Ad(K) of B ⊗ U .

Remark 6.13. If (B,K) is a weakly quasitriangular comodule algebra over a weakly
quasitriangular Hopf algebra (U,R) then the automorphisms K and R satisfy the
reflection equation

K12 ◦ R32 ◦ K13 ◦ R23 = R32 ◦ K13 ◦ R23 ◦ K12(6.23)

on B ⊗ U ⊗ U . Indeed, (6.20) and (6.21) imply that

K12 ◦ R32 ◦ K13 ◦ R23 ◦ (∆B ⊗ id) = R32 ◦ K13 ◦ R23 ◦ K12 ◦ (∆B ⊗ id)

on B ⊗ U while (6.20) and (6.22) imply that

K12 ◦ R32 ◦ K13 ◦ R23 ◦ (id⊗∆) = R32 ◦ K13 ◦ R23 ◦ K12 ◦ (id⊗∆)

on B ⊗ U . Now the reflection equation (6.23) follows from the fact that if U is a
Hopf algebra then Im(∆B ⊗ id) + Im(id⊗∆) generates B ⊗ U⊗2 as an algebra.

We have the following analog of Lemma 6.8 for comodule algebras.

Lemma 6.14. Let (U,R(0), R(1)) be as in Lemma 6.8 and let B be a right U -
comodule algebra with coaction ∆B : B → B ⊗ U . Let K(0) be an algebra auto-
morphism of B ⊗ U and let K(1) ∈ B ⊗ U be an invertible element satisfying the
following relations

Ad(K(1)) ◦ K(0) ◦∆B = ∆B ,(6.24)

(∆B ⊗ id) ◦ K(0) = R(0)
32 ◦ K

(0)
13 ◦ R

(0)
23 ◦ (∆B ⊗ id),(6.25)

(id⊗∆) ◦ K(0) = K(0)
12 ◦ R

(0)
32 ◦ K

(0)
13 ◦Ad(R

(1)
23 ) ◦ R(0)

23 ◦ (id⊗∆),(6.26)

(∆B ⊗ id)(K(1)) = R
(1)
32 · R

(0)
32 (K

(1)
13 ) · R(0)

32 K
(0)
13 (R

(1)
23 ),(6.27)

(id⊗∆)(K(1)) = K
(1)
12 · K

(0)
12 (R

(1)
32 ) · K(0)

12 R
(0)
32 (K

(1)
13 ).(6.28)

Then (B,∆B ,Ad(K(1)) ◦ K(0)) is a weakly quasitriangular right comodule algebra
over the weakly quasitriangular Hopf algebra (U,Ad(R(1)) ◦ R(0)).

Proof. Set K = Ad(K(1))◦K(0) ∈ Aut(B⊗U) andR = Ad(R(1))◦R(0) ∈ Aut(U⊗2).
Then Equation (6.20) follows from Equation (6.24). Equation (6.21) follows from
Equations (6.25) and (6.27), and Equation (6.22) follows from Equations (6.26) and
(6.28). �

We return to the concrete example of the coideal subalgebra Bc of the Drinfeld
double U(χ) = U(χ)max of a Nichols algebra U+ = U+

max of diagonal type. There
is a well defined algebra automorphism K(0),τ ∈ Aut(U(χ)⊗ U(χ)) such that

K(0),τ |U(χ)β⊗U(χ)γ = χ(β, γ−τ(γ)) (K−γ+τ(γ)·)⊗ (K−β+τ(β)·)(6.29)
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for all β, γ ∈ Zn. More explicitly, the algebra automorphism K(0),τ is defined by
K(0),τ |H⊗H = idH⊗H and

K(0),τ (1⊗ Ei) = K−1i Kτ(i) ⊗ Ei, K(0),τ (1⊗ Fi) = KiK
−1
τ(i) ⊗ Fi,

K(0),τ (Ei ⊗ 1) = Ei ⊗K−1i Kτ(i), K(0),τ (Fi ⊗ 1) = Fi ⊗KiK
−1
τ(i)

for all i ∈ I. Similarly to the proof of Equations (6.13), (6.14) for the automorphism
R(0) given by (6.17), one sees that

(∆⊗ id) ◦ K(0),τ = K(0),τ
23 ◦ K(0),τ

13 ◦ (∆⊗ id),(6.30)

(id⊗∆) ◦ K(0),τ = K(0),τ
12 ◦ K(0),τ

13 ◦ (id⊗∆).(6.31)

The algebra automorphism K(0),τ restricts to an automorphism of the subalgebra
Bc ⊗ U(χ) such that

K(0),τ (Bi ⊗ 1) = Bi ⊗KiK
−1
τ(i)

for all i ∈ I. Recall the algebra automorphism σ from Section 6.4. Define an
algebra automorphism K(0) of B ⊗ U(χ) by

K(0) = K(0),τ ◦ (id⊗ σ).

