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Sigma-models and conformal invariance conditions

Sigma-models for string theory in curved spacetimes:

Let X : ¥ — M, where X is a compact Riemann surface (worldsheet)
and M is a Riemannian manifold (target space).
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Sigma-models and conformal invariance conditions

Sigma-models for string theory in curved spacetimes:

Let X : ¥ — M, where X is a compact Riemann surface (worldsheet)
and M is a Riemannian manifold (target space).

Action functional of sigma model:

1

S0 = 4k

/(G#,,(X)dX“ A xdX" + X*B)
b

where G is a metric on M, B is a 2-form on M.
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Sigma-models and conformal invariance conditions

Sigma-models for string theory in curved spacetimes:

Let X : ¥ — M, where X is a compact Riemann surface (worldsheet)
and M is a Riemannian manifold (target space).

Action functional of sigma model:

1

S0 = 4k

/(G#,,(X)dX“ A xdX" + X*B)
b

where G is a metric on M, B is a 2-form on M.

Symmetries:
i) conformal symmetry on the worldsheet,

ii) diffeomorphism symmetry and B — B + d\ on target space.
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On the quantum level one can add one more term to the action (due to
E. Fradkin and A. Tseytlin):

. / ®(X)R® (7)vols,
>

where function @ is called dilaton, -y is a metric on X.

Field Equations,
Homotopy
Gerstenhaber
Algebras and Courant
Algebroids

Anton Zeitlin

Sigma-models and
conformal invariance
conditions



On the quantum level one can add one more term to the action (due to
E. Fradkin and A. Tseytlin):

. / ®(X)R® (7)vols,
>

where function @ is called dilaton, -y is a metric on X.

In order to make sense of path integral
Z= /DX e S5

one has to apply renormalization procedure, so that G, B, ¢ depend on
certain cutoff parameter p, so that in general quantum theory is not
conformally invariant.
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Conformal invariance conditions

d G d B
MTMGH”:BIAV(G7B7¢7I7):O7 M@BHV:ﬁuu(G,B7¢7h):oy

d
e

& =p3%G,B,d,h) =0
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d G d B
— G = B8,,(G,B,d, h) =0, —B,, = 3,,(G,B,®,h) =0,
Mdu wr = By ) 'ud,u = By ) Sigma-models and
d s ot
— ¢ = G,B,®,h)=0
" B7(G,B,®, h)

at the level A° turn out to be Einstein Equations with 2-form field B
and dilaton &:

1
R = ZH;”HW —2V,V,0,
V*Huup — 2(V ®)Hy,, = 0,
1
4(V,0)> — 4V, V"d + R+ EHWHWP =0,

where 3-form H = dB, and R,., R are Ricci and scalar curvature
correspondingly.
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in a semi-infinite complex associated to Virasoro module of Hilbert
space of states for the "free” theory, asssociated to flat metric.



Field Equations,

Homotopy
In the early days of string theory: Algelc)z:t::gag:l:rant
Algebroids
Linearized Einstein Equations and their symmetries: Anton Zeitlin
(Gp,u = Nuv aF Suv, B,uu = b,uux ¢ = (;b)
Q"W(s,b,4) =0, W(s,b,¢) = V(s,b,¢) + Q"A conformal msarince

conditions

in a semi-infinite complex associated to Virasoro module of Hilbert
space of states for the "free” theory, asssociated to flat metric.

It was conjectured (A. Sen, B. Zwiebach,...) in the early 90s that

Einstein equations with h-corrections are Generalized Maurer-Cartan
(GMC) Equations:

1 1
QU+ SV, W]n + [V, W, W + .. = 0

1
V- W+ QA+ [W,A]s + E[W’W’A]" + .,

where [, -, ..., ]» operations, together with differential Q" satisfy certain
bilinear relations and generate L..-algebra (L stands for Lie).



In this talk:

Field Equations,
Homotopy
Gerstenhaber
Algebras and Courant
Algebroids

Anton Zeitlin

Outline

Sigma-models and
conformal invariance
conditions

Beltrami-Courant
differential

Vertex/Courant
algebroids,

Goo -algebras and
quasiclassical limit

Einstein Equations



In this talk:

i) Introducing complex structure:

Proper chiral "free action” — sheaves of vertex algebras/vertex
algebroids.
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In this talk:
. o Sigma-models and
i) Introducing complex structure: conformal invariance
conditions

Proper chiral "free action” — sheaves of vertex algebras/vertex
algebroids.

Metric, B-field — Beltrami-Courant differential.

ii) Vertex algebroids — Goo-algebras (G stands for Gerstenhaber).
Quasiclassical limit:
vertex algebroid — Courant algebroid, G, algebra is truncated.

iii) Einstein equations and their h-corrections via Generalized
Maurer-Cartan equation for L..-subalgebra of Goo ® Goo.
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Algeﬁfaft:n"gf’gsﬂram
We start from the action functional: WG
Anton Zeitlin
So = Lo, Lo=(pAdX)—(pAIX
o= 57 G0 o= (01 X) = (51 0X)
where p, p are sections of X*(Q19(M)) @ Q10(x),
X* (Q(O’l)(M)) ® Q(O’l)(Z) correspondingly. Beltrami Courant

Infinitesimal local symmetries:

Lo—)Lo-l—df

For holomorphic transformations we have:
X X = V(X)X = X = V(X),
pi = pi + 0iv¥pe, Py pr+ 0V pr
pi = pi — OX (Bkwi — dwr),  pr — pr — DX (Bgwr — Awp)-



First order version of sigma-model action

We start from the action functional:

1 x _
So = 2ﬂ_l_h/z[/0, Lo = (pANOX)— (pAOIX),

where p, p are sections of X*(Q19(M)) @ Q10(x),
X*(QOY(M)) @ QOV(X) correspondingly.

