ON THE POSITIVITY CONJECTURE: A DIGEST OF MASON’S COUNTEREXAMPLE

YILONG WANG

1. Introduction

In this note, we give an explicit construction of a counterexample to the positivity conjecture on the second Frobenius-Schur indicators of a modular category. The positivity conjecture can be formulated in the following way [Wan10, Conjecture 4.26]:

Let \(C \) be a modular category, and let \(X, Y \) be simple objects of \(C \). Then \(N^Y_{X,X} > 0 \) implies \(\nu_2(Y) = 1 \).

We will borrow ideas from Mason’s preprint [Mas17], but our example comes from a smaller group than that in [Mas17]. In Section 3, we give the explicit character data of the counterexample implemented in GAP.

We thank Professor Richard Ng for helpful discussions and suggestions.

2. Construction of a counterexample

Let \(Q := Q_8 = \langle a, b \mid a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1} \rangle \) be the quaternion group. It is easy to check that the assignment \(\alpha : Q \rightarrow \text{GL}(2, 3) \), given on generators by

\[
\begin{align*}
 a &\mapsto \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \\
 b &\mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},
\end{align*}
\]

embeds \(Q \) into \(\text{GL}(2, 3) \) as a subgroup. Therefore, \(Q \) acts faithfully on \(H := (\mathbb{Z}/3\mathbb{Z})^2 \) by (left) matrix multiplication (with column vectors). For any \(q \in Q \) and any \(h \in H \), we denote this action by \(q \cdot h \).

Let \(G := H \rtimes_\alpha Q \) be the semidirect product of \(H \) and \(Q \) with respect to \(\alpha \). As subgroups of \(G \), \(Q \) acts on \(H \) by conjugation (in \(G \)). Note that \(G \) is of order 72.

Let \(\lambda : H \rightarrow \mathbb{C}^\times \) be a character of \(H \) defined by

\[
\lambda(x, y) := \omega^{y-x}
\]

for any \((x, y) \in H = (\mathbb{Z}/3\mathbb{Z})^2\), where \(\omega = \exp(\frac{2\pi i}{3}) \). Let \(\chi := \text{ind}_H^G(\lambda) \) be the representation of \(G \) induced by \(\lambda \).

Proposition 1. The representation \(\chi \) is irreducible.

Proof. We prove the irreducibility of \(\chi \) by computing its character. By the character formula of induced representations ([Ser77, Theorem 12]), for any \(g \in G \), we have

\[
\text{char}(\chi)(g) = \sum_{q \in Q \atop q^{-1}gg \in H} \lambda(q \cdot g) = \begin{cases}
0, & \text{if } g \notin H \\
-1, & \text{if } g \in H \setminus \{e_G\} \\
8, & \text{if } g = e_G
\end{cases}
\]

where \(e_G \) stands for the identity of \(G \).
Therefore, the character inner product (following notations in [Ser77]) of χ with itself is given by

\[
(char(\chi)|char(\chi)) = \frac{1}{72} \sum_{g \in G} |char(\chi)|^2 = \frac{1}{72} \times (8^2 + (-1)^2 \times 8) = 1.
\]

Hence, by [Ser77, Theorem 3], χ is irreducible. \hfill \Box

Remark 1. We can also apply Mason’s idea to give an alternative proof of the irreducibility of χ, which goes as follows. By a corollary of Mackey’s irreducibility criterion of induced representations ([Ser77, Corollary 7.4.23]), χ is irreducible if and only if

1. λ is irreducible;
2. $g\lambda \neq \lambda$ for every $g \notin H$.

Here, $g\lambda : H \to \mathbb{C}^\times$ is defined by $g\lambda(h) := \lambda(g^{-1}hg)$ for any $h \in H$. It is clear that λ is irreducible, so it remains to prove (2), which is the result of direct computation using the expression for λ.

