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QUANTUM INVERSE SCATTERING METHOD AND

(SUPER)CONFORMAL FIELD THEORY

P. P. Kulish∗ and A. M. Zeitlin†

We consider the possibility of using the quantum inverse scattering method to study the superconformal

field theory and its integrable perturbations. The classical limit of the considered constructions is based

on the ôsp(1|2) super-KdV hierarchy. We introduce the quantum counterpart of the monodromy matrix

corresponding to the linear problem associated with the L-operator and use the explicit form of the

irreducible representations of ôspq(1|2) to obtain the “fusion relations” for the transfer matrices (i.e., the

traces of the monodromy matrices in different representations).
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1. Introduction

1.1. Quantum inverse scattering method. The quantum inverse scattering method (QISM)
appeared in the works of the Leningrad school of mathematical physics in the late 1970s [1]. It arose as
a synthesis of two approaches to integrable systems. The first approach, the so-called inverse scattering
method (ISM), was discovered in 1967 [2] but has deep roots in the works on classical mechanics in the 19th
century; the second approach was applied to problems in statistical physics on a lattice and in quantum
mechanics [3] up to the end of the 1970s. The ISM has allowed finding classes (hierarchies) of integrable
two-dimensional nonlinear evolution equations and obtaining their solutions. A few years after the ISM was
discovered, the algebraic structure of this method was understood [4], and the Hamiltonian interpretation
was obtained [5]. It turned out that the Hamiltonian systems corresponding to these equations are fully
integrable and have infinitely many conservation laws. The algebraic structure of the ISM allows considering
the integrable nonlinear equation under study as a compatibility condition of the system of linear equations

∂xΨ = U(x, t, λ)Ψ, (1)

∂tΨ = V (x, t, λ)Ψ, (2)

the so-called zero-curvature condition [6]

∂xV − ∂tU + [V, U ] = 0, (3)

where the functions U and V take values in some Lie algebra g. The Hamiltonian interpretation [5]
allowed considering the transformation to the scattering data of linear problem (1) as a transformation
to “action–angle” variables, in terms of which the problem reduces to a system of linear equations. This
transformation and its inverse give the solution of the Cauchy problem. The corresponding family of the
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integrals of motion can be extracted from the spectral-parameter expansion of the trace of the monodromy
matrix of Eq. (1). The Poisson brackets of elements of the monodromy matrix T (λ) for different values of
the spectral parameter often have the form

{T (λ)⊗, T (µ)} = [r(λµ−1), T (λ)⊗ T (µ)], (4)

where r is a classical r-matrix [6]. With this relation, it can be easily shown that {t(λ), t(µ)} = 0, where
t(λ) = trT (λ), which is the integrability condition ensuring the existence of an involutive family of integrals
of motion. After quantization, (4) transforms into the RTT relation

R(λµ−1)(T (q)(λ) ⊗ I)(I ⊗ T (q)(µ)) = (I ⊗ T (q)(µ))(T (q)(λ) ⊗ I)R(λµ−1), (5)

where R is a quantum R-matrix [7], [8]. It can be easily shown that [t(q)(λ), t(q)(µ)] = 0, as was the case
at the classical level; in other words, we obtain quantum integrability, the existence of pairwise commuting
operators. Relation (5) is the starting point of the already mentioned second approach to the theory of
integrable systems. Using the RTT relation with different methods, for example, the algebraic Bethe ansatz,
we can find the spectrum of the transfer matrix t(q)(λ) and different correlators. To obtain (5) for two-
dimensional field theory systems, it is often necessary to consider them on a lattice. But for some systems,
such as the KdV equation, it is possible to construct the RTT relation and find the explicit form of the
monodromy matrix using the continuum field theory [9]–[11]. The KdV equation also allows quantization
in another way, involving the boson–fermion correspondence [12].

In this paper, we extend this class of systems by including a supersymmetric generalization of the KdV
equation [13] and show the peculiarities appearing in the quantization in terms of a continuum field theory
of supersymmetric KdV hierarchies. A preliminary version of this paper has been published [14].