Infinitesimal local symmetries:

Lo—)Lo-l—df

For holomorphic transformations we have:
X X = V(X)X = X = V(X),
pi = pi + v pe,  pr— pr+ 0:v pr

pi = pi — OX*(Oewi — Gwi),  p7 — pr — OX* (gwr — Gwp).

Not invariant under general diffeomorphisms, i.e.

8Lo = —(dv, p ADX) + (0v, 5 A OX).
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It is necessary to add extra terms: Field Equations,

Homotopy
- Gerstenhaber
6Ly = —(p, p AN OX) — (fi, 0X A p), At e
where p € [(TCOM @ T*OV(M)), e I(TOIM @ T*HO(M)), so Anton Zeitlin

that: p > p—0v+..., i—> g —0V+....

Beltrami-Courant
differential



Field Equations,

It is necessary to add extra terms: i
= Gerstenhaber
6L, = —(p, p AN OX) — (B, 0X A p), T e

Anton Zeitlin

where p € [(TCOM @ T*OV(M)), e I(TOIM @ T*HO(M)), so
that: p > p—0v+..., i—> g —0V+....

Continuing the procedure:

< /_\ aX) <ﬁ N 6X> — ;?:;:Z:T{;O“ra"t

</L7 N OX > <M’8XAﬁ>_<b’8XA5X>a

hx

where
pi —
i i k i ka_ i in. k k i ik T
Hr — OV + VU Ok + v O s + ppOiv — purOkv' + s Okv,
b,—f—)
b + vkakb,-er v’zakb + b;z0; vt b0 v+ b,kpj Avk + b,J,u, o',



It is necessary to add extra terms: Field Equations,

Homotopy
= Gerstenhaber
6Ly = —(p, p AN OX) — (fi, 0X A p), At e
where L c [_( T(i’O)M ® T*(O’l)(M)), ﬁ c r(T(O,l)M ® T*(I,O)(M))’ ) Anton Zeitlin
that: p > p—0v+..., i—> g —0V+....
Continuing the procedure:
L= (pndX)— (pAOX) -

<,LL, N OX > <,U/,8X/\[3>_<b,(9X/\5X>,

where

pi —

i i k i k i i k k i ik T

Hr — OV + VU Ok + v O s + ppOiv — purOkv' + s Okv,

b,-f —

b + vkakb,-er v’zakb + b;z0; vt b0 v+ b,kpj Avk + b,J,u, o',
so that the transformations of X- and p- fields are:

X X = v"(X,)_()7 pi — pi + pka,-vk — pk,u;-(a,-vi— bj,;a,-v;(?Xj,

X' X = VI(X,X), By B+ Bronv" — Briif o' — b dv*aX.
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b,-f — b,-] + 3]0.),' = 8,'0.1] + ,U,J’;(aiwk = 8;(0.),') +
i (Orws — Bswy) + i (Bswr — Bjws)

Beltrami-Courant
differential

and

pi — pi — 8Xk(6kw,- — c’),wk) — 8Fwi8XF — ﬂiaf(JJgan,
pP; — P; — éx;(a;w,v - 8,7(4);) - 8,(4)75)( - pf;a,-ws[;‘X;.
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Similarly, for the 1-form transformation we obtain: Algebroids

Anton Zeitlin
b,-f — b,-] = 3]0.),' = 8,'0.1] = ,U,J’;(aiwk — Okwi) +
75 (Djws — swy) + [ij i (Dot — Orws)

d Beltrami-Courant
an differential

pi — pi — 8Xk(6kw,- — a/wk) — 6Fwi8XF — ﬂiaf(JJgan,
pP; — P; — éx;(a;w,v - 8,7(4);) - 8,W7(§Xr - pf;a,-ws[;‘X;.

For simplicity:

E=TM®T*M, E=8qE,
e=T179Mme TN, E=TCYMe VM.



Let M € (€ ® €), such that

M

=TI O

o=
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Let M € I'(€ ® &), such that o™

Gerstenhaber

Algebras and Courant
M o (0 M) Algebroids

o b Anton Zeitlin

Introduce a € T(E), i.e. a = (v,v,w,&). Let D:T(E) = (€ ® &),
such that

0 ov Beltrami-Courant
Da = = . differential



Let M € I'(€ ® &), such that

()

Introduce a € T(E), i.e. a = (v,v,w,&). Let D:T(E) = (€ ® &),

such that
0 v
Do = ( o7 05— Bw )

Then the transformation of M is:

M — M — Da + ¢1(c, M) + ¢2(cx, M, M).

Field Equations,
Homotopy
Gerstenhaber
Algebras and Courant
Algebroids

Anton Zeitlin

Beltrami-Courant
differential



Let M € I'(€ ® &), such that o™

Homotopy
Gerstenhaber
Algebras and Courant
& (0 M) Algebroids
M=|_ .
g b Anton Zeitlin
Introduce a € T(E), i.e. a = (v,v,w,&). Let D:T(E) = (€ ® &),
such that
0 5 v Beltrami-Courant
Da _— ( 8\7 3&) _ 5(4_) ) o differential

Then the transformation of M is:

M — M — Do + ¢1(a,M) + d)g(a,M, M)
Let us describe ¢1, @2 algebraically. In order to do that we need to pass
to jet bundles, i.e.