We proceed with the following known facts. Firstly, Q has four 1-dimensional (denoted by $\gamma_1, \ldots, \gamma_4$) and one 2-dimensional irreducible representation (denoted by ϕ). Moreover, direct computation shows that $\nu_2(\phi) = -1$. In addition, by dimension counting, χ is the unique 8-dimensional representation of G with $\nu_2(\chi) = 1$.

Since $\text{Rep}(Q)$ is a braided (symmetric) spherical fusion full subcategory of $\text{Rep}(G)$, any irreducible representation of Q can be viewed as an irreducible representation of G by pre-composing the quotient map $G \twoheadrightarrow Q$. In addition, for any $X \in \text{Rep}(Q)$, its dimension and its second Frobenius-Schur indicator $\nu_2(X)$ computed in $\text{Rep}(Q)$ is the same as $\nu_2(X)$ computed in $\text{Rep}(G)$. More precisely, let $\xi \in \text{Rep}(Q)$, by definition, $\nu_2(\xi)$ in $\text{Rep}(Q)$ and in $\text{Rep}(G)$ are given respectively as

\[
\nu_2(\xi)_{\text{Rep}(Q)} = \frac{1}{|Q|} \sum_{q \in Q} \text{char}(\xi)(q^2),
\]
and

\[
\nu_2(\xi)_{\text{Rep}(G)} = \frac{1}{|G|} \sum_{g \in G} \text{char}(\xi)(g^2).
\]

By definition, when we view ξ as in $\text{Rep}(G)$, we have $\xi(gh) = \xi(g)$ for any $g \in G$ and $h \in H$. Therefore, by the fact that $Q \cong G/H$, we have

\[
\nu_2(\xi)_{\text{Rep}(G)} = \frac{1}{|G|} \sum_{g \in G/H} \text{char}(\xi)(g^2)|H| = \frac{1}{|Q|} \sum_{q \in Q} \text{char}(\xi)(q^2) = \nu_2(\xi)_{\text{Rep}(Q)}.
\]

Similar argument holds for $\text{Rep}(D(G))$. More precisely, since both $\text{Rep}(Q)$ and $\text{Rep}(G)$ are braided (symmetric) spherical fusion full subcategory of $\text{Rep}(D(G))$, for any $X \in \text{Rep}(Q)$, and for any $Y \in \text{Rep}(G)$, we have

\[
\nu_2(X)_{\text{Rep}(Q)} = \nu_2(X)_{\text{Rep}(D(G))}
\]
and

\[
\nu_2(Y)_{\text{Rep}(G)} = \nu_2(Y)_{\text{Rep}(D(G))}.
\]

In particular, we have

1. $\nu_2(\phi)_{\text{Rep}(D(G))} = \nu_2(\phi)_{\text{Rep}(Q)} = -1$.

Let ρ_G be the regular representation of G. It is standard that

$$\rho_G = \bigoplus_{j=1}^{4} \gamma_j \oplus 2\phi \oplus 8\chi.$$

Theorem 1. The 2-dimensional representation ϕ is a constituent of $\chi \otimes \chi$ in $\text{Rep}(G)$.

Proof. It is well-known (or see Appendix) that

$$\rho_G \otimes \phi = \rho_G^{\oplus \text{deg}(\phi)} = \rho_G \oplus \rho_G = 2 \bigoplus_{j=1}^{4} \gamma_j \oplus 4\phi \oplus 16\chi.$$

Decomposing the left hand side, we have

$$\rho_G \otimes \phi = 4\phi \oplus 2 \bigoplus_{j=1}^{4} \gamma_j \oplus (8\chi \otimes \phi),$$

where the first two summands are derived from the familiar representation theory of Q. Comparing both sides of Equation (2), we have

$$(3) \quad \chi \otimes \phi = 2\chi.$$

In other words, $\text{Hom}_{\text{Rep}(G)}(\chi \otimes \phi, \chi) \neq 0$, which implies that $\text{Hom}_{\text{Rep}(G)}(\chi \otimes \chi, \phi) \neq 0$, as both χ and ϕ are self-dual. \square