1.2. (Super)conformal field theory, its perturbations, and the QISM. In 1970, it was hy-
pothesized [15] that the field theory corresponding to a fixed (critical) point of the renormalization group
has not only scale but also conformal invariance. In two dimensions, because 2d conformal symmetry is
infinite-dimensional and is related to the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn,−m, (6)

it is possible to classify all the fields in the theory and calculate correlation functions.
Perturbations usually break the conformal symmetry and take the system out of the critical point.

But perturbations of the special type called “integrable” [16] nevertheless preserve the infinite involutive
algebra of the integrals of motion and thus lead to an integrable theory. In [9]–[11], it was shown that
in this case, the problem can be solved using the QISM in terms of continuous fields. The following was
proposed: first use the conformal symmetry to build basic structures of the QISM at the critical point and
then study the perturbed theory using the QISM. Our object of study is a model based on a supersymmetric
generalization of conformal symmetry (superconformal symmetry) [17], [18]. We use its properties to build
the quantum monodromy matrix, the RTT relation, and fusion rules for the transfer matrices in different
representations.

As a classical limit of this quantum model, we consider the theory of the ôsp(1|2)-supersymmetric
KdV (super-KdV) equation [13]. We introduce two equivalent L-operators, the Miura transform and the
Poisson brackets corresponding to the Drinfeld–Sokolov reduction of the affine superalgebra ôsp(1|2), and
also construct the associated monodromy matrix. Its supertrace is the generating function for both local
and nonlocal integrals of motion that are in involution with respect to the Poisson brackets. Using the
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monodromy matrix, we then introduce the auxiliary matrix L(λ), whose Poisson brackets have form (4) for
different values of the spectral parameter.

After these necessary preparations, we proceed to the quantum theory (Sec. 3). We give a quantum
version of the Miura transformation, a free-field representation of the superconformal algebra [17], [18], and
introduce the vertex operators necessary for constructing the quantum monodromy matrix.

In the quantum case, the algebraic structure of the monodromy matrix is described in terms of the
affine superalgebra ôspq(1|2). Its representations are constructed in Sec. 4. We then introduce the quantum
counterpart of the auxiliary L-matrix. It turns out that one term is absent from the P-exponential in the
quantum case, while it is present in both the monodromy matrix and the auxiliary matrix in the classical
case. Quantum L-matrices satisfy the RTT relation, thus providing the integrability in the quantum
case. Considering the monodromy matrix in different representations of ôspq(1|2), we obtain the functional
relations (fusion relations) for their supertraces, the “transfer matrices.” In the cases where the deformation
parameter is rational, which correspond to the minimal models of (super)conformal field theory, the fusion
relations become a closed system of equations, which, following the conjecture in [9], can be used to find
the complete set of the eigenvalues of transfer matrices. Moreover, we believe that the equations in that
system can be transformed into the thermodynamic Bethe ansatz equations [19].

2. A review of the classical super-KdV theory

The quantization of the Drinfeld–Sokolov hierarchies of the KdV type related to the affine algebras
A

(1)
1 , A(2)

2 , and A
(1)
2 was given in [9]–[11]. In the classical limit, our quantum model gives the super-KdV

hierarchy [13] related to the affine superalgebra ôsp(1|2). The supermatrix L-operator corresponding to the
super-KdV theory is given by

LF = Du,θ −Du,θΨh− (iv+

√
λ− θλX−), (7)

where Du,θ = ∂θ + θ∂u is a superderivative, the variable u lies on a cylinder of circumference 2π, θ is a
Grassmann variable, Ψ(u, θ) = φ(u) − iθξ(u)/

√
2 is a bosonic superfield, and h, v+, v−, X−, and X+ are

generators of osp(1|2) (see [20] for more information):

[h,X±] = ±2X±, [h, v±] = ±v±, [X+, X−] = h,

[v±, v±] = ±2X±, [v+, v−] = −h, [X±, v∓] = v±, [X±, v±] = 0.
(8)