a € J®(0m) @ JZ(0(E)) @ J<(0(E)) ® J=(Om),

N € J=(0(8)) ® J(O(E))
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J - K —K Algebras and Courant
o= Z f" Qb + Z b” ®fFf", Algebroids
J K Anton Zeitlin

=Y a0,
I

where a', b’ € J<(0(€)), ' € J=(Oum) and 7', b’ € J=(D(E)), .
Fl € J2(Om). B s



One can write formally:
a=> b +> b ef,
J K
M = Z ad®37,
)
where a', b’ € J>(0(€)), f' € J*(Om) and &', b’ € J=(O(E)),
f' € J>(Om). Then

¢1(OL,M) = Z[ij aI]D ® Fjél + Z fKaI ® [EK7 EI]Dy
1,J 1,K
where [, -]p is a Dorfman bracket:
[vi, vlp = [vi, 2], [v,w]p = Luw,

[w,v]p = —ivdw, [wi,w2]p = 0.
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a Field Equations,
One can write formally: i —

Homotopy
Gerstenhaber
a=> b +> b ef, M eoids
J K Anton Zeitlin
=Y 4 od,
I
where a', b’ € J>(0(€)), f' € J*(Om) and &', b’ € J=(O(E)), _
f' € J>(Om). Then Belrami-Courant
¢1(OL,M) = Z[bJ7 aI]D ® fla + Z F ® [EK7 EI]Dy
1,J 1K

where [, -]p is a Dorfman bracket:

[V17 V2]D = [Vla VQ]Liev [Vaw]D = va7

[w,v]p = —ivdw, [wi,w2]p = 0.

Courant bracket is the antisymmetrized version of [, ]p.
Similarly:

al(fa" ® (b',3)7.

N =



Relation to standard second order sigma-model: Let us fill in 0 in M:

-

g u
i b

).
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SfozﬁA«pAéX)—(ﬁ/\aX)—

_<g7 pA ﬁ) - <M: pA 5X> - <ﬂ: pPA 8X> - <b’ OX N 5X>) Beltrami-Courant

o differential
V.N. Popov, M.G. Zeitlin, Phys.Lett. B 163 (1985) 185, A. Losev, A. Marshakov, A.Z., Phys. Lett. B 633 (2006) 375

Same formulas express symmetries. If {gij} is nondegenerate, then :
1 v .
Sw= o /Z(GW(X)dX“ A xdX” + X" B),
GsE = g,',l]lslij; + 8k — bsE, BsE = gfjﬁlsuj/; — &sk — bsl?
Gi = —ggits — g5, Gif = —gshf— EyHk
Bi = gsjﬁ’,i = g;jﬁ? By = g,j-/é = gEjMJ,;-



Field Equations,

Relation to standard second order sigma-model: Let us fill in 0 in M: s
Gerstenhaber
Algebras and Courant
M = (g: 'LbL) . Algebroids
,U, Anton Zeitlin

SfozﬁA«pAéX)—(ﬁ/\aX)—

—(&,PAP) — (1, p N OX) — (i, p N OX) — (b, 0X A OX)). :
Beltrami-Courant
differential

V.N. Popov, M.G. Zeitlin, Phys.Lett. B 163 (1985) 185, A. Losev, A. Marshakov, A.Z., Phys. Lett. B 633 (2006) 375

Same formulas express symmetries. If {g"} is nondegenerate, then :

_ L " o
S0 =17 /Z(GW(X)dX A #dX” + X*B),

GsE = g,',l]lslij; + 8k — bsE, BsE = gfjﬁlsuj/; — &sk — bsl?
Gi = —gjlis — &jiti»  Gsi = —&5ii; — &ijks
Bs = ggit — gjite, Bst = gyt — gt

Symmetries Ml — M — Do + ¢1(c, M) + ¢o(cr, M, M) are equivalent to:
A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249
G—-G-LG, B—B-LB
B - B —2dw
a=(v,w), ver(TM),we Q' (M)



Vertex algebroids

The quantum theory, corresponding to the chiral part of the free first
order Lagrangian Lo is described (under certain constraints on M) via
sheaves of VOA on M (V. Gorbounov, F. Malikov, V. Schechtman, A.
Vaintrob).
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Vertex algebroids

The quantum theory, corresponding to the chiral part of the free first
order Lagrangian Lo is described (under certain constraints on M) via
sheaves of VOA on M (V. Gorbounov, F. Malikov, V. Schechtman, A.

Vaintrob).

On the open set U of M we have VOA:

%4

o]

> e,

n=

0

Y .V = End(V)[[z,z" Y]],
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g Field Equations,
Vertex algebroids B
Gerstenhaber
Algebras and Courant
Algebroids
The quantum theory, corresponding to the chiral part of the free first P S
order Lagrangian Lo is described (under certain constraints on M) via
sheaves of VOA on M (V. Gorbounov, F. Malikov, V. Schechtman, A.
Vaintrob).
On the open set U of M we have VOA:
oo
=il
V= Z Vo, Y :V = End(V)[[z,z7']], Ve
n=0 Goo -algebras and

quasiclassical limit

generated by:
[X'(2), pi(w)] = hojd(z = w), i,j=1,2,...,D/2
X(2) =3 Xz"",p(z2) = > _pisz "' € End(V)[[z,z]],

rez SEZL

so that

V = Span{p;, s, .-, Pj.—s X", ... X", } ® F(U) ® C[h,h™"],
Im,Sn > 0,

F(U) generated by Xj-modes.



