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Universal Coefficient Theorem for Cohomology

We present a direct proof of the universal coefficient theorem for cohomol-
ogy. It is essentially dual to the proof for homology.

TrEOREM 1 Given a chain complex ' in which each (), is free abelian, and a
coefficient group (7, we have for each n the natural short exact sequence

0~ BExt(H,_1(C),G) — H*Hom(C,G)) — Hom{H,(C),G) — 0,  (2)
which splits (but there is no natural splitting).
In particular, this applies immediately to singular cohomology.
THEOREM 3 Given a pair of spaces (X, A) and a coefficient group G, we have for
each m the natural short exact sequence
0 — Ext(H,1{X,A),G) — H" X, A; Q) — Hom(H,(X,A),G} — 0,
which splits (but there is no natural splitting). C

We shall derive diagram (2) as an instance of the following elementary result.

LEMMA 4 Given homomorphisms f: K — L and g: L — M of abelian groups, with
a splitting homomorphism s: M — L such that so g = idy, we have a split short exact
sequence

0 — Coker f <, Coker(go f) — Cokerg — (. (5)

Proof We write each cokernel, such as Coker f, as L/ Im f etc. Then the sequence
{5) appears as the upper edge of the following diagram; we shall identify it with
the bottom row, which is the canonical short exact sequence formed from the triple
Im{gef) CImg C M.

q L
Tm f
N |
Img c. M M

"Tm(gef) Tmigef)  Img |

Since g(Im f) = Im(gsf), g induces a homomorphism ¢'. Since s(Im(gef)) =
Im(segof) =1Im f, s: M — L induces a homomorphism & which splits ¢', s’ o g’ = id;
thus ¢’ is injective. But g’ clearly factors through a surjective homomorphism
L/Im f — Img/Im{gef), which is therefore an isomorphism. 0

Preliminaries We consider a chain complex ' as in Theorem 1. We adopt the
usual notation: Z, for the group of n-cycles, B, for the group of n-boundaries, and
H, = H,(C) = Z,/B,. The key idea in our proof of Theorem 1 is to express
8: ¢, — C,_1 as the composite

C, Ch

8 Cy — = ey — = By = Zny =5 Coy. (6)
™ n
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2 Universal Coefficient Theorem for Cohomology

By definition, we have the short exact sequence

0 — B, - 2, — H, — 0 G

for any n. As B, and Z, are subgroups of the free abelian group C,, and therefore
free abelian, we recognize (7) as a free resolution of H,.
Also by definition, from diagram (6) we have the short exact sequence

O_’ZH'L)CnLBnMI—”& (8)
which splits because By, is free abelian. Using (7) and (8), we may rewrite the
canonical short exact sequence

0 — Zn,/Bn < Gn/Bn - Gn/Zn — 0
a8 .
0— Hy, — Co/By 2+ By g~ D, (9)
where 9 is a quotient of 8. As B,_; is free abelian, this short exact sequence also
splits, and we may choose a splitting homomorphism s: B,y — C,,/B,.

Froof of Theorem 1 We dualize diagram (6) and the above short exact sequences
to form the following diagram of exact sequences. To simplify, we write A* for the
G-dual Hom({A, G) of any abelian group A.

9
Hy
B: < oy On\ ‘
» < 7 0 0 (10)
04— Ext{H,1,G) —— B, \ Zi, L
0 M}

Both vertical sequences are exact, since (9) and (8) split. The upper horizontal
sequence is exact, because the functor Hom{—, &) takes cokernels to kernels, The
lower horizontal sequence is exact, as it defines Ext(H,—,,G}.

As usunal, we write Z™ for the n-cocycles, etc., in the cochain complex C*. Diagram
(10} shows that Z™ ' = Ker[8*: C*_; — C*| = Ker[C¥_; — B} ,;]. Onreplacing n—1
by n, we see that Z" = Ker{C} — B} = (C,/B,)*. Also, B" = Im§* > Im[Z*_| —
(Crn/Bp)*], so that H™ = Z"/B™ = Coker[Z}_, — (Cn/Bn)*].

We now apply Lemma 4 with K = 2} |, L= B}_; and M = {C,,/B,)*, and use
the splitting s*: M — L, Diagram (10) identifies Coker|K — L] with Ext{H,_1,G)
and Coker[L — M| with H}. These identifications reduce the split short exact
sequence (5) to the desired (2). O
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