Here, [ · , · ] denotes the supercommutator, [a, b] = ab − (−1)p(a)p(b)ba, and the parity p is defined as
p(v±) = 1, p(X±) = 0, p(h) = 0. The “fermionic” operator LF considered together with the linear problem
LFχ(u, θ) = 0 is equivalent to the “bosonic” one:

LB = ∂u − φ′(u)h−
√

λ

2
ξ(u)v+ − λ(X+ +X−). (9)

The fields φ and ξ satisfy the boundary conditions

φ(u + 2π) = φ(u) + 2πip, ξ(u+ 2π) = ±ξ(u), (10)

where the plus and minus signs respectively correspond to the so-called Ramond (R) and Neveu–Schwarz
(NS) sectors of the model. The Poisson brackets given by the Drinfeld–Sokolov construction are

{ξ(u), ξ(v)} = −2δ(u− v), {φ(u), φ(v)} =
1
2
ε(u− v). (11)
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Written in the Miura form, L-operators (7) and (9) correspond to the super-mKdV hierarchy. Making a
gauge transformation to proceed to the super-KdV L-operator, we obtain the two fields

U(u) = −φ′′(u)− φ′ 2(u)− 1
2
ξ(u)ξ′(u),

α(u) = ξ′(u) + ξ(u)φ′(u),
(12)

which generate the superconformal algebra under the Poisson brackets:

{U(u), U(v)} = δ′′′(u− v) + 2U ′(u)δ(u− v) + 4U(u)δ′(u− v),

{U(u), α(v)} = 3α(u)δ′(u− v) + α′(u)δ(u− v),

{α(u), α(v)} = 2δ′′(u− v) + 2U(u)δ(u− v).

(13)

These brackets describe the second Hamiltonian structure of the super-KdV hierarchy. We can obtain an
evolution equation by taking one of the corresponding infinite set of local integrals of motion

I
(cl)
1 =

∫
U(u) du,

I
(cl)
3 =

∫ (
U2(u)
2

+ α(u)α′(u)
)

du,

I
(cl)
5 =

∫ (
(U ′)2(u)− 2U3(u) + 8α′(u)α′′(u) + 12α′(u)α(u)U(u)

)
du,

...

(14)

(they can be obtained from the λ-expansion of the supertrace of the monodromy matrix; see below). These
integrals of motion form an involutive set with respect to the Poisson brackets,

{I(cl)
2k−1, I

(cl)
2l−1} = 0,

and I
(cl)
3 leads to the super-KdV equation [13]

Ut = −Uuuu − 6UUu − 6ααuu,

αt = −4αuuu − 6Uαu − 3Uuα.
(15)

We now consider the “bosonic” linear problem πs(LB)χ(u) = 0, where πs denotes the irreducible
representation of osp(1|2) labeled by an integer s ≥ 0 [20]. We can write the solution of this problem as

χ(u) = πs

(
eφ(u)h Pexp

∫ u

0

du′
(√

λ

2
ξ(u′)v+e−φ(u′) + λ(X+e−2φ(u′) +X−e2φ(u′))

))
χ0,

where Pexp denotes the P-ordered exponential and χ0 ∈ C2s+1 is a constant vector. This can be rewritten
in a more general form as

χ(u) = πs(λ)
(
e−φ(u)hα0 Pexp

∫ u

0

du′ (ξ(u′)e−φ(u′)eα + e−2φ(u′)2e2
α + e2φ(u′)eα0

))
χ0,
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where eα, eα0 , and hα0 are those of the Chevalley generators of ôsp(1|2) (see [21]) that respectively coincide
with

√
λ/2v+, λX−, and −h in the evaluation representations πs(λ). The associated monodromy matrix

then has the form

Ms(λ) = πs

(
e−2πiphα0 Pexp

∫ 2π

0

du′ (ξ(u′)e−φ(u′)eα + e−2φ(u′)2e2
α + e2φ(u′)eα0

))
.