Field Equations,

. . Homotopy
The Virasoro element is: A Erstenhaber
1 & Algebroid:u
T(z) = Z L,,Zini2 = E . <p(Z)(9X(Z)> . +82¢I(X(Z)) Anton Zeitlin
neZ
D
[Lny Lm] = (n - m)Ln+m a4 E(n3 - n)én,fm
Vertex/Courant
algebroids,

Goo -algebras and
quasiclassical limit



Field Equations,
Homotopy

The Virasoro element is: Gerstenhaber
Algebras and Courant

e 1 2 0 Algebroids

T(z) = Z L,z - 5 2 (p(2)0X(2)) : +0°¢' (X(2)). Anton Zeitlin
nez
D
[Lny Lm] = (n - m)Ln+m a4 E(n3 - n)én,fm
corresponding to correction: Vertex Courant
_ algebroids,

Lo — Ly = (p ADX) — 27ihRP ()¢’ (X) oo -slgtras and

where ¢’ = log Q, where Q(X)dX* A --- A dX" is a holomorphic volume
form, i.e. for globally defined T(z), M has to be Calabi-Yau.
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where ¢’ = log Q, where Q(X)dX* A --- A dX" is a holomorphic volume
form, i.e. for globally defined T(z), M has to be Calabi-Yau.
The space V is a lowest weight module for the above Virasoro algebra.
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where ¢’ = log Q, where Q(X)dX* A --- A dX" is a holomorphic volume
form, i.e. for globally defined T(z), M has to be Calabi-Yau.
The space V is a lowest weight module for the above Virasoro algebra.

V can be reproduced from V4 and Vi as a vertex envelope. The
structure of vertex algebra imposes algebraic relations on Vo & V4 giving
it a structure of a vertex algebroid.



Field Equations,

Homotopy
The Virasoro element is: Gerstenhaber
Algebras and Courant
o 1 . Algebroids
T(z) = Z L,z - 5 2 (p(2)0X(2)) : +0°¢' (X(2)). Anton Zeitlin
nez
D
[Lny Lm] = (n - m)Ln+m a4 E(n3 - n)én,fm
corresponding to correction: Vertex Courant
= algebroids,
Lo — Ly = (p A DX) — 27rihR(2)(’y)(;5/(X) Goo-algebras and

quasiclassical limit

where ¢’ = log Q, where Q(X)dX* A --- A dX" is a holomorphic volume
form, i.e. for globally defined T(z), M has to be Calabi-Yau.
The space V is a lowest weight module for the above Virasoro algebra.

V can be reproduced from V4 and Vi as a vertex envelope. The
structure of vertex algebra imposes algebraic relations on Vo & V4 giving
it a structure of a vertex algebroid.

In our case: Vo — Of) = Oy ® C[h, h™1],
Vi » V' =v®C[hh], _
V = O(Ey), generated by : v;(X)pi: , wi(X)oX'
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A vertex O-algebroid is a sheaf of C-vector spaces V with

i) C-linear pairing On ® V — V[h], i.e. f ® v — f x v such that
lxv=v.
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lxv=uv. Anton Zeitlin
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iii)C-linear map of Leibniz algebras 7 : V — hI'(TM)[h] usually referred
to as an anchor
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i) C-linear pairing Oy ® V — V[h], i.e. f® v > f % v such that M e
lxv=uv. Anton Zeitlin
ii) C-linear bracket, satisfying Leibniz algebra [, ]: V® V — hV[A],
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iv) a symmetric C-bilinear pairing (, ) : V®V — hOpn[h],
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Field Equations,

A vertex Om-algebroid is a sheaf of C-vector spaces V with Sk
. - 0o . Algebras and Courant
i) C-linear pairing On ® V — V[h], i.e. f ® v — f x v such that Algebroids
lxv=uv. Anton Zeitlin

ii) C-linear bracket, satisfying Leibniz algebra [, ]: V® V — hV[A],

iii)C-linear map of Leibniz algebras 7 : V — hI'(TM)[h] usually referred
to as an anchor

iv) a symmetric C-bilinear pairing (, ) : V®V — hOpn[h],

v) a C-linear map 9 : Onp — V such that 7w 09 = 0, Vertex/ Couran:
algebroids,
naturally extending to O%, and V", and satisfy the relations Gz eifilives et

fx(gxv)—(fg) x v=m(v)(f) «9(g) + m(v)(g) = O(f),
[vi, F x vo] = w(v1)(F) % vo + F * [vi, va],

[vi, vo] + [v2, vi] = O{v1, vo), 7(f % v) = fm(v),
(f*vi,v) = f(v1, va) — m(va)(m(v2)(f)),

m(v)({v1, v2)) = ([v, vi], v2) + (w1, [v, v2]),

o(fg) = f + 0(g) + g * A(f),

[v,0(f)] = A(x(v)(£)), (v,0(f)) = =(v)(f),

where v, vi,v» € V", f, g € Of.



For our considerations V = O(€):

of =df, w(v)f =—hv(f), =(w)=0,
fxv="f+hdX 00, frw="fuw,

[V17 V2] = —h[Vl, V2]D — h2dXi6,‘akV15(95V2k,

[V7w] = —h[V,OJ]D7 [w> V] = _h[wv V]Dv [OJ],,(UQ] = Oa

(v,w) = —h(v,w)’, (vi,n) = —hOvidivi, (wi.w2) =0,

where v and w are vector fields and 1-forms correspondingly.
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o . Field Equations,
For our considerations V = O(€): “Homotopy

Geretenhaber
of = df, w(v)f = —hv(f), m(w)=0, e ebraigs
fxv="f+hdX 00, frw="fuw, CeZIin
[vi, v2] = —h[vi, vo]p — h2dXi6;8kvf85v;,

[v,w] = =h[v,w]p, [w,v]=—hw,v]p, [w1,w2]=0,

(v,w) = —h{v,w)*, (vi,n) = —ROvidjvi, (wi.ws) =0,
where v and w are vector fields and 1-forms correspondingly. Vertex /Courant
Together with div,/-the divergence operator with respect to ¢’ these ‘.’:’Iiecb’;o'::';'as i

quasiclassical limit

operations generate vertex algebroid with Calabi-Yau structure.