By construction K(0) extends to algebra isomorphisms

K(0)
− : ̂(B ⊗ U(χ))− → ̂(B ⊗ U(χ))+, K(0)

+ : ̂(B ⊗ U(χ))+ → ̂(B ⊗ U(χ))−.

The isomorphism K(0)
− will provide us with the desired completed version of the

automorphism K(0) in Lemma 6.14. To obtain a completed version of K(1), we
may consider the element Θθ =

∑
µ(−1)|µ|ψ−1(Fµ)⊗Eµ from (6.1) as an invertible

element in ̂(B ⊗ U(χ))+. By the following theorem the coideal subalgebra Bc of
U(χ) is weakly quasitriangular up to completion.

Theorem 6.15. Let U+ be a Nichols algebra of diagonal type with Drinfeld double
U(χ). Let Bc be the coideal subalgebra defined in Section 2.2 and assume that the
parameters c ∈ (k×)n satisfy condition (c) in Section 2.5. Then the following hold:

(1) The element K(1) = Θθ ∈ ̂(B ⊗ U(χ))+ and the isomorphism K(0) =

K(0)
− = K(0),τ ◦ (id ⊗ σ) : ̂(B ⊗ U(χ))− → ̂(B ⊗ U(χ))+ defined by (6.29)

and (6.18) satisfy relations (6.24) – (6.28).

(2) Define an isomorphism of algebras K− : ̂(B ⊗ U(χ))− → ̂(B ⊗ U(χ))+ by

K− = Ad(Θθ) ◦ K(0)
− . Then K− satisfies relations (6.20) – (6.22) with the

operators Rs1s2 from Theorem 6.9.

Proof. (1) We first verify (6.24). It suffices to check (6.24) on the generators Bi for
i ∈ I and Kλ for λ ∈ Znθ . We calculate

Ad(Θθ) ◦ K(0),τ ◦ (id⊗ σ) ◦∆(Bi)

= Ad(Θθ) ◦ K(0),τ
(
Bi ⊗Kτ(i) +Kτ(i)K

−1
i ⊗ Fi + 1⊗ cτ(i)KiEτ(i)

)
= Ad(Θθ)

(
Bi ⊗Ki + 1⊗ Fi + cτ(i)qiτ(i)K

−1
τ(i)Ki ⊗ Eτ(i)Ki

)
= ∆(Bi)



SYMMETRIC PAIRS FOR NICHOLS ALGEBRAS OF DIAGONAL TYPE 53

where the last equality follows from the intertwiner property (6.6). The relation

Ad(Θθ) ◦ K(0),τ ◦ (id⊗ σ) ◦∆(Kλ) = ∆(Kλ) for λ ∈ Znθ
holds as σ(Kλ) = Kλ for all λ ∈ Znθ . This completes the proof of (6.24).

Property (6.25) follows from the fact that

K(0),τ ◦ (id⊗ σ) = R(0)
32 ◦ (id⊗ σ) ◦ R(0)

23

and from Equation (6.30). Property (6.26) follows from Equation (6.31) and from
Lemma 6.10. Finally, Equations (6.27) and (6.28) hold by Proposition 6.1.

(2) This follows from (1) analogously to the proof of Lemma 6.14. �

Analogously to Remark 6.13, the second part of Theorem 6.15 implies that K−
satisfies the reflection equation

K−12 ◦ R
+−
32 ◦ K

−
13 ◦ R

−−
23 = R++

32 ◦ K
−
13 ◦ R

+−
23 ◦ K

−
12

as an equality of algebra isomorphisms ̂(B ⊗ U(χ)⊗2)−− → ̂(B ⊗ U(χ)⊗2)++.
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