Following [9]–[11], we introduce the auxiliary matrices

πs(λ)(L) = Ls(λ) = πs(λ)(eπiphα0 )Ms(λ). (16)

They satisfy Poisson-bracket algebra (4),

{Ls(λ) ⊗, Ls′ (µ)} = [rss′(λµ−1),Ls(λ) ⊗ Ls′(µ)], (17)

where rss′(λµ−1) = πs(λ) ⊗ πs′(µ)(r) is the classical trigonometric ôsp(1|2) r-matrix [22] taken in the
corresponding representations:

r(λµ−1) =
1
2
λµ−1 + λ−1µ

λµ−1 − λ−1µ
h⊗ h+

2
λµ−1 − λ−1µ

(X+ ⊗X− +X− ⊗X+) +

+
1

(λµ−1 − λ−1µ)

(√
µ

λ
v+ ⊗ v− −

√
λ

µ
v− ⊗ v+

)
. (18)

From the Poisson brackets for Ls(λ), we find that the traces of the monodromy matrices commute with
respect to the Poisson brackets: {ts(λ), ts′ (µ)} = 0. Expanding log(t1(λ)) in a series in λ−1, we can see
that the coefficients in this expansion are local integrals of motion, as noted above.

3. Free-field representation of the superconformal algebra and vertex
operators

To introduce quantum analogues of classical objects such as the monodromy matrix, we start from a
quantum version of the Miura transformation (12), the so-called free-field representation of the supercon-
formal algebra [17],

− β2T (u) = :φ′ 2(u): +
(
1− β2

2

)
φ′′(u) +

1
2
:ξξ′(u): +

εβ2

16
,

i1/2β2

√
2

G(u) = φ′ξ(u) +
(
1− β2

2

)
ξ′(u),

(19)

where

φ(u) = iQ+ iPu+
∑

n

a−n

n
einu, ξ(u) = i−1/2

∑
n

ξne
−inu,

[Q,P ] =
i

2
β2, [an, am] =

β2

2
nδn+m,0, {ξn, ξm} = β2δn+m,0.

(20)

The parameter β2 plays the role of a semiclassical parameter (Planck’s constant). We recall that there are
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two types of boundary conditions for ξ: ξ(u+2π) = ±ξ(u). The plus sign corresponds to the R sector, the
case where ξ contains only integer modes; the minus sign corresponds to the NS sector, the case where ξ

contains only half-integer modes. The variable ε in (19) is equal to zero in the R case and to one in the NS
case.

We can expand T (u) and G(u) in modes as

T (u) =
∑

n

L−ne
inu − ĉ

16
, G(u) =

∑
n

G−ne
inu, (21)

where the central charge is ĉ = 5− 2(β2/2 + 2/β2) and Ln and Gm generate the superconformal algebra

[Ln, Lm] = (n−m)Ln+m +
ĉ

8
(n3 − n)δn,−m,

[Ln, Gm] =
(
n

2
−m

)
Gm+n,

[Gn, Gm] = 2Ln+m + δn,−m
ĉ

2

(
n2 − 1

4

)
.

(22)

In the classical limit ĉ → −∞ (or, equivalently, β2 → 0), the substitution

T (u) → − ĉ

4
U(u), G(u) → − ĉ

2
√
2i

α(u), [ · , · ] → 4π
iĉ

{ · , · }

reduces the above algebra to the Poisson-bracket algebra of the super-KdV theory.
Let Fp be the Fock representation with the vacuum (highest-weight) vector |p〉. The vector |p〉 is

determined by the eigenvalue of P and the annihilation condition for positive-mode generators:

P |p〉 = p|p〉, an|p〉 = 0, ξm|p〉 = 0, n,m > 0. (23)

In the R sector, the highest weight becomes doubly degenerate because the zero mode ξ0 is present, i.e.,
there are two ground states |p,+〉 and |p,−〉 such that |p,+〉 = ξ0|p,−〉. Using free-field representation (19)
of the superconformal algebra, we can find that for general ĉ and p, Fp is isomorphic to the super-Virasoro
module with the highest-weight vector |p〉 in the NS sector,