Vertex algebra V is a Virasoro module. The corresponding semi-infinite
complex V**™ (the analogue of Chevalley complex for Virasoro algebra)
is a vertex algebra too:
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Vertex algebra V is a Virasoro module. The corresponding semi-infinite AT
lomotopy

complex V**™ (the analogue of Chevalley complex for Virasoro algebra) Gerstenhaber
) Algebras and Courant
is a vertex algebra too: Algebroids
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Vertex/Courant
algebroids,

Goo -algebras and
quasiclassical limit



Vertex algebra V is a Virasoro module. The corresponding semi-infinite
complex V**™ (the analogue of Chevalley complex for Virasoro algebra)
is a vertex algebra too:

Vsemi -V ® /\7
A generated by [b(z),c(w)]y = d(z — w).

The corresponding differential

Q=lJo, j(2)= Jnz " = c(2)T(2)+ : c(2)9c(2)b(2) :

nEZ
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Vertex algebra V is a Virasoro module. The corresponding semi-infinite
complex V**™ (the analogue of Chevalley complex for Virasoro algebra)
is a vertex algebra too:

Vsemi -V ® /\7
A generated by [b(z),c(w)]y = d(z — w).

The corresponding differential

Q=j, Jjz)= z:j,,zf"f1 = c(2)T(2)+ : c(2)0c(z)b(z) :

nEZ

is nilpotent when D = 26 (famous dimension 26!).
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Vertex algebra V is a Virasoro module. The corresponding semi-infinite
complex V**™ (the analogue of Chevalley complex for Virasoro algebra)
is a vertex algebra too:

Vsemi -V ® /\7
A generated by [b(z),c(w)]y = d(z — w).
The corresponding differential
Q=jo, j(2)=) jnz "' =c(2)T(2)+: c(2)0c(2)b(2) :
nEZ

is nilpotent when D = 26 (famous dimension 26!). However, we will
consider subcomplex of light modes (i.e. Lo = 0) denoted in the
following as (5}, Q), where we can drop this condition:

= hdlv
—5 hd1v
— @h
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The homotopy Gerstenhaber algebra of Lian and Zuckerman

The homotopy associative and homotopy commutative product of Lian
and Zuckerman:
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The homotopy Gerstenhaber algebra of Lian and Zuckerman

The homotopy associative and homotopy commutative product of Lian
and Zuckerman:

(A, B)n = ReszM

Q(a1, a2)n = (Qa, a2)n + (—1)|all(317 Qaz)s,

(a1, a2)n — (—1)*1%)(a5, 21)5 =

Qm(ay, a2) + m(Qay, a2) + (—1)|al|f77(«?117 Qa2),

Q(a1, a2, a3)n + (Qar, a2, a3)n + (—1)1 (a1, Qaz, a3)s +

(1)1l (ay, 2, Qas)n = (a1, a2)n, as)n — (a1, (a2, a3)n)
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The homotopy Gerstenhaber algebra of Lian and Zuckerman

The homotopy associative and homotopy commutative product of Lian
and Zuckerman:

(A, B)n = ReszM

Q(a1, a2)n = (Qa, a2)n + (—1)|all(317 Qaz)s,

(a1, a2)n — (—1)*1%)(a5, 21)5 =

Qm(ay, a2) + m(Qay, a2) + (—1)|al|f77(«?117 Qa2),

Q(a1, a2, a3)n + (Qar, a2, a3)n + (—1)1 (a1, Qaz, a3)s +

(1)1l (ay, 2, Qas)n = (a1, a2)n, as)n — (a1, (a2, a3)n)

Operator b of degree -1 (0-mode of b(z)) on (¥}, Q) which
anticommutes with Q:

yh & yh
Y SY
—id
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Ol <——— Oy Ol <—— Oy

Field Equations,
Homotopy
Gerstenhaber
Algebras and Courant
Algebroids

Anton Zeitlin

Vertex/Courant
algebroids,

Goo -algebras and
quasiclassical limit



The homotopy Gerstenhaber algebra of Lian and Zuckerman
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and Zuckerman:
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Q(a1, a2)n = (Qa, a2)n + (—1)|all(317 Qaz)s,

(a1, a2)n — (—1)*1%)(a5, 21)5 =

Qm(ay, a2) + m(Qay, a2) + (—1)|al|f77(«?117 Qa2),

Q(a1, a2, a3)n + (Qar, a2, a3)n + (—1)1 (a1, Qaz, a3)s +

(1)1l (ay, 2, Qas)n = (a1, a2)n, as)n — (a1, (a2, a3)n)
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One can define a bracket:

(—=1)""1{a;, a2} 4 = b(a1, a2) — (ba1, a2)n — (=1)'*(a1bay)s,
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One can define a bracket:

(—=1)""1{a;, a2} 4 = b(a1, a2) — (ba1, a2)n — (=1)'*(a1bay)s,

so that together with Q, (:,)s it satisfies the relations of homotopy
Gerstenhaber algebra:
{a1, a2}n + (71)(I21\—1)(\32I—1){a2’ alh =
(—1)!1 7 (@mi (a1, 22) — mi(Qar, 22) — (—1)1 2 mi (a1, Qa2)),
{a1, (a2, 33)n}h = ({ar, a2}n, as)n + (—1)121701%2l (3 L2 a3}, ),
{(317 az)h, 33}h - (31, {32, a3}h)h - (—1)“33'71)'32‘({317 83}/1, 82)h =
(_1)‘31|+|32‘_1(Qn2(31, az, a3) - nL(Qal,aL 33) -
(=1)"' 5} (a1, Qaz, as) — (1)1l 5l 5y 3y, Qas),
{{a1, a2}tn, a3}n — {a1, {a2, a3}n}n +
(_1)(|31\—1)(\32|—1){327 {a1,a3}n}s = 0.
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Field Equations,

One can define a bracket: Homotopy
Gerstenhaber
Algebras and Courant
Algebroids
(—1)'31‘{317 az}h e b(al, az)h - (bén7 32);, - (—1)'51‘(a1l)32)h7 Anton Zeitlin
so that together with Q, (:,)s it satisfies the relations of homotopy
Gerstenhaber algebra:
{a1, a}n + (71)(I21\—1)(\32I—1){a2’ alh =
(_1)‘31|71(Qm;7(al’ 32) - m;v(Qah ‘32) - (_1)‘32‘ mz(alv 022)), Vertex/Courant
_ algebroids,
{a1, (22, 23)}n = ({21, 22}, as)n + (1)1 712 (23, {ar, 2334, G algbras and

quasiclassical limit

{(317 az)h, 33}h - (31, {32, a3}h)h - (—1)“33'71)'32‘({31, 83}/1, 82)h =
(_1)\a1|+|a2\—1(Qn;1(317 az, 33) - nL(Qal,aL 33) -
(=1)"' 5} (a1, Qaz, as) — (1)1l 5l 5y 3y, Qas),
{{a1, a2}tn, a3}n — {a1, {a2, a3}n}n +
(_1)(I31\—1)(\32I—1){827 {317 a3}h}h —0.
The conjecture of Lian and Zuckerman, which was later proven by series
of papers (Kimura, Zuckerman, Voronov; Huang, Zhao; Voronov) says

that the symmetrized product and bracket of homotopy Gerstenhaber
algebra constructed above can be lifted to G..-algebra.



Homotopy algebras: G, Loo, Coo

Let A be a graded vector space, consider free graded Lie algebra Lie(A).

Lie"" (A) = [A, Lie*A],

Lie'(A) = A.
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Let A be a graded vector space, consider free graded Lie algebra Lie(A).
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Consider free graded commutative algebra GA on the suspension
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GA = @, \"Lie(A)[-n]
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Homotopy algebras: G, Loo, Coo

Let A be a graded vector space, consider free graded Lie algebra Lie(A).

Lie"™ (A) = [A, Lie*A], Lie'(A) = A.

Consider free graded commutative algebra GA on the suspension
(Lie(A)[-1], i.e.

GA = @, \"Lie(A)[-n]

There are natural [, -], A operations on GA of degree -1, 0
correpondingly, generating a Gerstenhaber algebra.
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Homotopy algebras: G, Loo, Coo

Let A be a graded vector space, consider free graded Lie algebra Lie(A).

Lie"™ (A) = [A, Lie*A], Lie'(A) = A.

Consider free graded commutative algebra GA on the suspension
(Lie(A)[-1], i.e.

GA = @, \"Lie(A)[-n]

There are natural [, -], A operations on GA of degree -1, 0
correpondingly, generating a Gerstenhaber algebra.

A Goo-algebra (Tamarkin, Tsygan, 2000) is a graded space V with a
differential O of degree 1 of G(V/[1]*), such that O is a derivation w.r.t
bracket and the product.
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Homotopy algebras: G, Loo, Coo

Let A be a graded vector space, consider free graded Lie algebra Lie(A).

Lie"™ (A) = [A, Lie*A], Lie'(A) = A.
Consider free graded commutative algebra GA on the suspension
(Lie(A)[-1], i.e.
GA = @, \"Lie(A)[-n]

There are natural [, -], A operations on GA of degree -1, 0
correpondingly, generating a Gerstenhaber algebra.

A Goo-algebra (Tamarkin, Tsygan, 2000) is a graded space V with a
differential O of degree 1 of G(V/[1]*), such that O is a derivation w.r.t
bracket and the product.

Multiplicative Ideals, preserved by O: li-generated by the commutant of
Lie(V[I]*), b = A\, (Lie(V[1]") -]
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Homotopy algebras: G, Loo, Coo

Let A be a graded vector space, consider free graded Lie algebra Lie(A).

Lie"™ (A) = [A, Lie*A], Lie'(A) = A.

Consider free graded commutative algebra GA on the suspension
(Lie(A)[-1], i.e.

GA = @, \"Lie(A)[-n]

There are natural [, -], A operations on GA of degree -1, 0
correpondingly, generating a Gerstenhaber algebra.

A Goo-algebra (Tamarkin, Tsygan, 2000) is a graded space V with a
differential O of degree 1 of G(V/[1]*), such that O is a derivation w.r.t
bracket and the product.

Multiplicative Ideals, preserved by O: li-generated by the commutant of
Lie(V[1]"), b = A\,>,(Lie(V[1]*)[—n]. That induces differentials on
corresponding factors: A -,(V[1]*)[—n] and Lie(V[1]*)[-1]. The
resulting structures on V are called L..-algebra and C..-algebra
correspondingly.
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Restriction of & on V[1]*:

V[1]* — Lie" (V[1]") A - -
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. L. Field Equations,
Restriction of @ on V[1]*: i

Gerstenhaber
ek ik ras an ran:
VIA" = Lie® (V") A - - A Lie™ (VL]). M e
Conjugated map: Anton Zeitlin
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[ 4 RV — V.
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Restriction of & on V[1]*:
V[1]* — Lie"(V[1]*) A --- A Lie*(V[1]").
Conjugated map:
Mgtk VE @@ VE" S v,
of degree 3 — n — ki — ... — kg, satisfying bilinear relations.