As pointed out before, we can view χ and ϕ as objects in the modular category $\text{Rep}(D(G))$. Since $\text{Rep}(G)$ is a fusion full subcategory of $\text{Rep}(D(G))$, we will still have $N_{\chi,\chi}^\phi = 2$ in $\text{Rep}(D(G))$. Together with Equation (1) and Theorem 1 we have

Theorem 2. In the modular category $\text{Rep}(D(G))$, there exist irreducible representations $\chi, \phi \in \text{Irr}(\text{Rep}(D(G)))$ such that $N_{\chi,\chi}^\phi = N_{\chi,\chi}^{\phi^*} = 2$ and $\nu_2(\phi) = -1$. \square

The above theorem nullifies the positivity conjecture.

Remark 2. Equation (3) implies that ν_2 is not a fusion character. Indeed, by definition and the linearity of ν_2, we have

$$\nu_2(\chi \otimes \phi) = \nu_2(2\chi) = 2\nu_2(\chi) = 2,$$

while

$$\nu_2(\chi) \times \nu_2(\phi) = 1 \times (-1) = -1.$$

3. GAP IMPLEMENTATION

In fact, we can identify G with $\text{PSU}(3, 2)$ whose GAP ID is $\text{SmallGroup}(72, 41)$. We use the following code in GAP to get the information we need.

```gap
G:=SmallGroup(72,41);;
Irr(G);
```

The output is
We can see that among the 6 irreducible representations, there is a unique 8-dimensional representation, which is denoted by χ in the previous section.

Next, we compute the second Frobenius-Schur indicator of the above irreducible representations

$\text{Indicator}(\text{CharacterTable}(G), 2)$;

The output is

$[1, 1, 1, 1, -1, 1]$.

This means the 2-dimensional irreducible representation of G has -1 as its ν_2.

Finally, we decompose $\chi \otimes \chi$ into irreducible representations

$\text{ConstituentsOfCharacter}(\text{Irr}(G)[6] \ast \text{Irr}(G)[6])$;

The output is

$[\text{Character}(\text{CharacterTable}(G), [1, -1, 1, 1, -1, 1]),$
$\text{Character}(\text{CharacterTable}(G), [1, -1, 1, 1, 1, -1]),$
$\text{Character}(\text{CharacterTable}(G), [1, 1, 1, -1, 1, -1]),$
$\text{Character}(\text{CharacterTable}(G), [1, 1, 1, 1, 1, 1]),$
$\text{Character}(\text{CharacterTable}(G), [2, 0, 0, -2, 2, 0]),$
$\text{Character}(\text{CharacterTable}(G), [8, 0, 0, 0, -1, 0])]$.

We can see that the 2-dimensional irreducible representation of G is indeed a constituent of $\chi \otimes \chi$.

Appendix

For any braided spherical fusion category C, let $\text{Irr}(C)$ denote the set of isomorphism class of simple objects, and let d_X be the categorical dimension of $X \in C$. Let $R := \sum_{X \in \text{Irr}(C)} d_X X$ be the regular element in the Grothendieck algebra of C.

Lemma 1. For any $V \in C$, we have the equality in the Grothendieck algebra of C

$RV = d_V R$.

Proof:

\[RV = \left(\sum_{X \in \text{Irr}(\mathcal{C})} d_X X \right) V \]
\[= \sum_{X \in \text{Irr}(\mathcal{C})} d_X \sum_{Y \in \text{Irr}(\mathcal{C})} N_{X,Y}^V Y \]
\[= \sum_{Y \in \text{Irr}(\mathcal{C})} Y \sum_{X \in \text{Irr}(\mathcal{C})} N_{X,Y}^V d_X \]
\[= \sum_{Y \in \text{Irr}(\mathcal{C})} d_Y d_Y Y = d_Y R. \]

\[\square \]

References