L0|p〉 = ∆NS|p〉, ∆NS =
(

p

β

)2

+
ĉ− 1
16

, (24)

and to the module with two highest-weight vectors in the R sector,

L0|p,±〉 = ∆R|p,±〉, ∆R =
(

p

β

)2

+
ĉ

16
,

|p,+〉 = β2

√
2p

G0|p,−〉.
(25)
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Considered as a super-Virasoro module, the space Fp decomposes into the sum of finite-dimensional sub-
spaces determined by the value of L0:

Fp =
∞⊕

k=0

F (k)
p , L0F

(k)
p = (∆ + k)F (k)

p . (26)

The quantum versions of local integrals of motion should act invariantly on the subspaces F
(k)
p . Therefore,

the problem of diagonalizing integrals of motion in the infinite subspace Fp reduces to a finite problem in
each subspace F

(k)
p , but this problem rapidly becomes very complex for large k. We also note that in the R

sector, G0 does not commute with integrals of motion (even classically), and integrals of motion therefore
mix |p,+〉 and |p,−〉.

Finally, we introduce another useful notion, the vertex operator. We need two types of them, “bosonic”
and “fermionic,”

V
(a)
B =

∫
dθ θ:eaΨ:, V

(b)
F =

∫
dθ :ebΨ:, (27)

where Ψ(u, θ) = φ(u)− iθξ(u)/
√
2 is a superfield, and hence

V
(a)
B = :eaφ:, V

(b)
F = − ib√

2
ξ:ebφ:, (28)

where normal ordering means that

:ecφ(u): = exp
(
c

∞∑
n=1

a−n

n
einu

)
exp(ci(Q+ Pu)) exp

(
−c

∞∑
n=1

an

n
e−inu

)
. (29)

4. Quantum monodromy matrix and fusion relations

In this section, we construct quantum versions of monodromy matrices, the operators Ls and ts. The
classical monodromy matrix is based on the ôsp(1|2) affine Lie algebra. In the quantum case, the underlying
algebra is the quantum ôspq(1|2) [21] with q = eiπβ2

and the generators corresponding to the even root α0

and the odd root α:

[hγ , hγ′] = 0 (γ, γ′ = α, d, α0),

[eβ , eβ′] = δβ,−β′ [hβ] (β = α, α0),

[hd, e±α0 ] = ±e±α0, [hd, e±α] = 0,

[hα0 , e±α0 ] = ±2e±α0, [hα0 , e±α] = ∓e±α,

[hα, e±α] = ±1
2
e±α, [hα, e±α0 ] = ∓e±α0 ,

[[e±α, e±α0 ]q, e±α0 ]q = 0,

[e±α, [e±α, [e±α[e±α, [e±α, e±α0 ]q]q]q]q]q = 0.

(30)

Here, [ · , · ]q is the super q-commutator, [ea, eb]q = eaeb − q(a,b)(−1)p(a)p(b)ebea, with the parity p defined
as p(hα0) = 0, p(hα) = 0, p(e±α0) = 0, p(e±α) = 1. Also, as usual, [hβ ] = (qhβ − q−hβ )/(q − q−1). The
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finite-dimensional ôspq(1|2)-representations π
(q)
s (λ) can be characterized by an integer number s and are

explicitly given by

hα0 |j,m〉 = 2m|j,m〉, eα0 |j,m〉 = λ
√
[j −m][j +m+ 1]|j,m+ 1〉,

e−α0 |j,m〉 = λ−1
√
[j +m][j −m+ 1]|j,m− 1〉,

eα|j,m〉 =
√
λ
(
(−1)−2j

√
α(j)[j −m+ 1]|j + 1/2,m− 1/2〉+

+
√

α(j − 1/2)[j +m]|j − 1/2,m− 1/2〉
)
,

e−α|j,m〉 = (
√
λ )−1

(
−
√

α(j)[j +m+ 1]|j + 1/2,m+ 1/2〉 −

− (−1)2j
√

α(j − 1/2)[j −m]|j − 1/2,m+ 1/2〉
)
,

hα0 = −2hα, hd =
1
2
λ

d

dλ
+

1
4
hα0 ,

(31)

where j = 0, 1/2, . . . , s/2 and m = −j,−j + 1, . . . , j. The normalization coefficients