In our previous notation m; = Q, mp-symmetrized LZ product,
my 1—antisymmetrized LZ bracket.
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Restriction of & on V[1]*:

V[1]* — Lie"(V[1]*) A --- A Lie*(V[1]").

Conjugated map:

ki .
My ko, kn - \/® Q- ® V® SV

of degree 3 — n — ki — ... — kg, satisfying bilinear relations.

In our previous notation m; = Q, mp-symmetrized LZ product,
my 1—antisymmetrized LZ bracket.

L. is generated by m;

by m=Q, mi= (...

=Q, mi,..1

-

=[,...,] and Cs is generated
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Restriction of @ on V[1]*: Field Equations,

Homotopy
Gerstenhaber
V[1]* — Liekl(V[l]*) AREEWAN Liek”(V[l]*). A'gebfﬁ;:,?iﬁ:"'a"t
Conjugated map: Anton Zeitlin
ky kn
Mg by -V @@ VE" SV,
of degree 3 — n — ki — ... — kg, satisfying bilinear relations.
In our previous notation m; = Q, mp-symmetrized LZ product, Verton/ .
ertex, ourant

my 1—antisymmetrized LZ bracket. algebroids,
Goo -algebras and
quasiclassical limit

Lo is generated by mi = Q, mi1,.. 1 =[,..., ] and C is generated
by m=Q, mi=(,...,").

An important feature of Lo algebra is a Maurer-Cartan equation (® is
of degree 2) :

1
Q¢+Zm[¢,...,¢]+~--:0,

n>2
= n



Field Equations,

Restriction of @ on V[1]*: Homotopy
Gerstenhaber
V[1]" — Lie" (V[1]*) A --- A Lie* (V][1]*). By o

Anton Zeitlin

Conjugated map:
®k @kn
My ky,.ohn =V -V — V.
of degree 3 — n — ki — ... — kg, satisfying bilinear relations.

In our previous notation m; = Q, mp-symmetrized LZ product,
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Quasiclassical limit of LZ G, algebra

The following complex (¥, Q):

\Y% hV
0
5 @ @ %hdiv
—%hdiv
Om hOm ——— hOu W Oum

is a subcomplex of (5}, Q).
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is a subcomplex of (5}, Q). Then
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The symmetrized operations (-, )o, {*, - }o, ... satisfy the relations of
the homotopy Gerstenhaber algebra, so that all non-covariant
higher-order terms disappear from the multilinear operations.

The resulting Coo and L, algebras are reduced to Gz and L3 algebras.

A.Z., Comm. Math. Phys. 303 (2011) 331-359

Conjecture: This G..-algebra is the Gsz-algebra (no homotopies beyond
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A Courant Opy-algebroid is an Opy-module Q equipped with a structure
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A Courant Opy-algebroid is an Opy-module Q equipped with a structure
of a Leibniz C-algebra [-,-]o : Q ®c Q — Q, an Opy-linear map of Leibniz
algebras (the anchor map) mo : Q — I'(TM), a symmetric Oy-bilinear
pairing (-,-) : Q®0,, @ = Om, a derivation 9 : Oy — Q which satisfy

m0d =0, [qi,fqlo= flgi,qe]o + mo(q1)(f)g2

(l[g: @], @2) + (a1, [q, g2]) = mo(q)({q1, g2)0),

(9, 9()]o = d(mo(q)(f))

(q,9(f)) = m(q)(f) a1, q2lo + [92, g1]o = 9{q1, q2)o

for f € Om and q,q1, g2 € Q.
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A Courant Opy-algebroid is an Opy-module Q equipped with a structure
of a Leibniz C-algebra [-,-]o : Q ®c Q — Q, an Opy-linear map of Leibniz
algebras (the anchor map) mo : Q — I'(TM), a symmetric Oy-bilinear
pairing (-,-) : Q®0,, @ = Om, a derivation 9 : Oy — Q which satisfy

m00 =0, [a,fqlo = f[q:, qlo+ 7mo(q1)(f)q

([9, a1], @2) + (@, [q; @2]) = mo(a)({an, G2)o0),

[q,9(f)]o = d(mo(q)(f))

(q,0(f)) = mo(q)() [a1, g2lo + [92; g1]o = (g1, g2)o

for f € Om and q,q1, g2 € Q.

First it was obtained as an analogue of Manin’'s double for Lie
bialgebroid by Z-J. Liu, A. Weinsten, P. Xu.

In our case Q = O(€), mo is just a projection on O(TM)

[91, 2o = —[q1, @2]p, (g1, G2)0 = —{(q1, q2)°, O =d.
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The corresponding Ls-algebra on the half-complex for Courant algebroid
was constructed by D. Roytenberg and A. Weinstein (1998).
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The corresponding Ls-algebra on the half-complex for Courant algebroid
was constructed by D. Roytenberg and A. Weinstein (1998).

We show that it is a part of a more general structure, homotopy
Gerstenhaber algebra.
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The corresponding Ls-algebra on the half-complex for Courant algebroid
was constructed by D. Roytenberg and A. Weinstein (1998).

We show that it is a part of a more general structure, homotopy
Gerstenhaber algebra.

Question: Is there a direct path (avoiding vertex algebra) from Courant
algebroid to Gs-algebra? Odd analogue of Manin double?
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The corresponding Ls-algebra on the half-complex for Courant algebroid
was constructed by D. Roytenberg and A. Weinstein (1998).

We show that it is a part of a more general structure, homotopy
Gerstenhaber algebra.

Question: Is there a direct path (avoiding vertex algebra) from Courant
algebroid to Gs-algebra? Odd analogue of Manin double?

Remark. Cs-algebra is related to gauge theory. The appropraite
"metric’ deformation gives a Yang-Mills Cs-algebra on a flat space.

A.Z., Comm. Math. Phys. 303 (2011) 331-359
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Simplest version: G, — Gerstenhaber algebra

Subcomplex (F.,,, Q):

O(TEHO M) o(T10
C%OM Om

The Go algebra degenerates to G-algebra. Moreover, due to by it is a
BV-algebra. Combine chiral and antichiral part:

F;m = sm®5tsm

(=1)11{a1, 3} = b~ (a1, a) — (b” a1, ) — (1) (a1b™ a2),
where b~ = b — b.
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Field Equations,

Homotopy
Maurer-Cartan elements, closed under b™: I

Algebroids
r(T*M) @ TOY (M) @ o(TOD(M)) & O(THV(M)) & Om & Oum Anton Zeitin

Components:(g, ¥, v, ¢, $).
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Maurer-Cartan elements, closed under b™:
H(TH(M) @ TOY(M)) @ o(TOV (M) @ O(TH)(M)) @ O @ Ou
Components:(g, ¥, v, ¢, $).

The Maurer-Cartan equation is equivalent to:

A.Z., Nucl. Phys. B 794 (2008) 370-398; A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275
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Maurer-Cartan elements, closed under b™:
r(TEO(M) @ TOY(M)) @ o(TOY (M) & O(TEO(M)) @ Oy @ Om

Components:(g, ¥, v, ¢, $).

The Maurer-Cartan equation is equivalent to:
A.Z., Nucl. Phys. B 794 (2008) 370-398; A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275

1). Vector field divag, where logQ = —20¢ = —2(¢' + ¢’ + ¢ + ¢) and

0i0;%P0 = 0, is such that its F(TEOM), T(TOYM) components are
correspondingly holomorphic and antiholomorphic.
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0i0;%P0 = 0, is such that its F(TEOM), T(TOYM) components are
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equation:
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where L, (g) is a Lie derivative with respect to the corresponding
vector fields and
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FTEO(M) © TOV(M)) & O(TOI(M)) & O(TCO(M)) & O © Oy anzaum

Components:(g, ¥, v, ¢, $).

The Maurer-Cartan equation is equivalent to:

A.Z., Nucl. Phys. B 794 (2008) 370-398; A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275

1). Vector field divag, where logQ = —20¢ = —2(¢' + ¢’ + ¢ + ¢) and

0i0;%P0 = 0, is such that its F(TEOM), T(TOYM) components are

correspondingly holomorphic and antiholomorphic.

2). Bivector field g € [(THOM @ TOYM) obeys the following Einstein Equations
equation:

[[gag]] + LdiVQ(g)g = 07

where L, (g) is a Lie derivative with respect to the corresponding
vector fields and

e, h]]k/' = (gifc‘?;(’)fhk/_—i— h"fa,-a;g” _ a_gkfajhi/__ &hkfafgil_)

3) diVQdiVQ(g) = (0.



These are Einstein equations with the following constraints:

Gz =gk Bi

Gix =

% = Gi

= —8ik>
= Gﬂ =0,

® = log /g + %o,
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Field Equations,

Homotopy
Gerstenhaber
Algebras and Courant
Algebroids
These are Einstein equations with the following constraints: Anton Zeitin
Gk =gk Bx=—gxr ®=log\g+ o,
Gik = Gx = Gik = G = 0,
Physically:
/ [dp][dB][dX][dX]e™ 2= J(prIX)=(prX) ~(g.pAB)) + ] RO (el 1 fEiEslEaktcns

/[dX] [d)?]eﬁl,, J ?2(Gpuv+Bu )OXH XY + [ R (7)(®o(X) +log v/2)

based on computations of
A. Tseytlin and A. Schwarz, Nucl.Phys. B399 (1993) 691-708.



Main Conjecture

Consider
For = F®F |5-—0

with the L..-algebra structure given by Lian-Zuckerman construction.
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Main Conjecture Field Equations,

Homotopy
Gerstenhaber
Algebras and Courant
Algebroids

Consider Anton Zeitlin
Fo- =5 ®F |50
with the L..-algebra structure given by Lian-Zuckerman construction.

One can explicitly check that GMC symmetry
(W = w(M, &, auxiliary fields)

1
V- V4 QA+ [V, A]ln+ E[W,W,A]h +
Einstein Equations

reproduces
M — M — Da + ¢1(a, M) + ¢o(a, M, M).

A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275



o . Field Equations,
Main Conjecture Homotopy
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Algebras and Courant
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Anton Zeitlin

Consider
For = F®F |5-—0

with the L..-algebra structure given by Lian-Zuckerman construction.
One can explicitly check that GMC symmetry
(W = w(M, &, auxiliary fields)

1
V- V4 QA+ [V, A]ln+ E[W,W,A]h +

Einstein Equations

reproduces
M — M — Da + ¢1(a, M) + ¢o(a, M, M).
A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275

Conjecture: The corresponding Maurer-Cartan equation gives Einstein
equations on G, B, ® expressed in terms of Beltrami-Courant
differential. The symmetries of the Maurer-Cartan equation reproduce
mentioned above symmetries of Einstein equations.



Thank you!
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