α(j) =
[j + 1][j + 1/2][1/4]
[2j + 2][2j + 1][1/2]

(
(−1)s−2j+1 [s+ 3/2]

[s/2 + 3/4]
+

[j + 3/2]
[j/2 + 3/4]

)
are defined by the recursive relation

α(j)
[2j + 2]
[j + 1]

+ α

(
j − 1

2

)
[2j]
[j]

= 1, α

(
s

2

)
= 0. (32)

It is easy to see that in the classical limit q → 1, α(s/2 − k) = 0 if k < s/2 is a nonnegative integer and
α(s/2− k) = 1/2 if k < s/2 is a nonnegative half-integer. Using this fact, we can find that in the classical
limit, this representation becomes a direct sum of finite-dimensional irreducible representations of ôsp(1|2):

π(1)
s (λ) =

[s/2]⊕
k=0

πs−2k(λ). (33)

In this sum, k ranges integer numbers. We note that the structure of irreducible finite-dimensional repre-
sentations of ôspq(1|2) is similar to that of those of (A(2)

2 )q [11]. This is a consequence of the coincidence
of their Cartan matrices.

After these preparations, we are ready to introduce the quantum counterparts of the Ls operators:

L(q)
s = π(q)

s (λ)(L(q)) = π(q)
s

(
e−iπPhα0 Pexp

(∫ 2π

0

(
:e2φ(u): eα0 + ξ(u) :e−φ(u): eα

)
du

))
.

We see that one term is missing in the P-exponential in comparison with the classical case (16). The terms
corresponding to composite roots also disappear for general super-KdV hierarchies (we will return to this
elsewhere).

Analyzing the singularity properties of the integrands in the P-exponential of L(q)
s (λ), we can find that

the integrals converge for ĉ in the interval (−∞, 0). Using regularization, we can continue the P-exponential
to a wider region of ĉ.
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We now prove that the L(q) coincide with L in the classical limit. We first analyze the products of the
operators involved in the P-exponential. The product of two fermion operators can be written as

ξ(u)ξ(u′) = :ξ(u)ξ(u′):− iβ2 e−κi(u−u′)/2

ei(u−u′)/2 − e−i(u−u′)/2
, (34)

where κ = 0 in the NS sector and κ = 1 in the R sector. For vertex operators, the corresponding operator
product is

:eaφ(u): :ebφ(u′): =
(
ei(u−u′)/2 − e−i(u−u′)/2

)abβ2/2:eaφ(u)+bφ(u′):, (35)

where

:eaφ(u)+bφ(u′): = exp
(
a

∞∑
n=1

a−n

n
einu + b

∞∑
n=1

a−n

n
einu′

)
×

× exp
(
ai(Q+ Pu) + bi(Q+ Pu′)

)
exp
(
−a

∞∑
n=1

an

n
e−inu − b

∞∑
n=1

an

n
e−inu′

)
. (36)

It is useful to rewrite these products with the singular part isolated,

ξ(u)ξ(u′) = − iβ2

iu− iu′ +
∞∑

k=1

ck(u)(iu− iu′)k, (37)

:eaφ(u): :ebφ(u′): = (iu− iu′)abβ2/2

(
:e(a+b)φ(u): +

∞∑
k=1

dk(u)(iu− iu′)k
)
, (38)

where ck(u) and dk(u) are operator-valued functions of u. We now return to the L(q)(λ) operator, which
we can express as

L(q) = e−iπPhα0 lim
N→∞

N∏
m=1

τ (q)
m , (39)

where

τ (q)
m = Pexp

∫ xm

xm−1

K(u) du, K(u) ≡ :e2φ(u): eα0 + ξ(u) :e−φ(u): eα.

Here, we divide the interval [0, 2π] into intervals [xm, xm+1] with xm+1−xm = ∆ = 2π/N . We now consider
the behavior of the first two iterations as β2 → 0:

τ (q)
m = 1 +

∫ xm

xm−1

K(u) du+
∫ xm

xm−1

K(u) du
∫ u

xm−1

K(u′) du′ +O(∆2). (40)

It turns out that in the limit as β2 → 0, the second-iteration terms can contribute to the first iteration. To
see this, we consider the expression that results from the second iteration:

−
∫ xm

xm−1

du ξ(u)
∫ u

xm−1

du′ ξ(u′) :e−φ(u): :e−φ(u′):e2
α. (41)

Using the above operator products and seeking the terms of the order ∆1+β2
(only these can give the

first-iteration terms in the β2 → 0 limit), we find that their contribution is

iβ2

∫ xm

xm−1

du

∫ u

xm−1

du′ (iu− iu′)β
2/2−1 :e−2φ(u): e2

α = 2
∫ xm

xm−1

du :e−2φ(u):(iu− ixm−1)β
2/2e2

α. (42)
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Considering this in the classical limit, we recognize the familiar terms from L:

τ (1)
m = 1 +

∫ xm

xm−1

du
(
ξ(u)e−φ(u)eα + e2φ(u)eα0 + e−2φ(u)2e2

α

)
+O(∆2). (43)

Collecting all τ (1)
m , we obtain the desired result

L(1) = L. (44)

Recalling the structure of the ôspq(1|2) representations, we obtain

L(1)
s (λ) =

[s/2]∑
k=0

Ls−2k(λ). (45)

It follows from the properties of the quantum R-matrix [7] that R∆(L(q)) = ∆op(L(q))R, where ∆
and ∆op are the respective coproduct and opposite coproduct of ôspq(1|2) [21]. Factoring ∆(L(q)) and
∆op(L(q)) according to the properties of vertex operators and the P-exponential, we obtain the so-called
RTT relation [7], [8]

Rss′(λµ−1)(L(q)
s (λ)⊗ I)(I ⊗ L(q)

s′ (µ)) = (I ⊗ L(q)
s′ (µ))(L(q)

s (λ) ⊗ I)Rss′(λµ−1), (46)

where Rss′ is the trigonometric solution of the corresponding Yang–Baxter equation [22], which acts in the
space πs(λ)⊗ πs′(µ).

We now define the “transfer matrices,” which are quantum counterparts of the traces of monodromy
matrices:

t(q)
s (λ) = strπs(λ)(e−iπPhα0 L(q)

s ). (47)

According to the RTT relation, we obtain [
t(q)
s (λ), t(q)

s′ (µ)
]
= 0. (48)

For the first nontrivial representation (s = 1), it is quite easy to find the expression for t(q)
1 (λ) ≡ t(q)(λ),

t(q)(λ) = 1− 2 cos(2πiP ) +
∞∑

n=1

λ2nQn, (49)

where Qn are nonlocal integrals of motion.
As in (48), t(q)(λ) is the generating function for pairwise commuting nonlocal conservation laws:

[Qn, Qm] = 0. We also suppose that t(q)(λ) generates local integrals of motion in the classical case.
Using (48) again and expanding log(t(q)(λ)), we obtain[

Qn, I
(q)
2k−1

]
= 0,

[
I
(q)
2l−1, I

(q)
2k−1

]
= 0. (50)

The first few orders of the expansion of t(q)
s (λ) operators in λ2 yield the fusion relation

t(q)
s (q1/4λ)t(q)

s (q−1/4λ) = t(q)
s+1

(
q1/(2β2)λ

)
t(q)
s−1

(
q1/(2β2)λ

)
+ t(q)

s (λ). (51)

This result resembles the fusion relation for (A(2)
2 )q [11]. This correspondence should not seem extraordinary

because the representations of the corresponding algebras are very similar.

Note added in proof. New results concerning the quantization of another (super) generalization of
the KdV equation appeared in [23]–[25].
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